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ABSTRACT

This paper contains an analysis of the error induced by applying the method of equiva-
lent statistical linearization (ESL) to randomly-excited multi-degree-of-freedom (MDOF )
geometrically nonlinear shear-frame structures as the number of degrees of freedom in-
creases. The quantity that is analyzed is the variance of the top-story displacement.
The MDOF systems under consideration obtain their nonlinearity through cubic polyno-
mial interstory restoring forces and the external excitation is modeled as the stationary
output of a Kanai-Tajimi filter (which itself is excited by Gaussian white noise). Pa-
rameters of the filter and the MDOF structures, as well as the intensity of the Gaussian
white noise, are calibrated such that quantitative comparisons of the error between the
exact solutions, estimated from Monte Carlo simulations, and the ESL solutions are
possible among systems of different dimensions.

1. INTRODUCTION

Since its introduction’*?® the method of equivalent statistical linearization has become
a popular means of analyzing nonlinear systems subject to random excitation. The
essential idea of ESL is that the nonlinear system under consideration is replaced by
an equivalent linear system where the coefficients of the linear system are calibrated
by minimizing (in some way) the difference between the actual nonlinear system and
the equivalent linear system. Unlike other methods for analyzing nonlinear random-
vibrations problems (e.g., the Fokker-Planck equation, perturbation methods), ESL is
relatively easy to implement, is computationally efficient, and is subject to few con-
straints. In the past few decades, much work in the field of random vibrations has
centered around refining the method and extending it to various specific cases” 811,15
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for example MDOF systems? and systems subject to nonstationary excitation®.

While generally considered applicable to a wide array of random-vibrations problems,
the method of ESL does have a few inherent drawbacks. For instance, the way in which
the difference between the actual and approximate systems is minimized is arbitrary.
The usual convention is that the mean-square of the difference is minimized although
other minimization procedures are equally viable. Another inherent problem with the
ESL method is that in order to determine the coefficients of the equivalent linear system,
the response statistics of the equivalent linear system are used which in turn depend on
the coefficients of the equivalent linear system. Thus, a set of nonlinear equations for
the calibration of the linear coefficients arises. Moreover, for nonlinear systems subject
to Gaussian white noise, the method of ESL predicts a Gaussian response, whereas the
actual response may be decidedly non-Gaussian. Consequently, the response spectral
density corresponding to the ESL solution will contain only frequencies inherent in the
excitation, while the actual response spectral density for the nonlinear system may
exhibit frequencies outside the spectrum of the excitation'* . In addition, as shown
by Fan and Ahmadi'® and Roberts®, the uniqueness of ESL solutions is not always
guaranteed.

However, despite the aforementioned drawbacks, the method of ESL remains the most
widely-used method in the analysis of randomly-excited nonlinear MDOF systems. In
this regard, it has been known for some time that the absolute error of the stochastic
response grows with the number of degrees of freedom of the system, yet it appears as
though no systematic analysis of this problem has been reported in the literature. The
objective of this paper, then, is to attempt to quantify the growth in the error of the
mean-square top-story displacement for an n-degree-of-freedom system as n becomes
large. The basis for the analysis is an n-DOF shear-frame structure with nonlinear in-
terstory restoring forces subject to stationary random excitation. The stationary exci-
tation is modelled as the output of a Kanai-Tajimi filter driven by stationary Gaussian
white noise. In order to make meaningful comparisons among structures of different
dimensions, the intensity of the Gaussian white noise is chosen such that when the
structure is excited in its first mode of vibration, the top-story displacement variance
is 0.2n meters for an n-DOF structure. In this manner, the interstory displacements
for structures of varying degrees of freedom are roughly comparable. Moment equa-
tions for the equivalent linear system are derived via Ité’s equation and integrated to
stationarity using a variable-time-step, error-monitoring Runge-Kutta scheme to insure
stability and accuracy. Since the Fokker-Planck equation has not been solved for the
actual MDOF nonlinear systems under consideration, the “exact” solutions are esti-
mated from Monte Carlo simulations, whereupon error estimates between the exact
and approximate results are calculated.

2. PROBLEM FORMULATION

Consider the n-DOF nonlinear shear frame structure depicted in Figure 1. All stories of
the structure are assumed to have the same mass, m, while all interstories are assumed
to have the same stiffness and damping parameters, k and c, respectively. The relative



displacement between stories ¢ and 7+ — 1 is denoted by X;(t). Thus, the top-story
displacement relative to the ground surface, Xy, is given by Y(¢) = 3° | X;(¢). The
structure obtains its nonlinearity through interstory shear restoring forces, which are
assumed to be given by the cubic elastic expression k(X;(t) + eX3(¢)) where € is a
parameter that controls the magnitude of the nonlinearity (assumed to be the same for
each interstory). The ground immediately below the structure and above the bedrock is
modelled as a linear shear oscillator with mass m, stiffness ks, and damping constant
cs, through which stationary Gaussian white noise, iy, is filtered .

With the above considerations, the equations of motion governing the combined structure-
filter system are given by

Y(t)= Exi(t)
Ktrexd)| o /P
L / X (1)
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Figure 1: Multi-degree-of-freedom shear-frame structure in series with Kanai-Tajimi filter.

my(iiy + Xo) = —ks Xo — ¢s Xo + k(X1 4 €X3) + X,
m(iy + Xo 4+ X1) = k(X1 + eXP) — X1 + k(Xz + eX3) + cX
m(iy + Xo + X1 + X2) = —k(Xa + €X3) — cXg + k(X3 + eX3) + cX3

m(ub + XO +X1 S ket +)"('n.—1) = _‘k(Xn—l +€X-,31_1) = C-Xn—l + k(X'n. +€Xg) +CXn
miy + Xo 4+ X1 4 oo 4+ Xno1 + Xn) = —k(Xn + €X3) — cXn

(1)
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In what follows, ks, ¢, k, and ¢ are expressed as myw?, 2m(sws, mws, and 2m(owo,
respectively. Here w, and (, represent the circular eigenfrequency and damping ratio,
respectively, of the linear single-degree-of-freedom (SDOF') soil filter. The values wy
and (o as defined above are simply parameters of the MDOF system. (For a linear
SDOF system, wq corresponds to the first circular eigenfrequency of the structure and
similarly, (o corresponds to the structure’s damping ratio, but this is not the case for
MDOF systems.) In addition, the mass of the soil is assumed to be considerably greater
than the mass of the stories.

By dividing each of equations (1) by their respective mass terms and subtracting the
(i — 1)-th equation from the i-th, the system of equations can be written in matrix form
as

X(t) + CX(t) + K(X(t) + €X?(t)) = — Uiy (t) (2)
where
Xo(t) Xg(t) 1
Xi(t X3t
xw= |01 xe= MOl v (3)
, : ' :
Xa(t) X3(t) 0
i g-% 0 0 0 00 0 0]
—fe 1 -1 0 00 00
0 0 -1 2 -1 0 0 0
L 0 0 0 0 0 0 -1 2]
- 2 -
%5— 0 0 0 0 0 0 0
02 0 0 0
-% 1 -1 0 00 0 0 01 0 0
K=wi| 0 -1 2 -1 0 , Beg [0 0 1 0
0 0 -1 2 -1 0 : 0
‘ ; 0 0 0 1
) 0 0 0 00 --- -1 é_

It should be noted that the last two terms of the first of Egs. (1) drop out due to the
assumption that m is small compared to m,. This assumption entails that there is no
feedback from the structure to the soil. Thus, the soil oscillator acts as a Kanai-Tajimi
filter'?2. The input to the Kanai-Tajimi filter, the bedrock excitation i, is taken as
stationary Gaussian white noise with autocorrelation given by

Eliip(t)ip(t + 7)) = d3é(7) (5)
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where dj is the intensity of the white noise. While a stationary excitation process is
not realistic, the error analysis as it is conducted herein remains valid for any type of
excitation, therefore, the simplest excitation model is adopted.

3. MOMENT EQUATIONS FOR EQUIVALENT LINEAR SYSTEMS

The theory of vector Markov diffusion processes can be applied to equations (2) to yield
the following stochastic differential equations in state-space form

dZ(t) = a(Z(t))dt + bdW(t) ,  Z(0)=0 (6)
where
_[X@®) - X(t) _[o
2= [Xm} R I B &

and W(t)is a unit Wiener process.

Equation (6) is nonlinear as the drift vector is a function of the elements of the state
vector Z(t). A statistical linearization approximation to (6) can be written in the
following form:

dZ(t) = A(t)Z(t) + bdW(t) , Z(0)=0 (8)
where
0 0 I
Alt)=E [a_za(z(t))} - [—K (I+3e0k(t)) —C (9)

Here 0% (¢) is a diagonal matrix with entries 0%, (t) where 0% (t) is the the i-th interstory
displacement variance of the approximating linear system. The expression for A(t) is
found by a mean least-squares estimate between the actual and approximating systems
where the expectations are evaluated using Gaussian closure®®.

It6’s differential formula can be used to derive differential equations for the joint sta-
tistical moments of response of the equivalent linear system. Since the drift vec-
tor a(Z(t)) (and consequently the product A(t)Z(t)) fulfills the asymmetry condition
a(Z(t)) = —a(—Z(t)), the mean of the state vector is zero, i.e., E[Z(¢)] = 0. Thus, as
the moment equations for a linear system are closed, only equations for the covariances
ki;j(t) = E[Z;(t)Z;(t)] need to be formulated. These equations can be written in matrix
form as

d%n(t) = AW)k(t) + k(AT +ddT  ,  k(0)=0 (10)

Equation (10) is nonlinear since A(t) depends on k() (ie., 0% (!) = &;(t)). The
stationary covariance matrix can be found either by setting the left-hand sides of (10) to
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zero and solving the resulting nonlinear algebraic equations or by integrating equations
(10) to stationarity. Here the latter approach was taken, employing a variable time-step,
error-monitoring 4th-order Runge-Kutta scheme!? to ensure accuracy and stability.

4. NUMERICAL EXAMPLE

In order to make meaningful comparisons of error estimates among structures of different
dimensions for given values of wy, (s, and €, two steps were taken to ensure consistent
response behavior independent of the number of degrees of freedom . As the first
excitation mode is the dominant response mode for shear-frame structures, the first
step was to select the n-DOF system parameters wp = wy(n) and (o = {o(n) so that w;
and (; were the same for all structures where w; and (; denote the corresponding linear
structure’s first circular eigenfrequency and first modal damping ratio, respectively. The-
parameters wg(n) and (p(n) are related to the w; and (; in the following manner

-G
(Mi(n)?

w1

T (a(n)? -

LU()(TI,) ) C()(TL)

i

where A1(n) is the first eigenvalue of the n x n non-dimensional stiffness matrix k given

by

1 -1 0 00 - 00
1 2 -1 00 -+ 00
k=| 0 -1 2 -1 0 0 0 (12)
0 0 0 00 -1 2

Values of 2ws™! and 0.05 were taken for w; and (;, respectively.

The second step involved the calibration of ground motion intensities at first-mode reso-
nant excitation, for which interstory displacements are fully correlated (see Table 1) and
identically distributed. In this case, the standard deviation of the top-story displace-
ment for an n-DOF equivalent linear structure is given by oy,eq(n) = nox, eq. Thus,
by selecting the ground motion intensities so that oy.q(n) = nA where A is an arbi-
trary constant, the standard deviations of interstory displacements are approximately
the same at stationarity (i.e., ox; &~ A) regardless of the number of degrees of freedom.
Consequently, the equivalent linear approximation to the actual nonlinear system given
by the term 360%{(” will also be approximately the same for all structures. In the
present analysis, A was taken as 0.2m while ¢ was taken, respectively, as 2.0 m~2 and
8.0m™% corresponding to values of 3eo%, (t) equal to 0.24 (moderate nonlinearity) and
0.96 (severe nonlinearity).



Table 1. Correlation coefficient matrices PX;X; 8s functions of w,; and (.
for n = 3, e = 0 (linear case)

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998
1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000

(s =0.30, ws = w; (s =0.10, ws =w (s =0.01, wy = w

Table 2 lists the first circular eigenfrequencies for n-DOF structures as well as the
calibrated ground motion intensities for fixed values of nonlinear parameter, ¢, and soil
damping, ;. Using the calibrated ground motion intensities, error estimates were found
for various values of w,/w; as functions of € and (.

Table 2: Eigenvalues A; and acceleration intensities dy as a function of
n, € and (; for w; = w; = 27 s~!

n A1(n) do(n)[m/s?], e =2.0 m™? do(n)[m/s?] , e = 8.0 m—2
[10-2] | ¢, =030 | ¢, =001 | ¢,=010 | ¢, =030 | ¢,=0.10 | ¢, =0.01

1 100.00 0.942 0.481 0.158 1.785 1.400 0.581
2 38.20 1.298 0.702 0.280 2.617 2.259 1.062
3 19.81 1.610 0.910 0.415 3.370 3.080 1.580
4 12.06 1.895 1.100 0.550 4.050 3.820 2.100
5 8.10 2.150 1.280 0.680 4.660 4.560 2.630
6 5.81 2.380 1.436 0.804 5.220 5.140 3.110
7 4.37 2.590 1.580 0.922 5.725 5.720 3.590
8 3.41 2.780 1.712 1.030 6.200 6.250 4.050
9 2.73 2.970 1.845 1.142 6.650 6.770 4.510

10 1.03 3.160 1.980 1.260 7.120 7.300 4.980

Figures 2(a)-2(f) show the absolute relative error between exact and approximate results
as a function of w, /w; for n = 4,6, 8,and 10. For each plot, both the nonlinear parameter
and the soil damping ratio are fixed.

For moderate nonlinearity and wide-band excitation, Figure 2(a), the largest relative
errors occur at wy/w; = 2, presumably the resonance condition of the equivalent linear
structure (as the equivalent linear restoring force is greater than the restoring force of the
corresponding linear system (e = 0), the fundamental frequency of the equivalent linear
structure is higher than the fundamental frequency of the corresponding linear struc-
ture, namely w; = 27s™!). Thus, when the energy of the input excitation is concentrated
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Fig}n‘e 2: The percent relative error between exact and ESL solutions for the top-story displacement
variance as a function of ws /wy. (a) € = 2.0m~2, ¢, = 0.30; (b) € = 8.0m~2, ¢, = 0.30; (c) e = 2.0m™2,
¢s = 0.10; (d) e =8.0m~2, ¢, = 0.10; (e) ¢ = 2.0m™2, {; = 0.01; (f) e = 8.0m™2, ¢, = 0.01.
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at the fundamental frequency of the equivalent linear structure, large responses are
predicted, whereas the same input excitation does not have as dramatic an effect on the
actual nonlinear system. Similar error results are observed for moderate nonlinearity
and medium-band excitation, Figure 2(b). Whereas for moderate nonlinearity and
narrowband excitation, Figure 2(c), errors are largest at wy/w; = 1 and tend to decrease
as wy/w; increases.

From these results, it appears as though ESL provides approximations within 20% of
the exact solutions for the following cases: n = 4, wide-band excitation; n = 4 and 6,
medium-band excitation; n = 4,6,8 and 10, narrow-band excitation, w,s/wy > 1.

Considering now the case of severe nonlinearity, Figures 2(d)-2(f), it is immediately
evident that the relative errors are of much larger magnitude. In addition, due to the
increased stiffness with larger €, the equivalent linear systems now have higher funda-
mental frequencies. As a result, the largest errors now occur at w, /w; = 3. Moreover, in
contrast to the case of moderate nonlinearity, where the errors tends to decrease as the
bandwidth of the excitation becomes narrower, for the case of severe nonlinearity, the
opposite trend is observed. In Figure 2(d), corresponding to wide-band excitation, it is
observed that near the resonance excitation, ws/w; = 3, the percent relative errors are
approximately 7.5% X number of stories, i.e., for a 10—story structure the relative error
is roughly 75%, for an 8—story structure roughly 60%, etc. For medium-band excita-
tion, Figure 2(e), the largest errors increase to approximately 10% x number of stories.
And for narrow-band excitation, Figure 2(f), the errors are further increased to nearly
12% x number of stories. Clearly, for all but a few values of w,/w;, equivalent statistical
linearization of severely-nonlinear MDOF structures provides wholly inaccurate results.

Figures 3(a)-3(f) and Figures 4(a)-4(f) show the growth in the error as a function
of the number of shear-frame stories for fixed values of € and w,/w;. For moderate
nonlinearity, Figures 3(a)-3(f), the error growth tends to be generally linear for wide-
band and medium-band excitation when w,/w; > 2, i.e., greater than or equal to the
resonance condition, whereas the error is generally constant for narrow-band excitation.
For values of w,/w; less than two, the error growth is still linear for ¢, = 0.30 and
generally constant for (; = 0.10 and (, = 0.01. Similar trends are noticed for the
case of severe nonlinearity, Figures 4(a)-4(f), where now linear error growth occurs for
wg/wy > 3 for all bandwidths of excitation and relatively constant errors are observed
for values of w,/w; less than three.

5. CONCLUSIONS

Despite a few theoretical and practical shortcomings, equivalent statistical linearization
remains a popular technique for analyzing MDOF nonlinear structures. The objective of
this paper was to quantify the development of the error induced by using linearization
for MDOF shear-frame structures. To this end, various combinations of structural
parameters were considered in the analysis, yet considered in such a way that meaningful
comparisons between structures of different dimensions were possible.

As is evident from the results presented in Figures 2-4, the relative error varies signif-
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icantly with the degree of nonlinearity, the bandwidth of the excitation, and the ratio
of the input excitation frequency to the first eigenfrequency of the corresponding linear
structure. One recurring trend, however, is that the error grows approximately lin-
early with the number of degrees-of-freedom for values of £* greater than or equal to
the resonance value. The slope of the increase varies from about 1% — 12% per story
depending on the nonlinearity and excitation bandwidth. Moreover, while there are
various parameter-specific cases for which equivalent linearization may give good sta-
tistical approximations for structures up to and surpassing ten degrees-of-freedom, in
general, for cases of moderate nonlinearity, care should be used when applying equiva-
lent linearization for structures with more than four degrees-of-freedom. In the case of
severe nonlinearity, the general validity of equivalent linearization is further reduced to
about two degrees-of-freedom, though there are cases where large errors are produced
for even these low-dimensional structures. -
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