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ANALYTICAL MODEL FOR COMPLETE MOMENT-ROTATION CURVES OF 
CONCRETE BEAMS IN BENDING 

Jens Peder Ulfkjaer, Rune Brincker and Steen Krerik 1 

When a concrete beam is subjected to rotation controlled static 
loading a linear cohesive crack is assumed to develop in the tensile 
side of the midsection of the beam. As a first approximation the 
two parts of the beam beyond the cohesive crack zone are assumed tJ I ~i to perform rigid-body displacements. An elastic layer is introduced f ~ 

between the crack and the rigid parts of the beam. The stress 
() -...J 

distribution in the layer is assumed to be local and to be a function ~ ) (' 

of the absolute displacement between the two rigid bodies. An CO <0 
rw 

improved model accounts for the elastic deformation of the beam via ~ 
[)) 

a Timoshenko beam. Different, geometrically similar, beams with c---6 7 ,<-., 

constant constitutive parameters have been tested and it is shown 
. .., 
"""' i-!..1 

that the moment rotation curves from the analytical model only [- 0 
differ slightly from the ones determined through a finite element 

(./) 

~ ~ 

analysis. iY. 
~ < 

~ ----z 
0 ·~ 

0 

INTRODUCTION 

Few researchers have used analytical methods based on the fictitious crack model 
(FC-model) to describe crack growth, and studies have been limited to very simple 
cases, i.e. a crack in an infinite plate, Reinhardt [3], or a limit situation of complete 
fracture in a beam subjected to three-point bending, Carpinteri [2]. 

RIGID-BODY DISPLACEMENTS 

Consider an initially uncracked concrete beam with length L, depth h and thickness 
t subjected to a controlled rotation (JR = 26/ L, where o is the displacement of the 
midsection. The superscript R indicates rigid-body rotation. A fictitious crack is as
sumed to develop in the midsection, and as·a first approximation the two parts of the 
beam beyond the fictitious crack are assumed to perform rigid-body displacements. 
An elastic layer with the thickness h* is introduced around the midsection, and the 
stress distribution in the midsection of the beam is assumed to be local and a function 
of the absolute displacement between the two rigid parts. 

The calculations are divided into three phases: 

A. Before the tensile strength, <Tu is reached in the tensile side of the beam. 
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B. The evolution of the fictitious crack. 

C. The actual crack propagation. 

The compressive strength is assumed to be much larger than the tensile strength C7u. 

Phase A. In phase A the following constitutive relation is used for all parts of the 
elastic layer (superscript e indicates elastic stresses): 

(1) 

where e7~(y, OR) is the stress in the elastic layer, w(y, OR) is the absolute distance 
between the two rigid parts and g is the stiffness per thickness of the elastic layer . 

The neutral axis is at y = b(OR) and is obtained through the equilibrium conditions, 
which yields b = h/2. The equivalent moment M becomes: 

1 
M=- oR g h3 t 

6 
(2) 

In the limit situation of state A: w{O) = Wu where Wu is the absolute displacement 
which will induce the ultimate tensile stress, one obtains in dimensionless form: 

M'= M 
h2 t C7u 

1 
6 

Thus, the moment-rotation curve in phase A is a straight line. 

(3) 

Phase B In phase B another constitutive relation is needed, the FC-Model. Here 
a linear approximation is used: 

(4) 

where WFc(y) is the crack opening displacement (COD) and We is the critical COD, 
which corresponds to no stress transmission. A situation as sketched in figure la will 
occur in phase B. The size of the fictitious crack is a and the length of the elastic 
tensile zone is b. The length b is determined through geometrically similar triangles. 
For yE (0, a] the stresses in the fictitious crack are equal to the stresses in the elastic 
layer, from which COD is obtained. In order to determine a it is necessary to consider 
the equilibrium equations. After some manipulations the size of the fictitious crack 
in dimensionless form is obtained : 

(5) 
a(eR) _ -2±{4+4a[(t-~)~-1] 

h - -20' 

where a is a material and size dependent parameter given by: 

We a=--- _{6) 
We- Wu 
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The equivalent moment in dimensionless form becomes: 

M'= 28R h_a_ [-~a (~)3 + ~~ _ ~] + ~ 
We a - 1 6 h 2 h 3 2 

(7) 

In order to stay in phase B COD for y = 0 has to be less than We. 

Phase C. In phase C the real crack starts to grow. The length of the real crack 
is d(BR) and the constitutive relation is (1) and (4) . For simplicity they-axis starts 
where the fictitious crack ends. A situation as shown in figure la will occur in phase 
C. The length of the elastic tensile zone is obtained through the condition w( a) = Wu 

and the size of the fictitious crack is obtained through the condition w(O) = We· The 
length of the real crack is determined through the equilibrium conditions. Following 
a procedure similar to the one in phase B the length of the real crack becomes: 

d ((a+ b)) J(a)2 h = 1- h ± h a( a- 1) (8) 

and the equivalent moment in dimensionless form becomes: 

M'= 20Rh_a_ [~~ (1- ~)2- ~ (1- ~)3- ~_!_ (~)3] (9) 
We a- 1 2 28Rh h 3 h 6 a 2 28Rh 

By introducing the parameter <P = 28hlwe it is possible to obtain complete M' - <P 

curves for given a . 

ELASTIC DEFORMATIONS 

In this section an improved model which takes the elastic deformation into consid
eration will be considered. The elastic deformation, oE is determined through a 
Timoshenko beam,Timoshenko [4] with length L* = L- h* and Poissons ratio v = 
0.3: 

p L · 3 [ h2 h3] 
oE = 48£! 1 + 2.85 L•2 - 0.84 L*3 (10) 

which in dimensionless form becomes: 

E I L *
2 

\ . [ 1 1 ] 8 = 2M €u L2 "' 1 + 2.85 .X*2 - 0.84 _x•a (11) 

where eE = 2oE I L* is the elastic rotation, €u is the ultimate strain and .X* = L* lh is 
the slenderness of the beam. The total rotation is given by: 

(12) 

Before the tensile strength is reached the total rotation equals the elastic rotation of 
a beam with length L and slenderness A = L I h. Applying this condition the elastic 
rotation in terms of L and A becomes: 

f13) 
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Depth, h (mm) 80 
Width,t (mm) 40 
Length, L (mm) 400 

Modulus of Elasticity, E ( ~) 32,550 
mm 

Critical Crack Opening Displacement , We (J.Lm) 76.64 

Tensile Strength , au (-b) 2.86 

Table 1: Geometry and material properties for the reference beam. 

Thus, for given fu, we/ h, >. and a it is possible to obtain the complete moment-rotation 
relation. It is also possible to obtain a relation between the size of the fictitious crack 
and the rotation. The ratio wcfh equals 2Ss where Ss is the Carpinteri brittleness 
number. 

RESULTS 

The factor a is estimated through a numerical method called the direct substructure 
method [1]. The estimation is made so that the maximum dimensionless moment in 
the analytical moment equals the maximum moment determined through the direct 
substructure method. 

One particular beam has been considered, but the size of the beam has been var
ied in order to investigate size effects. The geometry of the reference beam and the 
material properties are listed in table 1. 
In figure 2 the moment-rotation curves for the different beam sizes are plotted. It 
is seen on the linear part of the curves, that the analytical beam is stiffer than the 
beam modelled by the finite element code. This might be expected since the analytical 
model is based on a model which introduces more constraints on the displacements 
field than the FEM model. However, this discrepancy gives rise to an overall error. 
Despite this error the shape of the curves from the analytical solutions is almost 
identical to the ones obtained from the direct substructure method. Furthermore 

' results have shown that the ratio h* / h does not depend on the beam size. 

CONCLUSIONS 

A simple analytical model for moment rotation curves of concrete beams has been 
developed. The model is based on the fictitious crack model and that the crack 
extension path is known beforehand. The model has to be calibrated by finite element 
calculations in order to determine a single calibration factor. The results in this paper 
show that this calibration constant as a good approximation does not depend on upon 
the size of the beam. As an extra result the size of the fictitious crack is obtained. The 
model is based on a linear CT- w relation but is easily extended to other constitutive 
relations whereby the model is applicable to determine the a- w relation, when three
point bending experiments are performed. The model is also applicable to notched 
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and reinforced concrete beams, and is therefore applicable to determine the minimum 
amount of reinforcement in concrete beams. 

SYMBOLS USED 

L, h, t beam length, depth and thickness. 

M' dimensionless moment. 

fJ rotation. 

8 displacement of midsection. 

h. thickness of elastic layer . 

an normal stress. 

w distance between rigid parts. 

g stiffness per unit thickness of elastic layer. 

a: material and size dependent layer. 

a size of fictitious crack. 

b length of tensile zone. 

d real crack length. 
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ECF 8 FRACTURE BEHAVIOUR AND DESIGN OF MATERIALS AND STRUCTURES 
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Figure 1: Rigid-body displacement and stress distribution in phase B and C 
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Figure 2: Moment rotation curves obtained through the numerical method together 
with the analytical ones. 


