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Occlusion Understanding and Recovery

U.CastellaniandS.Livatino

1 Introduction

Rangeimagesareusedin a wide rangeof applications. So far they have beenusedextensively in object recognition
[10, 13], reverseengineering[2], andotherapplications,nearlyall focusingonsmallandrathercomplex objectsandscenes.
While extendingtheuseof rangeimagesto a wholeenvironmentratherthanwell-delimitedobjects(an importantexample
of theseapplicationsis theCAMERA EU project[4]) new issuesarose.

Occlusionis amajorcauseof informationloss:evenin moderatelycomplicatedscenesit is eitherimpossibleor impractical
to obtaincompleterangescans[12]. On theotherhand,anexhaustivedescriptionof theobservedobjectsor environmentis
neededfor someapplications,likeconstructionof a 3D model[4] andenvironmentobjectrecognition.

Theproblemto solve is the reconstructionof partially occludedsimple-shapedareas,like partsof a wall hiddenbehind
furniturepieces,thecornerareaof a cupboardhiddenby anopendoor, a collectionof objectson a floor hiding eachother,
etc.Figure1 shows theproblem,i.e. a typical occlusionin rangeimages.

Oursolutionis aprocedureto fill in thegapswithoutperformingextrascans.Thisprocedureis termedreconstructionand
is ableto automaticallyinfer theshapeof theoccludedareasby exploiting informationfrom thesurroundings.

Therehave beenfew attemptsin the literatureto reconstructoccludedsurfaces[1], [6], [9]. They aremostly relatedto
simplified occlusioncases.In fact, occlusionreconstructionremainsa new andlittle exploredresearchfield. Despitethis
researchmany unsolvedcasesstill remain(e.g. reconstructionof objectbacksides)andthecurrentresearchstateis still far
away from ageneralsolutionto recoverall occlusions.

2 Handling Occlusions

Therearedifferent typesof occlusionswhich may arisewhena sceneis scannedwith a laserbeamor structuredlight
sensor. Lotsof theseocclusionsarenotresolvablewithoutdomainspecificknowledge,or models,helpingto derivestructural
interpretationof theimages.For this work, we only considerindoorscenescontainingmostlyman-madeobjects,for which
bothgeneralarchitecturalandscenespecificknowledgemightbeavailable.

Missing data

Figure 1. The Occlusion Problem



Previousresearchonocclusionreconstructionfocusedon thereconstructionof asinglelargeareaoccludedby oneobject.
In thatcontext two caseswereconsidered:OcclusionsPreservingSurfaces,OcclusionBreakingSurfaces.

� Occlusions Preserving Surfaces In thiscasedifferentimageregionscorrespondto differentobjectsandtheoccluding
region is entirely surroundedby the occludedone. For example,a book lying in the middle of a tablescannedby a
rangesensorfrom above. Figure2.ashowsanexampleof theseocclusions:thesurfaceB occludessurfaceA.

Thedetectionandthereconstructionof theocclusionsis basedon searchingfor regionsentirelycontainedwithin the
boundariesof anotherregion,sothatthey canthenbeextendedacrosstheoccludingarea[5].

� Occlusions Breaking Surfaces In this casethe occludingpart breaksthe occludedsurfaceinto two regionswhich
correspondto asinglesurface.Thewall partobscuredby thechairin figure2.bis anexampleof thiscase.Thesurface
B occludesthesurfaceA which is split into regionsA’ andA”.

Thedetectionandthereconstructionis basedon identifying compatibleregionswhich canthenbemergedin orderto
reconstructthemissingoccludedpart[1, 6].

In boththeabovecasestheoccludingobjectdoesnot obscuretheboundariesof theoccludedone.Thework of [9] explored
thecasewhentheoccludingpartpartiallyobscuresboundariesof anoccludedobject.Thiscaseis calledOcclusionBreaking
Boundaries.Thecornerareaof a cupboardoccludedby anopendoor, asin figure1, is anexampleof this case.Figure2.c
showsanexampleof theseocclusions.

� Occlusions Breaking Boundaries Theproposedcaseis harderto solvethanthepreviousonessinceareconstructionof
unseenboundariesis alsoneeded.Furthermore,it canhappenthatmoreobjectsareobscuredunderasingleocclusion.
Theproposedapproachis differentfrom thepreviousonessincethefocusis on thedetectionof theoccludedpartof
anobject.

Thedetectionandreconstructionis basedon establishinga foreground- backgroundrelationbetweenregionsduring
the analysisof region boundaries. In particular, the backgroundregion is occludedby the foregroundregion and
reconstructionstartsfrom its boundary.

In orderto reconstructocclusionsweneedto exploit availableinformationthatconstrainsa scene.In particular:
1) goodsurfacecontinuation.Thatis, theoccludedsurfacekeepsthesameshapeof its visiblepart[8, 11].
2) goodboundarycontinuation.Thatis, theoccludedboundarykeepsthesameslopeof its visible part.
3) architecturalconstraints.That is, theoccludedsurfaceis boundedby anarchitecturalconstraint.This canbea wall, a

floor, adoor, awindow etc. [3, 7].
The readershouldnotethat in orderto solve casesof OcclusionPreservingSurfacesandOcclusionBreakingSurfaces,

thesurfacegoodcontinuationconstraintsuffices.In theproposedcaseof OcclusionBreakingBoundariesit is alsoneededto
applytheconstraintof goodboundarycontinuationandthearchitecturalconstraints.

3 Occlusion Understanding

The goal is to understandthe kind of occlusionsthataroseby the scanning.Our input is a rangedatasetthatprovides
3D spatial information relatedto the sensorposition. The datacontainsdepthinformation that we exploit for detecting
occlusions.

In orderto detectocclusionis moreconvenientto switch from true 3D point-setsto a 2.5D representation,i.e. a range
image.In this way, we observe thescenefrom thesensorviewpoint, that is, we look at occlusionsthesameway thesensor
does.

3.1 Method for Occlusions Preserving Surfaces and Occlusions Breaking Surfaces [1, 6]

Image Segmentation
The imagerangecanbe segmentedby extractingdepthdiscontinuitieseitheracrosseachcoordinateaxis [1], or between
neighbouringfitted3D surfaces[6]. Thecaseof depthdiscontinuitiesis representedin figure3, while thecaseof 3D surfaces
is representedin figure4.
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Figure 2. Type of occ lusions

Figure 3. A Range image (left) and corresponding extracted regions after labelling (right).



Figure 4. The fir st segmentation.

Figure 5. An intensity image (left) and its corresponding rang e image (center -left). The same image
after depth discontin uity processing (center -right) and additional par titioned using fold edges (right).



The extractedsurfacesare further segmentedby analysingtheir surfaceorientation. This processis called fold edge
detection.Theresultof this detectionis shown in figure5. Theright-handfigureshows thata fold edgedetectionleadsto a
moreaccuratedetection.

Surface Fitting
The extractedsurfacesare then fitted by parametricsurfaceshapesin order to obtain good comparative measures.Ex-
perimentshave shown that planes,cylindersandspheresareusuallysufficient to describemostof the simplesurfacesin
architecturalscenes.Thefollowing tableshows theparametersassociatedwith eachsurfacetype.

Surfacetype Description

Planar surfacenormal ����� � �	�
displacement
��
���

Cylindrical point on axis �
(circular) unit vectorof axis �����
� ���

radius�
Spherical centre�

radius�
For two surfacesto becontiguous,they mustbefirst of thesametype. Thesurfaceparametersintroducedabove canbe

usedfor comparison.Thefollowing tablegivestheparametersandthethresholdsusedfor determiningwhethertwo surfaces
matchor not.

Surfacetype Requirementsfor matching

Plane ����� � �	����� ����� � �	����� �"!$#�%& 
��
�'� �)( 
*�
�'� � & �+� �-,
Cylinder �����
� ��� � � �����.� ��� � �+�/!$#0%

�����
� ��� � � � � � � �1�"!$#�%
� � � � � �����
� ��� � �1�"!$#�%24365�& � � ( � � & 798$2 � �;: � � 7 � ��<

Sphere
2=365 
*�
��> 2 � �@? � � 7�798$2 � � : � � 7 �BADC�<24365�& � �E( � � & 798$2 � � : � � 7 � ��<

3.2 Method for Occlusions Breaking Boundaries [9].

The detectedsurfacesareconsideredin pairsandtheir boundariescompared.If depthvaluesassociatedwith adjacent
surfaceboundariesaresimilar, thesurfacesarecontiguousandsonotoccludedin theareasurroundingthoseboundaries.The
boundariesbetweenthewall andcupboardshown in figure6 areexamplesof boundariesbetweencontiguoussurfaces.We
call themtrueboundaries.

If instead,depthvaluesassociatedwith adjacentsurfaceboundariesaredifferent,it meansthat the surfacecloserto the
sensoris in foregroundandthe otheroneis in background.In this casethe boundaryof the backgroundsurfaceis a false
boundary. In figure6 theboundariesbetweendoorandcupboardareexamplesof falseboundaries.We have to establisha
foreground-backgroundrelationfor eachpair of adjacentregions.

Oncefalseand true boundarieshave beenidentified it is possibleto detectthe points wherethe backgroundsurface
boundaryis occluded.We call themendpoints. Theendpointsaretheendsof the backgroundsurfacetrueboundariesand
they lie justnext to thefalseboundaryendpoints.Figure6 showstheendpointsfor theexamplecase.It is importantto detect
endpointsbecausethey representthestartingpointsfor thereconstruction.

4 Occlusion Recovery

Thekey to reconstructionis to identify which partof theoccludedregion canpotentiallybeconnectedbehindtheocclu-
sion.

To reconstructoccludedareasis a difficult tasksincewe needto estimatesomethingwhich is not visible. Sometimeit
is in fact impossibleto reconstructoccludedareas,suchasthe casewhenthe hiddenareacontainsabruptsurfacechanges
which do not follow the conceptof continuousconstraints.This explainswhy we proposea conservative approachto the
reconstruction.We needto besurewe seetheright conditionallowing somereconstructions.
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Figure 6. Endpoints and boundaries between adjacent surfaces.

Figure 7. Matching areas. These belong to the same wall lying behind the chair . Areas are gray,
perimeter points are sho wn in black (left). The distance transf orm for one of the areas sho wn in the
left figure . Perimeter points have been added for clarity . (right) The potentiall y reconstructib le area
between the two surfaces sho wn in the left figure .

4.1 Method for Occlusions Preserving Surfaces and Occlusions Breaking Surfaces [1], [6].

Identifying Allowed Reconstructions
We rely on distancetransforms[6]. This methodfinds perimeterpointsthatareactuallyfacingthe connectingarea.Then
we draw linesbetweenthepixels facingeachotherwith theBresenhamalgorithm,asin [1]. Themethodrelieson distance
transforms,which encodethedistance(in pixels)to thenearestregion point. Figure7 (center)shows thedistancetransform
of oneof the matchingareasin figure7 (left). Figure7 (right) shows the potentiallyreconstructibleareabetweenthe two
surfacesshown in figure7 (left). Thedistancetransformsrecordsthedistanceto thenearestboundarypointallowing aneasy
computationof thehypothesisedoccludedsurface.

Surface Reconstruction
Reconstructiontakes placebetweenregions belongingto the samegroup and satisfyingthe depthconstraint. Given an
occludingpixel andanoccludedsurface,asimpleandintuitiveway to performreconstructionis to intersecttheray from the
sensorthroughtheoccludingpointwith theoccludedsurface.As this rayoverlapstheopticalrayof thelaserscanningbeam,
thereconstructedpixel is placedin a positionthatcouldactuallyhavebeensensedby thesensor.

For planesthereis usuallyoneintersection.For cylindersandsphereswe usuallyfind two intersections.If theshapeof
thesurfaceis concave,themostdistantintersectionis chosen.Similarly onconvex surfacesthecloserintersectionis chosen.

Due to noise,surfacesextrapolatedinto thepossiblyoccludedareanever perfectlymatcheachother. Consequently, the
surfacesare interpolated.A solutionis a weightedaveragingbetweenall the intersectionswith the extrapolatedsurfaces,
with weightsdependingon thedistancesfrom theintersectionto theclosestperimeterpoint of eachsurface.Thepositionof
thereconstructedpixel canbecomputedby:

F��GIHKJ�L.MON
P � 2 
�Q 7 F��QP � 2 
 Q 7 (1)

� 2 
RQ 7 N 2 
�SETVU ( 
RQ 7*WX (2)
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Figure 9. Results for an occ luded wall (left) and two occ luded cylinder s (right)

The summationin equation(1) takesplaceover all the surfacesinvolved in the reconstruction.Becausepointsthatare
closerto a certainsurfacewould be weightedmore than points that are further away, the weighting function shouldbe
decreasingwith theinputdistance.Theweightingfunctionusedfor theexampleis shown in equation(2).

Reconstruction Validation
Thechoicenow becomeswhetherto reconstructor not. Reconstructionis a severechangeto the image,so it is important
to bevery carefulin applyingit. If theareabetweentwo matchingsurfacesis furtheraway from thesensorthantheareaof
thesurfaceto bereconstructed,thenreconstructionshouldnot happen(seefigure8). This happenson many occasionswhen
nichesasdooror windows areinvolved. In casesof ContiguousOccludedAreasor SingleRegion Occlusions,a proposed
solutionis to first reconstructthe surfaceandthencomparereconstructedandmeasuredpoints. Reconstructionis allowed
only if reconstructedpoints lie behindthe measuredones. All the pixels in the areabetweenthe surfacesareconsidered.
To achieve a morereliable resulteachpixel vote for reconstruction,andonly if enoughpixels votesfor a reconstruction
will it beapplied.As any reconstructionrequireshypothesisingnon-observabledata,theassumptionsleadto a conservative
reconstructionhaving a high likelihoodof beingcorrect.

Figure4.1 shows somereconstructedimages.The left imageshows the occlusioncausedby a chair in front of a wall.
Theright imageis animageacquiredby anorthographicscanner. Themiddlerow shows a rangeimagewith reconstructed
pixelsandthebottomrow shows thereconstructionin 3D. Becausethereconstructedsurfaceappearedunnaturallysmooth,
thesameamountof Gaussiannoisein thez-directionasfoundin theoriginal surfaceswasadded.

Texture Reconstruction
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Figure 10. Texture reconstruction

Although reconstructingthe occludedsurfacesmakesthe 3D modelsmorerealistic(no morechair-shapedholesasin the
figure), they still lack intensitytexture. The reconstructedsurfacesaremerelypointsin 3D spacewithout any information
aboutthe light intensityor colourat thatpoint. So,we hypothesisewhat the intensityon thesurfacewould have beenif it
waspossibleto directlysensethesurface.

The main ideais illustratedin diagramof figure 10 The reconstructedpointsandthe neighbouringmeasuredonesare
mappedontoa planartexturespace.This stepallows easierandmoreefficient processingthantheunorderedpointsin 3D
space.For 3D sceneplanes,this is a simpletranslationandrotation.For cylinderswe usea Y - Z surfaceparametrization,and
for spheresa Z - [ parametrization.

An acquiredintensityimageis mappedon thesameplaneaccordingto numberandpositionof themappedsurfacepoints
andthenpropogatedby a varietyof methods.The reconstructed3D pointsthenacquirea hypothesizedintensityfrom the
correspondingpoint in thesurfacetexturespace.

4.2 Method for Occlusions Breaking Boundaries [9].

The proposedmethodis basedon the conceptthat the occludedareais filled in with the sametype of surfacewhich
fits the visible area. To achieve this we first needto estimatethe boundariesof the occludedregion. Consequently, for
eachendpointwe estimatethe direction of its continuationwithin the occludedarea. The methodproposedto estimate
the occludedboundaryis basedon the boundarygood continuationconstraint. In particular, the endpointprolongation
is performedaccordingthe Gestalprinciple of goodcontinuationandproximity in the order: linearity, co-circularity [8],
closure[11]. In this wayweareableto boundthesurfacewhich is goingto bereconstructed.

We candistinguishthreepossiblecasesbasedon the relationbetweenvisible boundarieslying in the proximity of an
intersectionwith theoccludedsurface.

caseA) coincidentboundaries;
caseB) convergentboundaries;
caseC) divergentor parallelboundaries.

Thiscasesarerepresentedin figure11.
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Figure 11. Proposed reconstruction rules
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Figure 12. Main steps of the reconstruction process (case of convergent boundaries)

In all thethreecasesthehiddenboundaryis thecontinuationof thevisible one.However, in thefirst case,theboundary
extensionsacrosstheoccludedareaarecoincidentto theline connectingendpoints;in thesecondcase,theboundaryexten-
sionsovertheoccludedareaintersectwithin theoccludedarea(e.g.figure13); in thethird case,theboundaryextensionsover
theoccludedareadonot intersect(e.g.figure15). Thelastcaseneedsanarchitecturalconstraintto limit boundaryextensions.
In thework presentedhere,weassumethattheextensiondoesnotpassthroughwallsor thefloor. Thismayoverextendsome
surfaces;thealternativewouldbemoreconservativeandnot reconstructthesecases- awaiting insteadadditionaldata.

Hypotheticalsurfacescanthenbecreatedby extendingthevisible surfaceregionsinto the identifiedboundedarea.The
methodto estimatetheoccludedsurfaceis basedon thesurfacegoodcontinuationconstraint.That is, we hypothesisethat
thesurfacedoesnot changeits shapewithin theoccludedarea.Thereconstructionis performedin the3D spacein orderto
achieveahigheraccuracy. Givenanoccludingpixel andanoccludedsurfaceweintersecttheray from thesensorthroughthe
occludingpoint with theoccludedsurface.As this ray overlapstheopticalray of thelaserscanningbeam,thereconstructed
pixel is placedin a positionthatcouldactuallyhave beensensedby thesensor. For planesthereis usuallyoneintersection.
For cylinderandspheresweusuallyfind two intersections.Figure12summarizestherecoverymethod.Figures13- 15show
someexamplesof reconstruction.
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