Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

Interaction Styles in Tools for Developing Virtual Reality Applications

Kjeldskov, Jesper; Stage, Jan

Published in:
Human-Computer Interaction Research and Practice

Publication date:
2001

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):

Kjeldskov, J., & Stage, J. (2001). Interaction Styles in Tools for Developing Virtual Reality Applications. In
Avouris, N. et al. (eds.) (Ed.), Human-Computer Interaction Research and Practice (pp. 165-170). Typorama.
http://people.cs.aau.dk/~jesper/pdf/conferences/Kjeldskov-C3.pdf

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 26, 2020

https://vbn.aau.dk/en/publications/dd6fc880-8093-11db-8b97-000ea68e967b
http://people.cs.aau.dk/~jesper/pdf/conferences/Kjeldskov-C3.pdf

Interaction Styles in Tools for
Developing Virtual Reality Applications

Jesper Kjeldskov

Aalborg University
Department of Computer Science
Fredrik Bajers Vej 7
DK-9220 Aalborg East, Denmark
jesper@cs.auc.dk

SUMMARY

Virtual reality display systems reflect an emerging
technology that is used to visualize virtual three-
dimensional (3D) worlds. This article describes and
evaluates tools for developing software applications
that are targeted at virtual reality display systems. The
evaluation focuses on the relevance of command lan-
guage or direct manipulation with graphical representa-
tion as the fundamental interaction style in such a tool.
The foundation of the evaluation is an empirical study
of two development processes where two tools repre-
senting each of these interaction styles was used to de-
velop the same virtual reality application. The devel-
opment tool that employed a command language was
very flexible and facilitated an even distribution of ef-
fort and progress over time, but debugging and identifi-
cation of errors was very difficult. The tool that em-
ployed direct manipulation enabled faster implementa-
tion of a first prototype but did not facilitate a shorter
implementation process as a whole due to e.g. lack of
support for writing code for repetitive operations.

KEYWORDS: virtual reality, new user interfaces, inter-
action styles, direct manipulation.

INTRODUCTION

Methods and guidelines for user interface design em-
body certain computer technologies. This also applies
to interaction styles. Interaction based on a command
language was a relevant solution with the character-
based display. Direct manipulation emerged from the
potentials of the graphical workstation and personal
computer. This inherent relation between interface de-
sign and computer technology implies that our estab-
lished guidelines and experiences are challenged when
new technologies emerge.

Virtual reality display systems are used to create and
visualize virtual three-dimensional (3D) worlds. This
technology is emerging, and practically relevant appli-
cations are being developed for a broad range of do-
mains. As the use of the technology is increasing, there
is an increasing demand for tools for developing appli-
cations.

Jan Stage

Aalborg University
Department of Computer Science
Fredrik Bajers Vej 7
DK-9220 Aalborg East, Denmark
jans@cs.auc.dk

The purpose of this article is to compare and discuss
the relevance of classical interaction styles for tools
that are used to develop virtual reality applications. The
focus is on the process of developing actual virtual
reality applications. More specifically, we compare the
potentials of a development tool based on a command
language with one that is based on direct manipulation.
The discussion is structured in the following way. In
the first section, we review selected literature on com-
mand language and direct manipulation as classical in-
teraction styles. We then describe the virtual reality
display technology in order to specify the target plat-
form we are aiming at. The comparison of the two clas-
sical interaction styles is based on an empirical experi-
ment. In the following sections, we describe the design
of that experiment and emphasize the relevant results.
Finally we conclude the discussion and point out ave-
nues for further work.

INTERACTION STYLES IN DEVELOPMENT TOOLS
The interaction style is a key determinant of the design
of the user interface. Many discussions on the advan-
tage or disadvantage of a certain design relate to this
characteristic. The options available for design of this
characteristic have been denoted as: command lan-
guage, menu selection, form filling, and direct manipu-
lation [10]. Below, we will refer to these as the classi-
cal interaction styles.

The development of a virtual reality application in-
cludes an essential task where we construct the 3D
world that is visualized by the application. The funda-
mental interaction style of existing tools that support
this task employs either direct manipulation or a com-
mand language in the form of a textual programming
language, cf. section 3. Menu selection and form filling
are also employed but only for secondary interactions
that deal with limited issues, e.g. the specification of
properties of a certain object that is manipulated di-
rectly on an overall level. Based on these priorities, the
discussion below deals only with command language
and direct manipulation.

The literature on human-computer interaction includes
numerous contributions to the question whether direct
manipulation is superior to command languages. Much
of this is description of advantages whereas the amount
of empirical evidence is very limited [2]. An early con-
tribution focusing directly on construction compared
file manipulation commands in MS-DOS with Macin-
tosh direct manipulation. This study concluded that the
Macintosh users could perform the manipulations
faster, with fewer errors, and they were more satisfied
with the interface [6]. A similar study where command
line and direct manipulation was compared concluded
that the users of direct manipulation made only half as
many errors and were more satisfied. In this study, the
time to perform the tasks turned out to be comparable

[7].

The limited number of reports from empirical studies of
command language and direct manipulation seem to in-
dicate an advantage in terms of error rate and user satis-
faction. When it comes to time to complete a task, the
conclusions are more varied.

Our intention in this paper is to examine these expecta-
tions in relation to tools for developing virtual reality
applications.

VIRTUAL REALITY APPLICATIONS

A virtual reality application that visualizes a 3D world
consists of a number of mathematically defined 3D
models that are covered with colors or textures, e.g.
pictures or video images. The 3D models are spatially
distributed in a three-dimensional coordinate system
that the user can experience as a 3D world by viewing
the 3D models from a given point in the coordinate sys-
tem. The correct perspective is rendered real-time by a
graphics computer and projected by means of a display
system as illustrated in figure 1. Motion in the virtual
world is accomplished by changing viewpoint by either
means of position tracking or a specialized interaction
device. Interaction with objects in the virtual world is
typically supported by techniques for selecting and
modifying 3D objects by simply “grabbing” them just
like one would do in the real world. The 3D experience
requires shutter glasses worn by the user allowing sepa-
rate images to be projected to the user’s left and right
eye and thereby creating an illusion of 3D. Tracking the
position of user’s head ensures that the correct visual
perspective is calculated.

A virtual reality application may use a multitude of dis-
play systems to visualize the virtual 3D world. Exam-
ples of display systems are traditional desktop moni-
tors, head-mounted displays, holobenches, large wall-
mounted displays or caves with various numbers of
sides. These display types represent the array of tech-
nologies for creating immersive experiences that range

from “looking at” a virtual 3D world to “being in” that
virtual world [10].

Figure 1: A virtual 3D world

The six-sided cave (Cave Automated Virtual Environ-
ment) is currently the display system that offers the
greatest level of immersion into a virtual 3D world. The
user is placed in a small cubic room, measuring approx.
3 meters on all sides, in which the computer-generated
images are back-projected on all four walls, the floor
and the ceiling, cf. figure 2.

Figure 2: Outside the six-sided cave

The benefits of the six-sided cave for exploration of
virtual 3D worlds lay in the vividness of the virtual en-
vironment projected and the very high degree of im-
mersion. This is caused by the freedom of movement
that is possible inside the cave and the large horizontal
and vertical field of view covered with images. Explo-
ration of the virtual world is much more natural in a
six-sided cave compared to any other display system
because the user can move around physically and look
in any direction without breaking the illusion of being
in a computer-generated world. The primary downside
is that physical objects and the user’s body itself may
occlude the images, thus locally breaking the visual il-
lusion.

Figure 3: Inside the six-sided cave

Virtual reality applications displayed in a cave are very
different from many traditional computer applications.
First, the user interface is completely surrounding the
user and is presented in 3D as opposed to conventional
2D interfaces covering only a fraction of the user’s
physical surroundings. Second, the types of applica-
tions running in a cave are typically offering a complete
virtual 3D world for exploration as opposed to tradi-
tional tools for office or home use. Third, applications
running in a cave are by default both highly graphical
and interactive.

TWO CATEGORIES OF DEVELOPMENT TOOLS
Although virtual reality applications are fundamentally
different from typical applications, they are not devel-
oped in the cave itself. Virtual 3D worlds are usually
developed on ordinary — yet powerful — desktop com-
puters with traditional 2D displays. The existing tools
for development of virtual reality application fall in two
different categories.

The first category can be characterized as a classical
programming approach, since the creation and manipu-
lation of the virtual world and the objects in it is speci-
fied in a command language. Within this approach,
special libraries for creating cave applications are
available for C and C++. One of the most widely used
binary libraries for developing virtual 3D worlds is
CaveLib. This library enables development of highly
immersive 3D interfaces for projection in a cave, or any
other virtual reality display system, as well as imple-
mentation of interaction techniques for 3D interaction
devices. For preview purposes, CaveLib offers a simple
tool for representing the cave display and simulating
simple 3D interaction, cf. figure 4.

Using CaveLib to develop an application is not very
different from developing any other graphical applica-
tion in a typical programming language.

Buffers Files Tools Edit Search Help
woid drauBalls()
i

/% Clear the screen and zhuffer */
gIclearcolor(s,, 8., 8., B,);
g1CTlear (GL_DEPTH_BUFFER_BIT|GL_COLOR_BUFFER_BIT);

g1EnabTs{GL_LIGHTING);

/% Apply the navigation transformation x/
CAYENRYTransform();

/% dctivate the Red Haterial and draw a red sphere +/
gltalllist{redat);

gTPushhatrix();

glTranslater(2.8, balilel.y, -5.8);
glusphere(spheredbj, 1.8, 8 8);

aTPopHatrix();

/% Activate the Blue Material and draw a blue sphere #/
glcallList{hlueNat);

gIPushMatriv(l;

giTranslatef(-2.8, balll1l.y, -5.8);
glusphere(spheretbj, 1.8, 8, 8);

gTPopHatrix();

E
| giDisable(GL LIGHTING
el - - cavelibDEHO.c [4:62 5T,
WMark set

druzr]

—PuRPE-r-- 1 tdn tdn 2833 May 22 11:47
Trusrusrux L tdn tan 512 May 22 13:48
Trusruxewz 1 tdn tdn 18 Aug 9 2800
<ran@kirin<e>

[1] 35888

Figure 4: Development with CaveLib

The second category of tools for developing virtual re-
ality applications can be characterized as a graphical
representation and direct manipulation approach. One
of the few professional tools in this category is
dvMockup.

Figure 5: Development with dvMockup

This tool enables the developer to create an application
by directly manipulating the objects of the virtual 3D
world within the preview window along with the use of
menu selections and fill-in forms, cf. figure 5.

Using dvMockup, implementing an application for the
cave is done without doing any actual programming.

EXPERIMENTAL DESIGN

An empirical experiment was conducted to inquire into
the research question that was raised in section 1. This
section describes the design of that experiment.

Tools: We briefly surveyed potentially relevant tools
for implementing virtual reality applications and related
this to the fundamental aim of comparing direct ma-
nipulation tools with programming tools. Based on the
survey and the facilities available, we selected two es-
tablished tools: dvMockup, a direct manipulation tool
that enables people without programming experience to
create a virtual reality application, and CaveLib, an ad-
vanced programming tool that facilitates development
of virtual reality applications characterized by high per-
formance and flexibility. In addition, we selected a new
and promising programming tool, VR Juggler, which
extends CaveLib with a more flexible and modular
structure and open source architecture. The first two
tools were already installed, configured, and used ex-
tensively by other developers and researchers who
could be consulted when technical problems arose. The
third tool, VR Juggler, was acquired right before the
beginning of the experiment and there were no experi-
ences with it.

Participants: A development team of three persons and
the two authors of this article planned and designed the
experiment, whereas the development team conducted
the implementation phase. The three developers had re-
cently completed a master degree in computer sci-
ence/computer engineering. Thereby, they had consid-
erable experience and knowledge about programming
in general. They had previously taken a one-semester
course on computer vision and virtual reality and
worked with projects within that subject. They received
a one-day introduction to the tools used in the experi-
ment but had no experience with them.

Overall task: The comparison of the three tools was
based on solution of the same overall task. The overall
task was to develop a virtual reality application that
visualized a maze in which a user could move an avatar
around by means of an interaction device. This task was
specified in detail by dividing it into 14 milestones.
Thus, the overall task was solved when all milestones
were met. The milestones involved tool and cave set-up
(milestone 1 and 2), implementation of a simple appli-
cation (milestone 3 and 4), implementation of the ap-
plication visualizing the maze (milestone 5 to 8), inter-
action techniques to facilitate motion of the avatar
(milestone 9 to 12), and adjustment (milestone 13 and
14).

Hypothesis: Based on the literature on interaction styles
reviewed in section 2 above, we developed the follow-
ing hypothesis: The direct manipulation tool is superior
to the programming tools in terms of the efforts re-
quired to implement the a virtual reality application that
is specified by the overall task.

Experimental procedure: When the planning phase of
the experiment was complete, the implementation phase
started. This phase was planned to last three weeks but
was extended with a couple of days because of techni-
cal problems. Each member of the development team
was assigned one of the three tools and should use it to
produce the best possible solution to the overall task.
During the implementation phase, they were not sup-
posed to communicate with each other about their
work, problems, and solutions.

Data collection: The primary means for data collection
were private diaries written by each developer, cf. [4],
[8]. After a day of work on the implementation, each
developer used about an hour to describe the work done
and its relation to the 14 milestones, the problems
faced, and the time spent on tasks related to each of the
milestones. A checklist that emphasized the points that
should be touched upon supported the daily writing of
the diary. One week into the implementation phase, the
diary entries produced so far were reviewed enforces
the use of the checklist and increase consistency. The
three diaries amount to a total of 45 pages [3].

Data analysis: The primary dependent variables were
work practice and development effort. Yet, in this arti-
cle we focus only on development effort. Based on the
diaries, we have calculated and compared the efforts
spent on completing the different milestones of the
overall task. The results of this are presented in the fol-
lowing section.

Limitations: The design of this experiment imposes cer-
tain limitations on our results. Firstly, the members of
the development team were not highly experienced in
implementing virtual reality applications. Secondly,
The overall task defined a specific application that
should be implemented. These limitations imply that
the results primarily facilitate relative as opposed to ab-
solute conclusions about efforts. Thirdly, the diaries of
the three developers were different. In order to handle
this they were reviewed after one week of work. The
fourth limitation was that two of the tools were estab-
lished on the development platform whereas the third
was not even configured and there was no experience
with its use. The developer who worked with this tool
ended up spending a considerable amount of effort on
issues related to installation and execution. Therefore,
we ignore this part of the experiment in our comparison
below.

FINDINGS

In this section, we present and discuss the findings from
the experiment with CaveLib and dvMockup. The de-
veloper who used CaveLib was able to meet all mile-
stones, but the navigation technique specified was
changed due to usability issues. The developer who

used dvMockup was not as successful, since collision
detection could not be implemented satisfactory. How-
ever, the final solution was acceptable. The develop-
ment time spent using CaveLib amounts to 42,3 hours,
whereas the time spent using dvMockup amounts to
37,8 hours. The total time spent on development with
the two tools thus differ only 12%. The distribution of
time spent on each milestone does, however, reveal
significant differences between the programming and
direct manipulation approaches. This distribution is
shown in figure 6. Below, we will highlight interesting
points from this distribution.

Setting up the development tools and the cave (mile-
stone 1 and 2) amounted to a total of 12 hours spent on
CaveLib whereas only 3,8 hours was spent on this with
dvMockup. Thus the developer who used dvMockup
only needed about 30% of the time spent using
CaveLib. Setting up CavelLib demanded a series of
separate tools to be configured for individual tasks, e.g.
scripting, compiling, and previewing, as well as crea-
tion of a number of configuration files on both the
workstation used for development and the graphics
computer that was executing the display system for the
cave. With dvMockup only one tool had to be set up,
and when an application was running on the work-
station, only a few scripts were needed before it was
also operational in the cave.

Implementation of a preliminary application with the
purpose of testing the development and target platform
and the connection between them (milestone 3 and 4)
took 6,5 hours using CaveLib but only 2 hours with
dvMockup. Again, for dvMockup this is only about
30% the time spent using CaveLib. Thus up to mile-
stone 4 it is clear that the direct manipulation approach
supports a faster kick-off on the development process

Implementation of the primary application, which was
the maze specified in the overall task (milestone 5 to
8), was done in 10,3 hours using CaveLib. With

dvMockup the same milestones required 27,5 hours. So
here we see the same pattern where one tool requires
only about 30% of the time spent with the other tool.
Yet this time the roles are reversed, as CaveLib is the
favored tool. Thus the programming approach seems to
facilitate a more effective process in this part of the im-
plementation. The major reason for the considerable
amount of time spent with dvMockup is that the tool
provides no direct support in a situation where making
and running a simple program might avoid numerous
repetitions of simple operations. For example, the de-
veloper using dvMockup faced the task of manually in-
serting 800 identical cubic 3D objects into the virtual
3D world, whereas the developer using CaveLib could
perform the same task simply by writing a small piece
of code. This limitation becomes even more serious
when we take the question of scale into consideration.
If we compare a small application to a large one, the
difference in amount of work will occur precisely on
milestone 5 to 8 whereas the remaining milestones will
largely be unaffected. Therefore, the difference be-
tween the two tools on these milestones will even be
more significant if we expand the scale of the applica-
tion being developed.

Implementation of interaction techniques (milestone 9
to 12) took 7,5 hours with CaveLib and only 2,5 hours
using dvMockup. This is a 30% reduction in favor of
dvMockup.

The time spent implementing interaction techniques
with dvMockup is, however, influenced by the avail-
ability of supporting software. In a related project, a
considerable amount of time had been spent developing
“off-the-shelf support” for implementing interaction in
dvMockup in order to facilitate a general reduction of
development time [5]. Had this support not been avail-
able, the time spent on these milestones would defi-
nitely have increased, but we will not attempt to esti-
mate by how much. In CaveLib, all interaction tech-
niques were implemented from scratch.

O Cavelib

Hours spent
[6)]

Y
Y

A Y

o
t
N\

Milestone

dvMockup

10 11 12|13 14

Figure 6: Development time spent using CaveLib and dvMockup.

However, this had the advantage that the interaction
technique specified in the overall task was actually im-
plemented. With dvMockup it was necessary to select
one of the available techniques, which did not fulfill the
specification completely. If the implementation in
dvMockup should have fulfilled the requirements com-
pletely, additional programming on device driver level
would have been necessary.

Final adjustment of the applications (milestone 13 and
14) took 6 hours for CaveLib while only 3 hours was
spent with dvMockup. The larger amount of adjust-
ments of the CaveLib application primarily consisted of
correcting errors with the scaling of 3D objects. This
was necessary to make the objects fit properly for pro-
jections in the cave. This kind of errors was absent in
the application developed with dvMockup.

CONCLUSION

We have conducted a qualitative empirical study show-
ing that implementing a virtual reality application using
a command language tool and a direct manipulation
tool required efforts in terms of time that are compara-
ble. The command language tool, however, resulted in
faster implementation during the most essential phases
of the implementation process and thus outperforms the
direct manipulation tool on a larger scale. The direct
manipulation tool on the other hand resulted in fewer
errors.

By focusing on application development for a six-sided
cave using tools running on desktop computers we
have, of course, taken things to the edge. There is a
continuum of virtual reality displays for which the dis-
tance between development tool and target application
may not be as significant as for the six-sided cave.

A central question rises from this conclusion. Can di-
rect manipulation be further exploited in tools for de-
veloping virtual reality applications? A relevant solu-
tion might be to make direct manipulation more direct
as discussed in [1] and [9].

ACKNOWLEDGEMENTS

The authors thank the development team: Mike H.
Hougaard, Nikolaj Kolbe and Flemming N. Larsen. We
also thank VR-MediaLab for access to virtual reality
installations and development tools.

BIBLIOGRAPHY

1. Beaudouin-Lafon, M. (2000). Instrumental Interac-
tion: An Interaction Model for Designing Post-
WIMP User Interfaces. CHI Letters, 3(1): 446-453.

2. Benbasat, I. and Todd, P. (1993). An Experimental
Investigation of Interface Design Alternatives: Icon
vs. Text and Direct Manipulation vs. Menus. Inter-
national Journal of Man-Machine Studies, Vol. 38,
1993, pp. 369-402.

3. Hougaard, M. H., N. Kolbe and F. N. Larsen
(2001). Comparison of Tools for Developing virtual
reality Application. (In Danish). Aalborg Univer-
sity: Intermedia.

4. Jepsen, L. O., L. Mathiassen and P. A. Nielsen
(1989). Back to Thinking Mode: Diaries for the
Management of Information System Development

Projects. Behaviour and Information Technology
8(3): 207-217.

5. Kjeldskov, J. (2001). Interaction: Full and Partial
Immersive virtual reality Displays. Accepted for
publication at the 24th IRIS conference.

6. Margono, S. and Shneiderman, B. (1987). A study
of File Manipulation by Novices Using Commands
vs. Direct Manipulation. In Proceedings of the 26th
Annual Technical Symposium, ACM, Washington,
DC, 1987, pp. 57-62.

7. Morgan, K., Morris, R. L. and Gibbs S. (1991).
When Does a Mouse Become a Rat? or ... Compar-
ing the Performance and Preferences in Direct Ma-
nipulation and Command Line Environment. Com-
puter Journal, Vol. 34, pp. 265-271.

8. Naur, P. (1983). Program Development Studies
Based on Diaries. In: T. R. Green et al. (Eds.), Psy-
chology of Computer Use, pp. 159-170. London:
Academic Press.

9. Schkolne, S., Pruett, M., and Schroder, P. (2001).
Surface Drawing: Creating Organic 3D Shapes with
the Hand and Tangible Tools. CHI Letters, 2(1):
261-268.

10. Shneiderman, B. (1998). Designing the User Inter-
face: Strategies for Effective Human-Computer In-
teraction. Addison Wesley Longman, Reading,
Massachussetts, 1998.

