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Slow Fading Cross-Correlation versus Azimuth 
Separation of Base Stations 
 
T.B. Sørensen 
 

Abstract: A model is proposed to describe the cross-
correlation of slow fading signals received from non 
co-located base stations. The model summarises the 
results obtained from a bootstrap analysis of 900MHz 
urban area propagation measurements. 

 
Introduction: System level simulations  of  mobile cellular 
systems have shown that  the network performance  is 
affected by the cross-correlation between the random 
component of the local mean signal power (slow fading) of 
the serving  base station and that of  the handover base 
station candidates. An example study  was  given in [1], 
where the outage probability, subject to handover algorithm 
performance, was analysed   for a synthetic cross-correlation 
model. 
Previous experimental results for the cross-correlation 
reported by Graziano [2] and Mawira [3] seem to indicate 
that the correlation drops fast for small AAD (Angle of 
Arrival Difference) in urban and suburban areas. For larger 
AAD Mawira has observed a linear decrease, whereas 
Graziano’s results were more irregular in shape. In this 
communication, the previous findings of cross-correlation 
versus AAD will be supported by providing new urban area 
measurement results with confidence intervals for the 
correlation coefficient estimates. The results are summarised 
in a simple model. 
 
Measurements: The measurements used for the analysis were 
conducted in Aarhus (Denmark). A measurement van with a 
roof mounted quarter-wavelength omnidirectional antenna 
provided simultaneous measurements of the received signal 
power from three operational base stations located in the 
downtown area. The relative position of the base stations and 
the measurement area is depitched in Fig. 1. The 
measurement area is characterised by almost uniform 
building height of about 4-5 storeys, and a gently rolling 
terrain. A total of 35 measurement routes, with an average 
length of approx. 400 m, were defined by driving around a 
single or a group of apartment blocks. For each route, 
samples were taken at an equidistant interval of one third of a 
wavelength (0.1m). For nearly all of the measurement routes 
the receiver van was in NLOS (Non Line-Of-Sight) with 
respect to the base stations. 
The signals received from the base stations were separated 
by means of different transmit frequencies: 951.4, 951.8 and 
955.8 MHz. Each of the base stations used a directional 
antenna pointing south, as indicated in Fig. 1. 
 

 

Fig. 1 Relative position of base stations and measurement 
area (encircled area). 

 

Correlation analysis: For each measurement route shown in 
Fig. 1 three AAD angles may be defined corresponding to 
any two of three base stations. This gives 3 × 35 pairs of data 
records which provide the statistical data for analysing cross 
correlation as a function of AAD. An AAD bin size of 5o was 
considered to be the smallest possible for data clustering. 
For each data record (a route) the median value for a 12.7 m 
section was computed as an estimate of the local mean. From 
previous analysis the standard deviation of the slow fading 
within the measurement area was found to be approx. 5dB, 
and the decorrelation distance was estimated to be 5.5 m [4]. 
For any pair of computed local mean values a subset was 
selected in which each sample pair was separated from 
adjacent pairs by 25.6 m. This step was taken to avoid any 
specific assumptions on the process autocorrelation in 
calculating confidence intervals for the correlation 
coefficient. With this separation, sample pairs can be 
assumed to be nearly uncorrelated with autocorrelation 
below 0.2, according to the empirically derived model in [4]. 
 
The above procedure leaves only a small number of samples 
in each pair for estimation of the cross-correlation 
coefficient, and for such a small data set we cannot expect 
asymptotic results to apply. For this reason, the ‘independent 
non-parametric data bootstrap’ procedure has been applied in 
order to estimate a confidence interval for the correlation 
coefficient ρ [5]. Specifically, Fisher’s ‘z-transform’ was 
used to stabilise the variance of the parameter estimate ρ ~ 
and the ‘transformed percentile-t method’ [6] was used to 
calculate a (1-α)⋅100% confidence interval for the 
correlation coefficient. 
The correlation coefficient is defined in equation (1) and 
based on logarithmic (dB) values (‘cov’ is covariance). An 
estimate of the coefficient is calculated from the subset of 
sample pairs Pi, Pj representing the local mean power 
received from base station i and j, respectively. 

ρij
i j

i i j j

P P

P P P P
~ cov( , )

cov( , ) cov( , )
=

⋅
   (1) 

Within a particular AAD bin of 5o a number of different data 
sets measured at different ranges can be present. To combine 
the correlation coefficient estimates of the different data sets, 
and to allow some statistical averaging, the weighted 
averaging process proposed by Graziano [2] is applied 
before the data bootstrap. 
Due to the distances used for the median calculation and the 
subset selection it is possible to select two distinct subsets of 
sample pairs based on different samples within the data 
records - each with its own estimate of correlation coefficient 
and confidence interval. If the subsets are correlated, as 
implied in the previous paragraph, one is to expect 
coincident estimates. On the other hand, if they are nearly 
uncorrelated, coincident estimates give proof that the 
estimate is good. For the purpose of this discussion 
consistency in the analysis is of prime concern and the 
estimates must agree whichever is the case. 
 
Results and conclusion: The results of the bootstrap analysis 
is shown in Fig. 2 for AAD ranging from 10 to 85o. The 
correlation coefficient estimates are marked with a diamond 
symbol and the related 90% confidence interval with a 
vertical line through the symbol. A bootstrap resample size 
of 1000 has been used with a nested variance estimation 
bootstrap of size 25; see [5] for details. An estimate is shown 
for each of the two distinct, but possibly correlated, data 
subsets. Sufficient agreement can be seen to gain confidence 
in the applicability of the bootstrap procedure for cross 
correlation estimation. The standard deviation (right scale in 
Fig. 2) is  found to be approximately 0.1 on average, and 
largely dependent on the number of samples in a bin; this is 
particularly evident for the first bin which contains the 
smallest number of samples. 
In general, the results confirm the observations in [2,3]. The 
actual shape of ρ versus AAD, however, is likely to change 
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for a different urban location. Despite of this, a piecewise 
continuous model is proposed, which summarises the 
information contained in Fig. 2: 
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This model (thick solid curve in the figure) includes the main 
characteristics which are likely to be observed in an urban 
area; certainly, the synthetic models used in [1] do not (see 
the example in Fig. 2). One possible variation of the model is 
to change the position of the first discontinuity, say within 
10-40o. This is believed to have the most dominant effect on 
system level simulations. 
 

 

Fig. 2 Correlation coefficient and 90% confidence interval 
estimates; points at the bottom are the standard deviation σ 
of the estimate (right scale). 
 
  Subset 1 − − − − − Subset 2 
− ⋅ − ⋅ − Synthetic model [1]  Proposed model 
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