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Abstract 

The problem of a moving time dependent concentrated force on the surface of an 
elastic halfspace is of interest in the analysis of traffic generated noise. The BEM is 
superior to the FEM in solving such problems due to its inherent ability so satisfy the 
radiation conditions exactly. In this paper a model based on the BEM is formulated 
for the solution of the mentioned problem. A numerical solution is obtained for 
the 2D plane strain case, and comparison is made with the results obtained from a 
corresponding FEM solution with an impedance absorbing boundary condition. 

Key words: Boundary element method, moving force, wave propagation, stress 
waves, soil dynamics. 

1 Introduction 

Traffic induced vibrations are known sources of discomfort and damage prob­
lems in nearby buildings, either directly in the form of vibrations of the build­
ings or t hrough structure borne acoustic noise, Okumura et al. [9], Trochides 
[12]. During the last couple of decades highway induced noise has become an 
increasing problem due to the increase of the general amount of traffic. Besides 
the average weight and velocity of trucks have increased significantly, which 
further has emphasized the problems of traffic induced vibrations. Also train 
induced vibrations have been given some attention in recent years, mainly due 
to the dramatic increase in speed, Krylov [6]. The increased speed and the still 
greater number of underground railway systems in urban areas have resulted 
in still larger vibration problems. An considerable effort has been made to 
minimize or soften the effects of the trafic induced vibrations, Chouw et al. 
[2], Nelson [8]. With respect to analysis, semi-empirical methods for estimating 
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the vibrations have been introduced, Madshus et al. (7], and some numerical 
methods used to estimate the vibrations have been introduced, but mainly in 
the frequency domain. 
Simulation of traffic induced vibrations in an elastic medium can be achieved 
as a sum of moving concentrated time-varying forces due to the superposi­
tion principle. Thus, the basic problem that must be solved to simulate traffic 
induced vibrations is the problem of a moving time dependent force on the 
surface of an elastic halfspace. When using the BEM or FEM to solve this 
problem an important problem arises. With an element mesh of finite size the 
moving force will soon move beyond the boundary of the mesh. Therefore, it 
will be preferable to formulate the problem in a coordinate system moving 
along with the force, i.e. a convective formulation should be used. 
FEM formulations in convected coordinates where the mesh is following the 
force are well known. If this is coupled with transmitting boundaries an ef­
ficient method for modelling transient problems of moving forces on infinite 
media arises, see e.g. Krenk et al. (5]. 
In this paper Green's functions in the time domain for the displacements and 
surface tractions are formulated in a coordinate system moving along with the 
force. Thereby a BEM formulation in a moving coordinate system is estab­
lished similar to the method of coupling convected coordinates with absorbing 
boundaries for the FEM. Numerical results obtained by the BEM have been 
indicated for a 2D plane strain problem, and the results are compared to those 
obtained by the FEM. 

2 Formulation of boundary element equations for a moving force 

Let Uik(x, t; e) signify the displacement field in the coordinate direction i from 
a concentrated time dependent force f(t) applied at position e in direction kin 
a homogeneous, isotropic and linear elastic medium with the Lame constants 
). and p, and the mass density p. Assuming the media at rest at the time t = 0 
the displacement is given as 

t 

uik(x, t; e) = I 9ik(x, t; e, T)j(T)dT 
0 

(1) 

Green's function for the displacement field 9ik(x, t; e, T) is the solution to the 
differential equations 

(2) 
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O"ijk(x, t; e, r) is the stress tensor derived from the displacement field 9ik(x, t; e, r), 
bik is the Kronecker's delta and b(t) is the Dirac's delta function. Further, the 
summation convention for Cartesian tensors has been used. Next, consider a 
concentrated force moving at a constant velocity Vi in a linear elastic media, 
see Fig. 1. 

Fig. 1. Moving force in fixed and moving coordinate systems. 

Next, a (x1 , x2 , x3 )-coordinate system is introduced, which follows the moving 
force. ~i signifies the coordinates of the force, and 9ik(x, t; e, r) is the Green's 
function for the displacement ui(x, t) in the moving coordinate system. The 
two coordinate systems coalesce at the time t = r which corresponds to the 
Galilean transformation 

(3) 

The equations of motion in the moving coordinate system are expressed by 
introducing the partial differentiation operators 

(4) 

Hereby the partial differential equations for the Green's functions in the mov­
ing coordinate system read 

(5) 

Introducing the coordinate transformation (3) into (5) the following equations 
for 9ii is found as a function of the fixed coordinates xi 

(6) 
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Since o(x - v(t - r) - e)o(t - r) o(x - e)o(t - r) , the solution of (6) 
becomes 9ik(x, t; e, r). The solution to (5) can then be expressed in terms of 
the Green's function for the displacement field in the fixed coordinate system 
in the following way 

The Green's function for Cauchy's stress tensor o-ijk(x, t; e, r) is obtained upon 
insertion of the solution of (7) into the constitutive equations for the considered 
linear elastic material. Since these only involve spatial differential operations 
with respect to x, the result is seen to be 

(8) 

Hence, a BEM formulation in the moving coordinate system that calculates 
the displacement field following the force can be established by using the 
formal Green's functions 9ik(x, t; e, r) and o-ijk(x, t; e, r ), as given by (7) and 
(8), instead of the original ones. Notice that this result is generally valid for 
linear materials whether these are homogeneous and isotropic or not. 

3 Boundary element formulation 

Green's function for the displacement field in linear elastic homogeneous and 
isotropic fields, 9ij(x, t; ~, 0) is well known and can be found in e.g. Eringen 
and Suhubi [3] . 

(9) 

where r = lx- ~1, ri = Xi- ~i and Cp = ~and cs = j'f denotes the 
phase velocities of P- and S-waves. 
Green's function for the surface traction in 3D, tik(x, t ; ~, 0)= CJijk(x, t; ~, O)nj(x), 
where nj(x) is the outward directed unit vector, can be derived from 9ik(x, t; ~, 0) 
in a straight forward manner. 
Using the Betti reciprocal theorem and the symmetry properties of Green's 
functions, Somigliana's identity in 3D is obtained. 
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t 

C(x)ui(x, t) = J J 9ik(x, t- T; e, O)tk(e, T; n(e))dTdS(e)­
s 0 

t 

f J CJijk(x, t- T; e, O)nj(x)uk(e, T)dTdS(e) 
s 0 

(10) 

C(x) is a parameter which is 1 for x in the interior, 0 for x in the exterior 
and 1/2 for x on the surface of the domain if the surface is smooth. For 
surface points with sharp corners special attention is needed. Discretization of 
Somigliana's identity in 3D yields 

C(x)u{ (x, t) = 
M N 

L L j 9ik(x ,t;e('ry) ,O) *N(m,n)(1J) · tim,n)(t)det(J(m)(1J))dScm 
m = l n = lsm 

M N 

- L L J tik(x, t; e(1J), 0) * N(m,n)(1J)uim,n)(t)det(J(m)(1J))dS(1]) (11) 
m = l n=lsm 

where M is the number of elements into which the surface has been divided, 
N is the number of nodal points within each element, * is an operator indi­
cating the convolution integral over time, 'fJ is the local axis over which the 
integration is performed, N(m,n)(1Ja) , det(J(m)(1J)), tim,n)(t) and uim,n)(t) are 
the shape functions, the Jacobian and the nodal values of the displacement 
field belonging to element m. The integration in (11) over the surface Sm is 
performed numerically in the 17-coordinates defining the element which are 
mapped into e = e ( 1J) coordinates by an isoparametric mapping. The distur­
bance from a given impulse at a source point is limited by the wave front of 
the P- and S-waves. Before and after these wave fronts the medium is at rest. 
In order to improve the accuracy and stability the numerical surface integral 
in (11) should concentrate on such parts of the element which are emcom­
passed by the wave fronts. Such a wave front based integration was originally 
developed by Rasmussen and Nielsen [11] for the case of a stationary force, 
where the wave propagation appears as concentric circles on a plane surface. 
In the present case of a moving force the method has been modified to take 
into consideration the ellipsoidal nonhomogeneous wave propagation defined 

by the distance f(t) = j(x1 + v 1t- ( 1) 2 + (x2 + v2t- (2)2. Since the discon­
tinuities of the wave front are well defined it is easy to discretize the wave 
front into elements. The integration is further enhanced by using directional 
subdivision. Evaluation of the singular integrals for the Green functions for 
X= e is made using enclosing elements and the wellknown rigid-body motion 
principle, see e.g. Banerjee et al. [1 ). 
The BEM equations have been formulated for both the direct and indirect 
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versions of the BEM in the time domain, see Rasmussen and Nielsen [11]. 

4 Time approximation 

For the time integration in (11) the time interval [0, t] is divided into L subin­
tervals, each of the length 6.t = f. A linear variation of the field variables 
during each time step is assumed. Hereby two shape functions for the time 
integration are necessary and the following two integrals need to be evaluated 
analytically, Rasmussen [10] 

tl 

(1) J - -Gik = 9ik(x + v(t- r), t - r; e, 0)(1- Kt)dr (12) 
tl-1 

tl 

(2) - J - . -Gik - 9ik(x + v(t- r), t- T, e, O)KtdT (13) 
tl - 1 

where t he space integration has been omitted and Kz = r-~~t- 1 • Similar integrals 
appear for Green's funct ion for the surface traction for a moving force. 
Analytical integration of (12) and (13), as well as the corresponding results 
involving the Green function for the surface traction is necessary since the later 
spatial integration into (11) will otherwise become unnecessarily complex, time 
consuming and inaccurate. The analytical integration of the discontinuous 
functions is made by splitting the integration up into several parts depending 
on the relationship between time variation of the discontinuous functions and 
the integration limits , see Rasmussen [10]. 

5 FEM solution with absorbing boundaries 

A FEM formulation in convected coordinates is obtained by discretization of 
field differential equations similar to (6) for the displacement ui(xj, t). At the 
artificial boundary of the mesh absorbing boundary conditions for the surface 
tension ti need to be specified as 

(.:.. auj) t ·= -Z· · u · -vk-
t t] 1 a-xk 

(14) 
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A general impedance tensor Zij for absorption of plane P- and S-waves in a 
fixed coordinate system was derived by Krenk and Kirkegaard [4]. The cor­
rection (14) for moving coordinates is due to Krenk et al. [5]. The proposed 
impedance tensor Z i j takes into account that the direct ions of propagation 
of plane P- and S-waves when observed in a point in the moving coordinate 
system are not identical, even when originally from the same source. 
The final FEM equations are not symmetric due to the asymmetries from the 
convection terms in the field equations and due to the absorbing boundary con­
ditions. This tend to destabilise the numerical results at large Mach-numbers 
(M = ~) and has been cured using a technique similar to the partial up­
winding in Petrov-Galerkin variation, see Krenk et al. [5]. 
Since the impedance boundary condition has been tuned to plane P- and S­
waves. Therefore, Rayleigh, Love, Stoneley and non-plane P- and S-waves are 
partially reflected. The impedance boundary condition of the type (14) is not 
able to sustain static loading. Further, permanent displacements occur if the 
net impulse f.~oo P(t)dt # 0, where P(t) is nodalloadings. 

6 Numerical example 

The problem of a time-dependent load with zero net-impulse on an isotropic, 
homogenous linear elastic 2D plane strain halfspace is analysed using both 
the BEM and FEM approaches. T he medium is subjected to a moving time 
dependent surface load per unit length P(t) . The time variation of t he load is 
given as 

P (t) = P0T(1 - T
2)2 } 

T = 2tjT - 1 -1 < T < 1 
(15) 

P0 is the amplitude of the load, which appears almost sinusonidally with the 
period T. However, the load has vanishing derivatives at t = 0 and t = T. 
The example is performed with the following parameters : Intensity of force 
P0 = 1 MN, J-L = ). = 100 · 106 N/m2 and p = 2.0 · 103 kg/m3

. This gives the 
wave velocities for the P-, S- and Rayleigh waves, respectively, cp = 387 m/s, 
cs = 224 m/s and eR = 206 m/s. 
160 m of the surface are discretized and the force is applied at the centre. 
The applied FEM mesh is rectangular with a depth of 80 m. The BEM mesh 
consists of 4 m, 2 node, line elements with linear interpolation and similarly 
the FEM mesh consists of 4 m by 4 m, 4 node quadrilateral elements, see Fig. 
2 a, b . 
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a) ••••••••••••••••••~~~~•••••••••••••• 
b) 

P(t) 
Stl 

Boundary"-- BOrn 

BOrn BOrn 

Fig. 2. a) BEM and b) FEM meshes. 

The horizontal, u1 and vertical, u 2 displacement histories at (i1 , i 2 , i 3 ) = 
(+20 m, 0 m, 0 m), 'in front of the force' and at (i1,i2 ,i3 ) = (-20 m , 0 m, 0 
m), 'behind the force ' are presented in the following figures. 

2 

~, ...... -- ....... 
--~ · -----

~-
-1 

-2 

-3L_ __ L_ __ L_ __ L_ __ ~--~--~--~--~--~--~ 
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'E o .s ,-
-1 
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-3~--~--~--~--~--~--~--~--~--~--~ 
0 0.1 0.2 0.3 0.4 0.5 0 .6 0.7 0 .8 0 .9 

t[s] 

Fig. 3. Horizontal displacements at (il,iz,i3)=(+20 m, 0 m, 0 m) obtained using 
BEM (top) and FEM (bottom) for v1 = 0 · cs -, v1 = 0.2 · cs -- and v1 = 0.5 · cs 

T he applied counter measure to stabilize the FEM scheme due to the convec­
tion terms is tantamount to the introduction of artificial numerical damping, 
which may change the magnitude of the observed response slightly. This defect 
should be kept in mind in the following comparison with the BEM solution. 
Comparison between Fig. 3 and Fig. 4 shows that both the minimum and 
maximum displacements decrease with greater speed. However, for v1 = 0 · cs 

in Fig. 3, the BEM results for the minimum displacements are significant ly 
smaller than the equivalent minima from the FEM results. The solut ion of the 
time integrals of the Green functions becomes unstable when v1 approaches 
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2 

0.1 0.2 0 .3 0.4 0.5 0.6 0 .7 0.6 0.9 
t[s] 

Fig. 4. Vertical displacements at (il ,X2, i3)= {+20 m, 0 m, 0 m) obtained using 
BEM (top) and FEM (bottom) for v1 = 0 · cs -, v1 = 0.2 · cs --and v1 = 0.5 · cs 

zero. Therefore, the results for very small velocities obtained by the BEM are 
not reliable. 

2 

E' o 
.§. 
,-

- 1 

-2 

2 

E' o 
.§. 
,-

-1 

-2 

---- -- --- --

--- -:--~- . 

-3L_ __ J_ __ _L ____ L_ __ ~---L--~----~---L--~--~ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 
t [s] 

Fig. 5. Horizontal displacements at (i1, i2, i3)=(-20 m, 0 m, 0 m) obtained using 
BEM (top) and FEM (bottom) for v1 = 0 · cs -, v1 = 0.2 · cs -- and v1 = 0.5 · cs 
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2 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
t [s] 

Fig. 6. Vertical displacements at (x1, x2, XJ)=(-20 m, 0 m, 0 m) obtained using BEM 
(top) and FEM (bottom) for v1 = 0 · cs -, Vt = 0.2 · cs --and v1 = 0.5 · cs - · -. 

In all the Fig. 3-6, but especially in Fig. 6, the FEM results show tendencies 
to reflect Rayleigh waves from the boundaries. However, the BEM results do 
not show any signs of reflection in any of the figures. The calculation time for 
the FEM solution was 62 seconds on a 200 MHz PC while the calculation time 
for the BEM solution was several hours on a SiliconGraphics Indy R4400. 
In Fig. 7-8 the FEM and BEM results for velocities approaching the Rayleigh 
wave velocity are shown 'in front of the force'. 

2 

'E 0 .§. 
' ;:J-

-1 

-2 

-3 

2 

'E 0 .s 
;:J-

-1 

-2 

-3L---~--~--~---L---L--~--~----L---~~ 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

t[s] 

Fig. 7. Horizontal displacements at (x1,x2,x3 )=(+4 m, 0 m, 0 m) obtained using 
BEM (top) and FEM (bottom) for Vt = 0.5 · cs -, v1 = 0.7 · cs --and v1 = 0.9 · cs 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
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Fig. 8. Vertical displacements at (x1 , x2 , x3)=( +4 m, 0 m, 0 m) obtained using BEM 
(top) and FEM (bottom) for v1 = 0.5 · cs -, v1 = 0.7 · cs --and v1 = 0.9 · cs - · -. 

The Rayleigh wave velocity for Poisson materials (p, = >.) is approximately 
0.92 · c5 . The results for velocities approaching the Rayleigh wave velocity are 
shown for a point only 4 m in front of force. The reason for this change is that 
the wavefront in front of the force at the surface do not move very far from 
the force when the force moves almost as fast as the Rayleigh wave. Krylov 
[6] assumes that the displacements increases dramatically when the velocity 
approach the Rayleigh wave velocity. The results in Fig. 7-8 obviously disagrees 
with that statement. Actually, the displacements decreases compared to the 
results obtained with lower velocities shown in Fig. 3-6. 

7 Conclusion 

A new BEM formulation in a moving coordinate system has been given. The 
formulation introduces Green's functions for a moving force and shows how 
the normal BEM formulation for a fixed coordinate system can be modified to 
a formulation in the moving coordinate system by using the Green functions 
for a moving force. 
The BEM results have been compared to results obtained by a FEM formu­
lation using an impedance boundary condition as absorbing boundary. 
The results from the BEM and FEM formulation show good agreement for a 
simple stress wave propagation problem with a moving force and it is demon­
strated that the reflection of Rayleigh waves is omitted in the BEM analysis . 
Another finding is that the displacements do not increase when the velocity 
approaches the Rayleigh wave velocity as is often postulated. 
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