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Preface

This text has been written and used during the spring of 1995 for a course on
flexural mechanics of beams and plates at Aalborg University. The idea has been
to concentrate on basic principles of the theories, which are of importance to the
modern structural engineer. Today’s structural engineer must be acquainted with
the classic beam and plate theories, when reading manuals and using modern soft-
ware tools such as the finite element method. Each chapter includes supplementary
theory and derivations enabling consultation of the notes also at a later stage of
study.

A preliminary chapter introduces the modern notation used in textbooks and
in rescarch today. It further gives an introduction to three-dimensional continuum
mechanics of elastic bodies and the related principles of virtual work. The idea is to
give the students a basic understanding of the stresses and strains, the equilibrium
equations and the principle of virtual work.

The chapters of this text present the classic flexural beam theories and the
stability theory for columns. For analysis of continuous beam and frame structures
the flexibility method for statically indeterminate beam structures is presented.
Plastic hinge analysis of beam structures is presented and includes both upper and
lower-bound solution techniques. The remaining chapters are devoted to plates.
The classic elastic plate theories are presented. The plastic yield line theory for
plates is presented including both upper and lower-bound techniques.

The text serves as a proposal for a renewal in the line of presentation and it
is used in structural mechanics at the Department of Building Technology and
Structural Engineering at Aalborg University. Furthermore, it also serves as a
proposal for a unified line of presentation within the Danish educational network
for structural engineers, KONMAT. The text is to be used within the KONMAT
framework for a post-graduate course in the autumn of 1995. The idea has been to
use an advanced and modern notation from the beginning, and to use the principle
of virtual work to derive the theories in a kinematic manner.

The presentation is greatly enhanced by the illustrations drawn by Mrs. Norma
Hornung and by the language corrections performed by Mrs. Kirsten Aakjeer.

Aalborg, July 31, 1995
Jeppe Jonsson

111






Contents

1 Preliminaries
1.1 Index Notation and Cartesian Tensors . . . . ... ... ... ...
1.2 Contimumm Mechanies: . oo v o v vom vom s s 0 s b 5 6 s 0 n om =

2 Flexural Beam Theories

2.1 Formulation of Flexural Beam Theories . . . . . . .. .. ... ...
2.2 Timoshenko Beam Theory . . .. .. ... ... ... .......
2.3 Euler-Bernoulli Beam Theory . ... .. ...............
D4 Stresses M BeANS v v o2 s /o 0 20 53 50 &8 5 B w e

3 Stability of Columns
3.1 Uniformly Compressed Columns . . . . ... .............
3.2 Linearized Stability Equations for Columns . . . . . . .. ... ...
3.3 Approximate Stability Analysis . . ... .. ... ... ... ..

4 Statically Indeterminate Beams
4.1 The Flexibility Method for Beams . . . . . . ... .. ... .....

5 Plastic Hinge Analysis

5.1 Theorems of Limit Analysis . . . .. ... ... ... ........
5.2 Combination of Mechanisms . . . . . .. .. ... .. ........
5.3 Displacement Estimation . . . .. .. ... ... ... . .......

6 Flexural Plate Theories
6.1 Mindlin-Reissner Plate Theory . . . . .. .. ... ... ... ....
6:2 Kirchkioff Plate THeory o« s vomsmums v 9 805 w5 54 s

7 Yield Line Analysis of Plates
7.1 Upper Bounds by the Yield Line Method . . . . . .. .. . ... ..
7.2 Lower-Bound Theorem o « v cw s v s w s s am o5 v 5 5 5 6 & & e






Chapter 1

Preliminaries

This chapter introduces the notation used in modern textbooks and in research
today. Index notation used in combination with Einstein’s summation convention
enables a short and clear presentation of multi-dimensional problems, especially
when we deal with scalar fields, vector fields and tensors in Cartesian coordinate
systems. The index notation is used for flexural beam theory in order to avoid
having to repeat equations of the two planes (later it is used to decouple the flex-
ural equations). In plate theory it is used for the two in-plane directions. The
chapler also gives an introduction to three-dimensional continuum mechanics of
elastic bodies and the related principle of virtual work. This enables a clear and
straightforward explanation of the assumptions in flexural beam and plate theories.

1.1 Index Notation and Cartesian Tensors

The notation intoduced by Einstein in his development of the Theory of Relativity
simplifies the presentation of many equations and expressions. A more detailed
introduction to index notation of Cartesian tensors and tensor analysis can be
found in Simmonds [1], Kay [2] or Synge & Shield [3]. Index notation is often used
for the components of vectors, matrices or tensors. Taking the dot product between
two vectors a and b having three components each, a; and b;, where the index 1
assumes the values from 1 to 3, the expression can be written as

3
a-b:a;bl +ng2+(1363= Zaibi- (11)
i=1
Instead of using the summation symbol ¥ the strategy is to use the repeated index
(here 7) as a summation index. The dot product can thus simply be written as

Finstein summation used for the dot product
a-b=ab (1.2)

Finstein summalion convention

A repeated index within a term is a summation index
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which is indeed much shorter and just as clear as the dot product. All indices
should have the same range unless otherwise stated.

Dummy and Free Indices

It is necessary to emphasize that it is a repeated index, which acts as a summation
index. An index can thus only appear twice in the same term and the two indices
are called dummy indices or just the dummy index. Other indices are called free
indices. The expression a;;b; does not indicate summation, it has three free indices,
but both a;;b; and a;;6; indicate different sums with one free index.

e Example 1.1 Expansion of dummy indices.

Assuming the range of i to be 1...3 the two terms discussed above expand as
follows:

aiib; = anhj 4 ageb; + assh; = (an + ey + ass)b;
aib; = anbr + apbs + aizbs

It should be clear that the use of i as the notation for the repeated index is in-
significant. The expression a;; s equivalent to agg.

Multiple Sums

An expression may involve multiple summation indices. For example a;;b; or
a;;bici. If an expression involves two summation {dummy) indices with the range
1...n, there will be n? terms in the sum.

e Fxample 1.2 Expansion of a double sum.
The result of the latter expression u;;b;c; can be evaluated by expanding first the
dummy index 7, then the dummy index j. Assuming the range to be 1...3, the
result Is
aijb,c“.,' = aljblcj + Ctgjbzcj‘ + a3jb3cj
antbier + agibyer + azibac
+arzbics + agjbaes + azabacy

+aizbres + agzbacs + azabzes

The result is the same if we sum over j, and then over 7.

The Kronecker Delta

A symbol used to extract the “diagonal” terms in a double summation and to
change indices is the Kronecker delta defined as

The Kronecker delta

. 1 ifi=j _
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The trace of the components a;; of a matrix (a tensor) can be found by multiplying
it by Kronecker’s delta. If the range is 1...3 we find

bijai; = @i = a;j; = an + azn + as (1.4)

It is seen that the trace has been found as the sum of the diagonal components. It
can be seen that the symbol can also change the index. For example, the term a;;
changes index j to k, when multiplied by éx; or §;x

Orjai; = 6p1aa + Ogatia + bpaia = ag (1.5)

which can be seen by using the fact that the delta has the value 1 only when &k = ;.
Notice that the free indices are 7 and k, meaning that the result is a; and NOT
Qyy.

The Permutation Symbol

The permutation symbol is a symbol which can be used in connection with cross
products between two vectors, but it has many other applications. The symbol can
be used in different dimensions with a corresponding number of indices. With a
range of 1...2 for indices & and 3 the symbol e,, is defined as

+1 for e, F in an even permutation
Cap =4 —1 for o, fin an odd permutation (1.6)
0 otherwise

Thus the even permutation results in ¢;2 = 1 and the odd in €3, = —1. The symbol
can be used to describe differences in sign between behaviour in the two coordinate
directions. This can be used in the kinematic description of the torsional behaviour
of beams.
With a range of 1...3 for indices ¢, 7 and k& the permutation symbol is defined
by
+1 for 7,7,k in an even permutation
eijk =1 —1 fori,j,kin an odd permutation (1.7)
0 otherwise

The even permutations are €23, €312, €231 and the odd ones are esq, €132, €213. The
components of the vector cross product ¢ = a x b can be written as

c; = e,-jkajbk (18)
Interchange of the order of the vectors a and b changes the sign and thereby the

direction of the vector cross product.

Comma Notation for Partial Derivatives

When using the Einstein summation convention it is convenient also to introduce
the comma as a symbol for partial derivatives. The approach is that all indices fol-
lowing the comma are partial derivatives in the corresponding coordinate direction
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i .
8 Volp

(IAVERN
Fig. 1.1: Cartesian components of a vector.

7; (where the three coordinate directions are z;, z3 and z3)

Partial derivatives by use of comma index

Ezamples
8*()
c’ixi('):rj
()

Oxixy

= ()i (1.10)

= ()is {(1.11)

e Example 1.3 The gradient of a scalar

The gradient of a scalar a is a vector Va with the partial derivatives as the com-

ponents. It could be written in component form as gT” =

Expanded Concept

For convenience in the present text lower case Greek indices e, f,7v,» have the
two-dimensional range 1...2 and lower case Latin indices 1, 7, k,[ have the three-
dimensional range 1...3. Upper case indices are not summation indices. If other
ranges are used it will be explicitly noted.

Mathematical Operators

The index notation with Einstein’s summation convention also simplifies mathemat-
ical manipulations and can be of great help to the trained user of the matematical
operators. Let us work with a Cartesian (orthonormal) coordinate system with the
base vectors i; and the related coordinates ;. A vector v = v;i; is thus described
by its components v;, as shown in fig. 1.1. The gradient operator is defined by
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The gradient operator

o, 0, 0,
6351 . 31‘2 ? 65‘.‘3 3

2,

6I‘j

()i (1.12)

Since the operator is a vector we use a boldface type to illustrate this. Denoting a
scalar function by s = s(z;) and a vector quantity by v = v(z;) some well-known
operations are decomposed in the following for the three-dimensional space. The
operators and the index notation easily degenerate to two-dimensional space. The

gradient of a scalar field is

grad s

= Vs

ds .
3$] "
A3

= 1,
3$J'

= 8,4

ds . as

+ 51—212 + 6?313

(1.13)

It is seen that the gradient operator applied to a scalar results in a vector, since
the gradient operator is a vector. The divergence of a vector is just applying the
gradient operator to a vector through a scalar (dot) product, which results in a

scalar,

div v V. v

5,

= (z—h+ —a-iz"r

6.‘171
il
aml
i)

Oz;

= Ujj

92 933 111 212 313
8?.)2

a:l'.'g

81)3

B.E:;

(1.14)

Instead of applying the gradient operator to a vector through the scalar (dot)
product lets us use the cross product. This is the rotation or curl of the vector field

defined by

rol v. =

d .

duy

curlv=V xv

(_1 + i
8131 ; 63:2

ig + ia) X (U]i] + ‘Ugiz + 2)3i3)

0z3

= (O _Ow), ,(On_Owm),  (Om Ou),
B 8312_851?3 1 323_6.11 2k 311_832 "

dv

A
—Cijk a1k

9z,

= —Cik Vij Lk

(1.15)
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It is seen that the permutation symbol has many applications, since it is used in
the description of rotations. The Laplacian operator also enters many mechanical
equations. The Laplacian of a scalar is given by

div(grad s) = Vs =V-(Vs)
9%s 9%s 8%s
82$1 ™ 82.’1)2 5223
~ 5 (1.16)

Notice that the Laplacian symbol V2 is not a boldface symbol, since it works like
a scalar. The Laplacian of a vector field is given by

grad(div v) = Viv=V(V-v)
v 9 O
82.?31 82$2 *® 62.273
= Vg

Since the Laplacian operator works as a scalar the Laplacian of a vector is a vector
and the Laplacian of a scalar is a scalar.

Another important mathematical tool is the divergence theorem which has a
few alternate names in literature, it is also referenced as the Gauss theorem or the
Green theorem. In vector notation the theorem is written

fdivvdv:f n-vdA (1.18)
v av

where n is the surface normal and dV is the boundary of the continuum volume as
shown in fig. 1.2. In component form the divergence theorem takes the form:

The divergence theorem

/u,-,idV:f g A (1.19)
Vv av

In mechanics the divergence theorem can be used to transform differential field
equations, (strong form), into a virtual work equation (weak form) involving lower
order of the partial derivatives.

Cartesian Coordinate Transformation

Analysis often simplifies if performed in a Cartesian coordinate system, which has
been rotated compared to the original system. This corresponds to a change of
base vectors from an original base i; to a new base i;. The components of a vector
v can be given in the original base

v o= wily + iz + vsls
= wji; (1.20)
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Fig. 1.2: Volume V, surface 9V, vector field v and infinitesimal surface
area dA with the normal n.

or in the new base
v = f)[i; = 1}2;2 + ﬁg}a
= i, (1.21)
Transformations between the two Cartesian coordinate systems are defined in the
following. The new base vectors i; can be expressed by components in the original

base, where the components are the projections of the new base onto the original
base:

(G- n) iy + (1 i) B 4 (3 - 1a) s
= Lyl + £jis + 45515
= L (1.22)

I

in which the direction cosines have been introduced as £;; = TJ- i = cos(Z -i-j,ik).
Note that the directicln cosines are not symmetric, i.e. ;x # £;;. For example the
firsl new base vector 1, is given by:

= (Il 1)1 + (;1 i) i+ (;1 “13) i3
= by + baiy + bag
= flkik (123)
The opposite transformation from the “new” iy to the “original” base i; is given by
o= (T = (ki) h
= fix (1.24)

in which the indices of the direction cosines have changed places, corresponding to
transposing a matrix.
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The direction cosines £;; can be thought of as the components of a direction
cosine matrix L, which can be transposed LT or inverted L~!. Since Cartesian
coordinate systems are orthonormal the inverse of the direction cosine matrix is
equal to its transpose, i.e. L™! = LT, and the components of the inverse direction
cosine matrix are thus given by:

E;k] = f?;; = by (1:25)

in which the order of the indices must be noted. This is in agreement with the
transformations derived above.

Let us turn to the transformation of vector components. Transformation from
components in the original base to components in the new base is given by:

Vel = ‘l}kfﬂjj = ’DJJ' 4
fjk'Uk (126)

v

and transformation from the new base to the original base is given by

f)k};c = ’Ekfkjij e ?)jij I
P (1.27)

Il

v

It is seen that the vector components transform in the same manner as the base
vectors. To summarize we have:

Cartesian transformalions
;=L i 05 = £ipug
1; = bpj 1k Vi = E}ij)k (1.28)

where the direction cosine matriz components are {jp = 1,1, = cos(Z1;,1x). The

components of the inverse direction cosine matriz are found by E;kl = 531. =L

These transformations are extensively used in analytical mechanics.

e Example 1.4 Rotated two-dimensional base.

Let us find the direction cosines of the transformation matrix from an original base
i, to a new base iy, which is rotated by an angle 8, as shown in fig. 1.3. In this
two-dimensional case the direction cosine matrix and its components are:

B | ees (4 Th,0) cos(4 Tp,ip)
L= () = [cos([ig,il) eonld o i)

_ cos @ cos(§—0) | _ cosf  sinf
N cos (5 +6) cos T | —sin@ cosé
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Fig. 1.3: Rotated two-dimensional base.

Cartesian Tensors

The mathematical modelling of mechanical systems often involves components,
which depend on directions in space, and a specific choice of coordinate system.
However, other choices may be convenient in part of the mathematical analysis.
Tensor analysis deals with the change of coordinate systems and the related trans-
formations of the direction dependent components of the mathematical model. Qur
main interest is related to the transformations between different Cartesian coordi-
nate systems.

An N’th order tensor is a mathematical quantity which has components that
refer to N choices of coordinate systems (which most often are chosen to be the
same). Cartesian tensors are defined by the manner in which they transform from
one Cartesian coordinate system to another. More extensive definitions that intro-
duce covariant, contravariant and mixed tensors can be found in [1], (2] or [3], but
the following definition will be sufficient in the present text.

Cartesian tensors (Cartesian transformation: 1; = € ix)

A first order tensor t = t;1; with components t; in the Cartesian base i; is a
quantily, whose components transform to a new Cartesian base 1; by:

Ve £ir by (1.29)

A second order tensor t = L ;i with components t;;. in the Cartesian base i;
is a quantity, whose components transform to a new Cartesian base i; by:

Lo Sl iitan (1.30)

An N’th order tensor t = 1j nij...1, with components t; , in the Cartesian
base ij is a quantily, whose components transform to e new Cartesian base 1,
by:

to.s = eoj .- -E.m tgn (1.31)

A zero ovder tensor has one component t which does not change when the base
is changed, i.e. it 15 a scalar.

Vectors are thus first order Cartesian tensors, since they transform in the same
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manner. An example of a zero order tensor is the temperature, which is scalar.
The temperature is typically a field variable, which is a function of the position,
but has no direction components. The temperature component is the same in all
coordinate systems, whereas a velocity field is a first order tensor, which has a
direction and has components which are dependent on the coordinate system used.
The highest order Cartesian tensor used in the present work is a fourth order and
the most used are second order tensors. The second order tensors have much in
common with the matrix concept. Originally it was the mechanical concept of
stress, which has led to the introduction of tensor analysis (tension in French is
“tenseur”). It is important to note that the three-dimensional Latin indices can be
replaced by the two-dimensonal Greek indices.

e Example 1.5 The tensor of inertia

In mechanics the tensor of inertia is a second order Cartesian tensor defined as
Fpg = ]A (Zor = Co)(p — €4) dA

where z, are the Cartesian coordinates, ¢, is the point about which the inertia is
sought and the small area dA = dzydz,. It can be written in a matrix format as:

E I
=t = [0 1]

To verify that this is a tensor let us seek the components in a rotated Cartesian
base. We can just transform the coordinates independently:

/ (B BNy — T, ) A

A

[ itz = ca)las — ) dA
A

= t'mﬁ,m/;; (o — ca)(za—cp) dA

= E,,(,L,ﬂ L

-

Thus it is seen that the inertia quantities are components of a second order tensor.

In a rotated coordinate system the tensor components can be found by 11,7 =
Eyalyplas. TFor an angle of rotation @ the direction cosine components written in
matrix format can be found as:

. _ cosf sing | _ c s
L= (be) = [—sinf) (:osf)} - [—3 c}

where ¢ = cos# and s = sin 8 have been introduced, see example 1.4. In the rotated
Cartesian coordinale system the moments of inertia can thus be found. In matrix
notation the calculation procedure becomes:

I =1r1L"

Iy ha | c s I Tha c —s
Iyp o - -5 C Iy Iny s g
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By use of the index notation and I3 = Ip; it is easy to show that the resulting
components are:

CQIH + 2¢8ly9 + Szfgg

52.[1] = 26.9[12 + C2122
—cslyy + (C2 - 32)112 + cslqg

Ly = Byabiulas
Iy = faaloplas

Ly = lielaslag
In = In

It is now possible to find an angle of rotation ¢ which diagonalizes the tensor of
inertia by solving the equation [;3 = 0 which takes the form:

es(lp —In)+ (P =), = 0 |
(f22 = In)sm226 +Ii3c0s28 = 0 |
213

tan2 = ——

Ill - 122

The mechanical system simplifies when rotated by 8 since I;; = 0. The related
axes are called the principal axes. In a following subsection it is shown that the
principal axes can be found by solving an eigenvalue problem.

Isotropic and Deviatoric Tensors

An isotropic tensor is a tensor, whose components are the same in any coordinate
system. A scalar is for example a zero order tensor, which is isotropic. It can be
shown that second order isotropic tensors are of the form pé;;, where p is a scalar.
A tensor may include an isotropic part and a remaining non-isotropic part. The
isotropic part of a second order tensor t;; is determined by its trace as

p= gt;; (1.32)
A deviatoric tensor is a tensor without an isotropic part. A deviatoric second order
tensor s;; 1s a tensor, whose trace is zero in all coordinate systems, i.e. s; = 0. The
non-isotropic part of a second order tensor, which deviates from isotropy, is the
deviatoric part. Thus a second order tensor ¢;; can always be decomposed into an
isotropic part pd;; with p = jt,; and a deviatoric part s;; as follows:

ti; = pé,‘j + si; (1_33)
and the deviatoric part s;; may thus be found by:

1
Sij = tij - gikkéij (134)

This decomposition is sometimes used in the mechanical description of (pressure),
stress and strain.
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Quadratic Forms

This subsection is just to remind the reader about the mathematical concepts re-
lated to analysis of quadratic forms. From analytic geometry and mathematics it
is known that quadratic forms can be brought into a canonical form by coordi-
nate transformation. Symmetric second order C'artesian tensors t;; = t;; appear in
quadratic forms, where they are multiplied twice by a first order tensor:

tin tiz his I
LUz‘fij‘CCj - (-’E],.Z'Q,E_j) to1 iz a3 Ia
ta1 %32 faz T3

- tniﬂf e t22'~f~'§ + isaifg + 2psroxs + 237123 4 253119 (1.35)

By rotation of coordinate axis this quadratic form can be cast into a canonical form,
where the second order tensor is diagonalized. In this rotated system the quadratic
form thus takes the following canonical form

ty 0 0 Z;
jituij =] (i’],ig,i’g) 0 tgg 7"0 i-z
0 0 ia Z3

= in&h 4 ) + 1325 (1.36)

where the transformed second order tensor t,; = £;.£;04 is diagonal and z; = £;,xy
are the transformed components of the first order tensor. The diagonal components
11, 122, and #33 are the principal components and the associated axes Tj are the
principal axes. Sometimes the principal components are written with just one
index {11 = i1y, {2 = (2, and I35 = #(3). To find the principal directions the
related eigenvalue problem is solved. The eigenvalue problem results in eigenvalues,
which are the principal components, and in eigenvectors, which are the principal
directions.

Principal Axes and Invariants

Principal axes are the coordinate axes, which diagonalize symmetric second order
tensors. The principal axes and the principal components are of interest when deal-
ing with symmetric second order tensors, wether or not they appear in a quadratic
form. The mechanical analysis is eased and the theoretical derivations can be en-
hanced by the use of principal axes.

Let us assume that the unit direction vector (temsor) n = n,i; is in one of
the three principal directions T{n), i.e. the direction 1, iz or 1. The index n in
parenthesis refers to the principal direction 1, 2 or 3, and the parenthesis stales
that it is not a summation index. Let us further assume that the unit direction
vector m = myi; is also directed in any one of the three principal directions i(m.
According to equation (1.22) the components of the direction tensors are given by
the direction cosines (Zf the rotated principal axes as n; = {(,y;, since T(n) =L
and m; = imyi, since igm) = nyils-
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A first order tensor v; is given by the product of the second order tensor ¢;; and
the unit direction tensor n; as follows:

v, = t,-,-nj (137)

The components of v; in one of the three principal directions m; can then be found
by the projection product m;v;, which takes the form

= ty ifm=n
mivi = mitin; = Lmyitiily; = ) = {0” TIMEIN L

This shows us that the first order tensor v; only has a component i) in the chosen
direction n;:

v = t(n)n,- = /\n,- (139)
where A = #(,,) has been introduced, since we do not yet know the principal value
t(n)- To find the principal directions we use the equality given by equation (1.37)
and (1.39) as follows:

tyn; = An; 13
t;jnj —_ ATE,‘ - 0 U
(ti; — Abig)m; = 0 (1.40)

This 1s a lincar eigenvalue problem, which has three solutions corresponding to
three eigenvalues A, and three normalized eigenvectors ng,);. The three eigenvalues
correspond to the three principal components of the diagonalized tensor #(n) = A
and the three eigenvectors give us the three orthonormal principal directions n(,); =
{(ny;- The eigenvalues and thereby the principal components ¢, are invariants, since
they are the same no matter, which Cartesian coordinate system is used. Other
invariants can be found by algebraic combinations of these eigenvalues.

The eigenvalue problem only has non-trivial solutions when the determinant of
the coefficients vanishes, i.e. when

tij — A6l = 0 |
ti—A ti3
b laa—A  lm =0 (1.41)
t31 taz I3z — A

The determinant can be written in the form of a so-called characteristic equation:
XN e fd—0s = 0 (1.42)

which must be invariant since the solutions are invariants. Thus, the coefficients
I1, I3 and I3 are also invariants. The invariant coefficients are

I = thn+in+ls = G (1.43)
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taa fa3 tn tia i1 tie 1
Is = = =l = tiita 1.44
. taz a3 ' 31 tlag tar oy 2( 4 itii) ( )
by btz ti3
]3 = t21 tgg t23 = |t,‘j| = det (tgj) (145)

tar t3z I3z

Using the diagonalized tersor components ¢, = £, the invariants take the form

]; = t[ +i‘2+t3 (146)
Ig = tzt3+tli3+t1f2 (147)
I = titsts (1.48)

In some problems of mechanics it is the deviatoric part of a tensor which is of
interest. In this connection it should be noted that the principal directions of a
tensor t;; and its deviatoric part s;; are the same. To show this we just introduce the
decomposition of the tensor t;; into its isotropic part pé;; = 1t and its deviatoric
part s;; as follows:

(tij — /\5,‘_,'] n; = I}
(si = (A =p)i) nj = 4
(S,‘j e )\(S,J) n; = 0 (1 ’19)

which is just a shifted eigenvalue problem with the eigenvalues shifted by the
isotropic component A = A — p and with the same eigenvectors n;.

Principal Axes in Two-Dimensional Problems

In two-dimensional problems, where the principal directions are needed, the eigen-
value problem simplifies a little, since we just need to solve a quadratic cqua-
tion. Let us find the principal components and directions of the tensor 1., with
l1a = t2; # 0 by solving the eigenvalue problem:

(iﬂﬂ = A(Sa;;) Mg = 0 U

511—/\ f]g Ty - O
"a W] (n) - (0) st

The non-trivial solutions exist when the determinant of the coefficients vanishes:
N—LA+1, =0 (1.51)

where the invariants are [} = foq = 11 + l22 and I = |tas] = {13l22 — tfz. The two

eigenvalues are thus given hy
(n /T 412)

(tn + lpz £/ (Un —t22}2—4t%2) (1.52)

A =

PO = D | =t
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By assuming that the eigenvalues are real, the eigenvectors may be found as follows.
The components of the eigenvector must differ from zero since 15 # 0, let us then
take the value of the first component as n; = cos . The direction vector should be
a unit vector and we can thus take the second component as ny = sin . The angle
8 is found by inserting the direction vector into the eigenvalue problem:

(t17 — A)cos @ + tyzsinf = 0
t1ac0s @ + (tzg — A)sind = 0 (1.53)
These equations result in the following two formulas:
il = Sl
t12
ot = 2t (1.54)
tl?

Both of these equations may be used with the two eigenvalues A1y and A¢z). How-
ever, subtracting the second equation from the first equation we get one equation

for 8, which is independent of A
2t
tan20 = — 2
b — t22

Where @ is the angle with the principal coordinate system in which the tensor 1.,
becomes diagonal. The same equation was derived in example 1.5.

e Problem 1.1
Use the summation convention to write the following systems in a more compact
form. State which indices are free and which are dummy indices:

(a) en®y + ciady + 1323 = dg
€21T1 + €223 + C23%3 = dy

€317y + €32%2 + €3323 = d3

(b) ey + ca1%2 + carz = dy
1221 + €2222 + €323 = d

1371 + €322 + €33%3 = d3
Write the equations in matrix/vector format.

e Problem 1.2
If a;; are constants, calculate the partial derivative

(@2 )%

Use that %—i— = ( ) and that the Kronecker delta can change the indices. Note
that the number of free indices should remain the same.
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e Problem 1.3
Expand the following terms into a sum of the individual components

(a) GijkCisk
(&) aplas

Remember that e;; and eqy are permutation symbols.

e Problem 1.4
The equation g4aq + ¢z = 0 is not only one equation but two equations. It has one
free index A and a dummy index «. Greek indices have the range 1...2. Expand
the two equations (they are equilibrium equations for a plane continuum).

¢ Problem 1.5
The Laplace equation in Cartesian coordinates has the (strong) form s;; = 0 where
the scalar s(z;) is a function of the coordinates. The equation is multiplied by an
arbitrary scalar function a(z;) and integrated over the volume. This integral is also
Zero:

f as;;dV =0  in the volume V (1.56)
v

Use the divergence equation to transform this equation into a weak form, which
includes only single derivatives a;, s, and an area integral [5, ... dA over the
surface of the volume. To do this use the rules for taking derivatives in a product
(0s:); = a:s; + as ;. Write the derivation first using index notation and then the
gradient operator (vector) notation.

1.2 Continuum Mechanics

This seclion gives an introduction lo continuum mechanics of clastic solids. Con-
tinuum mechanics is concerned with problems such as motion, deformation and
equilibrium of continuous bodies. The main emphasis is put on a pictorial and
intuitional understanding of strain and stress in deforming three-dimensional bod-
ies. A geometrical derivation and description of the deformation of a cuhe leads
to the non-linear Lagrange definition of strains. The non-linear strain definition
is needed for a complete description of stability. The strains are linearized for the
theory of small strains and small rotations. The stresses are introduced as trac-
tion vectors on a cube with surfaces parallel to the Cartesian coordinate axes. 'To
clarify that all components are included in this description a tetrahedral elernent
is also considered. The elastic theory can then be completed by introducing the
constitutive relation between stresses and strains (sometimes referenced as Hooke’s
law). The section is completed by the principle of virtual work and potential en-
ergy. The book by Washizu [4] gives a thorough treatment of energy principles and
variational methods used in mechanics. The manuscript by Krenk [5] for a book on
three-dimensional elastic beam theory includes chapters on continuum mechanics
and energy principles related (o beam theories. Malvern [6] gives a unified and
thorough presentation of concepts and principles of modern continuum mechan-
ics including both solid and fluid mechanics. For further studies one may consult
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Fig. 1.4: Initial configuration with orthonormal base vectors i;.

Fligge [7], who gives an advanced treatment of tensor analysis and continuum
mechanics involving skew coordinales, (covariant and contravariant properties).

Kinematics - Displacements, Rotations and Strains

lollowing Washizu [1] a Cartesian coordinate system with orthogonal unit base
veclors 1y, 1y, 1y is introduced. As shown in fig. 1.4 the material points are described
in the undeformed confliguration by their position vector

X:.T.’|i[+ﬂ-'2i2+1'3i3 {157)

The components (@), 72, x3) of the position vector can be written in a convenient
form using index nolation as x;, whereby the coordinate decomposition of the
malerial veclor in equation (1.57) takes the form

X = :I.‘J"lj (158)

Iach material coordinate ; defines a particle position in the initial undeformed
configuration. Let us use a Lagrangian deformation description. Kach material
particle is displaced [rom its initial configuration to its deformed position z; by a
displacement vector u(z;). The displacement vector is a function of the particle
position. The deformed particle position is thus given by

Z =%+ u = (z;+u;)i; (1.59)

Il we consider a material point we can describe a particle using a local orthonormal
sel ol base vectors 1, which we attatch to the material points. As the body deforms
the particle also deforms and the initial orthonormal material base is no longer
orthogonal nor of unit length. The deformed material base vectors ij are determined
by the gradients of the components of the new position vector
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Fig. 1.5: Lagrangian deformation description.

Deformed base vector
i = % s i(gl) - %i
afﬂ;c 3:1’,‘k . azk :
= 24l
= (=5 +uj) 4l
= (6jk +uj)i; (1.60)

since x5 = z{f = 6jx. Tigure 1.5 shows that the original cube spanned by the
undeformed material base vectors has now been {ranslated, rotated and delormed
into a parallelepiped, where the side lengths and the angles between base vectors
are altered. The result in equation (1.60) is clarified by expanding the deformed

first. base vector: . . .
Juy. g, dus,

1y gk =il
d:i’fl ().’.C; (r).’.'Cl
The components are shown in fig. 1.6. The extensions of the material base vectors

are measures of the axial strains, and the changes in angles between the material
base vectors are measures of the shear strains. Let us see how this knowledge can

=1+

(1.61)

be used.

The geometry of any parallelepiped can be described by scalar products of its
three edge vectors. The scalar producl of two different veclors is direclly related
to the angle between them and the scalar product of a vector hy itsell is related
to 1ts length. So let us take the scalar products of the initial undeformed material
base and order them in a geometric second order tensor g;; as follows

gi; = L1

= & (1.62)
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1

duy .

9xy

Fig. 1.6: The components of the deformed base vector i,.

which shows that the initial material base vectors are orthonormal. The geometry of
the parallelepiped spanned by the deformed material base vectors is fully described
by the geometric second order tensor g;; as follows

.aij = ;1IJ
= (zrqe) - (z511)

Zk,i21,5 0k

Il

= i

(Oks + wp) (Orj + vrj)

Spibij + brigj + bpjupy + up it

= by tg i+ Ukilteg (1.63)

This was rather tedious index work but let us pick the fruits. It is seen that by
taking the difference between the two geometric second order tensors g;; — gi; we
can gel a strain measure. However, engineeres define the axial strains of linearized
Lheory as the axial derivatives of axial displacements and it is thus necessary to
divide the difference by 2. The Lagrangian strain tensor is thereby defined as

Lagrange strain lensor (Finite strains)
1,
gi = 5(%i—gii)
1
= 5(“6.;’ + Ui + Uk itg,;) (1.64)

This is a non-linear strain measure with the non-linearity in the last term. Due
to the symmetry of indices Lhere are only six independent strain measures. The
Lagrangian strain tensor is used in theories involving finite displacements. For
infinitesimal strains we can linearize this definition and obtain the conventional
linear strain measure. If all displacement derivatives u; ; < 1 it justifies the use of
the following linearized strain definition
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1, ’

ia 1, [ . Buy.
4 il
14

Fig. 1.7: Axial strain component ¢;.

Linear strain tensor (Infinitesimal slrains)

—_—

eij = 5ty + i) (1.65)

Thus the diagonal strain component €y illustrated in fig. 1.7 is found as

I
£y = §(TLL‘I+T‘5I,1)

= Uy

(’)i.’.] oo

= — (1.66)
(}I|

which is just the axial derivative of the axial displacement. T'he “ofl-diagonal”
shear strain components are exemplified by

(1.67)

1 1 [(du du
E12=§{“1.2+Uz,|)—§( l 2)

f).’l’:g ().I']
The physical interpretation lollows from consideration of the angle 0, between the
deformed material hase vectors 17 and 1y as fig. 1.8 shows

I‘E‘]|;3 (1.68)

Iy
For inlinitesimal displacement derivatives, w, ; <€ 1, we can neglect the axial elon-
gation ol the base vectors and use the Taylor expansion of cos(0y2) about m/2, this
vields cos(0yy) = m/2 — 013 + ... ~ 712, where 7,3 is the conventional engineering
shear strain angle, shown in fig. 1.8.

cos(ly3) =

Tz = 101z

= 25“3 (l_h”)
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Fig. 1.8: Shear deformation, angles and strains ¢,,.

It is important Lo notice the factor 2 between the shear strain €1 and the engineering
shear strain angle 112 = u; 2 +uz; = 2612. Some textbooks use a different notation!

We postulated that the components had contributions from strain and rotation.
This can now be shown for the theory of infinitesimal strains and rotations, i.e.
u;; << 1. In the compenents of the deformed base equation (1.60), we can rewrite
the gradients of the displacement components u;; as follows

1 1
Uk = E(Uj‘k + uk,j} =t —z-(u,"k - uk,_,-)
= € + Wik (1.70)

where the rotion tensor wy; has been defined as follows:

Linear rolation tensor (Infinitesimal rotations)

1
wip = 5(“1'#‘“*..:) (1.71)

In mechanics it is sometimes convenient to work with a rotation vector. The relation
between the second order rotation tensor and the rotation vector becomes clear,
when we introduce the tensor components as follows:

0 =iy Wy
(wip) = [ wa 0 -—w (1.72)
—z [*%] 0

in which we have introduced the components of the vector of rotation wyiy as half
the rotation of the displacement vector field w = 1 rot u = 3 V x u, see equation
(1.15),

1

W = _§C;’jkui‘j U (1.73)
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Iy

i

Fig. 1.9: The rotation w; = wy = %(uz_, — u12) is the mean of the base
vector rotations u;; and —u, .

Wy = %(“32 — Uz 3)
Wy = % 3—U3]) (174)
w3 = %(uu —u1,2)

The deformed base vector can then be rewritten as

Deformed base vector for infinitesimal strain and rotation

"i—k = (6jk+sjk+wjk)ij (175)

The rotation component w3 = wy,; is illustrated in fig. 1.9. The figure shows that
the rotation components are the mean rotations of the base vectors. This explains
why the rotation components are defined as half of the rotation of the displacement
vector field, i.e. w = % rot u

It is important to note that the strain components are not completely indepen-
dent nor are the rotation components. The strains and rotations must fulfil the
so-called compatibility equations, if they are to be integrated to give the displace-
ments. This corresponds to requiring that the related differentials are exact. A
differential form dF = ‘w 5z, dz: = Fydzi is exact in a continuous continuum without
holes if the cross diﬁerentla.ls are equal, i.e. 63.25:" = 32:;.1;, or with comma notation
F.; = Fji. Supplementary conditions are necdeé, if there are holes.

To find the displacement field w; and the rotation field w;; from a given strain
field &;; and given boundary conditions for displacements uf = u;(z?) and rotations
wf; = wij(xf), we first find the rotation field. Let us show that the derivatives of
the rotations (1.71) can be found by the derivatives of the strains as follows:

1
g = 5(“;‘.1!: + ujik)
1
= 2(“""‘ + ukiy) — Z(Uj,z‘k + Uk,ij)
1 1
= Sluik+uni), - Z(Tij,k+uk,j),i
= ik — Ejks (1.76)

The rotations can thus be found by integration along any internal curve C' from r;
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to the internal point z, as follows:
wij = Wit fc duij
= wfj+j;: wijk dTy
= ol 4 jc (Eok = osm) ek (1.77)

if the differential dw;; is exact. Let us return to this later. Having found the
rotations we can find the displacements by integrating the displacement differential
du; = u, jdz; along an internal curve C as follows:

W o= uf+] du;

Il

54
-0
+

o

o
4
&
Y
B

(1.78)

Once again the differential du; must be exact. It is thus clear that the strains must
fulfil certain conditions that make the differential forms exact. Let us first check the
cross derivatives of the displacements, i.e. u;jx = ui;, which expressed by strains
gives us:

(e twis)e = (€ +win),; [}
Eijk T Eihs = Ejkd = Eikiteir—ens U
—Ejki = —Ekji (1.79)

which is [ulfilled by the symmetry of the strains e;, = eg;. Let us next check the
cross derivatives of the tensor of rotation, i.e. wij u = wij i, which gives us:

Compalibility equations
Eikjt = Eikgl = Eiljk — Ejl,ik (1.80)
In two-dimensional problems the equalions are similar:

Eaypr — Epvar = Eavpy — Epvay (1.81)

This compatibility equation and the symmetry of the strain tensor ensures that
the displacements found are compatible in the whole continuum. Note thai the
compatibility equations are fulfilled automaticly, if the strains are derived from a
geometricly possible displacement field.

This concludes our journey into the kinematics of a continuum and we turn to
Lthe description of the stresses in a continuum and the equilibrium equations.

Stress and Equilibrium

Between neighbouring pariticle points of a continuum there will be action and
reaction forces. These internal forces can be measured per area as force intensities
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Fig. 1.10: Cartesian stress components o;;.

or stresses. However, the internal surface dA has an orientation with a surface
normal. In a material point it is possible to make three orthogonal cuts each
corresponding to an internal surface dA with a coordinate direction i; as normal.
Taking t; as the stress vectors on each of the three surfaces of equal area dA and
dF; as the corresponding three internal forces we can define the stress vectors on
the surfaces with normal i; by

dF;
dA
The stress vector acting on a surface, which has the first base vector i; as normal,
can be decomposed along the undeformed material base vectors as

t; = (1.82)

tl = 0'11i1+0']2i2+0']3i3 = G'lji] (183)

where ay; are the three components of the vector t;. The decomposition ol all
three stress vectors t; = [t;, t2, t3] using the force vectors F; = [F),F;,F3] in the
undeformed material base directions i; can be writlen as

: dF;.
t,' —_ O';JI] - dAJ]j U
Ty = ddF—A:] (1.84)

It is seen that o; is the component j of the force per surface area which has the base
vector 1; as its normal. The Cartesian stress components are shown in fig. 1.10.
This definition of the stress is acceplable for infinitesimal strains and rotations
u;; < 1, but not for infinitesimal strains, £;; < 1, with moderate (infinitesimal)
rolations, €;; << w;; < 1, or with finite rotations. We shall consider this later, but
it should be mentioned here that we could decompose the siress vectors along the
deformed material base L

The stress tensor o;; has nine components. Let us consider an infinitesimal
material cube as our particle and then see if we can obtain torsional equilibrium.
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Fig. 1.11: Traction stress vectors on an infinitesimal parallelepiped.

For the sake of simplicity we just consider the plane spanned by the base vectors
i, as included on the right-hand side of fig. 1.10. The torsional equilibrium gives
(012d$2)d$1 = (Jg1d$1)d$; = ) U«
g1 = 091 (185)

Thus, the stress tensor only has six independent components due to the symmetry
Oi; = Oji (1.86)

It is worth emphasizing that the first index 7 in the stress tensor oy; corresponds to
the normal direction of the surface and the second index j to the directions of the
local components of the stress vector acting on the surface.

Equilibrium equations can be found by use of the infinitesimal cube (or par-
allelepiped) shown in fig. 1.11. The cube is loaded by a volume load vector q.
Equilibrium can be expressed in vector format as

(—tl + tl o+ tl_ld:cl] dxzdl':j
+(—t2 + ta + taodzs) doydas

+(—t3 -+ t3 + tglad.‘l’a) d$1d$2 -+ q d.’.ﬂld.’rzd.’ﬂ3 =0 (187)
By cancellation of terms and division by the infinitesimal volume, dzydz,dza, the

equilibrium equation becomes

tiittzt+taa+qg = 0 |

t;i+q = 0 (1.88)
This vector equation can be decomposed in the undeformed material base i; for

infinitesimal strain and rotation theory yielding the equilibrium equations in com-
ponent form as

(0ii+a;)i; = 0 (1.89)
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Fig. 1.12: Tetrahedral element with surface areas dA; and dA.

Thus, the equilibrium equations in component form are

Linear equilibrium equations (Infinitesimal sirains and rotaiions)

0iji +¢; =0 (1.90)

The equilibrium equations are linear in the displacements if the stresses are linear
functions of the displacements. Let us expand the equilibrium equation to clairify
the number of terms and equations

onuatonzg+onztqa = 0
O121+ 0222+ 0323+ ¢

O131 + 0232+ 0333+ ¢3

0 (1.91)

Sometimes the symbol 7 is used for the shear stress components, for example
012 = Ty introducing these and using the conventional partial derivative symbol
the equilibrium equations become

60'[1 37’21 8?‘31 _

Bz, 5—.‘1:2 + a—xa + q1 0

a'ﬁz 60‘22 8732 "y

Bz, T Bxs + = +q2 0

Onia | Omy | Ooss _

31‘1 81‘2 81‘3 T = & (] 92)

To clairify that we are able to find the stress components for any surface using
the six independent stress components, we consider the equilibrium of an infinites-
imal tetrahedral shown in fig. 1.12. The surface areas of the coordinate planes are
denoted dA; and the inclined surface area dA with its normal vector n = n;i; (of
cosine direction components). The areas are thus related by

g dA = ﬂ!/l, (193)
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The stress traction vectors acting on the coordinate planes are t; and on the inclined
surface just t. Equilibrium of the tetrahedral requires that

tdd = t;dA; |
tdA t" g dA U
t = 'n,-t,- (194)

Introducing the strain components in the undeformed base of t as ¢; and the compo-
nents of t; as a;; the tractions of any inclined surface with normal vector components
n; can be found by

Tractions (Infinitesimal strains and rotations)

l; = nyoy; (1.95)

When the rotations are finite or moderate the equilibrium equation (1.88) and
the stress tractions (1.94) must be resolved in the deformed base ~i—j since they follow
(translate and rotate witl}) the material surface. This corresponds to equilibrium
in the deformed state, which is necessary if stability is to be included in the theory.
The related stresses oy; are called Piola Kirchhoff stresses and they are illustrated
in fig. 1.13. The first index is a reference to the undeformed material surface with
normal i; and the second index is referred to the deformed material base i;. It is
thus assumed that the strains are so small, that the initial infinitesimal area is an
adequate approximation to the deformed infinitesimal area, for example g;; < 1.
We assume that the volume forces maintain their original directions (as gravity
forces). Decomposing the equilibrium equation (1.88) in the deformed material
base and using equation (1.60) result in

tiitqg = 0 |

(Fale)i+g¢ii; = 0 {
(oik(bsk + uzp)) ;1 + ¢51; = O (1.96)
These are equilibrium equations for a continuum in the deformed case using Piola
Kirchhoff stress components. If the stresses are functions of the displacements then

the equilibrium equations are non-linear in the displacements. In component form
we get:

Non-linear equilibrium eguations (Small strain end finite rotations)

(oik(bik +wu)) ;+q; = 0 (1.97)

The strains should be so small that an original infinitesimal area is an acceptable
approximation for the deformed infinitesimal area. The traction stress vector (1.94)
takes the following form when the tractions t; are resolved in the deformed material
base

t = npouly = nou(di +usp) i (1.98)
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Fig. 1.13: Piola Kirchhoff stress components.

The components of the original surface normal n; in equatlion (1.94) remains un-
changed since they are the area ratios, which are assumed unchanged for small
strains. In component form we just write:

Piola Kirchhoff tractions (Small strain and finite rotations)

b = ny G'gk(é'jk + k) (1.99)

The Piola Kirchhoff stress components are illustrated in fig. 1.13 for a beam sec-
tion. If the strains in the beam are small the cross-section does not deform in its
own plane and the deformed material base will be approximately orthonormal. It
is thus clear that the Piola Kirchhofl stress components are essentially the usual
stress components except for being expressed in the deformed base.

Elasticity

The previous sections have defined strains and stresses in a deforming continuum
body. A simple matematical model which enables us to approximate the real mate-
rial behaviour is a linear model, as Hooke's law for springs (I” = ku). Qur intuition
tells us that there must be a functional relationsship between stress o;; and strain
€:;, which will enable us to find the displacement response of a continuum hody
when forces are applied to it. The linear relationship is called Hooke’s law [or linear
elastic materials. The linear theory of elasticity is a classic subject described by
many. Some classic references are Love [8] and Timoshenko & Goodier [9].

For simplicity we assume thal the undeformed continuum is unstressed and
without any imperfections, whereby the most general linear constitutive relation
becomes
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General linear elastic constitutive relation

Oij = Qijki€ki (L]OU)

where a;;x are the 3* = 9% = 81 elasticity constants in the form of a fourth order
tensor. However, since both the stress and strain tensors are symmetric with six
independent components each then the number is reduced to 6% = 36 elasticity
constants for a general material. This implies that also the elasticity tensor a;;x
has symmetry properties. For materials that are orthotropic materials, which have
different propperties in the three orthogonal coordinate directions, the number of
constants reduces to 9. If the material is isotropic it can be shown that only two
constants remain. The isotropic fourth order elasticity tensor can be written as

E
T+ (5;:;5;1 + bibji = 6;;%:) (1.101)

Qizkl =

where £ is Young’s modulus of elasticity and v is Poisson’s ratio. The linear
relationship can also be expressed directly as

o = Abjjerr + 2uei; (1.102)
14+v
Eij = E Uij 611 Fo-kk (1103)

where A and p are the Lamé constants, defined as

Ev
E

The Lamé konstant g is in fact the shear modulus G. The linear relationship is
further clarified by introducing the component relationship through a vector format,
which is also used in the computational finite element method:

o1 l1-v v v 0 0 0 £11
22 v 1-v v 0 0 0 £99
033 _ E v v 1—-vw 0 0 0 £33
T3 = (4v)(1-2v) 0 0 0 1—2211 0 0 Yeas (1.106)
T3 0 0 0 g 9 253
o112 0 0 0 0 0 iz 25[2

The shear stress and strain components are thus related directly through the elastic
shear modulus GG by

gz = 2G523 = G"[zg
o3 = 2Ge13 = Ga
T = 2GE12 = G”jm (1107)
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Fig. 1.14: Strains in a uniaxial stress situation.

The constitutive relations can be illustrated by a uniaxial stress situation and a
pure shear stress situation. The axial strains €1 and transverse axial strains €y
and a3 for a uniaxial stress situation o1, # 0 are shown in fig. 1.14 and the uniform
shear stress-strain situation is shown in fig. 1.15.

The classic beam and plate theories often neglect the transverse contraction
associated with Poisson’s ratio v and it is then convenient to consider just the
elastic modulus F and the shear modulus G. The simplest theories only use the
elastic modulus E.

Virtual Work

The energy principles and the principle of virtual work are the basis of many me-
chanical derivations. They can be used for theoretical derivations and for analysis
of engineering structures. The principles are related to scalar functionals which
hold information about mechanical systems of for example force and displacement
vectors. The scalar form makes the principles independent of particular coordinate
systems. This independence makes the principles suitable for formulation of ap-
proximate theories for structural elements, such as beams and plates. The modern
approaches to the principle of virtual work and related energy principles can be
found in Washizu [4] and Lanczos [13].

The equilibrium equation (1.88) is expressed in terms of vectors. The left-hand
side expresses the force “resultant” F on the infinitesimal cube or rather material
points. Let us make an imaginary experiment and assume a virtual (not real)
displacement vector field éu, where the § symbolizes the virtual concept, and let
the force “resultant” F work through these displacements. Then by integrating ihe
work over the volume we get the total virtual work 6W = [, F . éu dV, which
should be zero, §W = 0, if the cube is in equilibrium. This is in fact the basic
principle of virtual work.

Let us assume infinitesimal strains, infinitesimal rotations and work with a linear
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Fig. 1.15: Strains in a pure shear stress situation.

theory. The equilibrium equations (1.90) are multiplied by kinematicly admissible
virtual displacements éu; and integrated over the volume V of the continuum, thus
giving

[, @i+ a) bu;v =0 (1.108)

v

Kinematicly admissible virtual displacements éu; are virtual displacements that
satisfy the (kinematic) displacement boundary conditions. If this is not done it is
necessary to include the work of the reactions, which are probably unknown at the
time of making virtual variations in the displacements. Using the rules for taking
partial derivatives of factors

(O’id., 51.1:_,)’,' = 0y 6uj +- &5 62”,,‘ (1.109)
it is possible to rewrite the equation (1.108) and get
] (ai; 6u;); AV —fv oy buz; dV + [v gi buzdV =0 (1.110)
v

Using the divergence theorem, see equation (1.19), on the first term introduces the
componentis n; of the vector normal to the surface of the continuum (use v; = oy;éu;
in equation (1.19)). Since the stress tensor o;; is symmetric we might as well write
bu;; as the virtual strain tensor &e;; = 3(6u;;+ u; ;). Introducing this the virtual
work equation becomes:

./EW T Ty 5’&3‘ dA—L Tij 6Ej,' C“/—I-L q; 5uj dV =10 (1.111)

Rearranging the terms and introducing equation (1.95) {; = n;o;; the virtual work
cquation is revealed as

s -idV:] f baliigs 1.112
fvaj £j V‘]’J Uj o oy L { )
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On the left-hand side stresses are performing internal work through the virtual
strains and on the right-hand side volume loads and boundary tractions are per-
forming external work through the virtual displacements. A virtual work func-
tional 6W can thus be defined as the internal work minus the external work
W = 6Win — W, as follows:

The virtual work funclional
5wz[ (o beji — 4; 5uj)dv—f 1 6u; dA (1.113)
v av
The principle of virtval work
W =0 <«  Equilibrium state (1.114)
Kinematicly admissible virtual displacements

Virtual displacements must satisfy
kinematic boundary conditions

In an equilibrium state the virtual work must be zero éW = 0 or we would not
have equilibrium. The stability of the equilibrium state is discussed in the section
on potential energy.

It can be shown, by use of base vector manipulation, that the virtual work
equation for the Piola Kirchhoff stresses and the non-linear Lagrangian strains are
written as §W in (1.113). The virtual strains é¢;; are, however, quite complicated
in this non-linear case with (small) Lagrangian strains and finite rotations:

1
55j{ = 5( 511,3',,‘ + 6’LL5,J' + g, 5uk,,‘ + Uk, 5'u'k']) (].115}
It is seen that the real and virtual kinematic quantities do not separate.

e Example 1.6 A sprung mass.
A mass m is suspended by a spring with the spring stiffness k. An external load
P is applied to the mass. The internal spring force is F' = kU, where U is the end
displacement of the spring. A virtual work functional can then be defined for a
static situation as the internal virtual work minus the external virtual work:
W = Winy — §Wer
= F§U - PSU

The principle of virtual work éW = 0 leads to

F8U — P§U 0 |
B = P

which is in fact the force equilibrium equation. If we introduce our knowledge
about the internal force F' = kU7 the displacement can be found as
])

I —
£ k
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If the external load is the gravity force P = mg, where g is the gravity constant,
then we find the elongation of the spring due to the mass as U = T2, Since the
example is very simple, let us emphasize that the main point is that the equilibrium
equation, F' = P, was derived directly from the principle of virtual work.

Example 1.7 An elastic rod.

A rod has the cross-sectional area A, its material is linear elastic with the elasticity
modulus E and the length L. The coordinate z is used in the axial direction. The
rod is fixed at z = 0, i.e. u(z=0) = 0 and at the other end it is free with the
displacement u(L) = [’. The free end is loaded by an external load P. The rod
could be the spring in the previous example 1.6 and we could just introduce the
spring stiffness as k = -"'i—"", but let us instead use internal stresses and strains.
The axial stress is ¢ and the internal axial force is given as N = Ao. The virtual
displacements §u ledd to virtual strains §e = éu/, where the prime corresponds to
differentiation with respect to the axial coordinate, i.e. () = %9. The virtual work
functional takes the following form:

oW = 5W'int = 5We:cz
/ o be dV — P6U
Vv

L
f Ao dede— PEU
0

L
/ Née dz — P6U
0

Using the principle of virtual work 6W = 0 and introducing the virtual strains as
be = du' lead to:

L
] Néw'dz-PSU = 0 |
0
L
[Néu]é’f] N'udz—-PSU = 0 |
0
L
-f N'6udz + (N(L)- P)6U = 0
0

in which we have used partial integration. This equation is very informative, since
we can use any kinematicly admissible virtual displacements éu. Since the equation
must be satisfied for any local internal virtual displacement éu the integral term
must also vanish:

N =1

This is the differential equilibrium equation for the axial force in the truss without
distributed axial load. The conclusion is that the axial force is constant. Next let
us use a local virtual end displacement éU # 0 and internally for z €]0, L[ we have
that éu = 0. The equation is only satisfied if:

N@) = P
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which is a boundary condition for the differential equilibrium equation. Thus the
solution of the differential equilibrium equation is

N = P

Let us introduce the constitutive relation N = Ao = EAe and the strain definition
£ = u' into the solution for the axial force. Then lel us integrate the equation as

follows:
EAY = P i[]
. r
U = ot
. PL : . : :
Inserting z = L we find U = EA which corresponds to the spring selution with
k= E—Lf‘. Note again that the differential equilibrium equation and its boundary

condition were derived directly by use of the principle of virtual work.

Complementary Virtual Work

A complementary principle of virtual work can be derived by the same principles
as the virtual work. The idea is to use a virtual stress field §oy;, which satisfies
the equilibrium equations (1.90) or (1.97). Typically the homogeneous equations
(without virtual volume loads, ¢ = 0) are used to find a statically admissible stress
field that can be used as the field of variation. The kinematic conditions used are
the strain definitions and the kinematic boundary conditions. The linear strain
equation is written in the form

1

eij = 5luij +uji) =0 (1.118)

and the boundary conditions as

'uj‘*?]j:{) (1117)
where u; are the prescribed boundary conditions. These equations are multiplied
by the virtual stress field éo;; and the virtual boundary tractions &t; = n;doy;,
respectively. This virtual work density is integrated over the volume and by use of
the divergence theorem we can derive the complementary virtual work funclional
for the linear stress and strain as

The complementary virtual work functional
§W, = /V (e:; 8055 — s bg;) AV — fav i 6t; dA (1.118)
The principle of complementary virtual work
éW.=0 <&  Equilibrium state (1.119)
Statically admissible virtual stress field

Virtual stresses and virtual loads must satisfy
the equilibrium equations éo;;; + 6¢; =0
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Use of the Lagrangian strain definition and the Piola Kirchhoff stress definition
also leads to the same complementary virtual work functional. (For other non-linear
strain measures the strain and stress must be complementary measures so that in
combination they give exactly this virtual work and complementary virtual work)

Potential Energy

Irrespective of the constitutive relations of the material the virtual work equation
(1.113) holds, and the forces need not be conservative. However, assuming that the
material is elastic and that the forces are conservative, a potential energy exists.
This energy can be integrated from the virtual work W in (1.113).

With an elaslic constitutive relation we assume that a strain energy density
A(ei;) exists and that an infinitesimal change in strain de;; leading to a change in
the internal energy density is given by

0A

O dE_-,‘,' = 58_
1]

dej; (1.120)
The left-hand side is the change in internal energy density found using the work
of the stresses o;; through the strain increment de;;, and the right-hand side is the
change in internal energy density found using the assumed strain energy density.
The relation defines the stress in terms of the partial derivative of the internal
energy density

_ o4
B 35,'_,'
For a linear elastic material the constitutive equation oi; = a;jnem can be intro-
duced into (1.121) and the equation integrated. This gives the the strain energy
density for a linear elastic material as

(1.121)

Ty

A = %E;‘jaijktskl (1.122)
The resemblance with the linear elastic spring with a potential energy Jku? = Juku
is pleasant. The extensional potential energy per length of a truss %E‘AE2 is quite
similar.
With conservative volume loads and traction forces and with a strain energy
density for linear elastic materials the potential energy is given by

Potential energy

1
W= -/V (5653; Qijkl Exl — q,-u,—) dVv — LV t,-uj dA (1.123)

In an equilibrium position the potential energy will be at a minimum. Let us
analvse the variation of the potential energy if we make a virtual variation in the
displacements éu; when the current displacements are u;. Taylor expansion abhout
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the current displacement position gives

av 1 8%V
AV = — (5 i e T —— 5 5 5 = S
By T PR
= V+8&8V+... (1.124)
where 6V = % Su; is the first variation and §*V = %aizg% bui buj is the second

variation of the potential energy. Note that the virtual strains are determined by
the virtual displacements as de;; = § (Suyj + du;s) = %((5ui),j- + (6u;) ;) and that
%51“ therefore also implies %&U. It should also be noted that the first variation
of the potential energy is equal to the virtual work functional:

5V = §W (1.125)

For minimum of the potential energy the first variation must vanish §V = §W = 0.

This is only a necessary condition for a minimum, but if the second variation is

positive, i.e. §2V > 0, it is sufficient. For linear elastic materials and linear strains

g < 1 the second variation is always positive since

1 9*A

2 Jv 851-1- aﬁk{
1

= 5‘/1/ ijki (551'3' 5Ek1 dV

> 0 (1.126)

621/ = 665‘5 5Ek1 dV

in which ayjr 1s positive definite. The second variation does not necessarily re-
main positive for non-linear variations in the displacements leading to instability
situations. The section on initial stress is concerned with approximate stability
analysis.

If the first variation of the potential energy is zero §V = 0, then the potential
energy is stationary and the structure is in equilibrium. However, this equilibrium
position must be stable. Stability is ensured if the second variation is positive

8V > 0.

e Example 1.8 A loaded spring.

In the previous sprung mass example 1.6 we used the virtual work functional and the
principle of virtual work to derive the equilibrium equations, but in this example
we show that it is possible to start by using the potential energy. The internal
elastic spring energy is Vi = %A:UE, where the spring stiffness is determined by
F =kU. The potential of the external load is V. = PU, which is well-known for
the gravity field where P = myg and thus Vip = mgU. The total potential energy
is thus given as

Vo= Vi — Ve

1
= k=Pl
2
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Let us make a small virtual displacement variation and find the first variation of
the potential energy 6V as follows:

av

W‘SU
kU 8U — P6U

8V =

A necessary condition for a minimum of the potential energy is that the first vari-
ation vanishes 6V = 0, which gives us the equilibrium equation:

kU = P |
B = P
The first variation of the potential energy is equal to the virtual work functional
from example 1.6, if we insert kU = F into éV. Thus, for this linear elastic spring

we can make exactly the same derivations using the virtual work functional or the
potential energy. The second variation of the potential energy is

2
v = ZT‘ZMU)? = kK(EU)? > 0

since the spring stiffness is positive k& > 0.

Example 1.9 An elastic rod.
Let us continue example 1.7. The potential energy of the rod is given by:

Vv

f LeBedv — PU
v 2

Il

L
f lpAcds - PU
0 2

The first variation of the potential energy is:

L
5V = EAe be dz — P§U
0

by inserting the constitutive relation EAe = Ao = N it is clear that the first
variation of the potential energy is equal to the virtual work functional §V = §W
and the same derivations can be made as in the previous example 1.7. The second
variation of the potential energy is

arv L
2y _ 2
8V = o2 j; EA(ée)*dz > 0

since the product of the modulus of elasticity and the area is positive EA > 0.
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Complementary Potential Energy

As we could define a complementary virtual work equation we can also define a
complementary potential energy. The arguments follow the same route as for the
potential energy derivation. If we assume linear elasticity the constitutive relation
(1.100) can be inverted to yield an alternative linear elastic constitutive equation

€ij = bijueow (1.127)
A stress energy density can then be derived

1
19 = Eorijbmkok; (1128)

The complementary energy can then be defined as

Complementary potential energy

, 1
vc = [/ (:Z—O'z'j bin L — q_:,‘i.i_;,) dV — /3‘[/ t]'l’.i] dA (1129)

Stationarity of the complementary energy 6. = 0 implies that the structure
is in an equilibrium state. The first variation 6V, in the complementary potential
energy is equivalent to the complementary virtual work functional, 8V, = 6W,.
These complementary work and energy functionals can be used to analyse statically
indeterminate beam structures. [t can further be seen that the potential energy
and the complementary potential energy are closely related since A = e;;amem =
0:i€5 = Oubimor = B. This relation will not be discussed further.

Initial Stress and Stability

As we have just seen, the second variation of the potential energy is always positive
for infinitesimal strains and rotations. This implies that the equilibrium found by
use of the virtual work equation éW = 0 is always a stable equilibrium position.
However, through the use of initial stress (without initial strains and displacements)
it is possible to consider the stability of structures within a linear framework. The
initial stress method is often called the Euler method of linearized stability analysis,
see Washizu [4]. The stability problems which can be treated by this method are
socalled buckling problems, where the structure suddenly loses its stability and its
mode of deformation is altered completely. Typical problems are flexural stability
of columns, lateral stability of beams and stability of plates in compression.

The basic idea of linearized stability analysis is first to solve an initial problem,
for example the compression of a column, and find the stress distribution. Then
use this stress as an initial (strain and displacement free) siress distribution o to
solve an eigenvalue problem, where the eigenvalue is a scaling factor determining the
critical buckling load (or stability load). The linearized stability analysis thus has
two basic steps. First the initial stress field has to be found and then an eigenvalue
problem has to be solved. This will be considered further in later chapters.
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In this section a linear equilibrium equation including initial stress afi,- will be
derived and the additional contributions to the virtual work functional and potential
energy will be given. This will enable the solution of the secondary problem.

The initial stress field of; has to satisfy the equilibrium equations (1.90). For
our study we assume that the linear equilibrium equations will be adequate

o%i+q) =0 (1.130)
The continuum with the initial stress field of; and load ¢? now deforms under the
action of conservative loads ¢;. At a material point the total stress of; and total
load ¢t are
!
ij

o ol e

g = ¢ +q (1.131)

— 0 i
T = gt

To include the influence of initial stress we need to define equilibrium in the de-
formed position. The equilibrium equation for the deformed position (1.97) gives

(Uff;wjk + U_{,k)) 2 ¢ =0 |
Theilik + wik) + ok +g; = 0 |
oLt oh ikt otk g = 0 (1.132)

Introducing the total stress and load from equation (1.131) and linearizing (the
initial stresses are constants), the equilibrium equation takes the form

0?,‘,:‘ + i + O'&“-'Llj‘k + a?,,u,-,k, + q? +g;=0 (1.133)

Combining the two initial stress terms into one and using the initial stress equi-
librium (1.130) yield the final equilibrium equation for a linearized initial stress
problem:

Linear equilibrium with initial stress

aiji + (ouse) i+ ¢ =0 (1.134)

This is the basic equilibrium equation, which can be used for linearized stability
analysis. It is worth writing it in an alternative manner which makes comparison
with the beam theory more direct
60,'3' 3 0 Bu,—

— o= ; =10 1.1
6351' o BI,‘ ( zkaxk 5 qJ ( 35)

The tractions in an initial stress problem are found in the same manner: We
introduce the total stress components ¢7; from equation (1.131) and use that the
initial tractions ¢ = n;ag- satisfy the boundary conditions and finally we linearize
the equation. The boundary tractions including initial stress are
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Tractions with initial stress in linear theory

tj = 1y (O'{j—}-()'?ku]'!k) (1136)

Let us turn to the virtual work formulation of this problem. We will just out-
line how to find the virtual work. The linearized equations (1.134) are multiplied
by virtual displacemnts éu;, integrated over the volume and then the equation is
transformed by use of the divergence theorem. This gives the virtual work including
the effect of initial stress. The modified virtual work functional is:

Virtual work functional including initial siress

§W = f (04 €51+ 0% Sups —g; Suz) dV —f t,6u;dA  (1.137)
v av

A related potential energy is found by “integration”

Potential energy including initial stress

1 1
V= /V (56!,1 @ik €t + 5“&@2“&;‘ — g:,uj') dVv — /RV tiu; dA {1.138)

It is worth noting the similarity of the linear elastic contribution and the initjal
stress contribution. The first term in the potential energy ]562';; aijr €x holds the
elastic energy of the structure and the second term %Uk!{J%?iklj holds the geometric
energy of the initial stresses. Ii is clear that the potential energy is reduced for
compression a; < 0 thus reducing the stiffness of the structure. For large compres-
sion stresses the geometric energy can thus lead to instability. This concludes the
treatment of initial stress in this section.

Initial Strain

Strains are not only produced by stresses, but also by material shrinkage or ex-
pansion, which can be caused for example by temperature variations, moisture
variations, plastic strain and other mechanical or chemical processes. The present
section only considers the influence of isotropic expansion and we will present the
equations for isotropic thermal expansion.

In the case of a temperature change AT, where the material is completely free
to expand the thermal strains are:

Isotroptie thermal expansion sirain

eh = PAT by (1.139)

where the coeflicient of thermal expansion 3 has been introduced. The Kro-
necker delta gives the isotropic expansion. Since the geometric strain measure
£kl = %(uk!( + wy ) 18 the total strain, the thermal expansion with initially positive
strains will reduce the total strain. This gives the following modified linear elastic
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constitutive relation

Modified linear elastic constitutive relation

oi; = cijulen — k) (1.140)

Thermal problems can be converted into initial stress problems.

Imperfections

Most structures are imperfect and sometimes it is necessary to analyse if the im-
perfections are such that they should be taken into account. The disagreement
between theoretical and experimental buckling loads, is mainly caused by small
deviations from the assumed initial shape of the structure. The imperfection in the
present analysis is introduced as a stress free imperfection (or initial) displacement
field ;. The total displacements u} can thus be defined as

uj:uj-+?."tj (1.141)

We substitute the displacements u; in the non-linear equilibrium equations (1.97)
for the Lotal displacements u% and then linearize the equations. This linearized
equilibrium equation including an imperfection displacement field is given as

(ou(8in + 04)) ; + 95 =0 (1.142)

which looks the same as the non-linear equation, but it is quite different since we
know the imperfections. The tractions are found in the same manner

i =mny o*,-k((ijk + ﬁj'k) {1113)

It is seen that the imperfections enter the equations as a correction factor, which
is a function of the position of the material point.

The major interesi in imperfections is within stability analysis. Imperfections
reduce the buckling capacity of columns, beam columns and plates. As mentioned,
lincarized stability analysis is often performed by an initial stress method. In
the following both initial stress and imperfections will be included. It is assumed
that the initial stress satisfies the linear equilibrium equations with imperfections
(1.142). The total stress, the total loads (1.131) and total displacements (1.141) are
substituted for the equivalent parameters in the non-linear equilibrium equation
(1.97). This equation is modified by the fact that the initial stress field is in
equilibrium with the initial loads in the imperfect state. Furthermore, we linearize
the equation to

Lincar equiltbrium with initial stress and imperfections

((Jz‘j + U:‘k?':’-j,k + nguj,k),i +4q;= 0 (1.144)

The tractions can also be found by the same procedure
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Tractions with initial stress and imperfections for linear theory

t = (o4 + ouwlie + U?kuj,k) (1.145)

The virtual work equation can also be derived in this case.

Virtual work functional including initial stress and imperfections

oW = /V(Ugj&‘:j,'-{-O‘l‘jﬂk,j(511]‘,‘5—i—z’}'?juk,]ﬁuk,iqu'éuj}dV*]BV ijéujdA (1146)

A related potential energy is found by integration

Potential energy including initial stress and imperfections

1 Lo 1
V= ]V(Eeijaijk£5k1+§Uk,i9'ijuk,j+ §uk,i<r?ju;c,j—qj-uj)d‘i/—fav tujdA (1.147)

Notice again that initial imperfections destabilize the structure in compression, if
the imperfection displacement mode is of the same form as the buckling mode.

e Problem 1.6

Expand the Lagrangian strain tensor for plane strain, which is given by
1
Cap = 5(”0«6 + Upa + Uyaliye)

e Problem 1.7
What are the equilibrium equations for plane stress situations with infinitesimal
strains and rotations. Plane stress o, is a situation where the three stresses o3;
corresponding to the third coordinate direction are zero a3; = 0. Try drawing an
infinitesimal rectangle, add the in-plane stress components and a load term g4 and
find the three equilibrium equations.

e Problem 1.8

State six independent stress components.

o Problem 1.9
How many independent stress components are found in plane stress?

e Problem 1.10
Why do infinitesimal strains £;; <€ | not automaticly imply infinitesimal rotations?

e Problem 1.11
In beam theory with the beam axis along the third axis 13 we simplify the contin-
uum description by assuming that the transverse siress components o5 = 0 are
zero and introduce a simplified stress notation by setting o = o33 and 74 = 02,. A
similar notation is introduced for the strains ¢ = €33 and v, = 3o = 2€3,. Pro-
pose a linear elastic constitutive relation for the beam stresses and strains, using
the inverse stress strain relationship for general isotropic linear elastic materials.



Chapter 2

Flexural Beam Theories

A beam is a continuum with one primary dimension, the length, which is consid-
erably larger than the other two cross-sectional dimensions. Beams are used as
structural elements mainly to carry transverse loads and, when doing this, they
deform in a socalled flexural mode. In this chapter the two classical flexural beam
theories are derived in a consistent way using the principle of virtual work. Simple
kinematic modes of deformation, socalled shape functions, are introduced as ap-
proximations to the kinematics of the three-dimensional continuum. The theories
are developed by inserting the assumed shape functions into the linear strain defini-
tions, then the linear elastic constitutive law is evaluated and finally the principle of
virtual work is used to close the formulation by delivering the equilibrium equations.
This approach has been chosen since it clarifies the definition of the elastic centre
and the decoupling of differential equilibrium equations. The approach is also the
basic approach used in the development of modern computational approximation
methods such as the finite element method.

The theories of beams have roots back to the investigations of strength of mate-
rials by Galileo in 1638 and the investigations of springs and one-dimensional elastic
bodies by Hooke in 1678. The assumption of plane sections remaining plane and
perpendicular to the deflection curve was made by Bernoulli in 1694. In spite of an
erroneous assumption regarding the neutral axis (elastic centre) made by Bernoulli
it was possible for Euler in 1744 to formulate a one-dimensional beam theory and
to find the well-known Euler formula for column buckling, which will be treated
in the next chapter. Later in 1826 Navier formulated the beam theory including
moments of inertia as we know today. Later in our century (1921) Timoshenko
included shear deformation in a modified Euler-Bernoulli theory. The history of
strength of materials and the people behind has been described by Timoshenko
[10].

Cartesian Reference

To use the power of index notation we assume that the beam axis is parallel to
the third hase direction i3, see fig. 2.1, and for convenience the material coordinate
along the beam axis is introduced as z = z3. The material points within a cross-

43
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Fig. 2.1: Cartesian reference and the point of intersection c,.

section of the beam are thus described by the two first coordinates z,. The exact
position of a material point is referenced by the components (z,,2). The Cartesian
reference frame is introduced in the cross-section of the beam with a given starting
position along the beam axis z = 0. The derivatives in the axial directions will
some places be written explicitly as %L_l, é}_l or just denoted by an upper prime
index as ()’ for the sake of clarity.

2.1 Formulation of Flexural Beam Theories

Even though Euler-Bernoulli theory was developed first it is thought that the nat-
ural way to present the theories with the approach used is in the opposite order.
However, all assumptions made also pertain to the Euler-Bernoulli beam theory,
which just includes one extra assumption implying that the shear effects can be
neglected. Therefore, the common assumptions, definitions and formulations are
presented in this section in a common format including shears. Then the details
are treated in specific sections on Timoshenko theory and Euler-Bernoulli theory.

The Timoshenko beam theory includes the effects of shear deformations, which
are important for “short” beams, for example as a rule of thumb for beams of
isotropic material with cross-sectional depth d to length L ratios of % > 2. The
shear effects were included by Timoshenko in 1921 by relaxing the assumptions
made by Euler and Bernoulli. Euler-Bernoulli theory is well suited for “long”
beams, for example as a rule of thumb for beams of isotropic material with cross-
sectional depth d to length L ratios of ¢ < . However, shear effects can also
be important in long beams with large transverse loads near the supports. Beam
theories also only pertain to structural elements with a depth to length ratio of
about % < 1. The shorter the beam the poorer the beam assumptions made in the
following. In one of the problems following the first section an explicit expression
is found, which makes it possible Lo derive the above limit of about . The typical
heam depth to length ratios % vary from ]1—0 to % depending on cross-sectional type
and material.
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X,

Fig. 2.2: The shape functions of simple beam theories (1, z; — ¢, 72— ¢2).

Beam Kinematics

The theories of beams are derived on the basis of assumed displacement fields
1;(T4,2). The main idea is to separate the axial displacements from the in-plane
cross-sectional displacements w; = f(z,)g:(z). This is like separation of variables
used in solution of differential equations. The displacements are not only separated
in functions of z, and functions of z, they are also expanded in a sum of separated
products.

ui(za,2) = 3 f¥(2p)gt(2) (2.1)
k

For beam theories the fewest possible number of terms is included. Some simple
shape functions are shown in fig. 2.2 and include the linear functions f%(z,) = 1,
fYzs) = z; — ¢; and f%(z5) = T3 — ca, where ¢, has been introduced as the point
of intersection for the two inclined shape functions f* and f2%, so we do not make
the same mistake as Bernoulli and Euler. (It will later be shown that an intelli-
gent choice of the intersection point ¢, is the elastic centre). Since the geometric
assumplions made are important let us introduce one assumption at a time. Con-
cerning the geometric form of the cross-section the following assumption is made.

Assumption [:

Cross-sections do not distort within their own plane

This means that the form of the cross-section is not altered by the deformation and
we thereby conclude that only the shape function f° = 1 is needed to describe the
transverse displacements of the cross-sections, as shown in fig. 2.3. Concerning the
axial displacements the following assumption is made

Assumption 2:

Cross-sections remain plane during deformation

This limits the shape lunctions in the axial direction to the linear ones already
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X X2

X, Xy

u="r° u,=0
Fig. 2.3: Transverse displacements using the shape function [° = 1.

introduced and with the displacement medes directly shown in fig. 2.2. The kine-
matic approximations made so far determine the displacement field of the beam
as:

wi(T52) = [Ozp)wn(z) = wi(2) (2.2)
[@s)walz) = walz) (2.3)

=
%)
—
=
=
L8]
Il

us(zp,2) = foza)v(z) + [Nza)au(z) + [*(z4)n(z)
= v(z)+ (1 — a)anz) + (22 — e2)ea(2) (24)

Where w,(z) are the transverse displacements (of all points in the cross-section),
v(z) is the axial displacement of the intersection point e,, and a,(z) are the in-
clinations along the cross-sectional axes with ¢; as the intersection point. The
displacements can be written in the compact form as

Assumed displacements

Uy = Wy

i

us v+ (25 — ) (2.6

where the five unknown kinematic functions are

w{z), walz), Eu(z)

These displacements are illustrated in fig. 2.4 in a common coordinate view for ,,
where we can just substitute S =1or § = 2.

Using the lincar strain definition (1.65) we find the following non-vanishing
strain components

g = B _ f)?,h
e Jz
dv devy
T dz + (20 =) dz
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%
Fig. 2.4: The kinematic displacement functions.

= v+ (z5—cy)ol

= &+ (z, —cp)ka (2.7)
Jus  dug
BN B
dw,
i

where the axial strain € = v’ at ¢, the curvatures x5 = @/, and the engineering shear
strain 7, have been introduced including the adopted notation for the axial strain
€ = €33 and the shear strain 9, = 73, = oy + w}, at any point. (In Euler-Bernoulli
theory it is assumed that the shear strains can be neglected v, = a, + w/, = 0,
which implies that the intensity of the cross-section inclination is determined by
a; = —wj. The assumption is described in detail in the Euler-Bernoulli section).

The azial strain is
e=E+ (25— o)y (2.9)

in which the azial sirain € at ¢, and the curvalures k, are defined as

d
= % Ky =, = 2 (2.10)

E=v

The engineering shear strains in Timoshenko theory are

dwr;

dz

/
Ts=0ast+w, =05+

(2.11)

( In Buler-Bernoulli theory 75 =0, whereby £, = of, = —wll = —%"— 4 )
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Fig. 2.5: The shear strain v, in Timosheko beams.

The shear strain deformation is visualized in fig. 2.5. This concludes the subsection
on the beam kinematics, which will be sufficient, for Timoshenko theory. For Euler-
Bernoulli theory the assumption leading to the neglection of shear strains is to be
formulated in a later section on Euler-Bernoulli theory.

The Constitutive Relations

The kinematic assumptions lead to transverse strain components e,,, which are all
zero. This is actually not the case in a real beam, since the material will expand or
contract due to the Poisson effect. To derive an intelligent constitutive relation for
the beam strains we need a third assumption. In beams the transverse loads will
produce small stresses oy; or og2. Howerver, experience shows that thesc stresses
are very small compared to the axial stress due lo beam moments as shown in fig.
2.6. This can he used to derive the constitutive relation from the three-dimensional
linear elastic constitutive relation.

Assumption 3:

The transverse stress components are negligible

0'11:0'22:0 (212)

Using the inverse constitutive equation (1.103) it is possible, see problem 1.11, to
derive the following constitutive relations

aa3 = flegs (2.13)
e = (O3 (2.14)
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Fig. 2.6: Negligible transverse stress oy;.

In terms of beam strains defined in (2.9) and (2.11) the constitutive relations are
introduced. We further introduce the notation o(zy, z) for the axial stress and
Ts(2a, 2) for the shear stress

Axial beam siress

o = FKe
= E (+ (25— cp)ra) (2.15)

Transverse beam shear siress in Timoshenko theory

— " (2.16)

Sometimes it is also convenient to use the axial beam stress (2.15) in a vector format
as follows:

(4]

(8]

g = E[fon flafz] K1 ZE[]-, -T]—C),:r?z-Cg} Ky (2.17)

K2 K2

In the given constitutive relations we did not use that the kinematic assumptions
result in zero transverse strains €7 = €33 = 0, instead we have used the third
assumption of zero transverse stress o1y = o33 = 0. Due to this the section is
nol constitutively constrained. If we had constrained the section not only in the
kinematics but also in the constitutive equations extra stresses would be induced,
since we constrain the Poisson effect, and the theory would be very inaccurate. [t
is worth noting that the three-dimensional linear elastic constitutive relation has
been developed later in time than the beam theory and therefore incoorporates the
clasticity modulus £ and the shear modulus G in such a convenient way for beam
theories. 1t must be mentioned that the shear determined by the beam theory is
constant over the section. This is not correct and is only an approximation. When
performing displacement analysis on specific sections a correction factor is often
introduced into the shear term. (The factor can be found by use of Grashof’s static
method for determining shear stress as described later).

Let us integrate the stresses o and 74, shown in fig. 2.7, over the cross-sectional
area and define the generalized internal forces (as the resultants of the cross-
sectional stress components, sometimes referred to as the stress resultants). We
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X $Mz

Fig. 2.8: The internal forces in a beam.

define the internal bending moments M, as the moments of the stress distribution
about the intersection point ¢, the internal axial force (or just the axial force) N
as the resultant of the stress distribution acting at the point ¢, (in the direction of
the normal) and the internal shear [orce (), as the resultant of the shear stresses as
shown in fig. 2.8. Let us make the unnessesary, but a little simplilying, assumption
that the material parameters F and G' are constant throughout the beam, then we
gel
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Azial force Constant E and G

=
I

LadA =LE(5+(%-CB)M) dA
EAZ+ES,«, (2.18)

Bending moments
My = [ (@—c)odd = [ (25— c)E(E+ (25— cons) dA
= ES €+ E Lgka (2.19)
Shear forces in Timoshenko theory

fATﬁdA =]AGW{A
G A, (= YasGA7Ys) (2.20)

Qs

where the cross-sectional area, first moments and second moments of area are

A:/A 1 dA (2.21)
SJ:jA(xpfcﬂ)dA (2.22)
L,ﬁ:/A(a:a — ca)(zp — c5) dA (2.23)

Be aware of the definition of the second moments of area also called moments of
inertia. The definition varies with the naming convention for the reference coor-
dinates. The notation used here is in agreement with the index notation. The
transition equations for the first and second order geometric moments are easily
derived as:

5;,:/ (24— cp) dA = /A S

A
Im‘] = 3 (xa = Cn)(zﬂ — Cp) dA = L TaZg dA — Ca-qg = C,g-s'a + C,,,CgA (224)

These iransilion equations are often used to perform a transition of geometric
moments about one set of axes to another set of axes.

The shear force definition is sometimes modified by the factors v, see the last
section of this chapter on stresses in beams. The constitutive relations (2.18) and
(2.19) can also be written in the following informative matrix format

N A 51 5 3
JIUI] — E S] I“ flg K1 (225)
M,

Sy I Ip Ko
With known static values (N, M,) it is possible to invert the above equation and
use the axial beam stress equation (2.17) to find the stresses.
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It can be seen that the constitutive equations for the internal forces will simplify
considerably if §. = 0 and if I15 = [3; = 0. If we use the elastic centre as the
intersection point ¢, then S, = 0, and if the coordinate system can be rotated until
the principal axes are obtained then I1; = 0. For single symmetric sections we can
use the symmetry axis for one of the cross-sectional axes and obtain [y = 0. The
elastic centre can be defined as follows

The elastic centre is defined as the point c. which satisfies
] (zp—cs)dA = S, = 0 (2.26)
A
For cross-sections with constant £ modulus we find

1
g, 2 H/A 2, dA (2.27)

It should be noticed that if we use the elastic centre as the origin of our Cartesian
reference system we will have that ¢, = 0. As mentioned the transition equations
{2.24) can be used in this process.

If the elastic modulus varies within the cross-section it is a function of the
cross-sectional coordinates z,. Let us therefore denote it by £(z,) and use £ as a
referencial elastic modulus. The definition ol the cross-sectional parameters must
then be altered as follows:

Definition of cross-sectional paramelers, when the elastic modulus varics within
the cross-section.

A :fA 7 dA (2.28)
8, = fA (i, = e Jdi (2.29)
F, f,; 7 (20 — co)(za — c5) dA (2.30)

in which the variation of the elastic modulus E(mu) is introduced through ihe use
of a reference modulus E by the varialion function
E(=z,)
B

(2.31)

These cross-sectional parameters are sometimes referred to as the transformed cross-
sectional parameters.

Potential Energy and Virtual Work

Inserting the beam strain equations (2.9) and (2.11) into the potential energy func-
tion for a three-dimensional continuum given in equation (1.123) and using the
constitutive equations (2.153) and (2.16) result in the following reduced potential
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energy, see Washizu [4],

Vv

Il

1 1

L (§£Es + E'y,gG'yp — qyuy) dV — '/;4 tu;dA
1 1

fv (506 + 577 — i) dV —LtjujdA

E 1
/V (5‘7(5 + (25 — cp)Ka) + 37ee — quj) av _/A tju;dA (2.32)

Note that the potential energy is only a function of the displacement functions
(v, w,,a,), since the stresses are functions of the strains, which in turn are functions
of the displacement functions. Integrating over the cross-sectional area and using
the constitutive relations in equations (2.18),(2.19) and (2.20) we find the potential
energy for a beam:

Potential energy

L 1 1 1
Vv, w,,) = (zNE+ - Mpks+ =Quvs
o 2 2 2
—PU — Paw, — Myarg) dz

— [N + Mo, + Q,,wﬁ]j (2.33)

where the internal beam forces N, M, and @}, are given by (2.18),(2.19) and
(2.20) as funclions of the displacements. [Furthermore, azial, transverse and
moment loads are

P:/A g3 dA, Pa=fA qp dA, mn=/"(1w6a)% dA (2.34)

and the boundary forces are

sz,; 1 dA, Q,,:fA t, dA, M,,:A(x,,—c,,)tgdfl (2.35)

The first variation of the potential energy functional with respect to all the unknown
displacement variables yields the virtual work functional. As mentioned previously
the first variation can be thought of as the change in potential energy when making
small variations in the unknown displacements (év, dw,, écr,). The first variation
of the potential energy can thus be found as:

av av av
5V(?J,1L’,,,a,,) = 8_'()61) + a—t%gwﬁ + a—%éag (236)
(For Iiuler-Bernoulli theory e, does not vary independently, since o, = —wf, but
the total variation (2.36) remains correct if we insert a, = —w}).

Using that the variation of the potential energy with respect to the kinematic
quaniities is equal to the virtural work §W = éV and that the internal forces are
functions of the displacements (N(g, kq)), M(€, k4), @(7s)) we find:
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Virtual work functional for beams

L
W = / (N 66 + M, 655+ Qp 675
0
—pbv—pgbwy — mybay) dz
— [N Sv 4+ My by + Q, 5w,;]§

(2.37)

The potential energy functional is equal to the complementary potential energy
functional, if we include distributed loads and rewrite the functional in generalized
stresses. This means that we can find the variation of the complementary potential
energy functional with respect to the static quantities and find the complementary
virtual work functional as:

Complementary virtual work functional for beams

L
sWe = f (6 6N + k3 6My + 75 6Q,
0
—vép — ws bpy — g bmy) dz
e = = ydi
— [0 6N + oy 6M, +w, 6Q,) (2.38)

When using the complementary virtual work functional, it is common to take virtual
variations of the internal forces which are in equilibrium without virtual loads
(6p, bpa, bmy). The virtual internal forces must satisfy the equilibrium equation,
which will be derived in the next section.

It should be noted that both the virtual work and complementary virtual
work functionals can be derived even if the elastic potential does not exist (non-
conservative forces, plastic energy dissipation).

e Problem 2.1

A plane cantilever beam with the length L = 6 m and depth d = 1 m has the
following kinematic displacement functions (let us use the coordinates (g, 2)):

a(z) =0 wl(z):%z

a) Draw the displaced beam showing a few cross-sections along the beam.

b) Calculate the shear strain y; and the curvature k; = .

¢} It should be clear that this is a pure shear deformation mode. I the beam is
rectangular with a width of & = 1 m, the elasticity modulus is £ = 1 N/m?
and the shear modulus G = %E, what is the shear energy density %Q;’n along
the beam and what is the total shear energy _,fDL %Qlfn dz ?

e Problem 2.2
The plane cantilever beam with the length L = 6 m, rectangular cross-section with
depth d = 1 m, width b = 1 m, elastic madulus F = 1 N/m? and shear modulus
G = %E has the following kinematic displacement functions
2z 1 2%

m(z):—g-[- wﬂz):aT
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a) Draw the displaced beam showing a few cross-sections along the beam.
b) Calculate the shear strain 7; and the curvature k; = aj.

¢) It should be clear that this is a pure bending deformation mode, i.e.
pure bending. What is the bending energy density -;-Mlnl along the beam

and what is the total bending energy fOL iMiky dz?

d) The cantilever beam in this and the previous problem has a tip displacement
of 2m (it must be a sponge to be so flexible). Compare the two total en-
ergy terms. What is the conclusion? Which energy is the largest? Will the
displacements of a cantilever beam with a point load at the tip mainly dis-
place in a bending mode or in a shear mode? (a combination, but which is
governing)?

¢ Problem 2.3
A plane simply supported beam has alength of L = 6m, a rectangular cross-section
with depth d = 1m, width b = 1 m, elastic modulus E = 1N/m? and shear modulus

(= %E.
a) Draw the displaced beam showing a few cross-sections along the beam, if the
displacement functions are:
2 2
= =] — ==
a1(z)=0 wy(z) = 4(1 5

Also, find the curvature x; = & and the shear strain 7; along the beam.

o
~—

Draw the displaced beam showing a few cross-sections along the beam, if the
displacement functions are
2

ai(z) = -3(1-27) wi(2) =0

Also, find the curvature &y = @} and the shear strain v, along the beam.

Draw the displaced beam showing a few cross-sections along the beam, if the
displacement functions are

—

a;(z):—%(]ﬁ2%) wi(z) = 4(1- )%

Also, find the curvature x; = aj and the shear strain 7, along the beam.

d) Which load can accomplish the displacements given in c) and what is its
magnitude?

e Problem 2.4
A plane simply supported beam has the length L, rectangular cross-section with
the depth d, the width b, the elastic modulus F and the shear modulus G = %E.
The beam is loaded by a uniform transverse load p;.

a) IYind an explicit value for the total bending energy V= = f; %M;K‘.; dz

b) Find an explicit value for the total shear energy V7 = fOL %Q]’T] dz, including
a correction term of ¢y = % for the constitutive relation @y = 4;1G Av;.
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¢) Find the numerical value of the ratio r = %% (in per cent) between shear
energy and bending energy if the cross-sectional depth to beam length ratios
i | 1
are £ = 15 and 5.
Since the energy terms are based on the square of the displacement quantities,
we can also use the square root of this ratio, /7, to estimate the displacement
Y 4
ratios g—‘.— between the shear displacement component and the bending displacement
1
component,

i
d) Find an estimate of the displacement ratios ;wu? of the shear component and

the bending component for the depth to length ratios of % = Tlﬁ and %. For

engineering problems we are usually content with an error margin of 5 — 10%.
In which case is it necessary to take shear deformation into account

e Problem 2.5
Derive the virtual work functional for beams (2.37) by taking the first variation
of the potential energy functional (2.33). Use the general constitutive equations
(2.18),(2.19) and (2.20) to express everything in strain measures. Take independent
variations with respect to 8¢, 8xg, 67, fas and dw, and add them to get the total
variation. This is possible since §& = év’, 6k, = daj;, and 67, = 6o, + wg. End up
by using the constitutive relations to reenter the internal forces N, Mg, and Q.

2.2 Timoshenko Beam Theory

The beam theory is based on the assumptions 1 to 3 and the formulations of dis-
placements and strains made in the previous section. In this section the virtual work
equation for Timoshenko beams and the equilibrium equations will be formulated.

In the first chapter we derived the equilibrium equations for a continuum by
considering equilibrium of an infinitesimal cube. We will also in the last parl
of this section use this method to derive the equilibrium equations for a beam.
Howerver, to illustrate the value of the energy and work functionals in complicaled
problems we start by using these to derive the equilibrium equations. For very
complex structural systems it is much easier to define the equilibrium equations
through the use of stationarity of virtual work, as in modern computational finite
element methods for analysing complex structures. This approach also validates
the consistence of the assumptions made in the formulation of the theory.

Let us continue directly from the virtual work functional for beams (2.37) and
introduce the virtual kinematic quantities 6 = év', 6k, = 8o, and &y, = bas+dw!.
The virtural work equation for a Timoshenko beam thus takes the form

Virtual work functional for Timoshenko beams

L
W = j (N &' + M, b, + Q. (bcx, + 6w')
0
—pbv — pg dw, —my day,) dz

— [N 6v+ M, b0y + Qy 6-w,,];‘ (2.39)
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Using partial integration we can rewrite the virtual work. It is in fact easy to re-
member the rule for partial integration by using the rule for derivatives of products
for example (M, ba,) = M) bas + M, éa is rearranged to the form M, dof, =
—M, 8as+ (M, 6a,) and by integration on both sides and using that the last term
is already integrated we find the partial integration rule. We can thus introduce
the following modifications:

L ' & 1 L
fﬂ My bolydz = —j;) M by dz + [M, ba),
o / - / L
fo Qs buldz = - fo Q, bw, dz + [Q, 6w,-
L I
[} Név'de = —[0 N v dz + [N 6v]¥ (2.40)

Introducing the modifications and rearranging the virtual work terms we find a very
informative version of the virtual work functional, which delivers the differential
equations and the boundary conditions for the Timoshenko beam.

L
W = — ]u ({N' + p)év + (Q + po)bwy + (M — Qs + mﬁ)éa”) dz
— [(N = N) v+ (M — M) S0rp + (@p — Q) by, (2.41)

If the virtual work vanishes W = 0 for any variation in the kinematic parameters
the beam is in equilibrium. We can make a variation internally in the beam over a
very short distance for any of the three kinematic quantities (év, dw,, da,) and the
virtual work must vanish. If this is to occur the terms in the parenthesis in {ront of
each individual variational displacement must be equal to zero. We thus see that
we have derived the differential equilibrium equations using internal forces which
satis{ly the principle of virtual work:

Beam equilibrium equations derived by Timoshenko theory

N4p =0
Q,tps = 0
M, —Qy4my = 0 (2.42)

The boundary conditions are found by taking the variations infinitely close to the
boundary and using that these variations must also vanish. The boundary condi-
tions are trivial in this case as opposed to those found for the Bernoulli beam. The
boundary conditions for the Timoshenko beam are:

N=N My=M, Q,=Q, (2.43)

These just tell us that the reactions or loads acting on the ends of the heam are equal
to the internal forces, (which is quite important even though it seems trivial). For
statically determinate structures we could use these equations to find the correct
variation of the internal forces N, M; and @, along the beam or we could use static
principles to find them.



58 CHAPTER 2. FLEXURAL BEAM THEORIES

For statically indeterminate structures we need information about the materials
to solve the problem. Let us see why by finding the kinematic equilibrium equations
and boundary conditions. If we insert the constitutive equations (2.18), (2.19) and
(2.20) and introduce the strain definitions (2.10) (2.11) into the static equilibrium
equations, we find the following kinematic equilibrium equations for a Timoshenko
beam:

(EAV' + ESpal) +p = 0
(ESgv' + Elzal) — (GAay, + GAwy) +ms = 0
(GAa, + GAw,) +py, = 0 (2.44)

We see that these five equations are coupled differential equations. The way to
handle these is to decouple them by using ¢, as the elastic centre, so that S =0
and to rotate the coordinate system so that the off-diagonal moment of inertia is
zero I;2 = 0. The nearly decoupled kinematic equations for a Timoshenko beam
become:

(EAVY +p
(E@yed)" +my 4+ m
(GAx; + GAW)) +m

Il
Il

0 (Elacy)” +mhy + po

0 (GAay + GAw,) + p, 0 (2.45)

These equations are much simpler to solve, we just solve them from top to bottom.
For the kinematic differential equations we can find the boundary conditions by
using the constitutive relations and strain definitions. For the uncoupled case with
¢, as the elastic centre and I;; = 0 we find the following expressions for the static
boundary conditions for the Timoshenko beam

N = Ev
3_4-1 == EIH():'; Mg - E[cht;

These boundary conditions must be handled with care, since the shear force leads
to shear deformation, which concerns both a, and wj.

Having introduced kinematic assumptions and a constitutive law, we have used
the principle of virtual work and by “just turning a handle” (or say using variational
principles) out came the equilibrium equations and boundary conditions.

The static equilibrium equations can also be found by considering equilibrium
of an infinitesimal part of the beam as shown in fig. 2.9. The equilibrium equations
found (independently of the beam theory) are exactly the ones found already in
(2.42). Let us do it by using the figure and ensuring lateral and vertical force
equilibrium and moment equilibrium about the right-hand end of the section as
follows:

Il
Il

N+ Ndz—N+pdz =
Qs+ Qudz — Qp + ppdz =
Mp+ Midz: — M, — Qpdz + mydz = 0 (2.47)
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Fig. 2.9: Equilibrium of infinitesimal beam element.

where we deliberately have neglected small terms including (dz)%. By cancellation of
terms and division by dz these equations lead directly to the equilibrium equations
in (2.42).

Problem

5. Use the kinematic equilibrium equations (2.45) and boundary conditions
(2.46) for a Timoshenko beam to find the transverse displacements w; for
a simply supported plane beam with a uniformly distributed transverse load

Pi-

2.3 Euler-Bernoulli Beam Theory

Bernoulli made yet another assumption concerning the beam kinematics. Through
experiments he saw that a transverse straight line remained straight during defor-
mation and il also remained perpendicular to the transverse displacement curve.
Let us make the same assumption and see what modifications it brings to the Tim-
oshenko theory.

Assumption 4: Euler-Bernoulli theory
Cross-sections remain perpendicular to the displacement curve

Lthis tmplies that shear strains are disregarded, since

ay =—w, = Yp=oa+w, =0 (2.48)

That the assumption leads to a; = —w}, can he seen by comparing the displace-
ments of Timoshenko theory in fig. 2.5 with the displacements of Euler-Bernoulli
theory in fig. 2.10. The assumed displacements in Euler-Bernoulli theory are
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Fig. 2.10: Displacements of an Euler-Bernoulli beam.

Assumed displacements in Euler-Bernoulli theory

W = (2.49)

ug = v— 35—y (2.50)

where the three unknown functions are

v(z),  w,(z)

The derivation of Euler-Bernoulli theory is equivalent to most of the derivations
already performed and we will not repeat them here, since we can just insert v, = 0.
However, the important formulas will be given. The axial strain is now defined by:

The azial strain s Euler-Bernoulli theory
e=€E+(z5—cs)ks (2.51)

in which the axial strain € at ¢, and the curvatures £, are defined as

) dv d*w, _
E=v = . 1 = Q’; = fwg e 7. (2.52)
Due to the altered definitions of the inclination ¢, = —w! and the curvature

B

&y = —w;a’ the virtual work functional for Euler-Bernoulli beams takes the form
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Virtual work functional for Euler-Bernoulli beams

sWo= jo (N &v' — My 6w — p 6v — py bwp + m, bw)) d=

- [N bv— M, 6w+ Q, 5w,]n (2.53)

In our quest to find the equilibrium equations we need to perform partial integra-
tion twice on the displacement term éwj, which appears as the double derivative.
Using partial integration once as done in the section on equilibrium equations for
Timoshenko beams we find:

= —] N’+p bv — (M}, + m,)bw, +pﬂ5wﬂ) dz
— [(N = N) 60— (M, — M,) 6, + Qs awﬂ]g (2.54)

Using partial integration on the integral terms including éwj, we obtain the following
very informative virtual work functional

L ! " !
oW = — [7((N'+p)bv+ (M + mi, + p)bw,) do
. - = . L
_ [(N — N)bv— (M, — M,) &), + (Qs — M}, — my) 5%]0 (2.55)

If the virtual work vanishes §W = 0 for any variation in the kinematic parameters
the beam is in equilibrium. For internal variations év and dw, the virtual work
must vanish. Taking these variations we find the equilibrium equations:

Beam equilibrium equations derived by Euler-Bernoulli theory

N+p =0
M! 4! +p, = 0 (2.56)

The boundary conditions are found by virtual variations infinitely close to the
boundary and using that these variations must also vanish. The boundary condi-
tions are not trivial in this case

N=N M,= M, Qs = M, +m, (2.57)

We see that the only way shear enters the Euler-Bernoulli theory is through the
boundary condition @, = M’ + m,. These equations can also be obtained by
coniracting the moment and equilibrium equations found by Timoshenko theory or
by static equilibrium of an infinitesimal beam element.

For statically determinate beams it is possible to find the moments using the
static equilibrium equations or using static priciples and then use the constitutive
relation My = —ETw! to find the displacements by integration.

For statically indeterminate structures we need to introduce the kinematics and
constitutive equations. oing so results in a set of coupled differential equations in
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v and w,, however, we can decouple these. Assuming that ¢, is the elastic centre,
i.e. §, = 0 and that the principal axes are used as coordinate axes, i.e. I;3 = 0 we
find the following kinematic equilibrium equations:

(EAV)Y +p = 0
—(Ehww)" +mi+p = 0 — (BElpwy)" +my+p; = 0 (2.58)

with the associated boundary conditions

N = EAY
M] = —E[uw;’ Mz = *Efggwg
Q1 = —(Elnw) +m Q@ = —(Elnwy) +m, (2.59)

These equilibrium equations including boundary conditions can be used to solve
statically indeterminate beams, however, when point loads act on the heam we
have to split the beam in two and assemble the solutions using joint and boundary
conditions or make use of delta functions. This becomes tedious and that is why
we would like to use the complementary virtual work functional in the chapter on
statically indeterminate beams.

Problem

6. Use the kinematic equilibrium equations (2.58) and boundary conditions
(2.59) for an Euler-Bernoulli beam to find the transverse displacements w,
for a simply supported plane beam with a uniformly distributed transverse
load py.

2.4 Stresses in Beams
As mentioned earlier we can find the stresses using the constitutive equations and

the definition of the internal forces. If we write these equations and definitions in
a vector format as in (2.17) and (2.25) we find the following generalized Navier

formula:
A S S ][N
o(zs,2) = [L,mi—a,22—¢] | 51 In In M, (2.60)
5"2 121 I?_Z M?

However, if we use the elastic centre as the intersection point ¢;, l.e. 55 = 0, and
if we assume that the principal axes are used, i.e. I;; = 0, then the equations are
simplified and we find the well-known Navier formula for beam stress:
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Fig. 2.11: Equilibrium of section cut-out.

Navier’s formula: Timoshenko and Euler-Bernoulli theories
]f 112 =0 then
N M M,
=i e —(z2 — 2.61
Fod 1 + I“(xl )+ Tn (z9 —c3) (2.61)
and if also ¢y = 0 then
N M M,
=T 4 g 4 2 5
B T R )

Even though Timoshenko theory includes shear deformation and an approximate
determination of shear stress, it will be worthwile also to evaluate the Grashof
formula, which is completely based on statics. Let us consider the equilibrium of a
small cut-out element of the beam, shown in fig. 2.11. When the area of the cut-out
is denoted AA the equilibrium equation can be written as

T‘=LA((;—:+q)dA=LA(a’+q)dA (2.63)
where T' is the total shear flow in the cut and ¢ = g3 is the longitudinal volume load.
The equation is in fact an integral counterpart to the third continuum equilibrium
equation (1.92). If again we assume that ¢, is the elastic centre and that the beam
is prismatic with identical cross-sections then we can use Navier's formula and find
the shear flow by

5 N’ (.’.U[ —C])ﬁ.[f (1’2-62)M§
= — d
AA ( A W ]1] * Igg ks q) A
N'AA  MA MiA
. g TS M0 o Ap (2.64)
A Iy Iy

in which the following section cut-out parameters have been introduced

A8y = LA (25 —cs)dA  Ap= fM gdA (2.65)
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The derivatives of the internal forces can be found by use of the equilibrium equa-
tions, i.e. N' = —p and M} = (), — m, whereby we find the Grashof formula for
the shear flow. The Grashof formula can be used to estimate the shear stresses by
i = %, where b is the width over which the total shear stress “flows”.

Grashof formula for the toial shear stress “flow”
pAA

Q1 —mi)AS, + (@2 —m3z)AS, +Ap——=— (2.66)
i1 Iy A

ol

Without distributed longitudinal and moment loads, {i.e. p=1m; = ms =0),

_ QA5 | QuAs, -

T
Iy I32

The shear stress approzimation over the width b then is
T

% (2.68)

T

It should be noted that the Timoshenko beam theory may overestimate the shear
energy and the virtual work. This is due to the poor shear approximation with
constant shear over the cross-section. An impoved approximation may be obtained
by inserting correction factors into the constitutive equation

Qs = YasGAYa (2.69)

where 1, , are the correction factors. A better approximation ol the potential energy
or virtual work can be found by the use of Grashof’s formula 7, = Gy, = T,/0b
by anticipating that these shear stresses present a hetter approximation than the
approximation by Timoshenko beam theory, see Krenk [5] and Gere & Timoshenko
[12]. Equalizing the two energies by

1 ]
= o i d = FlWWuVe
[ nda = Qo b
1 T5Ts 1 Q.Q,
= dA = = - 2.
2J4 G 21P,5GA (e
whereby we find the correction factor
Quis/A :
= T = = 200
v f4 TofadA ( )

in which it has been assumed that the shear modulus G is constant. It is customary
to normalize the Grashof shear stress 7, by the shear force (), (i.e. calculating
with @, = 1). For a homogeneous, rectangular section it can be shown that 1y, =

Q2/A 5 . _ . 5 - .
m = Z and 13 = P31 = 0, whereby we can write 1., = 364, For single and
Ja

double symmetric cross-sections the off-diagonal factor is zero, i3 = w2 = 0, since
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shear in one direction does not produce work through the shear strains in the other
direction. For non-symmetric beams there may be off-diagonal terms 1, # 0.

This closes our development of beam theories, beam equilibrium equations and
stress determination The statics of beams has not been treated, since it was assumed
that the reader was acquainted with this. The determination of displacements by
complementary virtual work will be treated in the section on statically indetermi-
nate beams.

e Problem 2.6
Show that the shear energy correction factor ¢ for a rectangular beam is g. Use

that the shear stress is parabolicly distributed, for example 7, = 2—% 451~ 21
where ; varies from 0 to d, where d is the cross-sectional depth.






Chapter 3
Stability of Columns

The flexural beam theories based on infinitesimal strains and rotation as developed
in the previous chapter are great tools. However, for slender beams in compression,
socalled columns, a stability phenomenon arises, which has to be included in the
beam theories. If a column, for example a yardstick or just a ruler, is compressed
as shown in fig. 3.1, it will initially remain straight and only have axial strains,
but suddenly as the compression load is increased the column loses its stability by
deflecting to the side in a flexural displacement mode. The column cannot carry
more load without excessive displacements. Fig. 3.2 shows the load P as a function
of both axial v and transverse displacements w in a three-dimensional view. As the
load increases the compression path is followed and at the critical load the transverse
displacement path is followed. This structural stability phenomenon is one of the
simplest types and it was the first to be solved. The Swiss mathematician Leonhard
Euler found the solution in 1744, even though he only knew the existence of a
proportionality factor between the moment M and curvature x. The proportionality
factor £1 was established in 1826 by Navier, i.e. M = Elx. Many elastic stability
problems of structural mechanics are treated by Timoshenko and Gere [11], which
has become a classical reference when dealing with specific problems. An extensive
treatment of stability of structures is given by Bazint & Cedolin [14].

For small loads a straight column is well described by the linear beam theories,
but in order to predict the critical load, the socalled buckling load, (Euler load or
bifurcation load), a non-linear ingredient from large displacement theory is needed.
According to linear theory the stationarity of the potential energy or the principle
of virtual work always supplies a stable equilibrium position. However, this only ap-
plies if the linear assumptions made are correct. When the transverse displacements
and the rotations become larger it is necessary to expand the theory by including
non-linear terms in the strain definitions, whereby also the potential energy and
virtual work functionals will include more terms. With the additional terms the
stationarity of the potential energy and the principle of virtual work become neces-
sary, but not sufficient, conditions for stable equilibrium. This is due to addition of
possible negative terms in the potential energy or virtual work functionals. How-
ever, it is possible, following Washizu [4], to stay within a linear framework, with
uncoupled linear differential equations, by using Euler’s initial stress method and

67
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Fig. 3.1: Stability phenomenon for a simply supported column.

Fig. 3.2: The load path for an Euler column.
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Fig. 3.3: Euler’s initial stress method illustrated for a column.

still be able to predict the buckling load.

The idea of Euler’s initial stress method is indicated in fig. 3.3. The solution
can be viewed as two separate problems one for the trivial, compressed state and
another for the buckled state. In the primary problem 1) the initial stress field
o? is found using linear infinitesimal strain and rotation theory. The secondary
problem 2) then consists of finding the critical size of the initial stress field o° at
which a secondary deformed equilibrium (buckled) situation exists. The transition
from the initial state to the buckled state is called bifurcation. For a column the
bifurcation is the transition from the trivial compression load path with only axial
displacements to the secondary flexural load path with transverse displacements.

The buckling load for uniformly compressed columns can be found using static
methods and the constitutive equation for the moment. This is because the internal
moments can be found explicitly, without considering rotation of internal forces.
The first section of this chapter will treat uniformly compressed columns starting
with a column with pinned ends, then other boundary conditions are treated and
the idea of an effective length is introduced. The first section will also include a brief
introduction to the influence of initial moments M°, imperfections 1, non-linear
material and shear deformation.

In the following section the general equilibrium equations for a deformed in-
finitesimal beam element will be derived and Euler’s initial stress method will be
used to linearize these equations. An alternative energy approach starting from
the potential energy derived for a continuum will be used to derive the equilibrium
equations. Approximate methods for estimating the buckling loads, including the
well-known Rayleigh coefficient, will also be derived from the principle of virtual
work.
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Fig. 3.4: Reactions and loads on uniformly compressed column end.

3.1 Uniformly Compressed Columns

In this section the index notation will be cancelled and we shall work in one of
the principal planes (z,, z) of the column eross-section, and just use the axes (x, z)
neglecting the index §. It is assumed that the coordinate axes have their origin in
the elastic centre, ie. ¢, =0, 5, =0 and [;, = 0.

Stability of columns can be evaluated for Euler-Bernoulli beams or Timoshenko
beams, where the later solution will include the effects of shear. In this section we
shall first treat the classical buckling problem for an Euler-Bernoulli column, since
it is the one most often used. The uniformly compressed columns can be treated
independently, since the internal moment due to the external compression load can
be found explicitly as a function of the reaction forces. The geometric houndary
conditions can be used if the reactions are statically indeterminate. Fig. 3.4 shows
the lateral reaction force R and the moment reaction M, on the end of a column
which is in the displaced configuration and may have a varying transverse load p(z).
The moment in the deformed configuration i this column can be determined by
use of statical equilibrium in the deformed configuration as

M(z) = Pw(z) — Rz — M, — /G P3Nz — ) d (3.1)

If the column has initial transverse loads, the column deforms in the initial con-
figuration and the problem is not a stability problem with a bifurcation point.
However, if there are neither initial transverse loads nor initial reactions, but only
the initial constant axial force N = —P then it is a stability problem. Notice
that N # NU since the axial force in the column will change due to the rotation
of the cross-section in the deformed position. It should be noted that we are using
Euler’s initial stress method, where the initial problem is the trivial compression
problem of determining N° Notice also that we are not concerned about the axial
and transverse equilibrium equations for the deformed situation.

The Euler Column with Pinned Ends

As mentioned, it is necessary to consider equilibrium in a deformed situation. [t is
3 o |
possible to find the moment distribution M{z,w, ) in the column for any trans-
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Fig. 3.5: Moment equilibrium for an Euler column in the deformed
state.

verse displacement w(z) with a uniform compressive axial force N = —P, When
the moment distribution is known the constitutive relation for the moment can be
used to find the critical value of the axial load P. Using Euler-Bernoulli theory the
relation is M B9
" z, W,
w” = i (3.2)
The use of this equation will be illustrated on a compressed column with pinned
ends and withoutl transverse loads, called the Euler column after Leonhard Euler.
The column is illustrated in fig. 3.5. By formulating the moment equilibrium about
the section at z the internal forces N and @ do not enter the equilibrium equation.
It is thus seen that we can find the moment distribution M(z) = Pw(z) as a function
of an arbitrary displacement field w(z), (which satisfies the boundary conditions).
The differential relation (3.2) with the statically determinate moment thus becomes
P
"
W' = =W 4
w4+ Ew = 0 (3.3)

where the coefficient k% = % has been introduced (we have squared it to emphasize
that it is always positive). This is an ordinary second order linear differential
equation and if the bending stiffness ET is constant the differential equation has
constant coeflicients. The two boundary conditions needed are determined by the
zero iransverse displacements at the ends, w(0) = w(L) = 0. Note that ; has the
dimension of length and we shall see later that it is in fact a measure of the problem
length scale. (By multiplying the mathematical length scale by = an engineering
length scale called the effective length is obtained as L, = ).

The homogeneous equation (3.3) is a mathematical eigenvalue problem, where
k?* defines the eigenvalues which we want to find, and w(z) define the corresponding
eigenfunctions or socalled eigenmodes which we would also like to know.

The differential equation (3.3) is solved by assuming that e%* is a solution,
whereby the characteristic equation £2+44k% = 0 is found. The characteristic equation
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Fig. 3.6: Eigenmodes w and corresponding loads P for an Euler column.
has the solutions £ = #ik, meaning that the solutions are of the form e**% =
cos(kz) £ isin(kz) (using Leonard Euler’s formula for complex exponentials. Euler
published more than 886 papers on mathematics, mechanics, hydromechanics ... ).
Since the solution is real it can be written as:

w = Asin(kz) + B cos(kz) (3.4)

in which A and B are arbitrary constants determined by the boundary conditions.
(Notice that L; = T is a practical length scale for the displacement variation in the
axial z direction). The boundary condition w(0) = 0 results in B = 0, whereby the
last condition w(L) = 0 results in

Asin(kL) =0 (3.5)

Two solutions are possible for this houndary equation. One solution is the trivial
one A = 0, which corresponds to the primary undeformed state with 2 > 0 and
w(z) = 0. The other solution is the non-trivial one corresponding to the sccondary
deformed state where A4 is arbitrary and eigenvalues are determined by

sin(fkl) = 0 |
A = nr  (n=0,123,..) (3.6)

Using that k? = —EJ:, i.e. P = k*EI, and discarding kL = 0 corresponding to no

axial load P = 0 we find the following solution for the eigenvalue problem:

LTEET
P = ,-;2”]‘2 (n=1,23,..) (3.7)
w = Asin(n '/T%) (3.8)

where A is an arbitrary constant. A few of the lower eigenvalues and corresponding
displacement eigenmodes are shown in fig. 3.6. The lowest critical load at which
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Fig. 3.7: The Euler buckling curve.

equilibrium in the deformed state exists is found for n = 1 and it is called the Euler
load. The critical loads above the Euler load lie on the continued equilibrium path,
which is unstable. The Euler load P and the corresponding displacement mode
are thus given by the following equations.

The Fuler load for a column with pinned ends is
nlET
P = Iz (3.9)
The column displacements are given by
w = Asin(fr-;—) (3.10)
where A is an indeterminate arbitrary constant.

Dividing the Euler load (3.9) by the cross-sectional area we obtain the Euler stress

m2E] lE 2 E

= AL T e (310
where the radius of inertia r = (/I/A of the cross-section has been introduced.
Further, the ratio A = L/r is introduced as the slenderness ratio of the column. The
slenderness ratio A is the main geometric parameter, which governs the buckling
behaviour. The plot in fig. 3.7 shows the Euler stress oy as a function of the
slenderness ratio A = L/r, the socalled elastic buckling curve. For columns with
a maximum stress limit, typically the yield limit f,, the buckling stress must be
lower than the yield limit oy < f, as indicated in the figure, or the column will



74 CHAPTER 3. STABILITY OF COLUMNS

“Euler stress o, /1,

0 Yield limit
0.8

0.6+

Euler curve

0.4

i

|
|
I
|
I
I
|
|
I
|
|
|
|

0 f T : -

0 1 2 £ 4
Relative slenderness ratio A,

Fig. 3.8: The non-dimensional plot of the Euler buckling curve.

fail by yielding. Using this we find the corresponding limiting slenderness value as

follows: -
T .
(L"I?,)z = fy = T E/fy < L/T (5.12)

In codes of practice the slendernes ratio A = L/r is often normalized by this min-
imum slenderness value (7y/E/f,). The normalized slenderness ratio is called the
relative slenderness ratio (since it is taken relative to the yield limit):

Ljr SulLfr)? f ;
Ar = S 3.13
7\/}-"‘.",.)!\9 T E ( )

The relative slenderness ratio enables buckling curves to be plotted in a non-

dimensional form, as shown in fig. 3.8. This non-dimensional form is often used by
codes of practice. The critical column stress can be found as the minimum of the
Buler stress o and the yield stress f,, which can also be written as

1
foo gl oy ] (3.14)
R "

However, in codes of practice the ideal Euler buckling curve is modified to taking
imperfections, residual stresses and plasticity into account.

Other Columns and Effective Lengths

By the use of statics and the constitutive equation for the moment M = —FElw"
it 1s possible to find the buckling load for uniformly compressed single column
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Fig. 3.9: Boundary conditions for the transverse displacements.

problems with known boundary conditions. It is also possible to include transverse
loads and solve for the transverse displacements as a function of the axial load.
However, we shall concentrate on the buckling problem. For columns with boundary
conditions for the transverse displacements as illustrated on fig. 3.9 a general format
for a buckling solution can be found. Some columns other than the Euler column
with pinned ends are shown in fig. 3.10, which covers the most general boundary
conditions. The moment in these columns is given by statical equilibrium and it
can be written in the following general form

M(z) = Pw(z) — Rz — M, (3.15)

However, for simplification in the following we use that P is a constant and intro-
duce C'= R/P and D = M, /P, whereby the moment distribution becomes

M(z)= P(w(z)—Cz—- D) (3.16)

in which €' and D) determine an additional linear variation of the moment due te
the reactions, as shown in fig. 3.10. The first column a) is statically determinate
while the other three b), ¢) and d) are statically indeterminate. However, we can
apply the unknown reactions to the columns, so that global equilibrium is satisfied.
Using equation (3.16) and the constitutive equation (3.2} for the moment we find
the governing differential equation

w' + k*w — k*Cz - k*D =0 (3.17)

where k* = % is the problem constant as we have already seen. The non-

homogeneous equation has the following general solution
w(z) = Asin(kz) 4+ Bceos(kz) + Cz+ D (3.18)

where A and B are constants determined by the remaining boundary conditions.
The solution can be confirmed by substitution. It is seen that L, = % 1s a measure
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Fig. 3.10: Other simple columns.

of the problem length scale since it corresponds to the zero crossings of the sine
and cosine functions. With this knowledge we might be able to guess the length
scales for each of the columns in fig. 3.10 and use this to estimate the constant by
k = /L. and thus also the buckling load P = K*E] = %, which is similar Lo
the Euler load for the column with pinned ends.

The column differential equation (3.17) can also be rewritten by taking the

double derivative in the axial direction, whereby it takes the following form
w™ + k*w" =0 (3.19)

which has the same general solution as given in equation (3.18). This equalion
may be easier to use when boundary conditions become complicated (for example
by springs). This equation can also be derived through the more general and robust
approach used in the next section.

e Example 3.1 Cantilever column.

Let us treat the cantilever column a) and analyse the result. The cantilever column
is statically determinate and we can find the constants ¢ = 0 and D = w(0) from
fig. 3.10. Then we need to determine the constants A, B and w(0). This is done
by using three of the boundary conditions. First we can use that the moment is
zero at the free end w”(0) = 0, which gives us that B = 0. As the second boundary
condition we choose that the displacements at the fixed end are zero w(L) = 0,
which results in A = —w(0) Then we use that the column is restrained against
rotation w'(L) = 0 al the fixed end:

w(0)kcos(kL) =
lih.L =

4
+ar (n=1,2,3,...)

oy =
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Fig. 3.11: Effective length of columns L, = n/k.

The cantilever column thus has the lowest eigenvalue and lowest buckling load when
kL = %. Using that (kLY = FF—I}? we find the buckling load as

_®*El _x'El
To4L2 T L2
where the eflective length is defined using kL = 7 as

B, =Bl

o

The transverse column displacement (mode shape) is given by
w(z) = w(0)(1 — sin(k=z))
where w(0) is an indeterminate arbitrary constant.

Effective lengths of the simple columns corresponding to the distance between cur-
vature inflection points, i.e. points of zero moment, are shown in fig. 3.11 for the
other columns.
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Column Boundary Problem Eigen- Buckling Effective
conditions  solution value  load length
kL p==g [,
a) w’(0)=0 B=0
=0 wfE)=0 A= 220 2
D=w0) w(L)=0 cos(kl)=0 % Gt 2L
b) w(0)=0 A=0
C=0 wl) =0 B=
D=MJP w(L)=0 sin(kl)=0 = =4l I
¢) w(0)=0 B=0
C=R/P w(l)=0 A=ty -
D=1 w(l)=0 tan(kL)=kL ~g% ~gzp ~07L
d) w(0) =0  Matrix
C=R/P w(0)=0 equation
D=M/P wlL)=0 Kc=0
w(L)=0 det(K)=0 27 Ea L/2

Tab. 3.1: Solutions for the other columns.

The effective lengih is the distance between curvalure inflection points

T LI ov
Le=—= - 3.20

where P is the critical load.
When L. is known the critical load is given by

T2 El .
P="2 (3.21)

The solutions for the remaining columns can be found in a similar manner, with
the major principles outlined in table 3.1. The boundary conditions give sets of
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Fig. 3.12: Euler column with initial moments.

equations in the unknowns A, B, C, D (or equivalent A, B, M,, R). These equations
constitute a boundary eigenvalue problem. The column d) with both ends fixed
gives us the greatest problems, since we have to solve some of the coupled boundary
conditions as an eigenvalue problem. The table gives the solutions in the form of
the lowest eigenvalue kL, the lowest buckling load P and the corresponding effective
length L,.

Initial Moments and Imperfections

Let us now turn to the influence of initial moments M%(z) from transverse loads
p°(z), end moments and imperfections @ on the Euler column with pinned ends as
shown in fig. 3.12. The initial moment contribution could for example be given as

MO(z) = Pi(z) — R — MP — fo 1)z —2) s (3.22)

Imperfections are included in M° as an additional initial moment Pi@. (We use 1
instead of w® since the imperfections have nothing to do with displacements due to
M?). The moment in the column becomes

M= M+ Puw (3.23)

The governing differential equation is found by the use of the constitutive relation

(3.2).
0
w” + k*w + % = (3.24)

With transverse loads or imperfections this differential equation is not an eigenvalue
problem. The solution will determine an exact non-linear relationship between the
column load P and the transverse displacements w for a given initial moment field
M. The differential equation can be solved generally by expanding the initial



80 CHAPTER 3. STABILITY OF COLUMNS

moment in a Fourler sine series:

nwe

7 (3.25)

Mfo Z M°SJn

where the Fourier coeflicients (corresponding to the weights of each sine function)
are M2 = 2 [ M°(z) sin(%22) dz, which can be determined when the initial moment
distribution MD(::) is known. Fourier components M2 for many different distribu-
tions can be found in mathematical handbooks. The displacements w which satisfy
the boundary conditions w(0) = w(ZL) = 0 can be found as a Fourier series solution
in the form:

Z wy, sin( nzz (3.26)

in which all coefficients w, are still unknown. Inserting the Fourier solution (3.26)
and the Fourier expanded initial moment (3.25) in the differential equation (3.24)

©2 2
5 (— (”;r) wn + K, + AEJ]) sin(n%) = (3.27)

n=1

we find:

This equation must be satisfied for all z and n, therefore all the sine coefficents given
in the parenthesis must be zero. This gives us the Fourier displacement coeflicients:

2 MO
() wnt Pt 2 = 0 4
Q Q
w, = M, o wsdiy (3.28)

El{(nt/L)? —k*) _ n®Py— P

The displacents are thus determined by the sum (3.26) and the coefficients (3.28).
The moment in the column can then be found by use of the constitutive equation

M = —FEIw"” and by differentiation of the found displacements, which results in
S . nmz
M(z) = g 2P PMS S]U(T) (3.29)

This equation can give much information. It can be seen that the initial moment

components in the Fourier expansion are magnified by a factor {(n) which depends
on the component number n as follows

) = 3.30

) = 7355 (3.30)

It is clear that the magnification is largest for the first term of the Fourier series

expansion. If, for example, we assume that the initial moments are relatively small
and that the column load is P = 0.90F; we find the following magnification factors:

C(1y=10, ¢(2)=129, (@) =111, ((4)=1.06 (3.31)

This shows that the first term of the Fourier series expansion dominates the mag-
nification of the initial moment.
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In engineering codes it is often assumed that the magnification of the initial
moment M%(z) is well approximated by the magnification factor for the first term
of the Fourier series expansion.

Magnification of initial moments

Note that for some cases with non-uniform transverse loads and also for some cases
with clamped boundary conditions this may become a poor approximation.

Let us use the initial moment M® = P to introduce some geometrical im-
perfections in the form of initial displacements ©. This also includes eccentric
application of the compressive force. The moments are magnified as before and the
total displacements w' = @ + w are also determined by use of the same magnifica-
tion factor. This can be seen by use of equation (3.28) for the first term n = 1 as
follows:

Magnification of initial displacernents

P P

t » A
w = w+w ¥ w4+

The imperfections @ can also include the initial displacements w® from the trans-
verse loads, which are determined from an initial linear analysis. It is worth noting
that the magnification factor (1) is exact if the initial moment and the initial
imperfection have a sinusodial variation over the column length.

Let us use the relationship between the initial moment M°, the imperfections 1,
the column load P, the moments M and the displacements w. For sinusodial initial
imperfections or initial moments with amplitudes /L or M®/( Py L) of 0.0001, 0.001
and 0.01 the column loads P are calculated using equations (3.32) and (3.33) and
shown in fig. 3.13 as functions of the normalized total displacement or total moment.
[t is clear that as the Euler load is reached the displacements and moments grow
very fast. It should further be noted that all the curves have the Euler load as
a limit and that the buckling load is in fact an important value, also for columns
with transverse loads.

In codes of practice the magnification factor is used to determine an approximate
column stress, which has to be lower than the yield stress f,. The column stress is
approximated by
P P M
AYB-PT
in which M} is or is assumed to approximate the first Fourier component of the
initial moment M® well. The codes usually specily methods for approximating M?.
The socalled Perry-Robertson column equation, used for buckling curves in codes
of practice, is obtained hy assuming an equivalent imperfection e and inserting
M? = Pe into the equation (3.34).

2L ==

Fnae: = (3.34)
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Fig. 3.13: Influence of initial imperfections or initial moments .
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Fig. 3.14: Non-linear stress-strain relationship and the tangent-
modulus.

Effect of Non-Linear Elasticity

The Euler formula found by Leonhard Fuler in 1744 has formed the basis of column
design since then. However, it has continuously been modified. First of all to
account for plasticity and imperfections. Gere & Timoshenko [12] give a historical
note on the development of the non-linear elastic buckling theory. In the present
text the problem will just be introduced. For short columns, as already described,
the Fuler formula is limited by the yield stress. However, not all materials have
a well defined yield stress as shown in fig. 3.14. For materials which have a non-
linear stress-strain relationship 1t is necessary to modify Euler’s buckling formula
especially for the short columns. When the load on a perfect column increases the
stiffness of the material is altered, as shown in fig. 3.14, and, as suggested by the
German engineer I'. Engesser in 1895, it is necessesary to use the tangent modulus

By = 57 instead of the initial modulus £ in Euler’s buckling formula.
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Fig. 3.15: Bending strains and stresses in column.

Fngesser’s modified column formula
g

T R, 1

F, = 12

(3.35)

where I, = do[de is the tangent stiffness modulus

This is often referred to as Engesser’s first column formula or just the Engesser
theory. For the non-linear elastic column this is often used as the limiting column
load. However, at this load the column starts buckling or let’s say starts having
small transverse displacements. When this occurs the column is further stressed on
the compressed concave side, while on the convex side (not necessarily in tension)
the stresses are reduced. This reduction of stress or local unloading of the material
occurs with the larger initial stiffness modulus £ as shown in fig. 3.14. The column
bending stiffness is thus increased as the column begins to buckle. This leads
to Engesser’s second column formula, where the reduced stiffness modulus E, is
used instead. In fact the Euler formula holds the bending stiffness ET and it is
this stiffness which is reduced to (E[),, seen from a global point of view. The
reduced stiffness has to be calculated corresponding to the bending stiffness of a
composite column which has a compressed material with stiffness modulus E, =
da

& and a “tensioned” (stress reduced) material with the initial stiffness modulus

E = (‘r‘:,—‘;) oy B llustrated in fig. 3.15. The reduced bending stiffness can thus
be determined by cross-sectional analysis. However, as pointed out by Shanley in
1946, use of this stiffness in the Euler buckling formula is an upper bound, since
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Fig. 3.16: Implications of Shanley’s theory.

the column starts bending at Engesser's first column load using F;, and due to
the magnification (factor) of transverse displacements Engesser’s second buckling
load will not be reached, as illustrated in fig. 3.16. Shanley developed a theory on
this basis. Today it is thus recognized that Engesser’s first column load in manny
cases gives an acceptable approximation of the column buckling load for non-linear
elastic materials. Today, codes of practice often use different methods for the
non-linear elastic materials, but most of them are based directly on on the above
observations. Fig. 3.17 shows a buckling curve modified by the use of Engesser’s
theory for a material, which is linear elastic up to half of the compressive strength
o, = 0.5f., and above this level plasticity gradually reduces the stiffness.

Effect of shear

The previous formulas have been derived using the assumptions of Euler-Bernoulli
beam theory which covers most of the practical problems. However, for some
problems, (short composite columns or columns of anisotropic material), shear
effects might influence the buckling load and it will be necessary to use Timoshenko
beam theory. For the uniformly compressed statically determinate column it s
possible Lo derive the column buckling loads using exactly the same procedure,
although complicated by the shear effects. It is assumed that the stiffness moduli
and the cross-sectional parameters are constant. The constitutive relations for the
moment M and shear force ¢} now are:

gl w2 (3.36)

o+ w (3.37)

il



3.1. UNIFORMLY COMPRESSED COLUMNS 85

“Stress ratio a/f, “EuIer stress o, /fy

|

1
1. 04— 4 ——= Buler curve
Engesser theory

1.0 1

0.8 0.8
0.6 0.61
0.4 0.4 1
0.24 0.2
B e Mle—

Strain ratio &/e, Relative slenderness ratio A,

Fig. 3.17: Buckling curve using Engesser’s theory.

Taking the axial derivative of the constitutive equation (3.37) and introducing the
moment using the other constitive equation (3.36) we obtain

M a_( QY
M o _(wGA) (3.38)

The static relation between the moment and the shear force @ = M’ (no continuous
moment load m) can now be used to eliminate the shear force. The kinematic/static
differential equation for the column thus becomes

oo M (MY
wE-gt (y‘)GA) @)

Moment equilibrium in the deformed position of the column results in M = Puw,
which is inserted into this equation. After rearranging the terms this yields the
column equation including shear effects

PN
wrf:_&+(Pw) u

El PGA
3 1 2 -
w + FPw = 0 (3.40)

where the shear modified coefficient is
; ? P
P = = — 3.41
(-0  BlU-35) B
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The differential equation (3.40), which is an eigenvalue problem, has already been
solved and the eigenvalues were found in equation (3.6). Using only the lowest
non-zero eigenvalue and introducing the modified Euler column load Py = P we
find

_ T2 El

T . N
. IJ2(1+7|'2¢JEG_.;}

(3.42)

Thus, the Euler load is just modified by a simple factor. For isotropic materials the
influence of this correction is negligible, but for anisotropic materials or composite
columns like steel tubes filled with concrete the modification can be necessary.

The influence of initial moments can be determined from the non-homogeneous
differential equation found by inserting M = M® + Pw into equation (3.39)

N MO Mo
7 2
w" + kw4 — T 5
EX(1 - 357) $GA(l-353)

If we treat this equation as in the previous section it can be shown that the mag-
nification factor is of the same type, the only difference being that the modified
Fuler column load should be used. The results concerning shear thus are:

=0 (3.13)

The shear modified Euler buckling load is
= Py 7Rl
Po=—=—+H ;
g nlL? )
where the shear modification factor is
EI
- 2 4
W—I+W¢GA (3.45)
The magnification factor for initial moments and imperfections is
Pe
= — 3.46
(=55 (3.46)

This ends our discussion of the uniformly compressed columns and we shall turn
to a general theoretical formulation of equilibrium in the deformed position and the
equations for a general initial stress problem, including variation in the axial force.

e Problem 3.1
Find the buckling load P of a linear elastic column with one end fixed and the
other pinned. The column bending stiffness is £7 and the column length is L.

a) Find the moment variation in the deformed position and set up the differential
equation.

b) Solve the differential equation and use the boundary conditions to find the
two lowest buckling loads by iteration (in kL).
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¢) Draw the transverse displacements (the eigenmodes) corresponding to the two
lowest eigenvalues and illustrate the corresponding effective lengths.

e Problem 3.2
A linear elastic column with pinned ends is loaded by a sinusodial transverse load
p(z) = psin(mz/L). The column length is L and the bending stiffness is given as
EI. The axial force in the column is N® = —P. The effect of shear is disregarded.

a) Find the governing differential equation for this problem.

b) Find the initial transverse displacements w°(z) of the column, when the axial
load is zero P = 0 and state the maximum displacement W and maximum
initial moment MY

¢) Solve the differential equation from a) when the column is loaded by the
transverse load p(z) and is in compression P > 0.

d) Find an expression for the maximum displacement W as a function of the
axial load P and the maximum transverse load p.

¢) Find an expression for the maximum total displacement W as a function of
the axial load P, the column buckling load P = '.'i'zEI/L2 and the initial
displacement WP, It should be compared with the magnification of initial
displacements derived in the previous sections.

f) Find an expression for the maximum moment M as a function of the axial
load P, the column buckling load Py = #2E1/L? and the initial moment M°.

g) Answer exactly the same questions from a) to f), when the transverse load
is a constant load p(z) = p. Furthermore, state the relative error when the
approximate magnification factors are used in questions e) and f). (The error
is measured relative to the exact result).

3.2 Linearized Stability Equations for Columns

The equilibrium equalions for columns or beams can be derived in the deformed
state. The internal forces must be related to the kinematic assumptions through
strain definitions, which satisfy the principle of virtual work. These strain defini-
tions become non-linear in the displacements and the equilibrium equations formu-
lated in displacements are thus also non-linear in the displacements. In this section
a lincarized version of these equations will be formulated including initial stress to
enable stability analysis. The non-linear equilibrium equations for a theory with
non-linear infinitesimal strains and moderate (infinitesimal) rotations are derived
in the last two subsections.

There are many related approaches to the derivation of linearized stability equa-
tions for columns. In the present section some of these approaches will be used to
derive the same basic equations. The approaches are a little different, but each of
them enlightens the basic structural theory and the modern methods in their own
way. The stability equations will first be derived by equilibrium considerations for
a column element with an initial stress field, then the virtual work functional for an
initial stress problem will be used. The reader can then jump to the next section on
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Fig. 3.18: Small displacement of column with initial stress.

approximate analysis or carry on to derive general non-linear equilibrium equations.
The non-linear equations are linearized for stability analysis using Euler’s initial
stress method. The non-linear equilibrium equations are first derived directly in
component form using a deformed geometric element and then using a vector hased
formulation on a more regular element.

The treatment is limited to Euler-Bernoulli beams, but the methods can he
generalized, where necessary, to accommodate Timoshenko beam theory. The index
notation is used again for the two transverse directions of a column. However, we
assume that the column hends about the elastic centre ¢4, 1.e. 5, = 0, and that the
principal axes are used ;3 = 0.

Initial Stress Approach

A column is assumed to be in an initial state of stress N°, Q) and M}, which fulfils
the linear equilibrium equations with the initial loads p® and pf)

Nof+p0 =
M +my +p, = 0 (3.47)

To see if an adjacent secondary equilibrium path exists it is assumed that the
column undergoes small transverse displacements with moderate rotations and that
the internal forces N® Q9 and MY can be decomposed in the original base, i,
and 13, with acceptable approximation. Equilibrium of the column with initial
stress is sought in the deformed position as shown in fig. 3.18 for the total moment
M= Mg%—/\/fp. It is seen that the longitudinal, transverse and moment equilibrium
equations become

Nol+p0 =0
Q +p2 =0
MYy —@Q+Nw, +m) = 0 (3.48)
The last two equations can he combined and we can use that M} = MJ + M,.

Furthermore, we can use that the initial moments M’g are in equilibrium and thereby
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find the stability equations:
M} + (N°w,) = 0 (3.49)

By inserting the constitutive relation and changing sign we find the governing lin-
earized stability equations for columns in compression {N° < 0).

The general linearized stability equations for columns are S=0
(ELow!)" + (—Nwl) =0 (3.50)

When the bending stiffnesses El,, are constant and when the principal azes are
used Iy, = 0 these equations simplify to

Wi+ (Kwi) = 0
wh" + (k2wh) = 0 (3.51)
in which
_ND _NO
k? = ki = 3.52
1 EI” 2 EI-ZZ ( )

These equations are basicly the same as found in the previous section in equation
(3.19), but with the pessibility of a varying axial force. In the present formula-
tion it hecomes clear thal the column can buckle with displacements in one of two
transverse coordinate directions, depending on which bending stiffness is the small-
esl. Note that the sign in front of the factor k% changes in case of a tensile force
(N® > 0), whereby the solutions become linear combinations of the hyperbolic sine
and cosine functions.

The boundary conditions in this secondary stability problem are dictated by
the fact that the column is already in equilibrium and that the additional moments
should not alter this basic global equilibrium situation

M, = 0
@ =0 (3.53)

The virtual work functional §W, related to this secondary problem can be found
by multiplying the stability equations (3.49) by the virtual transverse displacements
bw,. After two partial integrations and a change of sign to obtain positive internal
work it is found that

L
BV = ]0 (Mpbr, + Nowlw,) dz — (M} + N°w.)bw, — Mp6uw')t  (3.54)

Identifying the boundary terms yields

X
|

M|, =0

Zh

(M;+N°w;)|% =0 (3.55)

Il

oF
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in which z is the boundary coordinate. With the extra demand that the static
boundary conditions above are fulfilled the virtual work functional thus becomes
L
W, = jo (M6, + NOw'gwl) dz (3.56)

Assuming that the boundary forces vanish, the related potential energy functional
is found as

B ] 1 .
Va :]0 (iMprc,, - §w;N°w;) dz (3.57)
In all the above [unctionals the curvature is defined as &, = —w} and positive

rotations as ——'Lu’p.

This approach is in a way classic, however, the internal forces do not follow the
rotation of the cross-sections, which is not consistent with the stress description
given in the preliminary chapter on continuum mechanics, since it contradicts the
idea of using Piola-Kirchhoff stresses in the deformed state. This is also emphasized
by the boundary equation delivered by the principle of virtual work. However, the
total internal force vector could be decomposed as done here, but the components
are not necessarily the conventional internal forces and it would be necessary to
review our geometric description and strain definitions. The stahility equations
found are the same as those derived by other methods.

Virtual Work Approach

Notice that the column stability equation (3.49) has the same format as the initial
stress equation (1.135) derived in the continuum mechanics section of the chapter
on preliminaries. An alternative approach as opposed to the preceding subsection
is to use the virtual work functional (1.137) derived for initial stress problems in
general continuae. This is the approach which is used in the chapter on beam
theories and it has the advantage of being much more like a tool, than a way of
reinventing everything each time a new theory or an extension of an existing theory
has to be developed. Let us use this approach for the initial stress problem of a
column.

Inserting the kinematic assumptions of Euler-Bernoulli theory into the virtual
work functional with initial stress (1.137) leads to the virtual work functional for an
Euler-Bernoulli beam éW given in equation (2.53) plus an additional contribution
§W? from the initial stress terms

sWO = ] 00 Sug AV
v
i ]Va?jwkj 6wk;dV {353}

where it is assumed that the strains g;; are infinitesimal and well approximated by
the linear strain definitions, and the rotations w,; are moderate but infinitesimal, i.c.
£i; << wij << 1. This enables us to make the approximation wy; = ey + wi; =~ wyy,
see the derivations leading to equation (1.75). Be aware of the small difference
in notation hetween transverse displacements w, and rotations (omega) w;; used
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in the present text. Using the beam kinematics the additional virtual work term
becomes

WO = / 093053 busaa AV
v

fv o®w), §w, dV

H

L
fo Nw!, 6w, dz (3.59)

where it has been used that w33 = wap = 0, wpz = J(ups — u3,) = wj and that
N® = [, °dA. The total virtual work functional for an Euler-Bernoulli beam with
initial stress thus is

'
W = j; (N 6 + M, 6x5 + Now, bul,
—p 6v — ps bwy + m, fwy) dz

— [N 60— M, 6w, + Qo 6] (3.60)

This is the virtual work for a genereneral initial stress problem. Introducing the
linear strain definitions and using partial integration up to two times yield the
following modified virtual work equation

L
W = = / (V' + p)bo + (MY + (NOwl) +m', + p,)6w,) dz

0
— [(N = N 6v — (M, — M,) 6w,
+(Qs — M} — N°wj, — my,) 610,-]5 (3.61)

I the virtual work vanishes 6W = 0 for any variation in the kinematic parameters,
then the beam is in equilibrium. For internal variations év and éw, we thereby find
the equilibrium equations

N+p =0
My + (Nw) +mly+p, = 0 (3.62)

and by variation of the boundary displacements we find the boundary conditions
and in fact also the correct definitions of the internal forces:

N = N
Qs = M, + N, +m,
M, = M, (3.63)

whereby it can be seen that il is only the internal shear force (), which needs
redefinition for an initial stress problem.

However, it is the possibility of an adjacent secondary load path, which is sought
in the present situation. As already mentioned all loads are carried by the initial
state, and the secondary state does not carry any additional load (except through
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Fig. 3.19: Deformed infinitesimal beam element with curvature.

the initial stress), whereby we have p = p; = m, = 0, nor should there be any
additional boundary loads N = @, = M, = 0. This leaves us with the following
virtual work functional:

L
§Wy = fo (N 6 + M, 8k, + N°w), 8u)) dz (3.64)

and the following non-trivial stability equation
M)+ (N')) = 0 {3.65)

which has already been found in the preceding section.

This ends the present subsection and the reader may go directly to the section
on approximate stability analysis or read through the next two sections to see the
derivation of the non-linear equilibrium equations for beams and the subsequent
initial stress linearizations.

Component Approach

In this subsection it is the goal first to derive the equilibrium equations for a column
or beam section in the deformed state and then to outline the introduction of initial
stress and the linearization of the equilibrium equations. We shall dwell a little by
the non-linear equilibrium equations in the deformed state and introduce the related
strain definitions.

It 1s assumed that the stress components follow the deforming material base
and that the geometry of the cross-section and the axial coordinate are described
adequately by the undeformed state. It is also assumed that the non-linear strains
are infinitesimal and rotations are moederate but infinitesimal, i.e. £;; < wy; < L.
A deformed infinitesimal beam element with curvature is shown in fig. 3.19. Since
the rotations are moderate the following approximations will be adequate:

cos(wy) = 1 cos(w, + wydz) >~ 1

sin(w)) o~ w, sin(w}, + widz) o w), + widz (3.66)
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Let us set up the three equilibrium equations neglecting the terms (dz)* which
vanish in the infinitesimal limit. The loads are also assumed to keep their origi-
nal direction. Using fig. 3.19 we find the following axial, transverse and moment
equilibrium equations by first considering the left-hand end, then the right-hand
end components and finally the loads. Moment equilibrium is sought about the
right-hand end and the internal forces are projected on the original base directions
before the moment contribution is found.

=N+ Qewj, + N + N'dz — Q(w, + widz) — Qidzw, +pdz = 0
-Q.— Nwi + Q, + Qydz + N(wj, + whdz) + N'widz +p,dz = 0
0

~M; + (N — Qawl)whdz — (Nwh + Qg)dz + My + Mydz + mydz = (3.67)
Cancellation of terms and division by dz yield the following result
N = (Qew) +p = 0
Q.+ (Nw))+p, = 0
M, —Qu(1+ww,)+ms = 0 (3.68)

In the following, some of our assumptions are put into use. Since the rotations are
moderately infinitesimal their products will be even smaller and the approximation
1 +wlw!, ~ 1 can be made. It is further assumed that the shear forces @, are small
compared to the axial force N. This is in agreement with beam theories since the
shear strains are an order of magitude lower than the axial strains. Using that AG
has the same order of magnitude as EA it can be clarified as follows

Qs € N i
AGyy € EAe |
v & E (3.69)

which is an assumption already made in beam theory, in Euler-Bernoulli beamn
theory it is used directly, since v, = 0. In Timoshenko beam theory it is also
assumed that the shear strains are an order of magnitude lower than the axial
stresses. The implication of this is that in the axial equilibrium equation the term
Q) ;wy is much smaller than /V and can be disregarded. In the transverse equilibrium
equation we need to keep all terms since @, is of the same magnitude as Nw/. The
equilibrium equations for a beam element in the deformed configuration thus are:

Equilibrium equations for a deformed beam element are:

N+p =0
Q@+ (Nwy)' +pp = 0
M,—Qs+mp; = 0 (3.70)

and by combining the last two equations they can be rewritien as

N+p =0
M+ (Nwy) +m), + p,

(3.71)
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The strain definitions related to these internal forces and equilibrium equations
must satisfy the principle of virtual work, if the theory is to be consistent. We
multiply the equations (3.71) by virtual displacements —§v and —dw, and use up
to two partial integrations, whereby the following virtual work is found

L
W = fu (N (80" + wjy w)) — M, 6w
—pbv — ps bwy + my 6w;) dz
L
— [N 80— M, 6w, + (M} + Nwj + m,) §w,]
The stationarity of this virtual work functional defines the shear force through the
boundary terms as s = M;, + waﬁ + ., and the related strains as

(3.72)

1
g = v+ Ew;w;
Ky = -—w, (3:18)
since 8¢ = §v' + widw, and éx; = —bw]. It is thus clear that the equilibrium

equations are non-linear in the displacements. Using Hooke’s constitutive law o =
Ee the non-linear equilibrium equations with the assumptions of Euler-Bernoulli
beam theory can be found by subsitituion of the strain definitions (3.73) into the
equations in (3.71).

Non-linear differential equations for infinitesimal strains and moderate rotations

] !
(EA(U'+-5w;w;)) +p =0
l ’
(E i)’ — (EA(v'+ 510;10:1)11);) —my—ps = 0 (B

Since these equations are non-linear and coupled, it is necessary to use computerized
approximation techniques to solve them.

The static equilibrium equations for a beam in the deformed state (3.71) can
be used to derive the linearized stability equations by the use of Euler’s initial
stress method. Assuming that the problem is an initial stress problem the total
internal forces N* = N® + N and M} = MJ + M, and the total loads can be
inserted p* = p” +p, pb = 5+ ps, and m, = mY + m, into the above non-
linear equations. Using that the initial stress field satisfies the linear equilibrium
equations, linearizing the equations with respect to the displacement and using that
the loads in the adjacent state are zero we find the linearized stability equations
for columns (3.49) and (3.50).

Vector Approach

Let us try an alternative approach and derive the non-linear equilibrium equations
using a vectorized approach. An infinitesimal beam element is shown in fig. 3.20 in
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Fig. 3.20: Infinitesimal beam element in the deformed position.
the deformed position. The internal force vector F and its differential dF can be
decomposed in the deformed material base i, and i3 as follows

F Niz+ Qs
dF = F'dz = (Niz+ Q,i,) dz (3.75)

Since the deformed material base is dependent on the axial coordinate through the
displacements these must also be differentiated with respect to the axial coordinate
z. The equilibrium equations in this vector format are

FF+p =0
My—F-ip+m, = 0 (3.76)
The moment of the internal force vector F is found by projection on the transverse
direction 1, and multiplication by the distance dz. The load vector is decomposed

in the original base p = pi3 + p,i, and the internal force vector is also decomposed,
wherehy the equilibrium equations take the form

(Nis + Quip)' + pis + pol,s
M, — (N3 + Qala) -1, + mp

0
0 (3.77)

Il

Assuming infinitesimal strains and moderate rotations, &;; < w;; € 1, L.e. strains
are smaller than the rotations, the following approximation is appropriate:

I~ (85 +win)i; (3.78)

Splitting into axial and transverse base vectors and inserting the Euler-Bernoulli
displacement assumptions we find

i3 = i3+'w;i;;

iy = L,—wlis (3.79)
This is in agreement with our displacement assumptions shown in fig. 3.20. How-
ever, since we assume that the strains are infinitesimal the deformed base is still
approximately an orthonormal system, whereby the scalar products between the
deformed hase vectors can be approximated by

1 1p o by (3.80)
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This can be used in the moment equilibrium equation. The approximation corre-
sponds to the one made in the previous section regarding the term 1 + wlw! ~ 1.
Decomposing the equilibrium equations in the original base and using our displace-
ment assumptions give:

(N = Qauwl) + p)is + (Qp + Nwl) +p5)is = 0
My — Qubss+my = 0 (3.81)

Splitting the vector equation into the axial and transverse equations yields the
following equilibrium equations

N = (Quul)) +p =

Qp+ (Nw,)' +p; =
M, — Qs +my

(3.82)

As in the preceding subsection we assume that the shear force is an order of mag-
nitude lower than the axial force, i.e. @, << N or v <« &, which is in agreement
with Euler-Bernoulli theory. The same non-linear equilibrium equations as in the
previous subsection are found

N+p

Q%+ (Nwy) + ps
Af; —Qy+my

(1.
o o

I

(3.83)

in which we could combine the last two equations and proceed as in the previ-
ous subsection. This concludes our quick tour through formulation of equilibrium
equations in the deformed state and subsequent linearizations.

3.3 Approximate Stability Analysis

The virtual work or potential energy Iunctionals are used as the basis for approx
imate analysis in most problems of structural mechanics. Clonventionally a set of
(guessed) trial functions is used to estimate the displacement field or the force
field. By use of a stationarity condition the combination of trial functions that
minimize the work can be found. In this section two well-known methods of ap-
proximate analysis, namely the Galerkin method and the Rayleigh-Ritz method,
will be outlined and used to give two versions of the Rayleigh coefficient. The
Rayleigh coefficient gives an upper estimate of the buckling load. Furthermore as
an extra precaution the magnification factor is treated again, since the buckling
load represents a mathematical limit. Due to transverse loads and imperfections
structures will behave differently, with a magnification of initial transverse deflec-
tions and initial moments. In this section the index notation is aborted and it is
assumed that ¢, is the elastic centre, i.e. S5 = 0, and let us work in a principal
plane, i.e. 112 = 0.
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The Galerkin Method

The Galerkin method is related to the principle of virtual work, even though it
is not based on the (weak form) virtual work functional. The Galerkin method
originates from the equilibrium equations (the strong form). In the present case of
beam buckling the equilibrium equation is:

M + \(N°w') =0 (3.84)

in which we have introduced A as a scale factor for a certain distribution of the
axial force N°(z). The scale factor is thus independent of the axial coordinate
z. In the Galerkin method the next step is to define a functional by multiplying
the equilibrium equations by some weight functions n(z) and integrating over the
domain. Instead of taking the multiplicator function as a weight function we might
as well take it as a virtual displacement function 7(z) = dw(2). We thus find the
virtual work of the out of balance forces

§W = f M"6w dz + A /L (N%'Y'6w dz (3.85)
L
For equilibrium the virtual work of forces should vanish, 6W = 0. Using the
constitutive relation for the moment, M = —EIw", the principle of virtual work
results in
W = ]L (Elw)"8w dz + X j (N°w'Yéwdz = 0 (3.86)
L

Trial functions for the displacements @ and trial functions for the virtual displace-
ments 7 can now be inserted. It is important that the trial functions for the dis-
placements are chosen so that the static boundary conditions (for example M =0
or Q = M’ = 0) are satisfied and the trial functions for the virtual displace-
ments must [ulfil the kinematic boundary conditions (for example n = 6@ = 0 or
n' = éw' = 0). The static boundary conditions have to be fulfilled, since the virtual
work used does not include the work of the boundary forces. Instead of using two
different sets of trial functions it is customary but not necessary to choose the same
functions, so that 77 = @. The trial functions thus have to fulfil both static and
kinematic boundary conditions.

Assuming that we only have one trial function @(z) the principle of virtual work
defines the critical value of the parameter A as a coefficient known as the Rayleigh
coefficient:

The Rayleigh buckling coefficient (based on the strong form)

o (ET&"Y"5 d=

A= [, (N°@ ) dz

(3.87)

in which the irial function @(z) satisfies the static and the kinematic boundary
conditions. The coefficient X is an upper bound for the buckling load.

The Rayleigh coefficient gives an upper-bound value for the buckling load and this
is explained as follows. When we assume a displacement trial function it does not
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give the best possible minimum of internal work, which means that the numerator
becomes too large. When the assumed displacement trial function absorbes too
much work it becomes too stiff and the displacements smaller. The denominator
therefore becomes too small and the Rayleigh coefficient is an upper bound.

Instead of using one trial function a linear combination of trial functions might
be used for both displacements and virtual displacements

- ~ T
ci; =wW'c

£
I
51

§% = 3 (6c)d; = (6c)TW (3.88)

1

1
—_

where the coefficients ¢; ordered in a vector ¢ are the scale parameters of the
individual displacement trial functions ;, which are also ordered in a trial vector
w. The coefficients é¢; or éc are the virtual displacement coefficients for the same
trial functions. With this notation we introduce the trial functions in the virtual
work functional (3.86) as follows

iz (fq, EIw"’w,écdz-}-)\/cJ w)wlécd)

=
_ 2 i 3 P of 0
= éc’ /Lw((EIw”)”} dze+ Aéde fLW((N w')') dzc
= 6c’Ac+ X éc"Be
= 6c"(A+21B)c (3.89)

oW

in which the matrices A and B have the following components

Aij f (EI13!)" i, dz

G = L(N”w;)’iz};dz (3.90)

Note that the order of the indices is important. The virtual work should vanish,
6W =0, in order that an equilibrium state may exist. Since the weight functions
or rather the virtual displacement coefficient vector éc can be chosen arbitrarily,
the following eigenvalue equation must be satisfied:

6cT(A+AB)e = 0 |
(A+AB)c = 0 (3.91)

This is a linear eigenvalue problem defining the critical values of A and the corre-
sponding linear coefficients ¢ of the trial functions, which in turn define the dis-
placement eigenmodes by w = W'c. Note that the matrices A and B are not
symmetric. The estimated critical values are upper-bound values and the lower
eigenvalues are decreased by increasing the number of trial funclions or using intu-

itivelly well chosen trial functions.
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Fig. 3.21: Column with continuous transverse elastic springs.

The Rayleigh-Ritz Method

The Rayleigh-Ritz method is directly based on the stationarity of potential energy
or the principle of virtual work formulated in stresses and strains, (the weak form).
In the case of linearized stability analysis for an Euler-Bernoulli beam the virtual
work functional takes the form

o M " 0, ¢ !
5w_fLEJu fw" dz + A f;, N’ §u' dz (3.92)

in which A is introduced as a scale factor for a specific distribution of the axial
force N°(z). In this functional it is only necessary to fulfil the kinematic boundary
conditions. In the Rayleigh-Ritz procedure we can choose to use the same trial
functions for displacements and virtual displacements. This is natural, since it is
clear that we are dealing with displacements in both situations. By using a single
trial function for the displacements @, inserting it in the virtual work functional and
using the principle of virtual work §W = 0 another form of the Rayleigh coefficient
is found.

The Rayleigh buckling coefficient (based on the weak form)

[, EIG"%" dz

PO oLl
1, NOww dz

(3.93)

in which the trial function w(z) satisfies the kinematic boundary conditions.
The coefficient X is an upper bound for the buckling load.

It is seen that this is much easier to work with since only first and second order
derivatives of the displacements are involved. The accuracy of the approximation
is also increased, since only the double derivative of a trial function is necessary. It
is also much easier just to fulfil the kinematic boundary conditions.

e Example 3.2 Column in an elastic medium.

Let us use the principle of virtual work to analyse a column with pinned ends and
with continuous elastic transverse springs, as shown in fig. 3.21. It is a compressed
heam on elastic foundation, e.g. a rail in compression due to temperature expansion.
To take the continuous elastic spring support into account we add the virtual work

term corresponding to a continuous load p(z) = —kw(z) where k is the spring
stiffness per column length. The additional virtual work due to the elastic medium
becomes

Wy = —f plwds = fkwéwdz
L L
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corresponding to the first variation of a continuous spring potential of 2kw?. As-
suming that the bending stiffness is constant and that the axial force is a contamt
compression N = — P the Rayleigh coefficient, which is thus modified by the spring
stiffness term, becomes

P [ (BI9"®" + kOw) dz

[, ©'d' dz
Let us use a sinusodial trial function with n buckles, which has the following prop-
erties:
@ = sin(nﬂ'%) &' = %cos(nw%) W = ~(%)2 sin(mr—z—)

L L L nr\?% L nw\* L
sl 724 =(_) & / ~.'r ( ) o
fo Wedz 2 /0 (w')'dz 7 5 (@ 3

Inserting these functions the following buckling load is found
EI(%E)! +k
(“TT
(5] vls)

L nr

This is a classical result and il can be shown to be exact. The lowest buckling load
depends on the stiffness parameters EI, & and the column length L. In each case
the value of n minimizing the buckling load must be found.

P =

1l

In the column example a trial function was chosen that in fact held infinitely
many functions. Let us instead introduce the Rayleigh-Ritz procedure where we
introduce a linear combination of trial functions as in the previous subsection.

fl

w Zc_,wj—wc

b = Z(acfm = (6c)Tw (3.94)
1=1
where the vector ¢ holds the displacement coefficients, the vector éc holds the vir-
tual displacement coefficients and the vector W holds the trial functions. The trial
functions are introduced into the virtual work functional equation (3.92) resulting
in the following form of the discretized virtual work

sW

bc” /El"” (W")Tdzc+ 26T ]NO”' Tdze
§cT (K. + A K,)c (3.95)

in which the elastic stiffness matrix K, and the geometric stiffness matrix K, have
the following components

R.fi 3] = fﬁ!w”””rL
K,(i,j) = ij“@j@;(iz (3.96)
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These stiffness matrices are symmetric and we therefore only need to calculate the
upper or lower triangular parts. Again, the principle of virtual work leads to an
eigenvalue problem.

bct (K. +2K,)e = 0 | ‘
(K. +MK,)c = 0 (3.97)

This is a linear symmetric eigenvalue problem, which is easier to solve compared
to the eigenvalue problem found using the Galerkin procedure.

The Magnification Factor

The magnification factor can also be derived in an alternative way. Let us have a
look at the linearized stability equation once again, but this time we introduce the
moment as M = M* — M° where M! is the total moment and M° is the initial
moment.

M" + MN%') =
(M! e MO)JI+ ;(an:)z =

U

0 (3.98)
In this equation let us assume that the initial moments are proportional to the
moments in the eigenmodes, when the perfect column buckles, M = ¢ M, whereby
the equation becomes

(1—EM™ + MNW') = 0

A
Mm + I—E(Nowr}f =0 (399}
where ) is the scale factor for the axial forces in the column with initial moments.
The equation has the same solution A as the eigenvalue problem of the perfect col-
umn without initial moments. We thus find that the parameter £ can be determined
as follows:

‘>’J

e
B
¢ = S (3.100)

3y

The total moment M* can therefore be found as a function of the initial moments

in the following manner
1 A
M=M= —M° 3.101
! £ A=A ( )
It is thus clear that the moment magnification factor is of the same type as given
previously. The same is the case for imperfections in the transverse displacements.
It should also be clear that the magnified part is the part of the initial moment

which has the same distribution as the eigenmode moments.
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¢ Problem 3.3
A uniformly compressed column with pinned ends has the constant bending stiffness
ET and the length L. Find upper bounds for the buckling load P using the two
different Rayleigh buckling coefficients for the following trial function.

Let us assume that the moment variation corresponds to a second order polyno-
mial, then we can find the displacements by integrating it twice and fulfilling the
boundary conditions. Our trial function then takes the following form.

5o z z

w = /] I(l“z)dZ+CIZ+C2
B f2\% I* /2N\* IF 2

ﬁ(f) _ﬁ(f) T 4.3L

Compare the answers with the Euler load FPg.



Chapter 4

Statically Indeterminate Beams

[n this chapter two calculation methods for statically indeterminate beams will be
introduced. Since torsion has not been introduced and to shorten equations we
shall restrict ourselves to plane structures, but the methods can equally well be
applied to three-dimensional structural analysis. The Einstein index notation is
therefore not used in this chapter.

Beam structures are called statically determinate, when internal forces and re-
actions can be determined by static principles alone, i.e. by the use of force and
moment equilibrium equations. From a kinematic point of view the position of these
structures in space is exactly determined by the hinges and boundary conditions
withoul redundant kinemalic constraints. Some statically determinate structures
are shown in the left-hand part of fig. 4.1.

Delerminaleness

A statically determinate beam structure has internal forces and re-
actions, which can be determined by static principles alone.

These structures have ezactly the number of kinematic conditions needed to
determine their position in space.

Statically indeterminate beam structures are structures in which the internal
forces and reactions cannot be determined by static principles alone, due to re-
dundant internal forces or reactions. From a kinematic point of view the position
of these structures in space is determined by internal hinges and boundary condi-
tions with redundant kinematic conditions, which constrain the structure. In these
struclures it is necessary in addition to the static equilibrium equations, to take
the deflections of the beams into account and obtain either equations of displace-
ment compatibility or foree equilibrium at beam joints. Some indeterminate beam
structures are shown in the right-hand part of fig. 4.1.

103
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Determinate Indeterminate

By N

—

Fig. 4.1: Statically determinate and indeterminate structures.

Indeterminateness

A statically indeterminate beam structure has internal forces or re-
actions, which cannot be determined by static principles alone.

These structures have redundant internal forces or reactions corresponding lo
redundant kinemalic conditions that constrain the structure.

Note the duality between the static and kinematic points of view, in fact the number
of static redundancies is exactly equal to the number of kinematic redundancies,
which is quite natural, since we need a force to enforce a kinematic constraint. The
number of redundant forces or kinematic constraints is also referred to as the de-
gree of statical indeterminateness. Structures which have too few or poorly chosen
kinematic constraints are not static since they may accelerate, when external forces
are applied.

The number of rendundancies in a statically indeterminate structure can be
determined by geometrical investigation of the structure. The method consists of
assembling the structure from scratch, so that its position in space is given, without
redundant kinematic conditions. At places where redundant connections exist the
unknown internal forces or external reactions are inserted as illustrated in figs. 4.2
and 4.3.

Identification of redundancies

Assemble the structure without introducing kinematic constraints.
Insert the redundant forces and moments at the kinematic con-
straints.

The statically indeterminate structures are solved by the use of superposition
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Fig. 4.2: Assemblage of structures to find redundancies.
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Fig. 4.3: Assemblage of a complex structure to find the redundancies.
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Fig. 4.4: Superposition used in the flexibility and stiffness methods.
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Fig. 4.5: The flexibility method, where di; is a flexibility coefficient.

of different structural cases. Superposition is possible when malerials are linecar
elastic and when the differential equations are linear in the displacements. Two
complementary methods based on superposition are the flexibility method and the
stiffness method, both illustrated in fig. 4.4. The flexibility method introduces
redundant forces and uses compatibility of displacements to superimpose structural
cases, whereas the stiffness method introduces redundant displacement constraints
and uses equilibrium of constraint forces. Both methods have non-linear versions
known as the force method and the displacement method, respectively.

Let us illustrate the two superposition principles starting with the flexibility
method. The flexibility method uses superposition of stalically determinate struc-
tural systems. The basic idea is to introduce the redundant forces and moments as
unknowns and release the structure from the corresponding kinematic constraints.
Fig. 4.5 illustrates the principle for a continuous heam with one redundant reaction.
The reaction at the right-hand end of the beam is chosen as the unknown redundant
force Xi. The corresponding kinematic constraint is that the mutual displacement
between support and the end of the beam should be zero, i.e. d; = 0. Let us use
superposition: First we release the kinematic constraint by assuming that X; =0
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Fig. 4.6: The stiffness method, where K, is a stiffness coefficient.

and find the mutual (end) displacement dio for the statically determinate struc-
ture with loads. Then we find the mutual displacement dy; in the same statically
determinate structure without external load, but with a unit load X, = 1 atl the
right-hand end. (The mutual displacement is just the displacement of the end of
the beam, since the support is inflexible). Finally we scale the X; = 1 case so that
the total mutual displacement at the end is zero d; = 0, (since the displacement,
or lel’s say seltlement of the support, is zero). Superimposing the two structural
systems we find the redundant force;

dy = dip+duX, |
X (dy — dig)/d1y ¥
X] —dlo/d” (4])

in which we have used that dy = 0. The coeflicient dy; is known as a flexibility
coeflicient. A flexibility coeflicient is the displacement al a point for a unit load
acling at the same or some other point. It is a coefficient, since we just need to
multiply by the load magnitude to find the corresponding displacement.

Let us turn Lo the stiffness method in which kinematic redundancies are intro-
duced. The stiffness method does not depend on the choice of a statically determi-
nate structure, hul uses basic beam displacement modes and load cases of which
some are statically indeterminate. There are, however, a finite number of basic
displaccment modes and load cases of practical relevance. Instead of going into
details let us just illustrate the superposition principle used in this case. Fig. 4.6
shows the principle of the stiffness method on the same continuous beam as just
used. Let us first introduce a redundant kinematic condition in the original strue-
ture with external loads hy constraining the rotation displacement at the central
support to zero, i.e. dj = 0. To do this we need to apply a redundant moment
K19, (which in the present case would be negative), since the external load tries to
rotale the beam. Then we need Lo superimpose a second structural case without
cxternal loads, but with a rotation at the central support. To do this we analyse a
situation with a unit rotation d; = 1 and find the moment K; needed to enforce
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this rotation. Since the total external moment K| applied at the central support in
the present case is zero, l.e. K| = 0, superimposing the two structural cases results
in the determination of the unknown rotation, as follows:

Ky = Ko+ Kndy |
d] = (h’] — IK’]D)/I\,H ~Ur
d] — _'I‘JIU/I{]l (42)

The coefficient A’y is known as a stiffness coeficient. A stiffness coefficient is the
force (or moment) needed at some point to obtain a required unit displacement
mode.

The flexibility method is related to the complementary principle of virtual work,
since virtual forces are used to find the unknown displacements. The unit load
method is used and it is based on the complementary principle of virtual work.
The stiffness method is based on the principle of virtual work, since we make use
of virtual displacements in our search for equilibrium. The methods have many
variants and they are related to many historical energy and work principles, which
will not be treated in detail in the present text. Gere & Timoshenko deseribe many
of the related methods and energy principles in their textbook on mechanics of
materials [12]. In the following, only the flexural stiffness method will be described
in detail. The stiffness method is treated in much more detail, when introducing
the finite element method. The flexibility method is a great tool for hand calcula-
tions, whereas the stiffness method is the main tool in computational analysis of
structures.

4.1 The Flexibility Method for Beams

The flexibility method has rools back to J. C. Maxwell, who in 1864 proposced the
unit load method to determine displacements and the flexibility method to calcu-
late statically indeterminate truss structures. Independently, O. Molir proposed
the same methods in 1874. The flexibility method for beam and truss structures
has many names, some of these are: The Maxwell-Mohr method, the method of
consistent deformation, the force method, the dummy load method and also the
unit load method for statically indeterminate structures.

In the present section we shall first give a short presentation of the unit load
method for determining displacements and then we shall give two examples. The
first example is the one used in the previous introduction, it has one redundant
force. The second example will have two redundant forces. To enable fast handling
of integrals a simple integration formula is given. Having treated the examples a
general flexibility procedure for hand calculation of statically indeterminate beam
structures is described. The procedure is related to the complementary principle of
virtual work and a simple method for delermining displacements in the statically
indeterminate beam structures is given. Furthermore, the effect of temperature
variations and support settlements are considered. Statically indeterminate truss
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Fig. 4.7: Unit load method for finding a displacement or a rotation d;.

structures can be treated by the same methods, since a truss is also a beam. Ior
truss structures a few simplifications will be described.

Before proceeding a word about notation is helpful. For external point loads
and internal forces we use capital letters. Redundant forces are denoted X; and the
corresponding mutual displacements d;, where the lower index 7 referes to the num-
ber of this particular redundant force. Virtual internal force distributions N¢, Q*
and M* corresponding to the redundant forces X; are indicated by an upper index,
so that we can differentiate the notation a little from the index notation in the
previous chapters. (Upper indices are not power indices).

The Unit Load Method

The unit load method is used to find the displacement at a certain point. The
method can be derived from the principle of complementary virtual work éW*® = 0.
For beams the complementray virtual work is given in equation (2.38) and itiakes
the following form when a virtual point load 6 P and a virtual moment load §M are
introduced at a point with the real displacement w and rotlation o

1 e e
5W’=Z/u (66N +~6Q + k6M) dz —w 6P — a 6M (4.3)

beams

in which the virtual internal forces 6N, 6@ and é M must correspond to (i.e. be in
equilibrium with) the virtual loads 6P and M.

A virtual unit load 8P or M denoted X, = 1 is applied at the point and in
the direction in which the displacement (or rotation) d; is sought, as shown in fig.
4.7. To use the complementary principle of virtual work it is necessary to find
a statically admissible virtual stress distribution. This virtual stress distribution
corresponds to the internal forces N, Q', M found when the unit load X; =1 is
applied to the structure withoul external loads. The complementary virtual work
functional thus takes the following form

L
EWe= 5" / (-5N‘ +«/(3‘+an) dz — di X, (4.4)

heams 0
in which the axial strain &, the shear strains v and the curvature & are the real
structural strains and the only external virtual work is performed by the virtual
force X through the real displacements d;. Using the complementary principle of
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virtual work 6W¢ = 0 and that the virtual load is a unit load X; = 1, we find the
displacement (or rotation):

=Y / (eN' +1Q" + kM) dz (4.5)

beams

) : N I . .
‘Intmducmg the uncouplul. constitutive e(iua.tmns E=gn 1= w_?’i and Kk = o7 M the
internal work can be rewritten and the displacement is given as

NN L MM ,
Z[ ( iA f(?A+ El )d” (4.6)

brams

This equation corresponds to setting the external work of the virtual force equal to
the internal work of the virtual internal forces, which is an alternative formulation
of the complementary virtual work statement.

In case of a truss system the integration simplifies since both the axial forces and
the cross-sectional areas are constant through each truss. For a structure including
trusses we can thus find the displacement by the following formula:

Unit lead displacement formula for beam and {russ struciuves

NN QQ MM
‘[“Zf ( tecat m)

heams

NN'

L (1.7)

Lrusses
Neglecling avial cxlension and shear cffecls leads Lo

MM' NN'

dy ~ Z ] — dz

beams trusses

(1.8)

For “long™ beams where the depth to length ratio is large, i.e. as a rule of thumb
% -3 ]l_,)-, the shear effects can be neglected. FPurthermore, the axial extension due to
axial forces can also be neglected in most situations where bending is involved.
The calculation of displacements can therelore be performed by neglecting the
contributions from shear and axial lorce using the formula given above.

In connection with the flexibility method it is important to note that the dis-
placements can also he mutual displacements. The mutual displacement is found
by applying two opposite unit loads al the place where the mutual displacement, is
sought, as shown in fig. 4.8.

The integration of the moment products over the heam length is often performed
for simple linear lunctions and in the case of a constant distributed load also [or
products of lincar and quadratic functions. Fig. 4.9 illustrates a lincar function
[(z) and a parabolic function g(z). Integrating the products of these two funclions
yields:



4.]1. THE FLEXIBILITY METHOD FOR BEAMS 111

X.=
N N --1-—-——\ N—
X,=1 d N
——
X,=1
N N
N * T N S
X;= d,

X=1 X-=1
AN AN Y
N\ K N

§X,=1

Fig. 4.8: Unit loads X, = | and corresponding mutual displacements d,.

f(z)

Fig. 4.9: A linear function f(z) and a parabolic function g(z).



112 CHAPTER 4. STATICALLY INDETERMINATE BEAMS

=

/2 Lje L ¢
¥ A + w

Main system

Fig. 4.10: Beam with one redundant force and the main system used.

Integration of the product of ¢ linear and a quadratic function
L L L
f(2)g(z) dz = F(Zac-}- 2bd + ad + be) + 7%-&((1+b) (4.9)
0 4] <

The constants are defined in fig. 4.9

This formula is very easy to learn by heart once and for all. Notice the definition
of the quadratic variation by e, which is easy to find for any part of a beam with
constant transverse load (e = §pL?), where L is the length of the part analysed.
Note also that the formula includes integration of two linear functions by setting
¢ = 0. The following example will illustrate the use of the integration formula and
the unit load method.

e Example 4.1 A continuous beam with one Redundant.

Let us analyse a double span continuous beam with equal spans, constant bending
stiffness ET, and a point load in the first span as shown in fig 4.10. The two ends of
the beam are pinned and the right-hand end also has rollers that make horizontal
movement possible. At the central support the beam is continuous and can transfer
moments from the first span to the next span, the pin (or hinge) of the support is
placed below the continuous beam and moments cannol be carried through to the
support. The central support also has horizontal rollers. In the following the main
points in the method are emphasized so that we can develop a general method of
analysis.

1: Choose a stalically determinate mein structural system and introduce the re-
dundant force.
If we assemble the structure from scratch, as shown in fig. 4.2, we find that the
structure has one degree of indeterminateness and we add the corresponding
redundant force X as the unknown reaction. We could have made infinitely
many other choices, as shown in fig. 4.11. For example by introducing a hinge
anywhere in the beam and thereby choosing the internal moment at the hinge
as the redundancy.
Liet us use the right-end reaction as the redundant force X; and neglect the
influence of shear. The statically determinate system is called the main sys-
tem, as shown in fig. 4.10. The first problem is to determine the displacement
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Fig. 4.12: Moment distributions in the main system.

dio of the statically determinate structure. To do this we use the unit load
method and apply a virtual unit load X; = 1 at the point where the dis-
placement is to be found. To calculate the displacement using equation (4.8)
we need the moment distribution M© from the external load on the main
system with X; = 0 and the virtual moment distribution M corresponding
to the unit load X; = 1 and no external load. These moments are found and
shown in fig. 4.12. Having found the moment distributions we can find the
displacements. The things to do are:

2: Find the moment distribution M° corresponding to an esternal load P on the
main system without virtual load (i.e. X; =0).

3: Find the moment distribuiion M' corresponding to a virtual unit load X; = 1
on the main system without external load (i.c. P =10).

1: Find the (mutual) displacement dyy corresponding to the redundant force X,
for an czternal load P on the main system.
The displacement djg from external load on the main system is calculated
using equation (4.8), the integration formula in equation (4.9) and the moment
distributions in fig. 4.12 as follows

f MO dr = fL/Z MUMl 1 L M()Ml a5
T El g

do EI YET )y TET
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This completes one case in our superposition of structural cases and the next
step is to apply a redundant unit force Xy = 1 and find the displacement d;;.
Find the (mulual) displacement dyy corresponding to the redundant forec X
for a unit load X7 =1 on the main syslem.
The displacement dyq is found using the unit load method and since we have
already found the moment distribution we can calculate it:
20 aglpgd 9 13
MM 1L 2 L
dyy = ——dz = 2 2Ly L) = === 4.10
" /0 Bl Tk )= 350 Pl
Now let us use that our differential equations are linear and superimpose
displacements.

Use displacement compalibility to find the redundant force.
The total displacement at the redundant force X is zero, dy = 0, since the
support does not move. The total displacement is found by superposition as

dy = dy+ di X,

This equation enforces compatibility between support displacement and struce-
tural displacement. The unknown redundant reaction can thus be found as

B2 B
v 3

Xy = (dy = dio)fdy = —22EL = —?QP {4.11)
kT :

ITaving found the redundant reaction we can analyse the structure as usual,
but why should we? The internal forces and the reactions in the real strue-
ture can be found by superposition of the structural cases already treated.
An internal force or a reaction can be denoted § and found by the use of
superposition, i.e. § = §Y 4 S1X,. The next stop thus is:

Deternuane witernal forces S and the remaining supporl reaclions S by super-
position, 5 = 5% + 51 X,.

The moments MY and M!' have already been determined in fig. 4.12 so let us
start by superimposing these using the value found for the redundant foree
X = —%P. The result is shown in fig. 4.13. The shear forces can be found
by statlics or simply by using the slalic relation @ = M’ + m = M', (since
there is no distributed moment load m = 0). The reactions can be found
using superposition or by inspection of the shear force distribution.

The next step is to find displacements at selected points. This can be done by
superposition or by applying the unit load method to the real structure with
known internal forces, To use superposition would mean that the displacement,
should be determined in both load cases, whereas use of the unit load method
on the real structure would only need determination of one displacement, (i.e,
hall the work and even less with multiple redundant forces). Furthermore,
since the unit load is a virtual load we can choose any structural sub-system
which is statically determinate to define the virtual internal forces,
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Fig. 4.13: Moment distributions in the main system.

8: Iind displacements by using a statically determinale sub-systems for definition
of the wirtual milernal forces.
Let us find the vertical displacement dg at the centre of the second span.
To do this we apply a unit load X, to a statically determinate sub-system
as shown in lig. 41.14 and we determine the corresponding virtual moment
distribution M2, The displacement can then be found as:

———ly

2L M M2
1, =
= /; ]

L2 3 - I 1./2 3 1
= S, Epn.chy Do o 8 o P -
filu’l( TR L L )+61§1( 64" A )

3 PR
512 INt

This concludes the example with one redundant force.

Multiple Redundancies

In this subsection a general fexibility procedure for multiple redundancies will he
deseribed. The procedure has already been outlined in the introduction to the
chapter and by the previous example. Ilowever, it is necessary to be aware of the
[act that the redundancies affect each other as seen in fig. 1.15. The redundancies
are cnumerated from | to n and indices 7 and 7 will be used, with j referring to the
load X; and 7 to the mutual displacement d;. A statically determinate structure
is chosen as the main system, the redundant constraints are released and the main
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Fig. 4.14: Displacement determination.

Fig. 4.15: A structure with two redundant forces.
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Fig. 4.16: Reciprocal displacements for Maxwell’s theorem.

system is loaded by the external loads, thereby undergoing deformation. We see
that displacements d;p may occur at all the redundancies. This case is superimposed
with the cases where the main system is loaded by unit loads X; = 1. Also in this
case displacements d;; may occur at all redundancies. The compatibility equation
in the case of multiple redundancies thus takes the following form:

dig+din X, +dpXo+... = d
dyg +dnXi +dnXa+... = do
an I dZIXI it dnn,)(n — dn (412)

in which d; are the real mutual displacements, which in most cases will be zero. In
matrix notation the compatibility equations take the following format:

diD dl] dl? d]n X] dl
dao dn dyz ... dan X2 dy

H = ¥ 5 = 5 (4'13)
dn(] dnl d!ﬂ s dnn Xra dn

The compatibility equations can be written in compact form using the Einstein
summation convention, where 7 and j have the range from 1 to the number of
redundancies n:

d,’g-{-dngj = (4.14)

The redundant forces and moments are found by inverting the flexibility matrix d;;

as follows:
XJ' = d;l(d, - d,‘u) (4]5)

The flexibility matrix is symmetric d;; = d;;. The symmetry was shown by
Maxwell 1864 and it applies to linear elastic materials. It is referred to as “Maxwell’s
reciprocal displacement theorem™ and we can use the principle of virtual work to
show it. IFig. 4.16 shows two situations a and b. In situation a a load P* produces
a displacement field w®, strains ¢* and stresses ¢® and in situation b a load P°
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produces a displacement field w®, strains £® and stresses o®. The principle of virtual
work for situation a states that:

Il

fv el - P = @

P*éw = La“‘éedv (1.16)

Using situation b for the virtual displacement field §w = w® and using the linear
elastic constitutive equation ¢ = Ee we find:

Pyt = fv oot dV = f B dV = f ot dV = Pt (4.17)
v Vv

where the principle of virtual work for situation b has been used in the latter opera-
tion. This also shows that the flexibilily matrix is symmetric, since the component
d;; corresponds to the displacement at 7 [or a force at 7 and for dj; vice versa. (The
direct reciprocity of displacements can thus be scen as P*/w® = P°[w?).

The flexibility method for hand calculation of statically indeterminate heam
and truss structures can thus be summarized in the enumerated steps given in tab.
4.1. 1t is assumed that axial extension and shear displacements can be neglected.
If this is not the case all internal forces must be determined in steps 2 and 3, and
the displacement formulas in steps 4 and 5 must be modified.

o Example 4.2 A frame with two redundancies.

A small frame shown in fig. 1.17 consists of three beams, cach with the length 7,
and the bending stiffness [51. The frame has one fixed support and one pinned
support. The problem we set ourselves is to find the sidesway of the frame. To
answer this il is neecesary to find the moment distribution in the framne. Let us
use the procedure described in tab. 4.1,

1: The chosen statically determinate structual system is shown in fig. 4.17. We
choose the two mutual rotations as redundancies, since mutual rotations al-
most. always case the calculations, by localizing the influence of the virtual
load.

2: The hinges in the main system make it easy to find the linear variation [rom
the point load and the quadratic variation from the distributed load. The
moment distribution M© is also shown in fig. 4.17.

3: The moment distributions M and M2 from the mutual moments, respectively
X, =1and Xg =1 arc shown in the figure.

1: The mutual rotations for external loads only on the main system are:

I L1 92 PL2
by = ——(=2P7 — P, o
S gEr 2L = PL) + (S PL) 6 Bl
Lo 7 3 P12
T — = W—TH~PLY) = 2
20 seral W g NP = e
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Flexibility method for statically indelerminate beam and truss structures:

1: Choose a stalically determinate main system and inlroduce redundant
forces and moments X;. (Try lo use moments where possible).

2: Iind the moment distribution M® corresponding to external loads (P) on
the main system without virtual load (i.c. X; = 0).

3: For all j find the moment distribution M’ corresponding to the virtual
unit load X; = 1 on the main system without external load (i.e. P =0
and Xy =0 for k#j5 )

A: For all i find the (mulual) displacement diy corresponding lo the redun-
dancy 1 for exlernal loads (P) on the main system

L MoM¢
do = ¥ [Tt T

beamsa trisses

NON?
7

Py |

: For all @ and § find the (mulual) displacements d;; corresponding lo the
redundancy 1 for a unil load X; =1 on the main system

LA MY NiN¢
i 22 Z]B 7l dz + z A Il

beams Lrudses

6: Use displacement compatibilily to find the redundant forces and momendts
X
do+duyX;, = d |
,\/J' = (l]-_jl (dl — d,’u)
where d; are the veal mulual displacements, which may be equal to zero or
lo a given settlement.

7: Delermine internal forces S and the remaining support reactions S by
superposilion. Using Finstein summalion:

§ =54 59X,

8: IMind displacements by using statically determinate sub-systems for
definttion of the virlual internal forces corresponding Lo a virtual unit load,

Tab. 4.1: The flexibility method.
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Fig. 4.17: A simple frame with two redundancies.

5: The mutual rotations for unit loads X; = 1 on the structure are

i E 8 L
iy = gt AT Ut e = py
", 6 L
L g .. 2 1
b2 = gErtepiT2Y = 5%
dyy = dyg

6: Since the mutual rotations are zero d; = d3 = 0 in the real structure we find
the following matrix equation, which we solve:

L[ 2] (x) _ _p2f-2)
6EI| -2 6 Xs ) T 6EI\ 3
X, _ __PL 16 2 =) ll
X3 T 8.6-22|2 8 3
X\ _ (6P
Xy - -20 | 44

7: To determine displacements we only need the moment distribution. Using the
above result we find the moments by superposition, and the result is shown in
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Fig. 4.18: Moment distribution and a unit load case for displacements.

fig. 4.18. Only one important comment will be given and that is concerning
the quadratic moment variation. We have not found the maximum value,
only the value at the centre of the beam. The central value is:
1 1 1 3 0 22 15
entre = 5 = = =—P[L - PL —PL = —
Meent 2'X1+2){'2+2PL 3 + 44PL
8: The sidesway to the right can now be found using a unit load on the statically
determinate system, as shown in fig. 4.18. The sidesway is:

L PL 5 PL?
18- 1 — L——:—
61"1'(2 e b5

dy = 44 EI

This concludes the example with 2 redundancies.

Support Settlement

There are two possible effects of settlements on the compatibility equations. One
effect is the introduction of final (mutual) displacements d; at the redundancies, due
to scitlements at the redundant supports. Another possible effect is the introduc-
tion of displacements dy in the directions of the redundancies due to settlements
of the {non-redundant) supports of the main system. Both types are shown in
fig. 1.19, where two of three supports settle. When the right-hand support settles
upwards s, and when we choose this support reaction as the redundant force X,
then the final displacement of the support is d; = s,. When the left-hand main
system support settles downwards s; a displacement dig = s, is introduced at the
redundant force. ‘

As shown in fig. 4.20 the calculation method is the same for cases where internal
moments are chosen as redundancies. We just have to find the mutual rotations
dyy in the main system and remember that rotations are positive in the directions,
where the work of redundancies would be positive.

e Example 4.3 Using a redundant force.

Let us analyse the situation shown in fig. 4.19 and find the moment at the central
support introduced by the settlements. The displacement in the main system with
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Fig. 4.19: Analysis of settlements using a redundant force.
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Fig. 4.20: Analysis of settlements using a redundant moment.
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Fig. 4.21: Sign of mutual rotations for settlements in a main system.

external loads, i.e. settlements, is djg = s;. The displacement in the main system
with the only load X; = 1 can be calculated as done previously in (4.10) for
the same main system with the result dy; = %—g—, The final displacement at the
redundancy is, d; = $,. The redundant reaction is thus determined as

3E!
Xy = {dl = dl())/dll = (""r = Sr) 3
2
The moment at the central support is found by superposition as
3ET
M = MY+ MXi=M'Xi=1(s,—s)o—
o 1 1 (sr — s1) 2L3
JEI
= (o —sgp

e Example 4.4 Using a redundant moment.

Let us analyse the situation shown in fig. 4.20 and find the moment at the central
support introduced by the settlements. The mutual rotation in the main system
with external loads, i.e. settlements, is dig = (8 — s,)/L. The displacement in
the main system with the only load X; = 1 can be calculated as described in the
previous subsections with the resull dqyy = EIT The final mutual rotation at the
redundancy is zero, dy = (), since the beam is still continuous. The moment at the
central support thus is

LS

3BT

M =X, = —dip/dii = (s —SJ}m

It is important to be aware of the positive and negative directions. Fig. 4.21
shows the influence of settlements in the main system for a continuous beam with
multiple intermediate supports, where the moments at the supports have been
chosen as redundancies. The signs of the mutual rotations are indicated in the

figure.

Temperature Effects

There are two main effects of temperature changes AT(z,,2). One effect is to
change the initial length of heams and the other is to introduce curvatures in
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beams. The difference between the current temperature field T'(z,, z) and the initial
temperature field 7%z, z) (at erection) is what we define as the temperature change
AT = T°—T. For the sake of generality the Einstein index notation is reintroduced
in the first part of this subsection.

In the first chapter isotropic thermal strains E;‘; were introduced in equation
(1.139). In beam theory we assume that the transverse expansion is free and there-
fore only axial strains will have an effect. The axial thermal strains are thus given
by:

& = BNI (4.18)

where 3 is the coefficient of thermal expansion.

The virtual work functionals and the potential energies must be expanded by an
additional term due to the work of the stresses o = N/A+ I7! M, (z, — ¢;) through
thermal strains 7. For example the additional term for the complementary virtual
work functional 6W¢ which we use in the flexibility method can be found as follows:

Wi = [ &Tsoav
d Ts (NJA+ 7'M dAd
7./0./45 (/ t g a(%_ca)) z
1

L L
= ,/0 (Z/{) ETdA &N +13—(: AET(Ig *C,ﬂ)dA 6Ma) dz

L
= f (€7 6N + kT 6M,) dz (4.19)
0

where the temperature strain at the elastic centre and the temperature curvature
have been introduced as:

7 _ 1 f 7
F = A/Ae dA (4.20)

T 1;;/ eT(25 — cp) dA (4.21)
A

K

For non-linear variations of the temperature changes the shear stiffness of beams
will enforce a linear strain distribution, so that plane sections remain plane. This
will introduce some stresses which cannot be accounted for by beam theories.

Let us return to the case of single symmetric cross-sections with the elastic
centre at origo ¢; = 0 and forget the Einstein index notation. We assume that
the distribution of the temperature change is linear, as shown in fig. 4.22, with the
following temperature changes: AT, at the clastic centre, AT, at the upper flange
and AT at the lower flange. Using the cross-sectional depth h the linear variation
of the temperature strain can be written as:

&7 = AT +B(ATi- AT.)T (4.22)

This leads to the following thermal strain at the elastic centre and thermal curva-
ture:
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Fig. 4.22: The temperature strains for a linear temperature change.
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Fig. 4.23: The temperature induced displacements.

The thermal strain al the elastic centre and the thermal curvalure for a linear
variation of the temperature change through the cross-section are:

el = BAT, (4.23)
AT, — AT,
F = poo e (4.24)
h
where 3 1s the coefficient of thermal ezpansion and the other gquantilies are
shown in fig. 4.22.

For non-linear variations of the temperature change lhe mean values given by
equations (4.20) and (4.21) can be used.

Sometimes an intuitive understanding can be achieved by the temperature induced
displacements shown in fig. 4.23.

In statically delerminate structures the axial displacements and curvatures in-
duced by temperature changes will occur without introducing internal forces and
reactions. However, in statically indeterminate structures the temperature changes
can be regarded as a load that will induce internal forces and reactions. Thermal
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Fig. 4.24: Example with thermal curvature and transverse load.
changes can be included directly in the determination of the displacements due to

external loads on the main system, using the original unit load formula in equation
(4.5) as follows:

Thermal effects are introduced inio the flexibility method by:
N° ‘
M d (eT N' L 4.2

where £7 and &7 are the unrestrained thermal strains and curvatures on the
main system. N9 and M° are the internal forces from other loads.

e Example 4.5 Thermal curvature and transverse load.

Fig. 4.24 shows a continuous beam with one intermediate support. The upper
temperature is decreased by T and the lower temperature is increased by Ty. The
first span is loaded by a uniform transverse load p. Let us calculate the moment at
the central support. As shown in the figure we choose the central moment as the
redundant moment X;. The thermal curvature is found as:

KT = /5210
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Fig. 4.25: A loaded beam.

The displacement djg in the main statically determinate system can be found as

follows:
L T L1 , . 1 o L
d = 2—(2+ 1)& ——-—plL® = (6FET —-pl*)——
10 6{ + & +3EISP ( " +4P )GEI
B SHIGE o 1 e &
= B
The displacement dy; due to the unit load Xy =1 is
L L
= 2 = _
43 2551 = 57
The moment al the intermediate support thus becomes
dig BLEl 1,
M = Xj=—-—— = =3 —
L= h 167

It can thus be seen that both the temperature variation through the thickness and
the transverse load contribute to the negative moment at the central support.

e Problem 4.1
A horizontal beam shown in fig. 4.25 has the length L, the material is linear elastic
and the bending stiffness ] is constant. The beam is loaded downwards by a
central point load P. The left-hand end is fixed (built in) and the right-hand end
is pinned with horizontal rollers. IYind the reactions, the moment distribution and
the central displacement in the beam.

o Problem 4.2

The linear elastic frame shown in fig. 1.26 consists of two vertical beams, which are
rigidly connected to a horizontal beam. The vertical beams are pinned at the lower
end, they have a length of Ly = 5m and a bending stiffness of £7;. The horizontal
beam has a length of Ly = 8 m and a bending stiffness of Fl; = %Ell. The beam
is loaded downwards by a distributed load p = 10 kN/m on the horizontal beam.
I'ind the reactions and the moment distribution in the frame. Find also the vertical
displacement at the centre of the horizontal beam.

¢ Problem 4.3
A plane frame ABCD, shown in fig. 4.27, is built in at the supports A and pinned
al 2. The vertical beams AB and DC have the length L and the bending stiffness
1. The horizontal beam BC has the length L and bending stiffness 1£7. The
frame is loaded by a uniform horizontal load p acting on beam AB. The eflfects of
shear and axial forces are neglected and it is assumed that only moments contribute
to the beam displacements.



128 CHAPTER 4. STATICALLY INDETERMINATE BEAMS

f 1§ 111 {p=10kN/m

} NEl,=EIl, /4 ‘
Li=5m

L,=8m

Fig. 4.26: A symmetric frame.

Fig. 4.27: A frame with lateral load.
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Fig. 4.28: Temperature change in plane frame.

a) Find the moment and shear force distributions in the frame. The sign con-
ventions used must be stated and clearly drawn.

b) The support at [ settles the distance sp downwards due to the external load.
Find the moment distribution in the frame due to this settlement alone (with
p=0).

e Problem 4.4
A plane frame ABCD), shown in fig. 4.28, is pinned at the supports A and D.
All three beams have the length L = 30k, the modulus of elasticity E, the cross-
sectional area A = 1h% and the moment of inertia I = A%, The cross-sectional
type is also shown in the figure. The effects of shear and axial forces are neglected
and It is assumed that only moments contribute to the beam displacements.

A temperature change occurs. Af the elastic centre it is AT, = Ty, at the outer
surface it is half, AT, = %TD, and at the inner surface it is double, AT} = 2Ty
The expansion coefficient is  and the temperature variation is linear through the
cross-seclion.

a) Pind the moment distribution and the reactions due to the temperature
change. Remember the influence of axial temperature strain.

The cross-section is an uncracked reinforced concrete section with maximum
compressive stress of f, = 40 MPa. The depth is & = 200 mm, the elasticity
modulus is /2 = 36 - 10° MPa, the expansion coefficient is 4 = 10 - 1079
and the elastic centre is located %h from the outer surface. With the given

b

temperature variation, what is the maximum permissible temperature change
Ty for this frame?






Chapter 5

Plastic Hinge Analysis

Since beam structures do not always remain linear elastic it is necessary to have
tools which can take us beyond the elastic limit, especially for beams of materials
that have a plastic capacity. In this section we shall first describe the plastification
of beam cross-sections for some non-linear elastic constitutive relations. Then we
shall introduce the concept of plastic hinges and relate the concept to the principle
of virtual work and derive upper- and lower-bound theorems for plastic hinge anal-
ysis. Following this a method of combining plastic flow mechanisms is described
and finally a method for estimating displacements is given. Detailed treatment of
the subject is given by Massonnet & Save [15] or by Neal [16]. A modern approach
to general plasticity theory is given by Chen & Han [18]. This book includes a
small section on plastic hinge analysis and its relation to modern plasticity theory.

In this chapter we thus treat the load-carrying capacity of beam structures and
we shall restrict ourselves to plane frames. The index notation will therefore not
be used in this chapter.

Plastification of Beam Cross-Sections

In Bernoulli beam theory we assume that the beam is in a uniaxial state of stress
and strain and the theory relies on a linear elastic constitutive material law. How-
ever, the linear elastic constitutive law ¢ = Ee is only an assumption, which cannot
always be applied to the complete stress-strain domain of the structure. The uni-
axial behaviour of different materials is relavtivly simple to find by experiment.
Some materials have stress-strain relationships, which can be idealized as shown in
fig. 5.1. The first plot shows an example of a uniaxial stress-strain relation for a
real material, the second plot shows an idealized linear elastic perfectly plastic con-
stitutive material model and the third plot shows the highest level of idealization
corresponding to a perfectly plastic material model. Note that in the plastic domain
the strain cannot be determined uniquely from the stress, but must be determined
by other kinematic conditions. When the material is unloaded the stress-strain
curve follows a linear path, which is approximately parallel to the initial linear
path, until it reaches the opposite yield stress. The plastic part of the strains thus
becomes residual strains, which can be reduced by plastic straining in the oppo-

131



132 CHAPTER 5. PLASTIC HINGE ANALYSIS

o “Cf
R ST
fyt fyt —_—
£ / £ 5
o /. — EEEE—
’

/

7 - Jffyc —'_fyc

lM

Fig. 5.2: Use of a real stress-strain relation.

site direction. The unloading paths are shown as dashed lines in the figure. In
the idealized models the maximum tensile stress is the tensile yield stress f,; and
the maximum compressive stress is the compressive yield stress f,. and if they are
identical we just write f,.

Let us see how the three types of stress-strain relations influence the constitu-
tive moment-curvature relation M = F'(&) for a beam in bending. We assume that
cross-sections remain plane during deformation. The neutral axis is determined by
the assumption of zero axial force, N = [, odA = 0. Fig. 5.2 illustrates the use of
the real uniaxial stress-strain curve. With the assumption of cross-sections remain-
ing plane the strain distribution becomes linear and the stress distribution is just a
rotated part of the material stress-strain relation. The moment curvature relation
is found by integrating the momenl contribution of the stresses M = [, (z — ¢)o dA
for the relevant curvature range, where ¢ is the current position of the neutral axis.
The moment curvature relation also hecomes non-linear. In case of a linear clas-
tic perfectly plastic material, as shown in fig. 5.3, the moment curvature relation
is linear until a material point reaches the yield-stress f, and the corresponding
moment is called the initial yield moment M,. After this the relation becomes
non-linear and the moment asymptotically approaches the fully plastified situation
corresponding to a fully plastic moment M,. 1l we assume a perfectly plastic stress-
strain relation, as illustrated in fig. 5.4, the moment curvature relation also becomes
a perfectly plastic relation. The material mement-curvature relations depend on
the geomelry of the cross-section and the stress-strain relation assumed. For some
cross-sections, especially steel I-beains, the non-linear part of the moment-curvature
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Fig. 5.3: Use of a linear elastic perfectly plastic stress-strain relation.
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Fig. 5.4: Use of a perfectly plastic stress-strain relation.
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Fig. 5.5: Idealizations of the moment-curvature relationship.

relation in the linear elastic perfectly plastic case becomes negligible. Even though
the moment-curvature relation has a non-linear part it is convenient and useful to
assume a linear elastic perlectly plastic relation. In fig. 5.5 the first plol shows
the resulting moment-curvature relation, when assuming a linear elastic perfectly
plastic material model. The second plol shows an idealized linear elastic perfectly
plastic moment-curvature relation, where the linear elastic part of the first curve
has been extended. The third plot just shows the idealized perfecly plastic moment-
curvature relation, which is the constitutive model used in plastic hinge analysis.
The linear elastic perfectly plastic moment-curvature relation is used for simplified
deflection analysis, whereas the perfectly plastic moment-curvature relation is used
to derive the load-carrying capacity of a beam structure.

In the following we assume that the axial forces and the shear forces are small
enough to be discarded in the analysis. If this is nol the case an approach using
plastic yield surfaces generalized from the von Mises and Tresca yield eriteria, which
are beyond the scope of the present chapter. Furthermore, it is assumed thal the
plastic domain is large enough to give the necessary rotation capacity in plastic
hinges introduced in the following.

Virtual Work in a Plastic Hinge

[ bearn structures the maximum moments are often situated at discrete points and
in a few situations a constant moment is transferred through a beam. Let us first
assume that the maximum moments are situated al discrete points and that the
moment-curvature relation is perfectly plastic. With this assumption the curvalures
are localized to positions, where the moment has reached the plastification moment
M,. Lel us use a beam with pinned ends and a central point load, as shown in fig.
5.6, to illusirate a plastic hinge. The beam remains straight with no deflections
until the load reaches a value, where the midsection is plastified. With the given
assumptions the curvature is zero except al the midpoint, where it is indeterminate.
In this situation the structure flows (yields) and we assume that the structural
behaviour is quasi static, so thal the principle of virtual work can be used. When
the heam flows at the midpoint the beam becomes kinematicly indeterminate and
the possible kinematic motion is called a mechanism. The midpoint, where all the
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Fig. 5.7: Plastic beam section of the length AL.

material deformaltion is concentrated is a so-called plastic hinge.

The internal virtual work [; M &k dz corresponds to the virtual plastic energy
dissipation. To use the principle of virtual work we need to find the internal virtual
work. Let us show how we can find it in an indirect manner. A beam section of
the length AL, shown in fig. 5.7, is loaded by end moments, M = M,, which are
equal Lo the plastic yield moment. The heam section yields and the real as well as
the virtual internal curvature is indeterminate. We assume that the end rotations
are given by de and oy and that the sum is 60 = ay + deay. Using the principle
of virtual work éW = §Wy,; — 6W.re = 0 we can find the internal work expressed
by the external work as follows:

LM65dz—]fI(6a;+5az) =0
A

fAL,w,, |65 de — M, |(80y + 6ag)] = 0 |
M, lék|dz = M, |80 5.1
[, My 16wl dz , 166) (5.1)
where the absolute value is introduced, since M = — M, and M = —M,, for negative

curvatures, 6k < 0. Let the length of the section approach zero, thus defining
the internal virtual work of a plastic hinge §W;,; with an indeterminate infinite
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Fig. 5.8: Plastic hinge in the beam with pinned ends.

curvature as:
§Wine = JiLIED]ALMp 6k|dz = M, |66] (5.2)

Note that the internal work is positive. The idea is illustrated for a beam with
pinned ends in fig. 5.8.

e Example 5.1 A statically determinate beam with a plastic hinge

The load-carrying capacity of the beam in fig. 5.8 with pinned ends and a central
point load is sought. The external virtual work is determined as the work by
the load P through its vertical displacement dw = %L é6. Now it is possible to
find the load capacity of the beam by use of the principle of virtual work éW =
OWins — Wy = 0 as follows:

fMé':; dz - Péw = 0 ’
&5
M, 66 - %PLM =0 I
> MTJ
P =45

In the present case this is the load-carrying capacity of the beam. However, in
general, as we shall se later, the virtual work equation just gives an upper-bound
value for the load-carrying capacity, since the virtual hinge has not necessarily been
placed correctly, and therefore, the moment at the hinge may not have reached the
plastic limit.

Virtual Work and Hinges

The virtual work functional for beams does not depend on the constitutive moment-
curvature relation. The principle of virtual work can be extended to include dis-
continuities in the derivative of the virtual displacement, so-called virtual hinges.
The internal work in a hinge is found by using the same procedure as in the previ-
ous sub-section, however, this time the end moments M = M in fig. 5.7 have not
reached the plastic limit. Thus, the internal work in a virtual hinge is thus:

Wi = lim Mékdz = M &0 (5.3)

AL—=0JAL
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Without making any constitutive assumption about the moment-curvature relation
the general virtual work functional for virtual displacements with hinges and zero
curvatures has the following form:

Virtual work functional with virtual hinges and zero virtual curvature

W = Wiy — 6Weyy
= Y M&o- Y ]L(p Sw +méa) dz (5.4)

hinges beams

The principle of virtual work

W = 0 for all virtual displacements <& equilibrium  (5.5)

where the displacements must be kinematicly admaissible.

It is possible to find the moment at any point of a statically determinate beam by
use of virtual hinge analysis. If a linear-elastic beam is statically indeterminate and
the redundant forces are known, then it is also possible to find the internal moments
by use of virtual hinge analysis. However, this method is beyond the scope of the
present chapter.

If the beam structure includes only point loads P the virtual work functional
takes the following form:

W= 3 M9 -3 Péw (5.6)

hinges loads

This is a trivial extension, which will be left to the reader in the following.

5.1 Theorems of Limit Analysis

The idea of limit analysis in perfect plasticity is to ease the “intuitional demand”
for the real moment field M in the principle of virtual work. A kinematic and a
static approach results in an upper-bound theorem and a lower-bound theorem,
respectively. Before proceeding let us introduce a load factor A to a set of given
loads, i.e. Ap and Am, and rewrite the principle of virtual work as follows:

W = ZMcSﬂﬁ)\ZfL(prSw+m60:)dz -0 (5.7)

hinges brams

This equation is exact and gives the correct load factor, A, corresponding to the
real moment distribution M. Furthermore, let us also introduce a plastic virtual
work functional §W, in which we exchange the moments M at the virtual hinges
by the plastic moments M, and the load factor A by the plastic load factor A, at
which a flow mechanism is created. The plastic virtual work functional takes the
form:
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Plastic virtual work functional

W, = Y M, 66— A 3 /L(p 610 + méa) dz (5.8)

hinges beams

This plastic virtual work functional is used in the following.

The kinematic approach is to anticipate a kinematic mechanism with virtual
plastic hinges, as illustrated in fig. 5.9 for a uniformly loaded beam with a fixed
and a pinned end. Lel us use the principle of virtual work W = 0 to estimate
an upper bound A* for the plastic load factor A, at which a flow mechanism is
created. Assuming that the moment at the virtual hinge is the plastic moment M,
the demand for the real moment M at this point is violated, since M, > |M|. The
principle of virtual work is thus violated by increasing the internal work 61, >
§W =0, since M,|60| > M&. This leads to the following upper-bound theorem:

The upper-bound theorem

An upper bound, A*, for the plastic load-carrying capacity, )\,, can
be found by introducing kinematicly admissible virtual displacements
with virtual plastic hinges into the virtual work functional and using
that this virtual work is greater than or equal to zero, W), = 0.

The inequality leads to the following formulation:

W, = 3 M8 =X, > /(p Sw+méba)dz = 0 |
hinges heams * L
Ay < OA* (5.9)

- where the upper-bound load factor is given by

> M, |60]
AE = L (5.10)
Z f (pbw + mba) dz

heams

Note that the size of the plastic moment M, may depend on the sign of the
virtual rotetion, i.e. the sign of the localized curvature, and on the posilion.

Many equivalent formulations of the upper-hound theorem exist, which in fact can
he generalized Lo other structures.

¢ Example 5.2 Use of the upper-bound theorem.

The beam shown in fig. 5.9 has the length L = 6 m, the plastification moment
M, = 20kNm and a uniformly distributed load p = 2kN/m. Let us find an upper-
bound load lactor. The figure shows a kinematicly admissible virtual displacement
ficld with virtual plastic hinges. The internal virtual work is M,é8 + Mp‘é—a and
the external work kan either be integrated by the integration lormula (4.9) or by
finding the work of the load resultants for the load on cach hall of the heam by
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Fig. 5.9: Mechanism with virtual plastic hinge.

23Ap éw) = FApLéw. The upper-bound principle for plastic virtual work
0

3 1
E‘Mp66~§/\ppL6w > 0 (511)

in which we can introduce either 46 = %610 orbw = %‘63 and thereby find an upper
bound for the load factor as:

M,
Ky € 12PL’; = 3.33 (5.12)

Thus an upper bound for the load-carrying capacity is p* = 3.33p = 6.67 kN/m.
This value can be decreased by letting the position of the virtual plastic hinge be
variable and then minimizing the upper bound with respect to this position.

The static approach is based on statically admissible moment distributions M,
in the beam structure and limit the values of these moments by the plastic limit
M,. In a statically determinate beam structure there is only one way to carry
the load and thus only one statically admissible moment distribution. In statically
indeterminate beam structures with n redundants there are n 4+ 1 independent
statically admissible moment distributions which may be combined. Fig. 5.10 shows
a statically admissible moment field. When the structure is linear-elastic only one
combination is possible and this combination can for example be found by the
flexibility method as M = M°+3 M'X; where X; are the values of the redundant
forces. However, when the structure is no longer linear-elastic it must be some
other combination, which results in the real moment distribution. Since the real
moment distribution is unknown the idea of the static approach is to replace the
real moment distribution M by a statically admissible moment distribution M,.
For the statically admissible moment distribution M, to be a safe distribution the
moments must be within the plasticfication limit |M,| < M,. This leads to a lower
bound A™ for the load factor.

First let us use the principle of virtual work (5.5) to find an expression for the
exact plastic load factor A,. To do this we use the displacements of the real plastic
flow mechanism as the virtual displacements, i.e. 8 = 6§, §w = 1 and & = ¢, and
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Fig. 5.10: A statically admissible moment field.

thus the real moment M, at the hinges as follows:

W= M, 6 - /\X,Z/;(pib—!-md)dz =0 U
hinges beams
PR
A, = Hgh (5.13)
¥ fL(pw + ma) dz

beams

Next let us use a statically admissible moment distribution M, in equilibrium with
the loads A" p and Am. The principle of virtual work (5.5) is exact for this moment
field, since it fulfils the equilibrium equations (it is statically admissible), we can
thus use anv virtual displacement field and find the same load factor A™. We will
show that this load factor is a lower bound for the real plastic load factor if we just
make sure that M, is a safe statically admissible moment field, i.e. |M,| < M,. Since
we can use any virtual displacement field let us try the real plastic flow mechanism
as follows:

§W = ZMJ%XZ/L(péwrméa)dz:o y

hinges beams
> M50 S M0
5 o hinges _ hinges < )\p (5‘1 1)
5 /(p bw + mébar) dz > f(p?b + md) dz
beams ¥ & beams L

where the last inequality is obtained using equation (5.13) and M,8 < M, |6], since
the statically admissible moment distribution is safe, i.e. since |M,| < M, and M, |9
is alwavs positive.



5.1. THEOREMS OF LIMIT ANALYSIS 141

The lower-bound theorem

If a statically admissible moment distribution, My, in equilibrium with
the factored external loads, A"p and A"m, is safe, |M,| < M,, then the
load factor, A”, is a lower bound for the real plastic load factor A, i.e.

X Z ks

There are also many equivalent formulations of the lower-bound theorem, which can
be generalized for other structures. The lower-bound theorem is used in combina-
tion with the upper-bound theorem to bound the plastic load factor. Furthermore,
as we shall see in the second of the following examples, it may sometimes be prof-
itable to use the statically admissible moment distribution corresponding to the
upper-bound solution and scale it down to be a safe one.

[f the upper-bound and lower-bound load factors arc identical then the solution
is exact. This is sometimes referred to as the uniqueness theorem and it is trivial
with the already given theorems.

From the derivation of the lower-bound theorem, equation (5.14), it is clear that
we can define a safe virtual work functional W using the safe moment distribution
M, and the virtual work will be less than the real virtual work as follows:

g o = ZM,ae—,\pE]L(panrmaa)dz <0 (5.15)

hinges beams

However, we will not use this principle W, < 01in the following, but it is worthwhile
to compare it with the plastic principle of virtual work éW, > 0.

s Example 5.3 Use of the lower-bound theorem.

The uniformly loaded beam with a fixed and a pinned end from the previous ex-
ample 5.2 is analysed using the lower-bound theorem. As in the previous example
the beam has the length L = 6 m, the plastification moment M, = 20 kNm and a
uniformly distributed load p = 2kN/m. Let us find a lower-bound load factor.

A statically admissible moment distribution is shown in fig. 5.10, where any value
can be chosen for Xy. In the present example we choose to let the fixed end carry a
moment equal to 7—13-/\;1)],2. The positive moments are thereby less than ‘%)\}OLQ and
the maximum is not at the centre. The statically admissible moment distribution
is safe if |M,| < M,. Using the equal sign this results in the following lower-bound
load factor:

1.
g" pL? = M, i

. M,

A o= spﬂ = 2.22

Clomparing the result with the previous example it is seen that the plastic load
factor is bounded by the two solutions:

M, M

S Ay € 12222
pLz — T = TTpL2 4
292 € A € 3.33
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Fig. 5.11: Upper-bound moment distribution.

This can be used in two ways, if the beam is known, then we can find the plasti-
fication moment M,, and the load-carrying capacity p' = A,p is then bounded as
follows:

M i MP
81; < p ¢

4.44kN/m < p' < 6.67kN/m

12

IA

However, if we are at the design stage we know the total load p = 2 kN/m and
wanl to find the necessary plastification momemt M, which is then bounded by:

1 ty2 - 1 ir2
ey = 14 & = i
12P L = y g 8]’) L 'U'
6kNm < M, < 9kNm

The gap between the upper- and lower-bound value can be narrowed by finding
a better lower bound, corresponding to a better statically admissible moment dis-
tribution, or by finding a better flow mechanism. In the current case we shall
probably not gain much from moving the central plastic hinge, on the other hand,
we can find a much better lower-bound solution.

e Example 5.4 Finding an admissible moment distribution.

Let us use the upper-bound solution to find a statically admissible moment distri-
bution and then scale it down to make it safe. To find the moment distribution cor-
responding to the upper-bound solution we assume that the moments at the hinges
are given the yield moments M, and the load is thus given by Atp = 120,/ L2,
as shown in the upper left-hand part of fig. 5.11. To find the moment distribution
we can first find the vertical reaction at €' by moment equilibrium about & for the
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part B — C' as follows:

I 1
—pr - /\+p'§? + ch =0 JJ,
2 12 M,
B =Gt glta =57

The moment distribution varies quadraticly, due to the transverse load. From A
to B it varies from a negative plastic moment to a positive plastic moment. The
maximum negative moment is thus at A and the maximum positive is assumed to
be between B and €. The moment variation from C to B is found by moment
equilibrium of the section shown in the right-hand part of the figure. With origin
at the right-hand end we have that z < L/2 and find:

—M(z)—%/\"pz2+Rcz =0 !
12 e z
M(z) = —?Mp (I) +5M’°1‘

The maximum value is found by demanding M’ = 0 as follows:

z 1
1z + SM,,Z
3
= —L
ST ¢

M'(z) = —12M, =0 I

5 12 51\2 5 25
Moar = M(EL) = —?w,,(ﬁ) +5M,,1—2 - EZMP

The statically admissible moment distribution corresponding to A* is shown in the
lower left-hand part of the figure. To make it safe we scale it by a factor § and
require that the maximum moment is equal to the plastic moment. The lower
bound is thus given by A” = gA*. Let us find the scaling factor:

BMpar = Mp [

25
Ji} 57 M, = M, |

24

h=5
This gives the lower bound
24 24 M M,
S = At = — N . o2 . B o .,
A % 25]2;0152 11 r)szz 3.20

The difference between the upper-bound solution A* = 3.33 and the lower-bound
solution A" = 3.20 is about 4%, which is acceptable in design.

Problem 5.1

Find upper-bound and lower-bound load factors for the beam shown in fig. 5.12.
The number of plastic hinges is equal to the degree of indeterminateness plus one.
For the upper bound assume a plastic hinge below the force and at the fixed end
ol the beam. Find the exact plastic load factor by finding equal upper and lower-
bound load factors.
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Fig. 5.13: Beam loaded by two point loads.

e Problem 5.2
Find upper-bound and lower-bound load factors for the beam shown in fig. 5.13.
Plastic hinges can be formed at the loads and at the fixed support, however, only
two hinges are needed to define a plastic mechanism. Find the exact plastic load
factor by finding equal upper and lower-bound load factors.

e Problem 5.3
Find upper-bound and lower-bound load factors for the frame shown in fig. 5.14.
Plastic hinges can be formed on either side of the corners and under the point load.
Find three plastic mechanisms and the corresponding upper-bound load factors.
Find a good lower-bound load factor.

5.2 Combination of Mechanisms

Today analysis of large three-dimensional beam structures can be performed by
advanced computational methods based on modern plasticity theory, which takes
axial forces, shear forces, biaxial moments and torsional moments into account,
either by a yield surface directly based on internal forces or by a yield surface based
on stresses. However, for small plane frames plastic hinge analysis is a simple tool,
which can be used to determine the load-carrying capacily, and which can give a
basic intuitional understanding of the structural behaviour. A method of combining
mechanisms proposed by Neal & Symmonds [16], [17], is introduced in the present
section.

The idea is to choose a sufficient number of possible basic mechanisms in the
frame and then combine these. Through combination of mechanisms plastic hinges
are introduced or eliminated in order to minimize the upper-bound load factor. The
upper-bound load factor A* 1s minimized by choosing combinations of mechanisms,
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Fig. 5.14: Frame with varying plastification moment.

which minimize the virtual work of the plastic hinges and maximize the virtual
work of the loads.

Frames often consist of beams with different plastification moments M, and it
is therefore very important to be precise about the position of plastic hinges at the
joints. This can be done by placing the plastic hinges in the beams infinitely close
to the joints as shown in the following figures. It is also necessary to be aware that
plastification moments can be different for positive and negative moments.

Plastic collapse mechanisms in {rame structures can be partial, thus involving
a part of the structure, typically with a few local plastic hinges, or they can be
complete, thus involving displacement of the complete structure (without separate
statically indeterminate parts). In a structure with n redundancies a complete
mechanism will involve n+1 plastic hinges, whereas partial mechanisms will involve
fewer plastic hinges. Having chosen the basic mechanisms to be combined, the
number of possible plastic hinges A is known. For a strucure with h possible plastic
hinges there are h — n independent mechanisms, which can be combined io form
the total array of mechanisms (spanned by the chosen hinges).

Plastic hinges are tvpically situated at connections, at point loads or somewhere
in the central part of the span for distributed loads. The choice of mechanisms to
be combined can be simplified by introducing three basic types of mechanisms,
namely beam, joint and sway mechanisms. These basic mechanisms are combined in
the search for a collapse mechanism. Fig. 5.15 shows the basic mechanisms and two
combinatory proposals representing partial collapse mechanisms. It is important
to note that, it may he neccessary to include joint mechanisms even at unloaded
joints, since it is difficult in advance to predict in which beams at the joint the
plastic hinges will be formed.

To minimize the upper bound A*, it follows from the virtual work equation that
the virtual work of the loads has to be maximized and that the virtual work of
the plastic hinges must be minimized. Optimal combinations of mechanisms may
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Fig. 5.15: Basic mechanisms and two combined mechanisms.

often be found by choosing mechanisms, which involve displacement of as many
loads as possible, and by eliminating plastic hinges or exchanging plastic hinges
for others, where the plastification moment is lower. The combined mechanisms
should be described kinematicly by one free geometric parameter alone, for example
60 or éw. When a minimized upper-bound load factor A* has been found, then the
corresponding moment distribution M can be [ound. This moment distribution
is then scaled down by a factor f, which makes it a safe moment distribution
BIM| < M,. A lower-bound load factor is then given by A = fAA+. In problems
involving only point loads the mechanism combination method often leads to the
exact solution for the plastic load factor. In problems involving distributed loads
the lower-bound and upper-bound load factors are often very close. The mechanism
combination method is summarized in tab. 5.1. 1t should be noted that assumptions
concerning rotation capacity at plastic hinges and small displacements should be
checked.

e Example 5.5 Analysis of the frame in fig. 5.16.

A frame consisting of a continuous beam ABC D over the top of two columns EB,
FC'is shown in fig. 5.16. The geometry, loads and boundary conditions are shown
in the figure. The factor A has been introduced as a proportional load factor.
The load is P = 10 kN and the length is L = 5m. The plastification moment is
M, = 100kNm for the columns and 2M, = 200kNm for the beams. In the example
M, is used as a reference moment as indicated by the index r. In this example the
problem is to find the exact plastic load factor for the given frame with the given
combination of leads. The problemn will be solved by the mechanism combination
method following the procedure given in tab. 5.1.

1. Inserting plastic hinges arround conuneetions, fixed supports and at point
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The mechanism combination method

1. Find the number of possible plastic hinges, h.

2. Find the degree of static indeterminateness, n (i.e. the number of redun-
dancies).

J. Find h —n independent (beam, joint and sway) mechanisms and the
corresponding upper-bound load factors A*.

—

Find the combination that minimizes the upper-bound load factor A*.
{(Combine the independent mechanisms by mazimizing virtual work of the
loads and minimizing the virtual work of the plastic hinges. It is a good
idea to combine mechanisms with low upper-bound load factors. The maz-
imum admissible number of plustic hinges tn a mechanism is n+1).

5. For the minimized upper-bound solution with the load factor A*, find the
corresponding moment distribution M by statics.

6. Scale the upper-bound solution by the factor 3, which makes the moment
distribution safe, i.e. B|M| < M,. A lower-bound load factor is thus given
by A= 3.

7. 1f the lower-bound and the upper-bound load factors are identical, i.e. 5 =
1, then the exact plastic load factor has been found A, = AT = A",

Tab. 5.1: The mechanism combination method.

L L2 LB L

Fig. 5.16: Frame geometry and the possible location of plastic hinges.
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Fig. 5.17: Beam, joint and sway mechanisms.

Mechanism a b e d
SWins 8M, 66 | 5M.60 | 5M,.86 | 4M. .68
OWors 2APLéG | APL6O 0 APLbG

M, M, M,

5 00 4

PL | °PL PL

At 4

Tab. 5.2: Calculation results for basic mechanisms.

loads, we find that there are h = 9 possible plastic hinges as shown in the
right-hand side of fig. 5.16.

. The frame has n = 5 redundancies, since the structure will be stable with

just one of the fixed column supports.

. We thus have to find A — n = 4 independent mechanisms. Let us choose the

basic beam, joint and sway mechanisms shown in fig. 5.17. The plastic virtual
work functional is given by 6W, = §W,, — 6W.,,, where the internal work is
0Win; and the external work is 6W, ;. To find an upper bound set §W, > 0.
Let us show the calculations for mechanism a.

Wine = 2M,-6042M, -260 4+ 2M, - 68 = 8M, 66
Weze = 4)\P-§60 = 2APL&6

M,
PL

W, > 0 = At =4

The calculations and results for the basiec mechanisms are summarized in tab.
5.2. The mechanism ¢ does not involve external work and thus corresponds
to an infinite upper-bound load factor.

4. We can maximize the virtual work of the loads by combining the mechanisms

so that all the loads perform virtual work. This can be done by combining
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Fig. 5.18: Combined mechanisms.

Mechanism | a+b+d | a+b+c+d
Wi 11M,66 12M,.66
Wzt ANP L6 ANPL68

11 M, M,
+ Ll
A 4 PL 3PL

Tab. 5.3: Calculation results for combined mechanisms.

mechanisms ¢ and . However, this leads to 7 plastic hinges, which is one too
many. This defect can be healed by including the joint mechanism b, which
closes two plasic hinges and opens a new one. The combined mechanism
a+ b+ d is shown in the left-hand side of fig. 5.18. Another related combined
mechanism a + b + ¢ + d can be formed to analyse the effect of moving a
plastic hinge at the joint C. This mechanism is shown in the right-hand part
of fig. 5.18. The related upper-bound load factors can be calculated and the
calculation results are shown in tab. 5.3. No other combinations seem to be
attractive in the quest to find a lower value for the upper-bound load factor.
Our best guess is the combination a4 b+ d with the upper-bound load factor

11 M,
4 PL

ﬂ 100kNm _
4 10kN - 5m

+ =

where the given values have been inserted.

5. Let us find the moment distribution in the frame for this upper-bound solu-
tion. The moments are known at the plastic hinges, so let us use statics to find
the distribution along the beams. With no distributed loads we know from
the moment equilibrium equation M’ = 0 that the variation must be linear
between joints, boundaries and point loads. Fig. 5.19 shows an exploded view
of the given information. The moments Mg, Mg and Mcp are unknown.
To find them we need the horizontal reactions Rg, Rp, at points £ and F.

At C' moment equilibrium of the joint gives us:

Mep+2M, - M, =0 = Mcep=-M,
The horizontal reaction at F is found by considering moment equilibrium of
the column C'F at C':

Mr
L

M.+ M, —LRp =0 = Rp=2
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Fig. 5.19: Exploded view with internal moments for combination a+ b+ d.
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Fig. 5.20: Moment distribution for the upper-bound solution.

Horizontal equilibrium gives us the horizontal reaction at F:

My _ 3 M:
L 41

AP—Rgp—Rp=0 = RE:(%—'Z)

The moment Mg is found by considering moment equilibrium of column BE
at B:

: 1
Mg+ M, — LR =0 = Mgp=(-1+ E)MT = *ZMT

Finally moment equilibrium of joint B gives us

1 11 1
Mpe — Mpi +2M, = APL=0 = Mpc=(~7 -2+ )M, = oM,

The moment distribution M is now given as the linearly varying momant
distribution shown in fig. 5.20. With the factor 3 = 1 on the upper-bound
moment distribution, it is seen that the moments in the continuous beam fulfil
the lower-bound requirement JM < 2M, and the moments in the columns
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Fig. 5.21: Frame geometry and the possible location of plastic hinges.

fulfil the lower-bound requirement M < M,. It is thus seen that the exact
plastification factor is
11 M,
M = M= =L =55
» 4 PL
The given loads can thus be increased proportionally by 5.5, and the moment
distribution at collapse is shown in fig. 5.20.

e Example 5.6 Analysis of the frame in fig. 5.21.

A frame ABCD shown in fig. 5.21 with a non-vertical column AB is analysed
in order to illustrate how to tackle geometrically complicated mechanisms. The
geomelry, loads and boundary conditions are shown in the figure. The factor A
has been introduced as a proportional load factor. The plasticfication moments
are different for the beams and columns. Furthermore, the positive plastification
moments M7} are different from the negative plastification moments M. Using M,
as a reference moment the plastification moments are given as:

Beam M} | M,

AB,CD | M, | 2M,
BC 3M, | 4M,

In this example the problem is to find the exact plastic load factor for the given
frame with the given combination of loads. The problem will be solved by the
mechanism combination method following the procedure given in tab. 5.1.

I. In this example we know that the beam B(C has higher plastification moments
than the columns, so we need not include the joint mechanism, if we just place
the plastic hinges in the columns. The h = 4 possible locations of plastic
hinges are shown in the right-hand side of fig. 5.21.

2. The frame has n = 2 redundancies, since the structure will be stable with the
support at D alone.
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Fig. 5.22: Beam and sway mechanisms.
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Fig. 5.23: The combined mechanism.

3. We thus have to find h — n = 2 independent mechanisms. Let us choose the
beam related mechanism @ and the sway mechanisms b shown in fig. 5.22. Let
us first treat the mechanism a and find the corresponding upper-bound load
factor; bearing in mind the different values of the plastification moments:

Wiy = 2M, -804+ 3M, 260 + 1M, - 68 = 9M,.60
Wogg = 2AP-§69 — AP§§
M
- At = L
W, > 0 = 957

Next let us have a closer look at mechanism b. How are the kinematics
defined? The small movement of the point B is perpendicular to the line
A, since the beam AB rotates about the point A. The movement of point
C is perpendicular to the line C'D, since the beam CD is fixed at D (no
axial displacements). The movement of the beam BC is a rotation about
the intersection point of the two lines AB and BC. The kinematics are thus
defined by movements of points B and C along the straight lines perpendicular
to the respective lines AB and BC. Let us find the upper-bound load factor
corresponding to mechanism b:

Wine = My -(241)80+ M, - (1+2)68 + 2M, - 260 = 10M,60

Wepe = AP -2L68 4+ 2)P . %66‘ = 3APLé8
10 M,
> = =L
W, > 0 = 3 P

4. Thus, the only possible combined mechanism is ¢ + b, shown in fig. 5.23. This
mechanism may also be quite difficult for the beginner, but the principles
are the same. The point C still moves perpendicular to the line CD. The
midpoint of the beam BC moves on a line perpendicular to the line between
the midpoint of BC" and the point A. The movement of the right-hand part
of the beam BC' is a rotation about the point determined by the intersection
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Fig. 5.24: Exploded view with internal moments for mechanism b.

of the extensions of these lines, (l.e. line C'D and the line between point A
and the midpoint of the beam BC).
Let us find the upper-bound load factor for the mechanism o + b:
Wit = 3M, - (142)60 + M, - (2+1)680+2M,-60 = 14M,60
§Were = AP-LEG+2XP-L60 = 3P40
14 M
ow, > A= =
pE R = 3 PL
The best upper-bound guess corresponds to the mechanism b with the upper-

bound load factor:

10 M,

¥ = S
A*SPL

5. Let us find the moment distribution in the frame for this upper-bound solu-

tion. The moments are known at the plastic hinges, so let us use statics to
find the distribution along the beams. Iig. 5.24 shows an exploded view of
the given information. The moment Mpge is unknown and to find it we use
the horizontal reactions Rpyp, Ra4p and the vertical reaction R 4, as described
in the following.

Moment equilibrium of the column C'D at point ' gives us the horizontal
reaction at D as follows:

M,
M, +2M; — LRpy =0 = Rph= -3

4

Horizontal equilibrium gives us the horizontal reaction at A:

10 M, 1M
S Byn e B = 0 2 B =gyt . ol
Tan — Lok tan = ( 3 3) 7 5T
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oM,

Fig. 5.25: Moment distribution for the upper-bound solution.

The vertical reaction at A is found by moment equilibrium of the column AB
at the point B:

L 1. M, 4M,
M, — L = = B e o e
= LRap QRAD 0 = Raq =21 3] I -3
The moment Mpgc is found by considering moment equilibrium of the left-
hand part of the structure:

1 4 5
Mpc — LRapn — LRA4y, =0 = Mpc= (5 + E)Mr = ng
The moment distribution M is now given as the linearly varying moment
distribution shown in fig. 5.25. With the factor / = 1 on the upper-bound
moment distribution, it is seen that the moments in the frame fulfil the lower
bound requirement SM < M,. It is thus seen that the exact plastification

factor is
10 M.
At = DT
R ¥ )
Having found the exact plastification factor the posed problem has been
solved.

5.3 Displacement Estimation

In the previous subsections the displacements have been assumed small enough for
the static equilibrium equations to be valid. To check this it is necessary to know
or Lo have an estimate of the displacements just before the plastic collapse load is
reached. There are a couple of ways to find the displacements. If the load history
is known for a linear elastic perfectly plastic beam structure, it is possible to find
the displacements by slowly loading the structure and introducing plastic hinges as
they arise. This leads to subsequent analysis of several different related statically
indeterminatle structural systems with fewer and fewer redundancies, until the col-
lapse load is finally reached for a statically determinate system. This procedure is
well suited for computational implementation, but becomes quite time consuming
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*

Fig. 5.26: Double span beam with a point load.

for hand calculations. A qualified guess on which plastic hinge is the last to be
formed can directly lead to a good estimate of the displacements. Even if the load
history is not known exactly, the estimate can tell us, if the displacemets are small
enough for the plastic hinge analysis to be valid.

To find displacements we can use the unit load method based on the principle
of virtual work and we can just assume a linear elastic perfectly plastic moment
curvature relation. Let us guess which hinge is the last to be created. Then
insert (moment free) hinges in the structure at all plastic hinges except at the
last one created and load the structure with a unit load at the position, where the
displacements are to be found. The moment distribution M' related to the unit
load is then used to find the displacements by:

dl':z

beams

o7 dz (5.16)

L p Mt
J
In which M is the moment distribution at the plastic collapse load. If the last
formed plastic hinge is unknown, then try the hinges systematically and find the
one giving the largest displacement; this one is the last formed plastic hinge. Even
though we have only found an approximate upper-bound solution for the plastic
collapse situation we can use this to estimate displacements.

Using the unit load method it is also possible to find the mutual rotations in

the plastified hinges and use this to compare with the plastic rotation capacity of
the beam.

e Example 5.7 Displacement estimation.

Let us analyse the double span beam with a point load in the centre of the first
span, as shown in fig. 5.26. The elastic bending stiffness of the beam is FT and
the plastification moment is M,. The first span has the length L and the second
span has the length a L, where the a > % The plastic collapse mechanism and the
corresponding moment distribution are shown in fig. 5.27. The problem is to find
the displacement at point B just before plastic collapse.

If the second span is very short it will have a stiffening effect on the first span,
and the moment at (' will be large and be the first to become plastic. Let us
assume that the plastic hinge at B is the last to be created. A unit load X; = 1 is
thus placed on the structural system with a hinge at ' as shown in fig. 5.27. The
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Fig. 5.27: Moment distributions of double span beam.

displacement at 7, thus becomes:

L/2 L% 1 1 1 M,L*

1l = —L M, ~L—-M,-L) = ——L

b= GprMe gD+ G Mg i) = 5 B
However, if the second span is very long then a plastic hinge will first be created
at I and then at ¢, We thus assume that the plastic hinge at €' is the last to be

created. A unit load 2, = 1 is thus placed on the structural system with a hinge

atl B and the displacement becomes:

5 2
120 L 5L - My L5 2y ok 1) = (+4) L

(jg =

GRT 6E1 24
Il ex > ]§ we find that:

| 1. M,L2

d 144

2 > g(lHi—E— |
I MpL
LR

T !

Since dy > d;y the assumption is correct, i.e. the last plastic hinge to be created is
at ', and the displacement at I is

1 M,L?
d = dp = g (1+40)=5

It is clear that d grows linearly with a. For large o the displacements at B may
become so large that the plastic hinge cannot be created before the displacement
limit is reached or hefore the rotational capacity of the plastic hinge at B is reached.

Problem 5.4

Find the plastic load factor A, for the frame shown in fig. 5.28 and find the side
sway of the frame just before plastic collaps. The plastification moment is M, and
the bending stiffness is K7 for all the beams and columns.
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Fig. 5.28: Frame loaded two by point loads and a concentrated moment
load.



Chapter 6

Flexural Plate Theories

A plate 1s a continuum with two primary dimensions, which are large compared
to the third thickness dimension. The geometry of a plate is thus described by
its contour in a plane and a thickness, which may vary across the plane. Plates
are used as structural elements mainly to redistribute transverse loads to the plate
boundaries. In fulfilling this purpose the plate deforms in the transverse direction
in a two-dimensional flexural mode. Plates can also carry in-plane loads through a
membrane action, just as beams can carry axial loads, with the important difference
that the in-plane forces are two-dimensional. The theories are developed like the
beam theories through a geometrical approach, where the kinematic assumptions
and constitutive relations lead to the formulation of a potential energy. Variationsin
the potential energy lead to the equilibrium equations and the generalized internal
force definitions. This approach is directly related to the modern formulations of
the classic theories used in computational methods like the finite element method.
Another approach which is often used is to introduce internal forces and then derive
the equilibrium equations through equilibrium of an infinitesimal plate section.
However, this approach may lead to difficulties concerning the shear force and its
relation to the two classic plate theories.

The first. allempts made on the theory of plates were those of FEuler, who in
1766 studied the vibration of perfectly flexible membranes. The flexural theory
of plates was studied by Bernoulli in 1789 and Navier in 1823. In 1811 Lagrange
derived the biharmonic differential equation for deflection analysis of plates, even
though his plate theory was not entirely satisfactory. The first convincing and
today a classic plate theory was presented in 1850 by Kirchhoff [19], including
the identification of proper boundary conditions, which can be quite difficult to
understand. The theory of combined membrane and flexural effects was developed
by Kirchhoff in 1877 and St. Venant in 1883. The large deflection differential
equations for plates was derived by von Karman in 1910. Later in our century
Reissner [20] in 1945 and Mindlin [21] in 1951 proposed a modification of the
Kirchhoff plate theory to include the influence of shear. Kirchhoff plate theory,
often referred to as thin-plate theory, gives a good approximation for thin plates,
but when the plates become thick it is necessary to include the effects of shear
through the use of Mindlin-Reissner plate theory, which is referred to as thick-plate

159
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Fig. 6.1: Cartesian reference for a plate.

theory. However, in modern computational methods Mindlin-Reissner theory is
often modified to enable thin-plate analysis. The development of plate theories is
of course related to the development of beam theories and the derivalion of the
theories in the following should be compared to the chapter on beam theories.
Timoshenko & Woinowsky-Krieger [22] give a thorough treatment of plates and
shells. Furthermore, many textbooks on mechanics like Boresi et al. [23], Nielsen
[24] and Nielsen & Rathkjen [25], [26], treat the classic theories of plates. The
theories of plates are related to the many advanced theories of shells and we just,
refer the advanced tensor treatient of ligge [7].

Cartesian Reference

To use the power of index notation we introduce the first two base veclors 1, in the
elastic central surface of the plate and the third base vector iy in the perpendicular
direction. A point in the plate is thus defined by the vector z,1, + 213, where (2, =)
are the coordinates of the material point, as shown in fig. 6.1. In the present work
we assume thatl the elastic central surface of the plate corresponds to the middle
surface, so that z € [—;-E, 4], where t is the thickness of the plate.

6.1 Mindlin-Reissner Plate Theory

IEven though the Kirchhoff plate theory was developed first it is thought that the
Mindlin-Reissner plate theory naturally leads to the Kirchhoff plate theory through
one extra assumption. We therefore start with the Mindlin-Reissner plate theory,
which corresponds to the Timoshenko beam theory. The plate theory is derived
on the basis of assumed displacement fields vi(z,, z), where we separate the dis-
placement in the transverse direction uy from those in the in-plane directions i,,.
It is assumed that the displacement in the transverse direction ug(z,, z) = w(x,)
is constant through the thickness, so thal all points on a normal have the same
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transverse displacements w(z,). This means that the normal keeps its length dur-
ing deformation.

Assumption 1:

Normals to the undeformed middle surface
keep their length during deformation

Furthermore, it is assumed that the displacements in the in-plane directions have a
linear variation through the thickness. This is equivalent with the following state-
ment:

Assumption 2:

Normals to the undeformed middle surface
remain straight during deformation

The two assumptions are sometimes combined and formulated as follows: Normals
to the undeformed middle surface remain straight and inextensional during defor-
mation. Note that the normals do not necessarily remain normals in the deformed
states.

The linear variation through the thickness can be separated into the two middle
surface displacements va(x,) and the two inclinations (rotations) a,(z,) and thus
written as uy(z,,2) = vy + za,. The displacements of a material point (z,,z) are
thus given by the following kinematics

Assumed displacements

Uy = Vot za, (6.1)

uz = w
where the five unknown kinematic functions are

vs(z) s ap(z.), w(z)

These kinematic assumptions are shown in fig. 6.2 in a common coordinate view for
x4, where we can just substitute 3 =1 or # = 2 for the two orthogonal transverse
sections through the plate.

Using the linear strain definition (1.65) we find the following non-vanishing
strain components

1 { Oug n s ]( m )

o = = 5 . | = Fl\la o
* = 2\oz, ' Ora g nrE o

1 1

= 5(?’0,,3 + 'Uj,a) + 5

. éa,-j + Kag 2 (63)

(aa,,: i o Q’B,n—) z
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Ve

Fig. 6.2:

e = Ves = 2643 = 3z T8z, Upa + Usp
B

= @.t+w, (6.4)

where the in-plane strains at the middle surface (level of the elastic central surface)
have been introduced as £,,, the curvatures as kq5 = %(a,,,, + a,4) and the engi-
neering shear strains as 7, = ys3 = 2¢,3. Thus the strains in the Mindlin-Reissner
plate theory are defined as follows:

The in-plane sirains in the Mindlin-Reissner plate theory are
€as = Eap T ZKap (6.5)

in which the strains at the middle surfacc are the membrane strains determined
by:

1 1 (0ve v,
‘u = —|Vu a) = = | 6.6
Eup 2(1} o+ Vo) 2(6354'5%) (6.6
and the curvatures are
1 1 (Oa, das
Rap = = 5(‘%'6 +as) = 2 (az- * axa) (8.7)
The transverse engineering shear strains in the Mindlin-Reissner plate theory
are
+ 4. 20 (6.8)
;= a,tw . = a5+ — :
RE 7 ; s 9z,

The transverse engineering shear strains are also shown in fig. 6.2 and the resem-
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blance with beam theory should be noted, the difference being in the orientation
of the axes.

The Constitutive Relations

As in beam theories we do not wish to introduce artificial constraints due to errors
in our kinematic assumptions. The kinematic assumptions imply that all material
points along a normal have the same transverse displacement and thus €33 =
However, this is not the case in real plates, since they are free to expand in the
transverse direction. To derive a useful constitutive relation, which is not consti-
tutively constrained, we need an extra assumption. Since experience shows, that
the transverse stress component os3 in plates is negligible compared to the in-plane
stress components g,4, let us introduce this as a basic assumption.

Assumplion 3:

The transverse stress component is negligible

d33 = 0 (69)

The assumption is inserted into the three-dimensional linear elastic constitutive
relations (1.102) or (1.106) for isotropic materials. This results in an equation for
the transverse strain component as follows:

o33 = 0 = Mey, +€33) + 2pe3s |

A
2,u+»\5'" {6.10)

€z = —

Inserting this expression for £33 into the three-dimensional constitutive relations
and replacing the Lamé constants by conventional engineering constants result in
the following expressions for the non-vanishing stresses:

2uA
Tap ﬁlsqgfuu - Q#EQ_@
F)
= 1= 1/2 (Uéaﬂeuu o (1 - V)Eo,g) (611)
T, = 0p = 2Gez = Gy = G, (6.12)

By introducing additional Kronecker deltas and using the symmetry of both stres-
ses and strains the constitutive relation for in-plane stresses o, can also be written
as follows:

Ucrt’ = dn:mu E’yu (613)

in which the fourth-order isotropic tensor of material constants d,,y, becomes

E
dap = 775 (Vanbus + 31 = 0)(Barbow + 8usm)) (6.14)



164 CHAPTER 6. FLEXURAL PLATE THEORIES

Fig. 6.3: Stress components in a Mindlin-Reissner plate.

The in-plane stress-strain relation can also be expressed in a matrix format as
follows:

a1 B L v 0 E1r
o9 — 1 2 v 1 0 £22 (615)
o1 —H 0 0 %(l —v) 2e12

Where the symmetry of components has been used, i.e. ;9 = &9, and o172 = 9.
Thus, the basic stress-strain relations are given as follows:

In-plane stress-strain relation for a plate

Tapn = dn syw Eqp
= dapy (Eqp + 2 ko) (6.16)
where the fourth order isolropic linear elaslic material tensor is given by

E , w
g = s (v6asby + 5L = 0)(Barbrs + bauban)) (6.17)

The relation between transverse engincering shear stresses and the engineering
shear strains for Mindlin-Reissner plales is

Ty = Gra (6.18)

where the T, = 0p3 and v, = 753 = 2e,3.

Since the in-plane strain distribution £, is assumed to vary linearly through the
thickness and since the constitutive relation is linear, then the stress distribution
will also vary linearly through the thickness. The kinematic assumption also leads
to a constant transverse shear strain v, through the thickness and thus also to a
constant transverse shear stress 7, through the thickness. The stress components
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Fig. 6.5: Internal forces related to plate flexure.

of the Mindlin-Reissner plate theory are shown in fig. 6.3.

Let us integrate the stresses through the thickness and define a set of internal
plate forces. Integrating the in-plane stresses g4, defines the membrane forces Ngp,
shown in fig. 6.4. The membrane forces are also referred to as in-plane forces or
axial forces. We define the internal moments M, as the moments of the stress
distribution @,, aboul the middle surface. The transverse shear forces @, are
defined as the integral of the transverse shear stresses. The moments M, and
the transverse shear forces () are related to the out-of-plane bending behaviour of
the plate and they are illustrated in fig. 6.5. For a plate of isotropic linear elastic
malerial we thus have the following force definitions with the sign convention shown
in fig. 6.6.
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Xy
Fig. 6.6: Internal forces in a plate.
Membrane forces
H 3
Ncr,i = p Tun i3 = f ' Corpyr (‘jrw + Z.'GFW) dz
-3 -z
- D:ﬁwu Eqp (6'19)
Bending moments
L L
2 2 - 2
Mys = f: 204pdz = /‘ Corprin (8555 85) dz
g ]
= Dipy K (6.20)
Transverse shear forces
L L
2 2
Qs = /‘ Tsdz = 4 Grypdz
-t J-i
where the plate section properties for membrane, bending and shear action arve
D;n,a—w =1 (ia.ﬂ'w (622)
Dip = 1% dagy (6.23)
D = pGt (6.21)
in which ¢ = 2 has been introduced as a shear correction factor.

The stress in a plate can be found by use of the force and moment definitions above

and the equations (6.16), (6.22), (6.23), (6.24) or just by using that the stress
distribution is linear:
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Stresses in a plate

No Mo

1
Tap = — +12 TR (6.25)
(r, ~ 09)
"B

The shear stress is not the best possible approzimation, since il is known by use
of the Grashof formula that the shear is distributed parabolicly with a mazimum
shear stress of 0
3@
o= R 2
5 (6.26)

Ta

The constitutive relations for Mindlin-Reissner plate theory can also be written
in a more illustrative matrix form as follows:

N” Et 1 v 0 é]]

Nm = 1—2 14 1 0 522 (627)
N L0 0 Hi-w) |\ 26,

My B 1 v 0 K11

_;sz = EI—T v 1 0 Ka2 (628)
Mz =910 0 1a-v) |\ 261

(&) - o3 2)(2)

These matrix equations are based on the symmetry of both strains and stresses.
Note that symmetry in stresses and sirains implies that Ny; = Ngp and My = My,
In the flexural constitulive relations it is convenient to introduce the elastic plate
bending modulus as:

The clastic plate bending modulus

I e e 6.30
T 12(1— ) (6:30)

Using this modulus we can write the flexural constitutive tensor as:

Dby = D (v6as6y, + 3(1 = 0)(60y8pu + G0ubsr)) (6.31)

Y

Ior the sake of clarity the constitutive relations for membrane forces and bending
moments can also be writlten in components as follows:
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| Constitutive relations (in ezpanded form)

Ny = 1“%7:5 (Enn + véa)
Noz 1::: (€22 + veEn)
Na = 1[_":2 (1 —w)ére (6.32)

My = D (k1 + vea)
My = D(kn+ ven)
M = D(1—v)kn (6.33)

It is seen that the constitutive relations simplify a little if Poisson’s ratio v is zero.
This is seldom the case, however, sometimes il is possible to derive quite good
approximate solutions by setling v = 0.

Potential Energy and Virtual Work

Inserting the plate strain equations (6.5) and (6.8) into the potential energy func-
tion for a three-dimensional continuum given in equation (1.123), but using the
constitutive relations (6.16) and (6.18), results in the following reduced potential
energy

v

1 1
L [55(,,3([(,”,4,5.,,, - §7,(ry,g — qyu;) dV — Lv tiu;dA

1 1
j;/ (E(r,. Ean+ Er,fy,, — qju;) dV — _/; tu;dA

1 ]
- /v (Earrl(fu1 +-z E[m) + Eﬂi'}'ﬁ = q]'uj) dV — j; ﬂj?.’.j dA (6.34)

Note that ¢; are the components of the stress tractions on the plate surface. Inte-
grating through the thickness ¢ and defining the membrane forces, plale moments
and plate shear forces as in (6.19), (6.20) and (6.21) we find the potential encrgy
for a Mindlin-Reissner plate:
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Potential encrgy for a Mindlin-Reissner plate

1 1 1
Vi, w,0,) = L(iNapéap+§Mo,qnua+§Qﬂ7p

—Pavs — PW — M) dA
ﬁ_/ (J_ﬁvﬁ + M0, + Qw) ds (6.35)
aA

Internal plate forces are given by (6.19), (6.20) and (6.21) and thus they are
functions of the displacements. The membrane, transverse and moment loads

are ) .
Y gadz, m,= fi 2qsdz (6.36)
-2

L
2

Pﬁ=[‘ gpdz, p=
i

and the boundary forces are

v
2

Nﬁ:ﬁ l, dz, Q:]i t5 dz, Mﬂzfi 2, dz (6.37)

i
7 ] 2

Taking the first variation of the potential energy function with respect to all the
unknown functions yields the virtual work functional. The first variation can be
thought of as the change in potential energy when making small variations in the
unknown displacement functions (v, éw, daz). The first variation of the potential
energy can thus be found as:
/'

SV (v, wy, 5) = g—l/;E)'vﬁ - Z—L}éw — %6% (6.38)
The variation of the potential energy with respect to the kinematic quantities is
equal to the virtural work 6W = éV. Let us thus perform this variation using that
the membrane forces, plate moments and plate shear forces are functions of the
displacements, i.e. Nag(v,), M(ay) and Q(w, a.). We find:

Virtual work functional for a Mindlin-Reissner plate

W = fA (Nap 6Eag + Map ks + Qs 675
—psbve — pbw — muba,) dA
- fa L (Nubvs + Miba, + Qbu) ds (6.39)

The virtual work functional can be derived even if a potential energy does not exist
and thus it is in reality independent of the constitutive relations.

Plate Equilibrium Equations

The plate equilibrium equations will be derived using the principle of virtual work
8W = 0, since this is the modern approach, used for developing mechanical models.
However, the classic method of deriving the equilibrium equations by considering
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equilibrium of an infinitesimal rectangular plate section will be left to the reader.
Let us continue directly from the virtual work functional for Mindlin-Reissner plates
(6.39) and introduce the virtual kinematic quantities de,,, érap and &, However,
hefore doing so let us note that since N,z and M, both have symmetric components
we can just introduce the virtual kinematic quantities as

0Eup = %{61;(,,,3 + 6vs0) — SUsa
dkig: = %(rfao,‘e + daga) = dsq
by = bas+bw, (6.40)

The virtual work functional for the Mindlin-Reissner plate thus takes the form:

§W = fA (Nup 60p0 + Mo 8050 + Qs (605 + 6w, )
—psbvs — péw —m ba,) dA
- / (Nabvs + M,bory + Qéw) ds (6.41)
JAA
The idea is to bring this virtual work functional into a form, which only holds the
basic virtual quantities duv,, dw and da, without derivatives of these. To find the
integral transformations needed do this we first find the partial derivatives of the

individual terms, then we integrate over the area of the plate (middle surface) and
use the divergence theorem (1.19). For example let us consider the moment terms:

(Mapbag) o = Magaba,+ Map b U

My 60’6.’){ = —Musu 6“;5 + (Mas bag), o I

/ M., bapa dA —/ MM,_xéa,dAﬂ-/’(MMS%)‘QdA U
A JA JA

f M S d = — / Mesa 0y dA + [ a5 by ds (6.42)
A JA JIA

The other partial derivatives of the basic kinematic quantities can also be eliminated
using this method. The remaining integral transformations are:

f Nop 6050 dA = — f Nago S0, dA + / naNas 6vpds  (6.43)
A A JOA

/A @ ow dA —[4 @ bwdA+ /M naQ, dw ds (6.44)

Introducing the integral transformations and rearranging the virtual work terms
we find the following informative version of the virtual work functional.

oW =

((Napos + pe)6va + (@ + P)6Ww + (Mape — @+ my)bay) dA
A

/ — 0 No 80, + (= 14 Q)60 + (B, — no Mag)y) ds  (6.45)

1A
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Fig. 6.7: In-plane forces on infinitesimal plate section.

Since the virtual work must vanish 6W = 0 for any independent variation in the
virtual kinematic parameters this virtual work functional delivers the differential
equilibrium equations and the corresponding boundary conditions for a plate.

Plate equilibrium equations

Nopa +ps = 0 (6.46)
Qﬂ,ﬂ +p = (647)
A’fa,a,a - Q,ﬂ + mg = 0 (648)

Corresponding boundary conditions

Nﬁ = ngNas Q =n.Q, Mﬂ = n, M, (6.49)

where n,, is the normal on the boundary of the middle surface.

The five differential equations just derived must be satisfied for a loaded plate to
be in static equilibrium. The equations correspond to force equilibrium in the
two in-plane directions (6.46), force equilibrium in the transverse direction (6.47)
and moment equilibrium about the in-plane axes (6.48). The in-plane equilibrium
equations involve the membrane forces N,, and the distributed in-plane loads p, as
shown in fig. 6.7 for an infinitesimal plate section. The three flexural equilibrium
equations involve the shear forces @ ., the moments M4, the distributed transverse
loads p and the distributed moment loads m, as shown for an infinitesimal plate
section in fig. 6.8. By combining the transverse equilibrium and the moment equi-
librium equations we can eliminate the shear forces and find the following equation
which just involves the moments and the transverse load:

Mosoan+mpa+p =0 (6.50)
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@o+M, pdx,

Fig. 6.8: Moments and transverse forces on infinitesimal plate section.

Force and moment distributions, which satisfy the static equilibrium equations,
are said to be statically admissible, i.e. the static equilibrium equations can be
used to check if a given set of force and moment distributions satisfies equilibrium.
A plate is statically indeterminate, since the static equilibrium equations do not
only have one solution, but many. However, if we introduce the linear elastic
constitutive relations there is one unique solution. Let us introduce the constitutive
relations and the kinematics of the Mindlin-Reissner plate theory, just to see how
the equations and thereby the mechanical problems are coupled. We assume that
the thickness and material properties are constant in the whole plate and find the
following kinematic differential equations:

%D::s-yw(?'mua FUya) +Ps = 0 (6.51)
D(agetwa)+p = 0 (6.52)
1D (e + Quya) — DP(ap +w,5) +m, = 0 (6.53)

It is thus clear that the in-plane problem (6.51) involving membrane forces N,,
and loads p, is an independent problem, which is not coupled with the bending
problem. The in-plane problem is a so-called plane stress problem. Some in-plane
problems can be solved through the use of a stress potential, the so-called Airy’s
stress function. However, this will not be considered in the present text. The flexu-
ral plate problem is given by the coupled shear equation (6.52) and the two moment,
equations (6.53). We shall be content with a knowledge of the form of the static
cquilibrium equations and the two derived displacement differential equations. To-
day these equations are solved by approximate computational techniques, based on
the principle of virtual work or minimum potential energy. Analytical solutions can
be obtained for cases with simple geometric forms and boundary conditions. The
similarity in the differential equations of the Mindlin-Reissner plate theory and the
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Vg

Fig. 6.9: Displacements of a Kirchhoff plate.

Timoshenko beam theory should be noted. The plate equations are complicated by
the two-dimensional format of the coupled partial differential equations.

6.2 Kirchhoff Plate Theory

The behaviour of plates has much in common with the behaviour of beams and it is
therefore not surprising that Kirchhoff introduced the same additional assumption
that the normals remain normals to the plate surface even in the defurmed state.
The mechanical explanation is that the influence of shear vanishes for thin plates,
i.e. the engineering shear strain components of the plate vanish.

Assumption 4:
Normals to the middle surface remain normals during deformation

this implies that the shear sirains are disregarded, since:

.= —W, = Ye=0oz+w,=0 (6.54)

The assumed displacements shown in fig. 6.9 are a two-dimensional version of the
Buler-Bernoulli beam theory. The assumed displacements in Kirchhoff plates thus
are:
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Assumed displacements

Uy = Uy —2ZWg (6.55)

Uy = w .56

The derivation of Kirchhoff theory is equivalent to the derivations already per-
formed for the Mindlin-Reissner theory and we shall not go into details, since we
can just insert v, = 0. However, as in the chapter on beam theory the important
formulas will be given. The in-plane strains are now defined by:

The in-plane strains in Kirchhoff plale theory are
Eap = Eap+ 2Kags (6.57)

in which the membrane strains are

) 1 1 [ dve  Oug
"CI‘ — =t o o = = (’. 3
€ap 2(” 2+ Vsa) 2 (8.1:3 81:@) (6.58)
and the curvatures are
fapg = gloaptese) = —3(Wap+w,50)
B B 9% w o
= —Was = 9202, (6.59)

The constitutive relations are the same as for Mindlin-Reissner theory, with the only
modification that the shear forces are irrelevant, since 4, = 0. Due to the defini-
tions of the inclinations as &y = —w, », and thereby the curvatures as k45 = —w 44,
the virtual work functional for Kirchhoff plates takes the following form

Virtual work functional for Kirchhoff plates
S = f (Nog 60a0 — Map 6, — pabts — pow + mabuo, ») dA
" .

= j (Ny80s = Mubo, 5 + Qbw) ds (6.60)
dA

In the quest to find the equilibrium equations we need to perform partial integration
and use the divergence theorem twice, since the virtual work equation involves dou-
ble partial derivalives of a kinematic quantity, i.c. éw, 44 Using partial integration

once as in the previous section we find:
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Xz

Fig. 6.10: Local (n, s)-coordinate system on boundary.

W= — /A ((Nap + 2605 = (Map + ma)6uw, o + pbw) dA

- fa (Vs = noNap)bva + Q6w — (M, — maMoa)bw,,) ds (6.61)

Using partial integration on the terms including w4 and the divergence theorem
yields

W= — f,; ((Naser + Ps)80s + (Mapas + mpp + p)bw) dA
— LA ((N3 — noNyps)bv,
H(Q — 15 Moy )8t0 — (M, = 1o Map)bw, ) ds (6.62)

In this virtual work functional we can use internal variations leading to the equilib-
rium equations (6.46) and (6.50) already derived. However, the boundary variations
are not casy to introduce since the transverse displacement and its derivative along
the boundary are coupled. In order to cope with this problem we introduce the tan-
gential boundary vector with components s,, which is orthogonal to the boundary
normal with components n,. These vectors define a local (n, s)-coordinate system
as shown in fig. 6.10. We assume that the boundary is piecewise straight so that
the partial derivatives become simple. The boundary rotations can be decomposed
in the local coordinate system by projections and the components found as follows:

dw : dw
(Sw‘,I = (‘) (d—n) = TNg 6'{0'5 N 6‘:‘.()‘_, = 5 (E) = 84 510'3 (663)

in which the indices n and s refer to the components and they are not summation
indices. We also use the notation (), = %3 and (), = %;l, respectively, for partial
derivatives in the normal and tangential directions. Corresponding to this notation
we use the following notation for the internal moments in the local coordinate

system as shown in fig. 6.10

Mun = nanaMea,. My = sgngM,, (6.64)
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and for the (prescribed) boundary moments M, we use the following component
notation:

M, = n,M,, M, = s,M, (6.65)

Furthermore, let us introduce the notation @, for the internal shear force , which

is determined statically by:
Qs = Maga (6.66)

Note that this shear force is determined statically and not kinematicly, since there
are no shear strains in the Kirchhoff plate theory.

Having introduced the notations we rewrite the boundary integral term in (6.62)
involving the derivatives of the boundary displacements 6w ; as follows:

f (M, = noMas)6w . ds
A
= [M ((A_I_inﬁ —naMyns)éw , + (Mss, — n,,,Mc,gsﬁ)éw\,)) ds
- ] (M = M), + (M, — My, )60,,) ds (6.67)
94

For the derivatives along the boundary in equation (6.67) we can use partial inte-
gration as follows:

f (M, — My.)buw , ds
dA

= —/ (Mg — My 5 )bw ds+f —M,;s)éw) ds

8

= 7/ — Mg s)bw ds (6.68)

since the (circulation) integral [;4(...)sds = 0 around the boundary of the deriva-
tive along the boundary is zero, (the integral starts and ends at the same place).
Introducing this (6.68) in equation (6.67) we get the following reformulation of the
boundary term:

/ (My — noMys)bw o ds
dA
== [JA ((A_In " ]‘Jmi)fs'w,n - (Ms,s = Mns,s)éw) ds (669)

Introducing this equality into the virtual work equation (6.62) yields the following
informative form of the virtual work for Kirchhofl plates:

6”’ = 7] nia’{";ﬂ 6vz+(Mﬂ,ll,ﬂ+m,,l.+p)6w) dA
/1(( Vi — 116 Nog)6vs — (M — My )bw,,
a7
+(Q + Moy = 1aMopo — Mygs)6w) ds (6.70)

The principle of virtual work §W = 0 states that the virtual work functional must
vanish for any independent virtual variation in the kinematic parameters. In this
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informative virtual work functional (6.70) we can also vary in-plane displacements
bv,, transverse displacements éw and the normal derivative of the transverse dis-
placements éw, independently at the boundary, whereby the correct boundary
conditions are revealed for any boundary.

Plate equilibrium equations

Nopatps = 0 (6.71)
Mﬂ_ﬂ‘aﬂ =+ Mg, +p = 0 (672)

Corresponding boundary conditions for Kirchhoff plate theory

Ny = nglNas (6.73)
M, = ngoeMqs (6.74)

Q + Ms.s = n,uQ,a + Mn.t,s
= naMaso + Mnss
= A’Irm,n. +2 Mns,s (675)

Let us take a look at the differential equation (6.72), which describes the bend-
ing behaviour of the Kirchhoff plate. Let us assume that there are no distributed
moment loads m, = 0 and let us then expand the equation into components as
follows:

Mp+ Myzor + Mayyi2 + Magaa+p = 0 )
Mig +2Mizp2 + Mazze+p = 0 (6.76)

where we have used that the moment components are symmetric and that the order
of differentiation is irrelevant. The equation can also be written in the following
notation:

azM“ 32]\1;2 62)\/]22
az? dz,0z, Jx}

+p =0 (6.77)

This equation is a static equilibrium equation. If we want to consider transverse
displacements, then we must introduce some constitutive relation between mo-
ments and displacements, i.e. curvatures. The linear elastic constitutive relation
for Kirchhoff theory takes the following component form:

M1] = _[) (lU_!] + Uw‘zz)
My = =D (was+ vwyy)
My, = =D(l —v)wy, (6.78)

Introducing these constitutive relations in the static equilibrium equation (6.72)
or (6.76) yields the differential equation for the transverse displacements in an
isotropic linear elastic Kirchhofl plate:
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Differential equation for displacements of Kirchhoff plate

Wi + 2wz + Warer = % (6.79)
where ) = 12(?"_3‘,2) is the elastic plate bending modulus.

This equation is the bhiharmeonic equation derived in 1811 by Lagrange, even though
his plate theory was not entirely salisfactory. The equation may also be presented
as follows:

W, apas = g
' D
Gy = 2
Viw D
Fw d'w 'w p
g~ - = = :
dzf ¥ Aridx} T da} D (6:80)

To solve the biharmonic equation we need boundary conditions, which can either
be of a static or a kinematic type. The boundary conditions for the flexural prob-
lem are given in equations (6.74) and (6.75), where the second one is the most
complicated. The first states that the moment corresponding to stress components
in the normal direction is directly related to the boundary tractions or moments
by M, = nonsM,, = Mu,. The second and more complicated boundary condition
(6.75) is related to the boundary shear @ and change in the torsional boundary
moment M, ,. These houndary forces/loads are transmitted to the plate in the
form of a shear force n.Qy = n, M.z, and gradients in the torsional moment M,;
(i.e. s,8an3Maa.), but since the shear force and torsional moment gradient are
statically equivalent in the Kirchhoff theory we cannot separate them, only their
sum is known,

Kirchhoff boundary condition
(;) + Ms,s = nﬁQp + Mns,s (681)

where the inlernal shear forces are Qp = nsMap o

At the boundary there is a transition zone where the boundary
forces/loads ) and M, transform into an internal indeterminate com-
bination of shear force n.(), and torsional moment gradient M, ;.

The equivalence between the shear force and the moment gradient. along the bound-
ary is illustrated in fig. 6.11. The left-hand part of the figure shows the torsional
moment M,, and its variation M,,.ds. The right-hand parl shows an equivalent
set of forces M,; and M,; + M,,sds. 1t is clear thal a variation in the torsional
moment leads to differences in adjacent forces M, sds, which thereby produces a
continuous shear force M,,, and some concentrated corner shear forces M,,., as
illustrated in fig. 6.12.
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Mns

Fig. 6.12: The torsional moment M,., equivalent shear force M,;, and
concentrated corner shear forces M,,.

Let us look at corner shear forces at a rectangular corner, and just to illustrate
the concepl let us use a coordinate system which is orientated according to the
corner as shown in fig. 6.13. By looking at the orientation of the torsional moments
My, Mgy, and by using the idea of force equivalents it becomes clear that there
must be a corner shear force of

Q = Mz + My =2My, (6.82)

at rectangular corners. For non-rectangular corners the sum of the force contri-
butions can be calculated by using the two different local coordinate systems at
the corner (n',s') or (n?, s%) as shown in fig. 6.14. Because of the difference in
orientation of the (z;,z3)-coordinate system and the (n?, s?)-coordinate system the
expression for the corner shear force becomes

Q o MZ_MI

ns ns

= &2n My, —siniM., (6.83)

where the superscripts are references to the relevant coordinate axes.
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Xy

Xz

Fig. 6.13: Corner shear forces at rectangular corners.

Fig. 6.14: Contributions to the corner shear force.
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e Problem 6.1
A thin rectangular plate is @y = 1000 mm by a; = 2000 mm and has a thickness of
t = 10 mm. The material is steel with an elastic modulus F = 2.1-10% MPa and a
Poisson ratio of ¥ = 0.3. The plate is supported along the boundary and the plate
displacements are given by:

1
v = —=z
! 100"
v = ———g
: 100°
1
wo= 56(11 sjn(%) sin(%)

where the coordinates are in the ranges z; € [0,41] and z € [0,a2]. The plate is
assumed to follow the Kirchhoff plate theory and it has a non-uniform distributed
load p and no distributed in-plane loads p; = 0.

Make a sketch of the in-plane displacements v, and another sketch of the
out-of-plane displacements w.

Find the middle surface strain components £,5.

Find the membrane forces N,; and show that they fulfil the equilibrium
equations within the plate.

Find the membrane boundary forces Ny and describe the in-plane load situ-
ation.

Use the displacement equilibrium equations for a Kirchhoff plate to find a
mathematical expression for the distributed transverse load p(z,).

Find the curvatures kqg.

I'ind the moments M5 and show that they fulfil the static equilibrium equa-
tions.

Find the boundary moments M, and the equivalent shear force distribution
Q + M"I.J'
Find the corner shear forces Q.






Chapter 7
Yield Line Analysis of Plates

The elastic analysis of plates using the differential equations or virtual work func-
tionals described in the previous chapter determines the elastic moment distribu-
tions and the transverse displacements. However, this gives no indication of the
transverse load-carrying capacities. The load at first yielding in a plate is much
lower than the experimental load-carrying capacity, due to the plastic capacity of
the material. Due to the plastification and the ability of the material to yield, the
moments in the plate are redistributed and the plastic zones grow until eventually
a plastic flow mechanism is formed, much like in the plastic hinge theory for beams.
The plastic flow mechanism is also called a collapse mechanism.

The main idea is to assume that the plastic flow mechanism consists of moving
(rotating) rigid parts of the plate, where the parts are connected along yield lines,
i.e. plastic hinge lines, as shown in fig. 7.1. Along the yield lines there are mutual
rotations between neighbouring rigid parts. We assume that the plastic flow is
quasi static, so that we shall be able to use energy considerations and the principle
of virtual work. For this type of quasi static plastic flow mechanism we may assume
virtual displacements corresponding to a virtual yield line lay-out and calculate the
total (plastic) virtual work W, by assuming that the moments have plastified.
The (plastic) principle of virtual work éW, > 0 then gives an upper bound for the
load-carrying capacity of the plate. The upper bound can then be minimized by
variations in the yield line lay-out.

The yield line theory was developed in 1943 by Johansen [27], [28], and [29].
The theory was mainly developed for reinforced concrete slabs (plates), but since
then it has been extended to other materials, such as metals. General theories for
perfectly plastic materials were developed independently by Gvozdev about 1936
and Prager about 1951. Modern treatments of the plasticity theories are given by
Chen & Han [18], Nielsen [30], Martin [31] and Save & Massonnet [32], see also the
work by Prager [33] and by Hodge [34]. Introductory texts in Danish are given by
Nielsen & Rathkjen [26] and by Nielsen [24].

The presentation in this chapter will be limited to the yield line theory based
on the principle of virtual work and a short introduction to the strip method based
on equilibrium solutions as developed in 1956 by Hillerborg, see [35] or [36]. The
yield line theory establishes upper bounds for the load-carrying capacity, and the

183
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Fig. 7.1: A plastic flow mechanism for a plate.
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Fig. 7.2: Stress distribution used to define M,.

strip method establishes lower bounds for the load-carrying capacity through the
use of statically admissible moment distributions. Before the yield line method is
treated we need to introduce a few basic concepts of perfect plasticity theory for
plates.

Yield Criterion and Flow Rule

When a combination of plate moments at some point reaches a certain level it is
assumed that the material becomes perfectly plastic and yields at this point. The
combination of moments at which the material becomes perfectly plastic is de-
scribed by a yield criterion. In plasticity theory the yield criterion is deseribed by a
yield function f(M,,). The yield function often includes a referencial plastification
moment M,, (where p is a reference indez, i.e. no summation) or M} and M, if
the positive and negative plastification moments differ. The plastification moment
M, for an isotropic material can be determined by use of the uniaxial yield stress
fy, (where y is a reference indez), corresponding to the stress distributions shown
in fig. 7.2 as follows:

For an isotropic plate material with equal compression and tension yield siress
the referencial plastificalion moment is:

|
M, = |ft 20, dz | = 3%/, (7.1)

If the yield function is less than zero, f(M,,) < 0, then the material has not reached
the plastification level, and when the function reaches zero f(M,,) = 0, then the
material yields. A perfectly plastic material can never be in a state where the yield
function is positive. The yield criterion can be described by a socalled yield surface
in moment space, i.e. as a function of the moments M,,. The yield surface is the
surface in momenl space at which the yield function is zero:

f(Ma—.4) =0 (72)
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For isotropic materials the yield criterion and the yield function can be formulated
in principal moments, if the material remains direction independent (during and
after yielding). For these materials the principal axes of moments and curvatures
are identical. Some classic yield criteria (surfaces) for plates are shown in fig.
7.3. The von Mises and Tresca yield criteria are based on integrated plane stress
yield criteria and Johansen’s (simple) yield criterion is, to some extent, based on
experimental knowledge of reinforced concrete plates. The von Mises yield criterion
is formulated so that it preserves the material volume during plastic flow, which is
generally the case for metals. Let us summarize.

The constitutive state of the material is described by the yield function

< 0 linear elustic state
f(M,s) =0 perfecly plastic state (7.3)
>0 impossible state

The yield surface in moment space is given by:

f(Mag) = 0 (7.4)

How do we link the curvature rates and the moments for perfectly plastic plates?
Let us use the dissipation assumption originally used by von Mises: The rate at
which plastic energy ts dissipated is the mazimum possible, (sometimes referenced
as the Hill-Mandel maximum dissipation principle). The rate of energy dissipation
d per area in a plate is determined by the work of the plastic moments through the
curvature rate:

d = Mypkap (7.5)

According to the von Mises assumption the dissipated energy d is the maximum
possible, i.e. the material makes the maximum possible resistance. A necessary
condition for a maximum is that, the variation of the energy dissipation is zero
§d = 0, i.e. the rate of energy dissipation is stationary. Variations with respect to
the moments on the yield surface gives:

fop 6Map =0 (7.6)

For consistence the moments must remain on the yield surface for the used varia-

tions. This is expressed mathematically by use of the yield criterion as follows:
af

— Mp, =0 7.7

aju-m’ op ( ]

which just states that the value of [ remains stationary 6 =0 (and thus equal to

zero) for the variation 6M,,. The term ﬁﬁ is normal to the yield surface. The

(dot) product between this normal and the variation in moments must therefore he

zero. Let us examine the two equations. If the two equations (7.6) and (7.7) arc

fulfilled for any moment variation on the yield surface, then we conclude that the
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Fig. 7.3: Some plate yield criteria.
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coefficients k45 and 5%173 are proportional. Thus the constitutive relation, or let us
say the flow rule, takes the form

; . af
Kan = A M, (7.8)

In the flow rule X is a flow rate proportionality factor. Since plastic flow only occurs
on the yield surface we write the flow rule in the following manner:

The associated flow rule for perfecily plastic materials

. of . B
f;:l_w = A m If f(Maﬂ) =0

0 it f(Myg) <0

(7.9)

This flow rule is an associated flow rule since the plastic flow &4, is directly associ-
ated with the yield surface f = 0. The flow rule states that the curvature flow rate
is proportional to the normal of the yield surface, so it is also referred to as the
normality condition or the normality flow rule. Note that the dissipation assump-
tion of von Mises is not always correct and hence, non-associative flow rules exist.
Let us discuss the implication of the von Mises assumption. The stationarity of
the energy dissipation éd = 0 is a sufficient condition for a maximum, if the yield
surface is convex. To show this let us compare the energy dissipation rate for a
neighbouring moment state M., + AM,, on the yield surface with the maximum
energy dissipation state M, for given curvature rates £,, as follows:

(Maﬁ‘l’-siwad)':\'a, < Ala.ﬁkryﬁ U-
AMyshas < 0 (7.10)

The first inequality is true since Maafa, 1s the maximum possible energy dissipa-
tion. The curvature rate K., at maximum energy dissipation is normal to the yield
surface, and the second equation states that the projection of the moments on this
normal must be negative, which is the same as staling that the yield surface must
be convex, as shown in fig. 7.4. The derivations have been made assuming contlinu-
ity of the functions. However, the demand for a continuous convex yield surface is
often relaxed to allow for linearly varying parts. It is worth noting that for a given
sel of curvature rates it is possible to find a unique solution for the moments only
if the yield surface is convex. However, for both convex yield surfaces and yield
surfaces with relaxed convexity the rate of energy dissipation is unique for a given
set of curvature rates.

e Example 7.1 What are the moments for a given set of curvature rates?

Let us compare the linear elastic constitutive relations for plates and the perfectly
plastic constitutive relations, i.e. the flow rule, for a given set of uniaxial curvatures
and curvature rates. The curvature state in a yicld line corresponds to a localized
uniaxial curvature. The material is assumed to obey the von Mises yield criterion
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Fig. 7.4: Neighbouring moment state on a convex yield surface.

shown in fig. 7.3. Let us assume the following positive uniaxial curvatures and
curvature rates:

K11 K11 K11 K11
K22 = 0 L) - 0
2;‘{.12 0 2‘%12 0

In the elastic case we use the constitutive relations (6.28) or (6.33) and find

My 1
My = Din | v
Mg 0

In the plastic case we use the flow rule (7.9), which states that the curvatures
are normal to the von Mises yield surface, shown in fig. 7.3. The curvature state
corresponds to the localized curvature in a yield line parallel to the z;-axis. In
the yield line the twist is zero, fj2 = 0, and the principal coordinate directions
are orientated as the yield line, which means that the torsional moment is zero,
M3 = 0. We thus just find the one point on the von Mises yield surface, which
has the normal vector (x11,K22) = (1,0). This gives us the following moments in
the plastic case:

My, 5 1 1
Mgz = EMP % =~ 115Mp 0.5
M2 0 0

In both the elastic and the plastic case it is seen that a uniaxial curvature xy; or &y
results in a transverse moment My, It is also noted that the maximum moment
for the perfectly plastic von Mises material is higher than the reference moment
M,. This is due to biaxial state of stress in the plate. If, instead, we had used
Tresca's or Johansen's yield surfaces the maximum moment in the yield line would
be exactly M. '
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Fig. 7.5: A virtual hinge line of width Ab and curvature dx,,.

Virtual Work, Hinge Lines and Yield Lines

The yield criterion is assumed to be independent of both axial forces and transverse
shear forces. The assumption is also made in the plastic hinge theory for beams.
For the assumption to be valid the plate must be thin enough compared to the
spans of the plate, i.e. the shear forces must be small enough. The yield criteria
can he derived using the kinematic assumptions of the Kirchhofl plate theory and
a general plane stress yield criterion. Let us not gef into the implications of the
assumptions made. The flexural part of the virtual work functional on which the
yield line theory is based:

§W = / (M Bty — W) a’A—/g (Mabors + Qbw) ds (7.11)
A A

in which éay = —dwy, are the virtual middle surface inclinations and ér,, =
— &1, are the virtual curvatures, both derivable from the virtual middle surface
displacement dw. Furthermore, a load factor A has been introduced, so that the
total transverse load intensity p' is given by p' = Ap. (This A is not related directly
to the flow rate proportionality factor A in the previous subsection).

The virtual work in a virtual hinge line is the basis of the derivations of the
upper and lower-bound theorems. Let us consider a band with the width Ab, which
only has virtual curvature in the normal direction é&., as shown in fig. 7.5. The
hand is described using a local (n, s)-coordinate system with the n-axis as a normal
and the s axis in the direction of the band. At opposite sides of the band the edge
moments M, and M, are assumed equal. The principle of virtual work éW = 0
gives us

lim ( fﬂ [\/Inﬁéf;(,.id/l—fm n‘arﬁ{sa,fd\s) ~ 0 U

lin / Mo 8tigm dA = /M,mé()ds (7.12)
JA L

Ab—0
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in which the integration index L is the length of the hinge line. The normal moment
and the mutual rotations are related to the original coordinate system as follows:

M., = nsn.M,, (7.13)

80 = bda} - bo, = Albay)
= ny(ba} —ba,) = ny A(ba,) (7.14)

Thus, the internal virtual work in a hinge line §W;,; is found by integrating the
product of the moment M,,, and the virtual mutual rotation 8@ in the line, i.e.

Wiy = /L M,..66 ds (7.15)

Using only virtual displacements with hinge lines and rigid plate parts the virtual
work functional takes the following form

Virtual work functional (for virtual displacements with hinge lines)

W o= % [ Musods— [ pbwdd (7.16)

hinge lines

If the hinge line is a yield line, then we can find the yield moment in the line
M, = M, by use of the flow rule. In the yield line the curvature state is given by
Knn With k45 = K5 = 0. The normal to the yield surface is given by the curvature
state and we can find the yield line moment by identifying a point on the yield
surface with this normal. For the yield surfaces shown the moment in the yield line
is found to be:

The moment My, in a yield line is

2
My =+—

7 M, von Mises’ yield criterion (7.17)

M;=xM, Tresca’s yield criterion (7.18)
1+

M, = { Mf— Johansen’s yield criterion (7.19)
e

where the positive values correspond to yield lines with positive mutual rotation
60 > 0 and the negalive values lo yield lines with negative mutual rotations
60 < 0.

Thus, the non-negalive plastic virtual work in a yield line is

W= j M,66 ds = LM,56 (7.20)
L

where @ straight yield line has been assumed in the lasl equality.

In yield lines the moments are given directly by the flow rule, but it must be
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emphasized that the hinge line is assumed to be a real yield line. The plastic
virtual work functional takes the following form:

Plastic virtual work functional (for virtual displacements with yield lines)

B, = X fLMngds_)\p/ApéwdA (7.21)

yield lines

The virtual work functional W and the plastic virtual work functional §W, will be
used in the next two sections for evaluation of the upper and lower-bound theorems
for plates.

The determination of the internal plastic virtual work may sometimes be sim-
plified as described in the following. For straight yield lines we may define the
following components L, of the yield line length L and likewise the mutual rotation

60 as:

80, = n,o0
Ly = nsl (7.22)

The length L, is the projection of L on the z;-axis and the length I,
is the projection on the z,-axis. (Note that 66, = A(6a,)). The introduced
components enable us to rewrite the internal virtual work as follows:

§Wine = MLE0 = MynyL,60 = M,Lyna80
= M.L,56, (7.23)

With this formal we can decompose the mutual rotations in convenient coordinate
directions and use the projections of the yield line length on these directions. The
assumption of straight yield lines is not necessary, but may be easier to understand.

e Example 7.2 A rectangular plate with opposite edge supports.

A rectangular plate with simple supports at two opposite sides is loaded hy a
uniform transverse load p = 1kN/m?. The plate is isotropic with a referencial
plastification moment of M, = 8 kNm/m and follows Tresca’s yield criterion. The
geometry with ¢ = 2 m and the assumed yield line is shown in fig. 7.6. For a
Tresca material the moment in the yield line is M, = M,. Assuming that the yield
line is the correct one we use the principle of virtual work 6W, = 0 to find the
load-carrying capacity as follows:

f Mebb ds — A, ] pbwdd = 0 U
L A

Il
o
=

b bw
M,)Qja —App 2a? 5

i 2M,  16kNm/m _
Pope? LkN/mP(2m)?

If this is the correct yield line lay-out at failure, then the total load-carrying capacity
for a uniform transverse load is p' = 4 kN,fmz.
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Fig. 7.6: A simple yield line example.

Reinforced Concrete Plates

In reinforced concrete plates with orthogonal reinforcement the amount of rein-
forcement in the two directions may vary and the yield criterion therefore becomes
orthotropic. Let us use a main z,-coordinate system with axes along the orthotropic
directions, i.e. orientated as the reinforcement. The referencial plastification mo-
ments are Mz, i.e. with M, corresponding to the plastification moment with rein-
forcement in the z; direction and M,; corresponding to the plastification moment
with reinforcement in the z, direction. There may also be a difference between
positive and negative plastification moments and we thus introduce the sign as an
upper index as M7, for positive and M, for negative plastification moments. Jo-
hansen’s generalized yield surface for reinforced concrete plates is shown in fig. 7.7.
The moment M, in an orthotropic yield line can be found using the definition of
the normal moment M., as follows

M; Nt Mag

ni My + njMa; + 20y My, (7.24)

For Johansen’s generalized yield surface, which has M;; = 0 in the plastic zone,
the moment in positive or negative yield lines is given by:

M; = niMg + M,

M; = —(niM;, +niM,) (7.25)

The virtual work in an orthotropic yield line using Johansen’s yield surface is then
given by:

W, = LM50
|L(n3 My + n3M;0)60 | (7.26)
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Fig. 7.7: Johansen’s generalized yield surface.

This formula becomes easler in practical analysis if we project the length L of the
vield line onto the reinforcement axes as L, and likewise the mutual rotation 40
as 88,. Using (7.22) the virtual work takes the following form:

(5”’3 = |IJIJWP]§91 + Lglwr,zé(‘)g | (72?)

Note that the definition of L, = n,L implies that L, is along the z-
axis and L, is along the z;-axis. In the isotropic case the formula reduces to
dWe = |M,Lz68,|, which has in fact already been shown.

o Example 7.3 A simple orthotropic skew plate.

A skew plate with simple supports at two opposite sides is loaded by a uniform
transverse load p = lkN/’mZ. The plate is orthotropic with referencial plastification
moments of My} = 8kNm/m and M,z = 0.5M,,. The plate is a reinforced concrete
plate (RFC) and it follows Johansen’s yield criterion. The geometry with a = 2m
and the assumed yield line is shown in fig. 7.8.

For the shown yield line the normal vector has the components

ny = cosv = V22

ny = sinv = V2/2

Since the mutual rotation in the yield line is 66 = 24/2 fw/a the rotation compo-
nents become

66,
6ty

n108 = 26uw/a
nydd = 2bw/a

Il

The lengths of the yield line projections are [ = Ly = a.
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Fig. 7.8: A simple yield line example for an orthotropic RFC-plate.
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Assuming that the yield line is the correct one we use the principle of virtual work
6W, = 0 to find the load-carrying capacity as follows:

f.WgﬁBds—Ap/pﬁwdA =0
L A

4
bw bw dw
aMf,ﬂZ? + GMPQQ? e /\pp 20.2 7 = 0 ,U,
3Mp1nﬁw—)\ppa2 fw = 0 |
A = My _ 24kNm/m - 6

pa®  1EN/m%(2m)?

If this is the correct yield line lay-out at failure, then the total load-carrying capacity
for a uniform transverse load is p* = 6 kN/m?,

7.1 Upper Bounds by the Yield Line Method

In this section the upper-bound theorem will be introduced in much the same way
as in the chapter on plastic hinge analysis. The use of the principle of virtual work
§W = 0 to find the load-carrying capacity is based upon the use of the real moment
field M,,. However, through the use of a kinematic approach we may obtain an
upper bound on the load-carrying capacity by exchanging the real moments in a
virtual hinge line with the plastified moments. By anticipating that the moment in
the virtual hinge line is the plastified normal moment M; we violate the principle
of virtual work by increasing the internal virtual work, since |M,| > |M,,| and
therefore the plastic virtual work is greater than the real virtual work, i.e. §W, >
SW = 0. This leads to the upper-bound theorem for plates:

The upper-bound theorem

An upper bound, A*, for the plastic load-carrying capacity, A,, can
be found by introducing kinematicly admissible virtual displacements
with virtual yield lines into the virtual work functional and using that
this virtual work is greater than or equal to zero, W, > 0.

The tnequality leads to the following formulation:

3 ]M,;dﬂds-—)\p/p&wdﬁl > 0 |
L JA

yield lines

§W,

Jy d A (7.28)

where the upper-bound load factor is given by

Z /"ME(S()(LS
)\+ o :'i(-ldlmr;-L (

j’ pbw dA
L

~1

29)
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Fig. 7.9: Uniformly loaded rectangular plate.

There are many formulations of the upper-bound theorem. In many texts the
equations are derived in an energy rate format, but the present formulation gains
through the use of the concept of virtual hinge/yield lines.

Today the best way Lo validate the upper-bound solutions is through the use of
advanced computational techniques which utilize the concepts of modern plasticity
theory. However, even with these modern techniques the final flow mechanism
may be difficult to obtain, even though the load factor is very close to the found
upper-bound load factor. A few analytical examples exist, where both upper and
lower-bound results can be found. It is time to illustrate the practical use of the
upper-bound theorem.

e Example 7.4 Uniformly loaded rectangular plate.

A rectangular plate of isotropic perfectly plastic material is loaded by a uniform
transverse load Ap, where p = 1kN/m?. The plate geometry with @ = 2m and the
anticipated virtual yield layout is shown in fig. 7.9. The plastification moment is
M, = TkNm/m for both positive and negative moments. Let us find the upper-

bound load factor A* for the shown virtual yield line lay-out.

The virtual work of the external load can be found as follows, since the distributed
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load is constant:
W = A*[péwdA = A*pf dwdA
A A
where [, éw dA is the volume of the traverse space. Using this we find:
fl 1 a2 Tiop 2
Weyrt = 2A+p{-2-a 6w)+8z\+p(§3éw) = E)ﬁpa dw

Alternatively we can calulate the external work as the sum of the work performed
by the resultant load on each individual rigid part of the plate. This method is
used for more complicated load cases.

The internal work of the yield lines is straightforward for the central yield line,
where the mutual rotation is 66 = 26w/a, whereas the diagonal yield lines become
more difficult. However, by looking at a section through the plate which is perpen-
dicular to the diagonal yield line we see that the mutual rotation becomes v/26w/a.
The internal work becomes:

Wine = Y. MLé8 = Mga‘za(—w-i-dMg\/‘Ea\/iaTw = 10Mbw
1

yield lines
The upper-bound theorem results in

o= 0Meéw 30 M,

- Ipa?bw 7 pa?

If the material has Johansen’s or Tresca’s yield criterion then M; = M, and we

find the following upper-bound load factor:
M, _ 15

A= =

7 pa? 2 - s

If, however, the material has the von Mises yield criterion then M, = %Mp and

we find At ~ 1.15- 7.5 =~ 8.6 which is 15% higher.

To find the lowest possible upper-bound load factor different variable yield line lay-
outs must be tried and minimized. However, we are never sure, that we have found
the lowest possible upper bound, unless of course we can find a corresponding lower-
bound solution. However, the minimum is usually very flat and the upper-bound
technique is in fact used in practice without consulting lower-bound techniques.

Practical Solution Technique

The internal work in the virtual yield lines mav be calculated in a more practical
manner, where the problem of determining the mutual rotation in a yield line is
circumvented. Each rigid part of the plate is considered individually and the total
virtual work is found by summation over the individual rigid parts. The virtual

work of the shear forces is neglected, since they do not contribute to the total virtual

work. The virtual work of the yield moments in a rigid part [ of the plate, which
has a constant inclination, 5&{, can be found. Using that the normal inclination is



7.1, UPPER BOUNDS BY THE YIELD LINE METHOD 199

axis of
rotation

Fig. 7.10: Calculation of internal work for each rigid part.

bal = n,éal and that the component lengths L, are found by the integral of n,ds
along the line, i.e. Ly = [} nyds, it follows that:

WL, = / Mol ds = ] Mol n,ds = M / 5y di
L L 2 &
ML b6a} (7.30)

where the yield moment M, is assumed to be constant and L, is the yield line
projection on the zj-axis and L, is the projection on the z,-axis, (summing up
overlapping parts). If the yield moment is piecewise constant, the calculation can
he performed piecewise. If the coordinate system is orientated with an axis parallel
to the axis of rotation, then the calculation only involves one term. For example
il the local x,-axis is chosen parallel to the axis of rotation for part I, then the
internal work becomes §W2, = M;Lyécd, since one inclination vanishes, as shown
in fig. 7.10, i.e. ad = 0.

e Example 7.5 Uniformly loaded rectangular plate, revisited.

Let us try the more practical technique on the previous, fairly simple example,
shown in fig. 7.9. The individual rigid parts of the plate rotate about the support
lines, which in this rectangular case are parallel to the chosen coordinate system.
All the plate rotations in the current yield line lay-out are identical and equal to
dw/a. The projected lengths of the yield lines are Ly = 3a for parts I and /11,
and Ly = 2a for parts IT and I'V. Thus, the internal virtual work can simply be
calculated as:

Wi = ZM(Lqéaﬁ = M((3a+2a+3a+2a)6?w = 10Msbw

which of course is the same as found previously. The practical technique becomes
the easiest method for complicated yield line lay-outs.
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Fig. 7.11: Calculation of internal work in an orthotropic rigid part.

For orthotropic reinforced concrete plates the solution technique is practically
the same. The difference lies in the choice of coordinate axes. In the orthotropic
case we choose the orthotropic axes as shown in fig. 7.11. The internal work of the
moments along the boundary of each rigid part is calculated and the contributions
from all parts are summed. The rotation §0 in a yield line between two rigid parts
can be split into the inclinations (rotations) of the individual parts o on either
side of the yield line by 68 = éaf — éa;,. The internal work in a yield line is thus

determined as follows:

sWi

tnt

:jm@@
L

fb(nfM,,. +niM,)bal ds
= f My nlﬁcx:‘ nids + f M, ngéai nqds
L L

T /Mﬁmmﬁ+fmﬂmwn
L L
= M, Liba] + My Lybal (7.31)

where it is important to note that the coordinate axes and the reinforcement axes
musi be identical. The inclination éa’ of the rigid part considered must be decom-
posed in inclination components along the reinforcement axes as éa! and éal.
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e Example 7.6 A simple orthotropic skew plate, revisited.

Let us revisit the orthotropic skew plate of example 7.3 shown in fig. 7.8 and analyse
it by considering the individual rigid parts. The inclination angle (rotation) of the
rigid part is determined by the rotation about the line support and the central
displacement as:

dw

= V2w/a

ba =
The coordinate axes are orientated as the orthotropic reinforcement, and the line

of rotation has the normal (in this example u = »):

; = cosu = \/5/2
iy sinu = \/5/2

The inclination components are thus given by:
boy = mba = éw/fa

by = fpda = éw/fa

The length of the yield line is L = v/2a and the yield line projections on the
coordinate axes are also in this example given as:

L] = ﬂ]L:a.

L, = nL =a

The internal work in one rigid part, part I, can then be found using equation (7.31),
which gives us:

ou bw
wl, = Mpla?) + M,,ga% = (M1 + Myy)bw

since there are two identical rigid parts and since Mpyy = 0.5M, the total internal
work becomes:

§Wing = 2AMy + Myp)bw = 3M,36w
The external work is also in this example found to be:
Wegt = f\ppazﬁw
The upper-bound load factor can thus be found as

AT = 3@:6
pa

which was also found in example 7.3.

e Example 7.7 Uniformly loaded rectangular plate, revisited once again.

Let the rectangular plate analysed in examples 7.4 and 7.5 be an orthotropic re-
inforced concrete plate with reinforcement directions parallel to the edges, so that
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the reinforcement in the z,-direction leads to M,; = uM, and in the z,-direction
to Mpz = Mp.

The internal works by the rigid parts [ and I/, shown in fig. 7.9, are found using
equation (7.31) as follows:

Wi, My Labal = My 3aéw/a = 3Mpéw
W, = MpLiéal! = pM,2abw/a = 2uM,bw

The total internal work is then found by summation of the internal work performed
by each rigid part as:

EWine = 26W1, +26W1L = (64 4p)M,6W

The external work has been found in example 7.4 as W, = %z\*pazéw and the
upper-bound load factor thus becomes:

3 M
X = =(6+4 pabior .4

(6 +4u) P
By inserting g = 1 the result is identical to that already found for the isotropic
rectangular plate in examples 7.4 and 7.5.

Admissible Yield Line Lay-Outs

The yield line lay-out must be geometricly possible, so that the virtual displace-
ments only involve discontinuities in the plate inclinations 60 = A(da;) at yield
lines and not discontinuities in the virtual displacement, i.e. A(éw) = 0. I a rigid
part of the plate is supported by a column, then the rotation axis of this part must
go through the support point. Through geometric analysis it can be shown that the
rotation axes and the yield line between two connecled plates must intersect. An
intersection point at infinity is also acceptable. This leaves us with the following
stalement:

Geomelricly admissible yield line lay-oul.

The yield line lay-out is geometricly admissible, if the intersection
point of the rotation axes of mutually connected rigid parts is also
intesected by their mutual yield line (and its extension).

The rotation axis of parts supported by columns must intersect the
support point.

I'or plates supported along the edges some geometricly admissible yield line lay-
ouls are shown in fig. 7.12 and fig. 7.13 some admissible lay-ouls are shown for a
plate supported by two columns and along an edge.

Corner Levers

Plates are more or less geometricly fixed al. corners where both edges are supported.
Due to this there is a tendency for the vield lines to separate and form socalled
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Fig. 7.13: Geometricly admissible yield line lay-out including columns.
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Fig. 7.14: A corner lever.
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Fig. 7.15: A rectangular plate.

corner levers with a negative yield line, as shown in fig. 7.14. For small corner
angles the tendency of the existence of a lever is increased due to firmer fixation
al the corner. The corner levers usually give a small correction to the original
upper bound, and the best way to find a minimum upper bound is first to find the
minimum vield line lay-out and then introduce corner levers. The small inflluence of
corner levers is illustrated in the in fig. 7.15 and 7.16 for uniformly loaded isotropic
reinforced concrete plates with M; = 0.

Concentrated Shear Forces

Since the shear forces have been neglected in the yield criteria we must be sure
that the shear forces can be sustained by the plate, especially ai the yield lines.
There are concentrated shear forces at the corners and we have to be sure thal their
magnitude is acceplable. At the free edges of a plate where a yield line ends there
are also concentrated shear forces. We may estimate these forces by use of the vield
line lay-out, which must be close to the lay-out of the real flow mechanism.

Let us use a local coordinate system as shown in fig. 7.17 with the z,-direction
parallel to the yield line and just analyse one part of the plate. The angle hetween
the yield line and the edge of the plate is ¢. The moments in the yield line are the
principal moments and therefore My = M; and M;; = 0. On the edge we assume
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Fig. 7.17: Yield line section at an edge.
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that the normal moment M,, is given, for example for a free edge or a simply
supported edge M,, = 0 and for a fixed edge with a negative yield line M,, = M;.

We need to find M, along the edge. To do so we consider moment equilbrium
about the z;-axis as follows:

(—Mpssing — M, cosp)ds + Mecospds =0 |
Mns = (ﬁfff - Mnn) cot (2] (732)

The concentrated shear force is given by equation (6.83), which in the present
system with M, = 0 takes the form:

Q = 'Mns_MZI = Mns
= (M,— M,,)cotyp (7.33)
At a free edge with M,, = 0 the concentrated internal shear force must be deter-

mined at either side of the yield line. On one side of the yield line the edge shear
force is

Qedge = Mecotp (7.34)
and on the other side of the yield line the edge shear force just changes sign,
since cot (m — ) = —cot . At corners there are two rigid parts of the plate each

contributing with one concentrated shear force. There are two angles, ' and '/
at such a corner. The corner shear force has to be transferred to the supports. For
two simple supports meeting at a corner the concentrated shear force is:

Qeorner = My(cot o’ + cot ') (7.35)

For corners with two fixed supports (with negative yield lines along the edges) we
find:
Qeornes = (M| + [M{])(cot o + cot o) (7.36)

These shear forces are only approximations and they are only realistic if the yield
line lay-out corresponds to the real plastic flow mechanism for the plate. For thin
plates the concentrated shear forces are transferred over yield lines or to supports
over an in-plane distance approximately equal to the thickness of the plate. Note
that cot o changes sign around ¢ = 7/2 so that for angles lower than 7 /2 the shear
force is positive and directed downwards.

Point Loads

At point loads or at column supports local circular or elliptical flow mechanisms
have to be checked. For isotropic plates with point loads the flow mechanism has
a negative outer circular yield line and positive internal radial yield lines. IFor
anisotropic plates the outer yield line is elliptical. It is also interesting thal the
upper bound does not depend on the diameter of the flow mechanism, as we shall
see in the following. Let us analyse an isotropic plate with a point load, for example
the one shown in fig. 7.18. Let dip be the angle between the radial yield lines. The
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Fig. 7.18: Isotropic plate with a point load.

central displacement is dw and the radius is 7. Thus, the external work is

§Wepy = Péu (7.37)

The internal work can be found by projection on the axis of rotation for the indi-
vidual rigid parts. The individual part rotates dw/r about the negative yield line,
which has the length rdip. One rigid part thus contributes to the internal work
wilh

W/

nt

_ 6
= (M} + M) rdyp (7.38)
The total internal plastic virtual work becomes:
2%
W = [ (M} + |M;)bwdp = 2x(M{ + M) (739)
The principle of virtual work, 6W = W, — W,.. = 0, then gives:
Pt = 2x(M} + |M|) (7.40)

For plates with equally positive and negative yield moments we thus find that
Pt = 4xM,. At corners the above principles may be used and the formulas
modilied adequately.

7.2 Lower-Bound Theorem

A lower bound on the plastic load factor can be found by a static approach. The
idea is to use statically admissible moment fields M, 4, which are within the yield
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surface and therefore safe, i.e. f(M,s) < 0 and thereby find a lower-bound load
factor A™. Statically admissible moment fields are moment fields which satisfy the
static equilibrium equations:

Ma,ﬁ,cxﬁ'i'p = ) ‘U’
Mg+ 2Miap2 + Moz oo + 0 (7.41)

In a virtual hinge line the statically admissible normal moment is given as
Ms = My, = "'7',ﬂncuMu_ﬁ (7‘12)

If the moment field is safe the moments in the hinge line are within or on the yield
surface f(M,;) < 0 and therefore the normal moments are less than the yield line
moments, i.e. |[Mg| < | M.

To show the lower-bound theorem for plates let us first use the yield lines of
the real flow mechanism to find an exact expression for the plastic load factor A,
then let us use a safe statically admissible moment distribution with the real yield
line lay-out and show that this gives a lower bound A™. Let us begin. The real
flow mechanism with 60 = 6 and éw = w is introduced into the principle of virtual
work 6 = 0 and it is used that the moments are plastified in the yield lines, i.e.
M., = My. This gives us the real plastic load factor as follows:

s hgzl /1 Mg = ’\]pr dA=0 |
X fL M ds
Too

Next let us use a statically admissible moment distribution Mg in equilibrium with
the load A" p. The principle of virtual work is exact for a given equilibrium state
and we can use any virtual displacement ficld to find the load factor. This load
factor is a lower bound if we make sure that the statically admissible moment field
is safe, i.e. [(Mys) < 0 everywhere or equivalently that |Ms| < |M,| is satisfied for
any hinge line lay-out. Since we can use any virtual hinge line lay-out let us try
the yield line lay-out of the real flow mechanism. This gives us:

W= Y fLMs&f)ds—)C./ApﬁwdA:O i

hinge lines

> [ Mssods % fL Mg ds

- hinge lines hinge lines -
P = . % kb, (7.41)

[ pow dA / pilidA
JA A

where the last inequality is obtained using (7.43) and that J'Msé < Mgé, since the
statically admissible moment distribution is safe everywhere.
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The lower-bound theorem

If a statically admissible moment field, M,,, in equilibrium with the
factored external loads, A7p, is safe, f(M,;) < 0, then the load factor,
A7, is a lower bound for the real plastic load factor A, i.e. A < A,

The lower-bound theorem is very seldom used in combination with the upper-bound
theorem, since it is very difficult to find good lower bound values. The linear-elastic
plate theory results in lower-bound solutions if they are scaled to satisfy the yield
criterion everywhere in the plate.

The Strip Method

Following Hillerborg [36] statically admissible moment fields may be found by taking
the twisting moment as zero, M2 = 0, and carrying the load in two orthogonal
directions through the moments M;; and My,. If the twisting moment is zero in
the static equilibrium equation (7.41) for transverese loads, we obtain the following
equilibrium equation:

My + My +p =0 (7.45)

This equation can be split into two by separating the transverse load p into the
part ¥p carried in the z,-direction and the part (1 —))p carried in the z,-direction,
where the parameter y governs the dispersion of the load in the two directions.
This leads to the [ollowing set of equations:

Myn+vp = 0
Mypaa+(1-%)p = 0 (7.46)

These equations are equivalent to two beam equilibrium equations. The idea of
approximating a plate by orthogonal beams is old, and Hillerborg gives a systematic
treatment of the subject with respect to reinforced concrete plates. Hillerborg
considers the “beams” as strips of plate in which the load is carried in the strip
direction. In reinforeed concrete beams the reinforcement can then be chosen for
the individual strip. This is the main advantage of the strip method. However,
today reinforcement is seldom varied much in the plate, due to prefabrication of
reinforcement. Reinforced concrete plates, however, usually have a boundary zone
with increased top reinforcement.

A plate is subdivided into different regions in which the dispersion parameter 1
is constant. The dispersion parameter is usually chosen so that the load in a given
point is carried/dispersed in the most optimal direction. For a rectangular beam
with uniform transverse load two such subdivisions are shown in figs. 7.19 and 7.20.
In fig. 7.19 the plate is simply supported at all edges, and the subdivision has been
related to the yield line lay-out of a probable plastic flow mechanism and in each
subplate the load is carried in one direction only. In fig. 7.20 the rectangular plate
has one free edge and three simply suported edges. The subdivision includes an
edge strip, which transfers load to the supports.
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Fig. 7.19: Subdivision of rectangular plate.
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Fig. 7.20: Another subdivision of a rectangular plate.
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e Example 7.8 Lower-bound solution for plate in fig. 7.9.

The rectangular plate is loaded by a uniform transverse load p = 1 kN/m? and the
geometry is shown in fig. 7.9 with a = 2m. The referencial plastification moment
is M, = 7kNm/m. Let us assume that the load is carried by orthogonal strips in
the z; and z4 directions. The strips have pinned ends and the maximum moments
in the strips are thus determined by %pLz‘ The optimal choice of the dispersion
parameter is thus determined by the square of the span lengths. For a Tresca
material the moments in the two transverse directions should be equal and we thus
choose the dispersion parameter by equalizing the moments in the two transverse
strips as follows:

1 1
g¥pe)’ = Z(1-¢)p(20)"
¢ = da® 4
T 4a®+9a® " 13
The maximum moments thus become:
_ _49 »_9 »

My = My = 13.87* = 26P%
Let us scale the loads and thereby the maximum moments by a load factor A™, so
that the central moments are on the yield surface:

.-
— <
Noggra® € My 4
. 26 M,
oyt = 51

which should be compared with the upper bound A* = 7.5 found in the previous
example. The lower bound A~ = 5.1 is also a lower bound for the von Mises
material, since the point (M1, Maz) = (M, M) is on the von Mises yield surface.

Rectangular Plates

A simple statically admissible moment distribution, which satisfies the plate equi-
librium equation (7.41) including the torsional term can be found for uniformly
loaded rectangular plates as outlined in the the following.

The equilibrium equation only includes second order partial derivatives of the
moments My, and M3, in the directions z; and z,, respectively. It also includes
a mixed second order derivative of the torsional moment M;3. The solution could
therefore he parabolic in M;; and My, and hyperbolic for the torsional moment
Mi,. Such a moment distribution is given by:

2
M = aio+ anzy + anzy
- 2
My = axp+anzy + axnz;
M2 = ag+ a1y + azzy + asziz (7.47)

where the constants «_ depend on the boundary conditions and boundary moments
chosen. Inserting the moment field into the equilibrium equation results in:

2ay2 + 2(12'2 + 2(13 +p= 0 {748)
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Fig. 7.21: Optimal choice of y for a rectangular plate.

which corresponds to dividing the load between the three moment distributions. By
analysis of the moment distribution the boundary terms are found to be constant,
as briefly described in the following. The normal moments M, = M., are constant
along the boundary. The torsional moments M, = M,, are transformed into con-
stant shear force contributions M’s,s = M,; s along the boundaries and into point
shear forces at the corners. The non-torsional shear force is Q = My, + M
and the total equivalent shear force is Q + Ms‘s = Munn + 2M,5,. Since the
partial derivative of the torsional moment is in the tangential direction this con-
tribution also becomes constant. The concentrated shear forces at corners arc
—2M, = —2M,,. The solution is treated thoroughly by Nielsen [30] for different
boundary conditions.

¢ Problem 7.1
For the uniformly loaded and simply supported rectangular plate shown in fig. 7.21,
find the optimal distance y which minimizes the upper bound for the load-carrying
capacity and compare with ¥y = a in the previous example. The geometry is given in
the figure. (It may be used that an extremum of a fraction % is also an extremumn
of the fraction of the numerator and denominator derivatives, i.e. %, where the

prime corresponds to differentiation with respect to y).

What is the upper-bound load factor if the material is a Tresca material and if
the load is p = 1 kN/m?, the distance & = 2 m and the plastification moment
My = 8kNm/m.

o Problem 7.2
Analyse the uniformly loaded angle plate with simple supports and two free edges
shown in fig. 7.22.
a) Iind the upper-bound load factor for the shown yield line lay-out.

b) Find the nodal shear forces al the two corners and state the direction of the
shear force and the corner reaction.
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Fig. 7.22: A special geometry including a negative yield line.

e Problem 7.3
Find upper bounds for the uniformly loaded square plate shown in fig. 7.23. The
plate has three simply supported edges and one free edge. Try at least two different
yield line lay-outs and optimize the best lay-out.

For the final lay-out, find the concentrated edge shear forces.
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Fig. 7.23: Find the lowest possible upper bound.
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Lagrange, 159
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length scale, 76
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linear elasticity, 29
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partial collapse mechanism, 145
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Piola Kirchhoff stress, 27

plane stress-strain relation, 163, 164

plastic flow, 188

plastic flow mechanism, 183
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point loads, 206
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shape functions, 43, 45

shear correction factors, 64
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shear modulus, 29
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statically determinate beams, 103

statically determined shear force, 176
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stiffness coefficient, 108

stiffness method, 106, 107

strain components, 20, 47, 60, 162,
174

strain energy density, 35

strain tensor, 19, 20

stress, 23

stress components, 24, 25, 49, 164

stress resultants, 49

stress veclor, 24

stresses in a plate, 167

stresses in beams, 62

strip method, 209

summation index, 2

superposition, 104

support settlement, 121

sway mechanism, 145

temperature effects, 40, 123, 125, 126

tensor, 9

tensor of inertia, 10, 51

tensor of strain, 19, 20
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thermal expansion, coeflicient of, 40,
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Timoshenko, 13

Timoshenko beam theory, 44, 56
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Lransverse engineering shear strain, 17,
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transverse shear forces, 165, 166
transverse shear stress, 64, 167
Tresca’s vield criterion, 186
trial functions, 96

undeformed base, 17

uniformly compressed columns, 70
unit load displacement formula, 110
unit load method, 109
upper-bound theorem, 138, 196

variation, 35, 53, 169

virtual concept, 30
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virtual load, 109

virtual moment, 109

virtual stress, 34

virtual work, 30, 32, 40, 42, 52-54, 56,
61, 90, 92, 97, 99, 134, 136-
138, 140, 141, 168, 169, 174,
190192, 196, 208

virtual work functional, 32, 40, 12, 53,
54, 56, 61, 90, 92, 99, 137, 169,
174,191, 192, 196

von Mises’ yield eriterion, 186

yield eriterion, 185

yield function, 185, 186

yield line lay-out, 183, 202

yield line moment, 191

yield line theory, 183

yield lines, 183, 190, 198

yield stress, 73, 74, 82, 131, 185
yield surface, 185, 186, 188
Young’s maodulus of elasticily, 29
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