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Cost Optimal System Identification Experiment Design

Poul Henning Kirkegaard

Department of Building Technology and Siructural Engineering
Aalborg University
Sohngaardsholmsvej 57, 9000 Aalborg, Denmark

Abstract: A structural system identification experiment design method is formulated
in the light of decision theory, structural reliability theory and optimization theory.
The experiment design method is based on a preposterior analysis, well-known from the
classical decision theory. I.e. the decisions concerning the experiment design are not
based on obtained experimental data. Instead the decisions are based on the expected
experimental data assumed to be obtained from the measurements, estimated based on
prior information and engineering judgement. The design method provides a system
identification experiment design reflecting the costs of the experiment and the value
of obtained additional information. An example concerning design of an experiment
for parametric identification of a single degree of freedom structural system shows the
applicability of the experiment design method.

1. Introduction

When performing system identification experiments one faces the problem of choosing
the experimental conditions (test signals, sampling strategy, location of sensors etc.)
so that the information provided by the experiment is maximized. The problem of ex-
periment design has been given much attention in the literature. The theory of design
of static experiments originated in the early thirties, see e.g. Fisher [1], and has been
considerably developed in the statistical literature after the second world war. Fedorov
[2] and Silvey [3] can be mentioned as basic references. However, the models considered
in the statistical literature are generally static and their applicability to dynamic mod-
els has become clear only recently. Design of experiments for parametric identification
of dynamic systems has been a subject of research during the last decades mainly de-
veloped in relation to identification of electrical systems. The problem of experiment
design can be regarded as a generalisation of the problem of optimal input signal design
that has been comprehensively treated in the literature, see e.g. Mehra [4]. Represen-
tative surveys of the problem of experiment design for dynamic system identification
are given in the system identification textbooks Goodwin et al. [5], Kalaba et al. [6],
Ljung [7], Norton [8] and Séderstrém [9]. Beyond these textbooks many research pa-
pers exist, mainly on the problem of optimal input design for system identification. The
paper Goodwin [10] may be noticed as a contribution to the literature concerned with
experiment design for dynamic system identification. Design of system identification
experiments in relation to structural problems seems to be a subject which only has
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received little attention during the last decade and will be a subject of research in the
future, see e.g. Kirkegaard [11]. System identification experiment design for parametric
identification of structural systems is the problem of determining the experimental con-
ditions implying that optimal information of the parameter vector 8 can be obtained
from the measured output of the sensors included in the vector y™(t¢) given by the
measuring equation

7™ (t) =7(t]8) + () (1)

7(t|6) denotes a prediction of 7™ (t) based on a model and the parameter vector 8. The
additive noise €(t) is normally assumed to be Gaussian stationary white noise both in

space and time parameters. Since the estimate 6 of the parameter vector 6 is dependent

on random processes thé accuracy of 8y must be considered in a statistical sense. For
experiment design purposes, it is normally assumed that the accuracy of the parameter
estimate is most conveniently expressed in terms of the parameter covariance matrix
5—51\!. Many authors postulate the existence of an asymptotically efficient unbiased
estimator as a basis for the experiment design. This implies that there is a lovyer

bound, the Cramer-Rao lower bound, on the achievable covariance of the estimate 6y
irrespective of the estimator algorithm used. This leads to a great simplification, since
the minimum variance given by the Cramer-Rao lower bound, equal the inverse of the
Fisher information matrix, can be easily computed in several estimation problems. The
Cramer-Rao lower bound is given by

= =-1

C, >7 @)
T B [ <310g f%% Uk |§)) <8log fya% (7™ [6) ) T] 3)

where J is the Fisher information matrix, see e.g. Goodwin et al. [5]. fom(7™|6) is the
conditional joint probability density function. Egm |5[-] is an expectation operator.

For comparing different experiments it is necessary to have a measure of the applicability
of the experiment. A logical approach is to choose a measure related to the expected
accuracy of the parameter estimate. Clearly, the parameter accuracy depends on the
experimental conditions H. Formally, the problem of optimal parametric identification
experiment design could be stated as

rr;}itnA(ﬁéN(H)) _ rr%nA(7_l(H)) (4)

where A(-) is a scalar function of the covariance matrix. Typically, such scalar functions
are e.g. the determinant (D-OPTIMUM), the trace (A-OPTIMUM) or the maximal
eigenvalue of the covariance matrix (E-OPTIMUM), see e.g. Goodwin [10], Mehra [4],
Ljung [7] and Zarrop [12]. In Pazman [13] a detailed discussion of design criteria related
to experiment design is given.
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In the literature, see e.g. Kirkegaard [11], Udwadia [14], Bayard et al. [15] and Cottin
[16] various designs of experiment for parametric identification of structural systems,
based on a scalar measure of the inverse of the Fisher information matrix, have been
given. By using this approach it is possible to design experiments where the quality
of the design is expressed by a scalar measure of an expected estimated parameter
covariance matrix. Such a quality measure can be used to compare different designs,
but it cannot tell, how much one design is better than another design. This means
that e.g. design of an experiment concerning optimal location of sensors is possible,
but it is not possible to estimate the optimal number of sensors. More general, it can
be said that the traditional design method discussed above does not make it possible
to investigate the increase in the value of the information expected to be obtained by
changing an experiment design in direction of a more optimal design. This implies
that the acquisition of additional information by performing a full-scale measuring of
a structure can result in unnecessary use of resources. This is because time, energy
and financial resources are not reflected in the experiment design. However, if these
quantities should be reflected in the design, the expected utility of performing the
experiment should be known before the experiment is performed. If this utility is
expressed in a monetary value it will be possible to make a trade-off study between the
increased monetary value and the costs of performing the experiment.

In this paper a method for design of optimal experiments for parametric identification
of structural dynamic systems is proposed. The experiment design method is based on a
preposterior analysis. A preposterior analysis can be used when the additional costs by
performing an experiment have to be reflected in the design. The method takes uncer-
tainties in the experiment design problem into account in a consistent manner implying
that it is possible to make decisions concerning experiment design in a rational way.
This means that the experiment design is based on a probabilistic analysis instead of
a traditional deterministic analysis. The experiment design problem is generally based
on uncertain parameters, lack of information, predictions and information containing
uncertainty. Therefore, an experiment design method based on a probabilistic analy-
sis is interesting. Through probabilistic modelling and analysis, uncertainties may be
modelled and assessed properly, and their effects on a given decision concerning the
experiment design can be handled systematically. The traditional experiment design
method, mentioned above, does not make it possible to take information containing
uncertainties into account. This implies that the experiment will be designed based
on incomplete information. By using the proposed method it is possible to consider
the following problem: Design of an optimal experiment including optimal use of time,
energy and financial costs. Further, it is also possible to consider the question: Should
additional information be obtained ? Additional information should be obtained if the
additional costs for the new information are justified by an elimination of a significant
part of uncertainty.

In section 2 the experiment design method is formulated in the light of decision theory,
structural reliability theory and optimization theory. The utility in monetary values
expected to be obtained by performing an experiment will be expressed by the expected
updated structural reliability. When experiments are performed additional information
about the uncertain parameters is obtained. This implies that the updated structural
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reliability is changed, caused of a reduction of the uncertainty. The updated structural
reliability is estimated as a function of the reduction of uncertainty in the problem.
The reduction of uncertainty, expected to be obtained if the experiment is performed,
is expressed as a function of the experiment design variables. Section 3 deals with
calculation procedures. Section 4 is concerned with a simple example showing how the
method can be used for design of system identification experiments. At last in sections
5 and 6, respectively, conclusions and references are given.

2. The System Identification Experiment Design Method

In the following the system identification experiment design problem is formulated as a
decision problem in the light of decision theory thoroughly presented in e.g. Ang et al.
[17] and Raiffa et al. [18]. Decision analysis is the framework which can be used when
decisions have to be based on uncertain information.

The various components of a decision problem may be integrated into'a formal layout
as a decision tree, consisting of a sequence of decisions. In other words, the decision
tree integrates the relevant components of the decision analysis in a systematic manner.
The decision tree model is introduced to identify the necessary components of a decision
problem consisting of:

e Feasible alternatives, including the acquisition of additional information, if appro-
priate.

e The possible outcomes associated with each alternative.
e The corresponding probability assignments to the outcomes.

e The consequences, measured by its utility value, associated with each combination
of alternative and outcome.

In brief, the decision tree provides an organized outline of all the information used for
a systematic decision analysis.

For a decision problem where an expected utility value is associated with each combi-
nation of alternative and outcome it can be shown, see Von Neumann et al. [19], that
the alternative, among the feasible, to be selected is the alternative giving maximum of
expected utility.

A decision analysis based entirely on existing information is called a prior analysis. If
such an analysis is updated subsequently with additional new information, the latter
is called a terminal analysis. A decision analysis with additional information is similar
to the prior analysis, except that the updated probabilities, probabilities conditional
on the experimental outcomes, are used in the computations. In a terminal analysis,
the analysis assumes that the information is available. However, additional informa-
tion, obtained by performing an experiment, involves the additional time, energy and
financial resources which have to be reflected in the design of the experiment. Such a
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decision problem calls for a so-called preposterior analysis. Design of a system identifi-
cation experiment can be considered as a decision problem involving whether and how
additional information should be obtained and may then be solved by a preposterior
analysis. It may be noticed that in a preposterior analysis the experimental data are
not available. Instead, decisions are made based on the experimental data assumed to
be obtained from the measurements. These experimental data are estimated based on
prior information and engineering judgement.

2.1 The Experiment Design Optimization Problem

Figure 1 shows a decision tree used in this paper to formulate a method for optimal
design of experiments for parametric identification of civil engineering structures.

Failure, Py(X = Fla;)

—(Cr+Cy)
No Failure, 1 — P¢(X = Z|a;)
"CI

P

Failure, P (X = Z|ay,e,,0 = 6,)

—(Ce(en) +Cr+Cy)
No Fuilure, 1 — P;(X = Zjaz, en,0 = 0,)

—(Cr + Cg(en))

Figure: 1 A decision tree.

The decision tree shows that at the decision node, the square node, a decision whether
or not to proceed with an experiment is required, i.e. a choice between an experiment
ay : e, and no experiment ay. aj : e, indicates alternative a, with experiment en to get
additional information. If an experiment is chosen the experimental outcomes of the
experiment 6, can be obtained. The experimental outcome 6,, of the random vector ©
1s a vector including the parameters to be determined by the experiment number n. The
realization of the random vector is shown by a circular node called a chance node. The
decision tree shows that two outcomes follow the experimental outcomes, viz., structural
failure and no structural failure. These alternatives are results of the outcomes of the
stochastic variables included in the random vector X. P; (X =T|ag,en,0 = 6,,) is the
posterior probability of structural failure. It is also seen from the decision tree that the
alternative a; is also followed by the two possible outcomes structural failure and no
structural failure. Py(X = Z]a;) is the prior probability of structural failure is.

The consequence associated with each combination of alternatives and outcomes is ex-
pressed by a utility value in monetary value. The utility corresponding to no structural
failure and no experiment performed is the negative value of initial structural cost —C s
If the costs of failure C'y is known then the expected monetary value C(a;) corresponding
to the alternative a; is

C(a1) = —C; — CyPy(X =Flay) (5)

In the same way the expected monetary value C(az, eX) can be obtained for the alter-
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native ag if the costs of the experiment are Cg(en)

C(ag,e)) = mleng[—CI — Cg(en) — CfP; (X =7T|ag, en, 0 = 8,)] (6)

where the expectation Egl-] is obtained with respect to prior probability of ©. The
optimal experiment e} is obtained by maximizing the expected utility with regard to
the different experiments e,. Comparing the expected utility of a; (5) with that of a,
(6), the optimal alternative at the decision node can be selected. Thus, the decision
between whether an experiment should be performed or not can be made. This decision
will be discussed in section 2.2.

Maximum of the expected monetary value C(as,e}) is seen to be a function of the
experiment e,. The experiment is described by the experiment design variables Z. In
the following, the experimental design variables Z will be used instead of e,. This
means that the maximizing with respect to the experiment e, now can be substituted
with a maximizing with respect to Z. This implies that an optimal experiment can be
obtained by solving the following optimization problem obtained from (6)

min C(as, %) = E5[CEg(Z) + CfP; (X =Z|az,Z,0 = 6,)] (7)
A

s.t CE(Z) < Cmaz
Z!<Z; <z} i=1,2,..,Np (8)

Np is the number of design variables. The expected monetary value C(ay, Z) is the
objective function. As constraints upper Z} and lower Z/ limits on the design variables
Z and an upper limit Cr,qq of the costs of the experiment Cg(Z) are given.

One of the difficulties with the above optimization problem is the modelling of Cy and
Ce(Z). When a structure fails one is faced with various costs such as repair costs,
reconstruction costs, clean-up costs, loss of income, costs due to loss of social prestige
and possible deaths. The total costs of failure Cf may range from e.g. 2 to 5 times the
initial costs of a structure. The costs of obtaining the new information Cg(Z) have to
cover not only the sample records and instrumentation but also the costs of statistical
analysis of the information and an appropriate share of costs of planning. A simple and
useful function for the costs of an experiment is e.g. a linear function. Sometimes a
complicated cost function can be used, e.g. when a learning effect is introduced in the
statistical analysis.

2.2 Value of Information

The solution of the optimization problem in (7)-(8) implies that the maximum expected
utility of the alternative az can be obtained. L.e. the optimal experiment design can be
provided. The next question is: ”Should the experiment be performed” ? This question
can be answered by comparing the expected utility of alternatives a; and a,.

An indicator of the expected utility by performing the optimal experiment is the term
value of information VI defined as

VI=C(az,Z) — Cg(Z) - C(a1,X) (9)
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The term VI corresponds to the difference between the expected monetary value of
alternative az, excluding the costs of the measurements, and the expected monetary
value of alternative a;. The value of information tells two things. Firstly, if VI ex-
ceeds the costs of the experiment, the experiment should be performed. Secondly, by
considering the value of information an indicator of the expected gain to be obtained
by performing an experiment is available. It is seen from the definition of the value of
information that the costs of an experiment are bounded by a limit referred to as the
value of perfect information V PI. Perfect information is obtained by an experiment
giving measurements from which the parameter estimates only including an inherent
uncertainty can be obtained.

The above introduction of the value of information shows that it is possible to get an
indicator of the value of information. Based on this indicator a choice between the two
alternatives a; and ay in the decision tree can be done. Of course, such a decision is
conditioned on prior information. This means that the sensitivity of the choice of an
optimal alternative at the decision node is of interest. Therefore, a sensitivity analysis
has to be performed before a final decision can be made.

2.3 Structural Reliability Theory.

The probabilities of structural failure P¢(-) and P, ( ) in (5)-(7) are estimated by using
modern reliability methods extensively applied in the last decades, where considerable
progress has been made in the area of structural reliability theory. Especially, the de-
velopment of the so-called first-order reliability methods (FORM) and the second-order
reliability methods (SORM) have been very important, see e.g. Madsen et al. [20],
Thoft-Christensen et al. [21] and Ditlevsen et al. [22]. These methods are especially
developed to estimate the reliability of structural elements and systems. Further, the
reliability methods are also an excellent tool to determine important sources of uncer-
tainty.

2.3.1 Structural Reliability Analysis Based on Prior Information.

A reliability analysis is based on a reliability model of the structural system. The el-
ements in the reliability model are failure elements, modelling potential failure modes
of the structural system, e.g. fatigue failure, yielding failure, buckling failure etc. Each
failure element is described by a failure function ¢(Z,p) = 0 in terms of a realization
Z of a random vector X = (X1, X2,..,Xny), and determinististic parameters p, i.e.
determinististic design parameters and parameters describing the stochastic variables,
(expected value and standard deviation). X is assumed to contain nx stochastic vari-
ables, e.g. variables describing the loads, strength, geometry, model uncertainty etc.
Realizations T of X where g(Z,p) < 0 correspond to failure states in the n-dimensional
basic variable space, while g(Z,p) > 0 correspond to safe states.
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The reliability R of the failure element can now be written

9(z,p)<=0

where Pj is the probability of failure. f(7) is the joint probability density function
of X and ®(-) is the one-dimensional standard normal distribution function. The re-
liability index B; is estimated by using first-order reliability methods (FORM) where
the approximation in (10) is obtained by using a transformation T, see e.g. Madsen
et al. [20] of the generally correlated and non-normally distributed variables X into
standardized, normally distributed variables U = (Uy, Uy, ..,Up, ). Let U = T_l(—)?, D).
In the u-space the reliability index f; is defined as

Bi = _min (TZTE)% (11)
9(T'(w),p)=0

The solution point @* of the optimization problem in (11) is the point on the failure sur-
face g(7,p) closest to the origin in the u-space and is called the design point, or S-point.
The reliability index f; is thus determined by solving an optimization problem with one
constraint. The optimization problem is generally non-linear and can in principle be
solved using any general non-linear optimization algorithm, but the iteration algorithm
developed by Rackwitz and Fiessler, see e.g. Madsen et al. [20], is traditionally used in
FORM since it has shown to be fast and effective in FORM analysis. It is seen that the
reliability index f; is introduced as a measure of the reliability which can be estimated
based only on second moment information of the uncertainties entering the reliability
problem.

It should be noticed that a better reliability estimate can be obtained by an improved
approximation of the failure surface. A quadratic approximation of the failure surface
at the design point is called a second-order reliability method (SORM). Computation
of SORM estimates can be costly when X is large and the failure function involves
complicated numerical algorithms, e.g. finite element analysis, numerical integration
etc. because the second order derivatives at the design point are required in SORM.

If the whole structure is modelled, as a series system or a parallel system by failure
elements then the probability of failure can be determined by a so-called generalized
systems reliability index of the series or the parallel system, see e.g. Madsen et al.
[20]. Since these generalized systems indices require time consuming or more or less
impossible numerical calculations a number of different methods has been developed
to make approximately calculations such as the Ditlevsen bounds, the simple bounds,
average correlation coefficient approximation and the Hohenbichler approximation, see
e.g Madsen et al. [20] and Enevoldsen [23]. It is also possible to have a series system of
parallel systems see e.g. Thoft-Christensen et al. [21], Enevoldsen [23] and Guenard et
al. [24].

It may be noticed that since the experiment design is estimated based on a reliability
index a failure function ¢(z,p) corresponding to the parameters to be estimated from
the measurements shall be used. This implies that a choice of a fatigue failure function
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is relevant since the parameters normally estimated from full-scale measurements on
dynamically sensitive structures are related to the fatigue failure mode. Generally, this
failure mode is the most important failure mode for dynamically sensitive structures.

2.3.2 Structural Reliability Analysis Based on Preposterior Information.

In the following it will be shown how the posterior probability of failure P}’ (+) in (7) will
be estimated by using the modern reliability methods. These methods provide a rational
tool for updating a reliability analysis when additional information becomes available.
Updating of a structural reliability analysis means to couple additional information
from fabrication and service of a structure to the design information, prior information,
in order to obtain a posterior information so that the posterior probability of failure
P;() can be estimated. Service information is achieved from proof loading, inspection,
vibration measurements, repair etc.. The updating of the reliability analysis can be
used when decisions have to be made concerning e.g. extension of life time, inspection
planning etc. Examples of such applications can be found in e.g. Diamantidis [25] where
reliability assessment of existing offshore structures is considered and Madsen et al. [26]
consider inspection planning. The great interest for developing methods for estimation
of the reliability of existing structures is caused by the fact that much of the decision
making performed of engineers in evaluating the safety of existing structures is made
on the engineer’s judgement. The theory of updating of a reliability analysis is given in
e.g. Ditlevsen et al. [22].

The framework which can be used when additional information obtained from experi-
ments shall be coupled to prior information is the Bayesian statistical model, see e.g.
Ditlevsen [27]. By using the Bayesian statistical model it can be shown by assuming
Gaussian parameters and Gaussian vibration measurements, that a Gaussian posterior
density fu functmn can be given by the updated mean value and the updated covariance

matrix C’ 5 given by, see e.g. Sprandel [28]
=u - =—1 =—1 =1
Coy =(C§p s Cgm) (12)

63 is the prior covariance matrix of the parameter §. C-=  is the covariance matrix of

P new

the parameter  determined from the vibration measurements. (12) indicates that the
inverse of the updated covariance matrix can be obtained by adding the inverse of the
covariance matrix of the prior information and a term which in certain circumstances
corresponds to the Fisher information matrix. This corresponds to what one intuitively
would have expected and it also corresponds to a result known from information theory
which expresses that information is additive for 1ndependent events, see e.g. Reza [29].

This means that the updated Fisher information matrix T s given by a sum of the

information matrix corresponding to prior information T » and an information matrix

Jnew corresponding to new information from the vibration measurements.

T =T+ Tnew (13)
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2.3.3 Sensitivity Analysis

Prior to the experiment a sensitivity analysis of the element or systems reliability in-
dices has to be performed in order to point out parameters valuable to obtain more
information about. The derivative of the reliability index shall also be determined if the
optimization problem in (7)-(8) shall be solved. The derivative of an element reliability
index to variations of parameters p where p is a parameter vector including statistical
parameters (mean value and standard deviation) describing the random variables in X
follows from, see e.g. Madsen et al. [20]

0B _ 1 35 0T (@D}
op; B! 9p;

(14)

It is seen that the gradients of the reliability index which are generally time-consuming
to estimate numerically can be determined semi-analytically.

Estimation of the derivatives of systems reliability indices is also possible, see e.g.
Sgrensen [30]. However, it may be noticed that reliability based optimization with
derivatives of systems reliability indices can be expected to be rather costly. Further
systems reliability indices are generally estimated by approximations. This implies that
the estimates of derivatives of systems reliability indices based on these approximations
do not have accuracy necessary for optimization. Therefore numerical derivatives may
be used implying that the computation times become unacceptably large. Because of
that alternative optimization procedures have been proposed where the time-consuming
approximation of the systems reliability index can be avoided. Such procedures are de-
rived in e.g. Sgrensen [30] and Enevoldsen [23].

3. Calculation Procedures

The experiment design method is in section 2.1 formulated as an optimization problem.
It may be realized that in certain circumstances a full optimization is unrealistic. It is
due to the fact that the optimization problem in (7)-(8) can imply expensive calculations
(long calculation time) and that accurate estimates of the gradients of the objective
function are generally required to achieve convergence of a mathematical optimization
algorithm.

In the following it will be explained how design of an experiment can be done by a
sequential procedure. This can be used if a full optimization is impossible. Further, the
sequential design procedure is presented to outline the steps in the experiment design
method proposed in this paper. Design by a sequential procedure means that different
experiment designs are chosen and then the value of information is estimated for each of
these. Based on these estimates of value of information the most optimal design among
them can be chosen.
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3.1 Sequential Design

The experiment design procedure can be divided into the following steps:

1)

2)

5)

6)

7)
8)
9)

10)

For the structure under consideration a structural model, prior statistical charac-
teristics of the parameters in the model and excitation are specified based on prior
information and engineering judgement.

The parameters § to be estimated from the vibration measurements can now be
determined by sensitivity analysis.
Estimate the costs of structural failure.

Design an experiment if the sensitivity analysis shows that it can be valuable to
obtain new information. A chosen design implies that the number of sensors, the
location of sensors, the excitation signal etc. are known. This means that the whole
identification problem is completely specified.

=u
Calculate the updated covariance matrix Cg, based on the updated information

=u
matrix J (13). The updated covariance matrix is estimated based on the chosen
model, prior information and the proposed experiment design.

Estimate the updated probability of failure P}’() based on the updated covari-
ance matrix. It may be noticed that it is assumed that the updated mean value
corresponds to the mean value corresponding to prior information.

Calculate the expected monetary value.
Repeat 5)-7) with different proposed experiment designs.

Calculate and compare the value of information for the proposed experiment designs
and choose the most optimal. Make a sensitivity analysis of the decision with
respect to the prior information.

Make a final decision based on the sensitivity analysis for the value of information.
The final decision gives an answer to the question: ”Should the most optimal
experiment design among the proposed designs be performed” ?

The steps 1)-10) outline the experiment design method proposed in this chapter. The
procedure outlined can be used to choose between different proposed designs. However
an optimal experiment design is obtained by solving the optimization problem in (7)-(8).
This means that the steps 4)-7) shall be repeated until convergence is achieved.
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4. EXAMPLE: Optimal Choice of Sampling Interval for Iden-
tifying a SDOF System

The aim of the example is to show how the proposed system identification experiment
design method can be used. In the example a single-degree-of-freedom (SDOF) system
assumed to model a cantilever steel construction, see figure 2, is considered. This
simple example is chosen since it gives a good description of the principle of the system
identification design method.

M q— white noise

EI

/2

Figure 2: Model of a single-degree-of-freedom system.

It is assumed that the system can be modelled as a SDOF subjected to Gaussian white
noise. The length, mass and stiffness are modelled such the undamped angular eigen-
frequency wy = 27 rad/sec and the damping ratio ¢ = 0.04.

4.1 Reliability Analysis Based on Prior Information

A fatigue reliability analysis is performed to determine the parameters 6 to be estimated
from the vibration measurements. It is assumed that the governing failure mode is the
fatigue failure mode. This implies that the structure is modelled by one fatigue failure
element at the clamped end.

A fatigue failure function can be established by different damage accumulation models.
Here, the model is based on Miner’s rule combined with the so-called S-N approach.
Among other models, a crack growth model based on fracture mechanics can be men-
tioned where the most used law is the well-known Paris Law. Assuming a narrow-banded
stress process the fatigue failure function based on Miner’s rule and S-N curves is writ-
ten, see e.g. Wirsching [31]

g(f, ﬁ) = ln(DFaiI) 55 IH(K) — IH(TL) = kln(2\/—2—) — ln(]_"(l + .122))

ok k 13
—ln-j,;— Zln(ﬁ (15)

Here, the expected lifetime T}, is 25 years and k is modelled as a constant, k¥ = 3, and
K is modelled as a random variable. Stress concentration is neglected. The standard
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deviation of the stress process o and the zero-upcrossing period Ty are estimated by
spectral moments, see e.g. Thomsen [32]. It may be noticed that (15) is developed
under a narrow-banded assumption which can be adjusted due to the wide-banded
stress process, see e.g Wirsching [31]. For simplicity this is not done here.

The random variables taken into account are

Variable Designation Distrib. Exp. value Var. Coeff
M Mass N 1.0 0.1
EI Stiffness N 4.0 0.1
¢ Damping ratio N 0.04 0.5
K Constant in SN-curve LN 6400 1024

Table 1: Statistical characteristics ( N : Normal, LN : Lognormal )

The random variables are assumed to be mutually independent. For simplicity Dy, is
deterministically modelled and model uncertainty is neglected.

The above modelling of the structure implies that the reliability of the structure becomes
B; = 1.09.

The reliability calculations in this paper are performed with the computer program
PRADSS (Program for Reliability Analysis and Design of Structural Systems), see
Sgrensen [33].

A sensitivity analysis gives the sensitivities shown in table 2

Variable %% it %‘[j_:ﬁ)%
M -0.0136 -0.00068
EI 0.0140 -0.00022
¢ 0.0182 -0.00904
K - 0.0092 -0.00307

Table 2: Sensitivity of the element reliability index to variations of the mean values y;
and standard deviations o; for the basic variables.

Table 2 shows that the largest contributions to the overall uncertainty are due to the
damping ratio ¢ and the parameter K describing the fatigue strength.

4.2 Reliability Analysis Based on Preposterior Information

In the following an experiment will be designed in order to determine the parameter
f = ( from vibration measurements. It is assumed that the structure can be identified
by an ARMA(2,1) model.

In Kirkegaard [11] an analytical solution for the Fisher information matrix is given as
function of the sampling time At¢ and the number of data N when it is assumed that
an ARMA(2,1) model is used. Using this information matrix and the expression (13)
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for the updated information matrix, the updated variance of the damping ratio can
be estimated as function of the sampling interval and number of data. The updated
variance can now be used in the reliability calculations instead of the prior variance of
the damping ratio.

In figure 3a the variation of the expected updated reliability is shown as a function of
the sampling time At for N = 5000 and in figure 3b as a function the number of data
points N for At = 0.499. It is assumed that the updated mean value of the damping
ratio corresponds to the prior mean value of the damping ratio. This implies that the
sensitivity of the results with regard to the mean value has to be investigated. This is
done in section 4.2.1.

&
g
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N

.

]
]

-
[+ 1]
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: = :
RELIABILITY INDEX

[
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Figure 3: a)The updated reliability as function of the sampling time At for N = 5000.
b) The updated reliability as function of number of data points N for At = 0.499.

It is seen from figure 3a that the curve of the updated reliability has a maximum. This
maximum corresponds to a minimum of the updated variance of the damping ratio. This
minimum is obtained for At = 0.499. Figure 3b shows that only a limited improvement
can be obtained when the number of data points have reached a given magnitude. It
may be noticed from this example that the updated reliability can be used as a design
criterion instead of e.g. the determinant criterion. It is seen that the updated reliability
index is a function of the experiment design variables At (sampling interval) and N
(number of data points). In the following it will be shown how an optimal number of
N can be determined.

According to (7)-(8) the optimization problem becomes

min C(At,N) = Eg[Cg(N,N,) + C;P;(At,N,N,)] (16)
st At <At <A
N'< N <N (17)

N, is the number of sensors. Here, one sensor is assumed to be used.

From above it is known that the optimal sampling time is At = 0.499. Therefore, the
only optimization variable will be V.




Cost Optimal System lIdentification Experiment Design 15

The costs of the experiment are modelled by
Ce(N,N;) =Co+ C1N + CyN, (18)

C) is the costs of instrumentation and planning. C} is the cost of an additional sample
point and C; is the cost of an additional sensor. It may be noticed that the costs are
deterministically modelled.

In principle the optimization problem (16)-(17) can be solved using any general non-
linear optimization algorithm. In this paper, the optimization problem has been solved
by the NLPQL algorithm developed by Schittkowski [34]. The NLPQL algorithm is
based on the optimization method by Han, Powell and Wilson, see Gill et al. [35]. The
algorithm is an effective method where each iteration consists of two steps. The first
step is a determination of the search direction. The second step is a line search.

The NLPQL algorithm requires estimates of the gradients of the objective function (16).

The derivative of the objective function C(At, N, N,) with respect to the design variable
N is

8C(At,N,N,) OP;(At,N,N,) dCg(N,N,)
oN  ~ aN T on (19)
The last term in (19) is easy to estimate analytically but the gradients of the updated

probability of failure are more difficult to obtain. Since the probability of failure is
estimated by FORM the gradient of the objective function becomes

9C(At,N,N,) _
N

where ¢(+) is the standard normal density funct1on.

o(—Bi) ( ﬂl)c +Cy (20)

The derivative of the reliability index with respect to the design variable N is

96 _ > 9Bi 9o (21)
ON 4~ do; ON
J=1
where o} is the standard deviation of the jth parameter in the parameter vector §
containing ny parameters. Here, ny = 1 since the only parameter to be determined from

the expemment is the damping ratio. g% is determined by (14). The derivative 5% can

=u
be estimated numerically from the expression for the updated information matrix J .
The inverse of the updated information matrix includes the standard deviation ¢;. The
updated information matrix is determined by the analytical expression from Kirkegaard

[11).

4.2.1 Results

The optimal number of data N°P! for an experiment with one sensor for identifying the
SDOF can now be estimated.
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It is assumed that the cost function can be modelled as:

Co=10* DKK., C;=5 DKK. C,=10* DKK. (22)

where DK K is Danish Kroner. The optimal solution of N for various values of cost of
failure Cy is shown in table 3.

C; (DKK.) P;(-) C(-) (DKK.) | Cg(-) (DKK.) Nopt
10° 3.06102 2.4010% 2.09104 181
108 2.59102 4.8610% 2.2710% 534
107 2.44107? 2.7210° 2.8010* 1600
108 2.381072 2.4310° 4.5010* 5010
10° 2.36102 2.38107 1.0210° 16500

Table 3: The optimal solution of N for various values of cost of failure C ;-

It is seen, as expected, that N°P* increases when Cy increases, which means that acqui-
sition of more information is of course more relevant when cost of failure increases.

In table 4 the value of information corresponding to the values in table 3 is shown.
This value of information VI represents the maximum cost that may be allowed for
acquisition of additional information. If VI exceeds the costs of the experiment Cg, the
experiment should be performed.

C;(DKK.) [C;P;() (DKK.)[C¢P;()(DKK.)| Ci(-)(DKK.) | VI(DKK.)
10° 3.06 10° 1.3810% 2.0910° 1.07107
106  2.6010% 1.3810° 2.2710* 1.1210°
107 2.4410° © 1.3810° 2.80 10* 1.1410°
108 2.3810° 1.38107 4.5010* 1.14107
10° 237107 1.3810° 1.0210° 1.1410°

Table 4: Value of information.

It is seen that the experiment should be performed if the costs of failure of the structure
are larger than 106 DK K.

However, before a final decision further investigations must be performed. It may be
noticed that the results obtained above are estimated based on prior information and
information which is assumed to be obtained by performing the experiment. This means
that the expected monetary value C(At, N, N,) is an uncertain quantity.

To investigate the sensitivity of C(At, N, N,) with respect to variations of the informa-
tion, which is used above, a sensitivity study is made. Table 5 shows the sensitivities
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of the expected monetary value C(At, N, N,) to variations of the mean value and stan-
dard deviation for the variables which are stochastically modelled. The sensitivity of
C(At, N, N,) with respect to a mean value y; is

8C(At, N, N,) a(—p:) 8Cg(N, N,)
~ (=0 Cr+
Opj #(=F:) op; 7 Ouj

(23)

The derivative with respect to the standard deviation can be obtained in the same
manner. The sensitivities of the reliability index are given in table 5 for an optimal
value of N. Here, the sensitivities are shown for the situation where it is assumed that
costs of failure Cy = 107 DKK, i.e N°P* = 1600. It may be noticed that the sensitivities
shown in table 5 and the sensitivities shown in table 2 are different. This is caused of
that the standard deviations of the damping ratios are different.

Variable 79‘2[% -1%1'6 53‘% i
M -0.0311 -0.00156
EI 0.0356 -0.00248
¢ 0.0224 -0.00023
K 0.0317 -0.01699

Table '5: The sensitivities of C(At, N, N SP to variations of the mean values p; and
standard deviations o; for the basic variables.

Table 5 shows that the dominating contribution to the overall uncertainty is due to
the parameter K describing the fatigue strength. Further, if the results in table 5 are
compared with the results in table 2, it is seen that the contribution of the damping
ratio to the overall uncertainty is reduced while the contributions of the mass and the
stiffness are increased. However, K has the largest contribution. This means that K
is a variable with a large influence on the optimal design of the experiment and the
value of information. Therefore, the influence of the statistical characteristic of K on
the experiment design will be investigated closer.

In figure 4a the value of information minus the costs of the experiment (VI — Cg(+)) is
shown to variations of the mean value px and to variations of the coeflicient of variation

6 of K.
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Figure 4: The sensitivity of (VI — Cg(+)) to variations of the mean value ux and to
variations of the coefficient of variation §iof K. a), Co = 10* DK K b), Cy = 10° DK K.

Figure 4a shows that the value of information minus the costs of the experiment (VI —
Cg(-)) is positive for all values of the mean value and coefficient of variation. This means
that the experiment should be performed. However, it is also seen that (VI — Cg(-)) is
very sensitive to variations of the mean value and the coefficient of variation. Especially,
when px < 1.0 and 6 > 0.4. This implies that one has to take more care when a
decision concerning performing an experiment is based on values in this area. It is seen
from figure 4b that the experiment should not be performed, if the mean value py is
small and the coefficient of variation dg is large.

In figure 5 the sensitivity of the optimal design, N°P! is shown to variations of the
mean value pgx and the coeflicient of variation ég. It is seen that the optimal design
is sensitive to the mean value px and the coefficient of variation 6. Especially, for a
coefficient of variation less than 0.4.

Nert

Figure 5: The sensitivity of the optimal design, N°?! to variations of the mean value
px and to variations of the coefficient of variation éx of K..
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The conclusion of the example is that the experiment should be performed if the costs
of structural failure are larger than 106 DK K. However, if the costs of instrumentation
and planning Cj increases, the mean value and the coefficient of variation should have
more attention before a final decision should be made. It may also be noticed that
an experiment giving additional information about the random variable K could be
performed. It could be interesting to investigate whether additional information should
be obtained by performing a system identification experiment, or an experiment, giving
additional information about K. Such an investigation could also be formulated as a
decision problem.

5. Conclusions

This paper has been devoted to a presentation of a system experiment design method
based on a preposterior analysis. The characteristics features of the method are as
follows:

e The method is based on a preposterior analysis implying that uncertain quantities
can be modelled as random variables.

e The method provides system identification experiment designs reflecting the costs
of the experiment and the value of additional information. This implies that cost
optimal system identification experiment can be designed. E.g. the system iden-
tification experiment design method makes it possible to determine the optimal
number of sensors. This is not possible with the well-known system experiment
design methods.

e The proposed system identification design method makes it is possible to consider
the experiment design problem evolving whether and how additional information

should be obtained.
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