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Bounds on Information Combining

Ingmar Land, Member, IEEE, Simon Huettinger, Peter A. Hoeher, Senior Member, IEEE, and
Johannes B. Huber, Senior Member, IEEE

Abstract—When the same data sequence is transmitted over
two independent channels, or when a data sequence is transmitted
twice but independently over the same channel, the independent
observations can be combined at the receiver side. From an
information-theory point of view, the overall mutual information
between the data sequence and the received sequences represents
a combination of the mutual information of the two channels.
This concept is termed information combining. In this paper, a
lower bound and an upper bound on the combined information is
presented, and it is proved that these bounds are tight. Further-
more, this principle is extended to the computation of extrinsic
information on single code bits for a repetition code and for a
single parity-check code of length three, respectively.

For illustration of the concept and the bounds on information
combining, two applications are considered. First, bounds on the
information processing characteristic (IPC) of a parallel concate-
nated code are derived from its extrinsic information transfer
(EXIT) chart. Second, bounds on the EXIT chart for an outer
repetition code and for an outer single parity-check code of a
serially concatenated coding scheme are computed.

Index Terms—Extrinsic information, extrinsic information
transfer (EXIT) chart, information combining, information
processing characteristic (IPC), iterative decoding, mutual infor-
mation, parallel concatenated codes.

I. INTRODUCTION

HEN binary linear channel codes are used for transmis-
sion over memoryless channels, several or even all ob-
servations of code bits contain information on a certain infor-
mation bit (also denoted as info bit,! data bit, or source bit). The
overall information on this info bit is formed by a combination
of the available amounts of information.
If the information is represented by outputs of independent
additive white Gaussian noise (AWGN) channels, the optimum
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ITn the following, we employ the term “info bit” to avoid confusion with “mu-
tual information.”

combining is given by maximum-ratio combining. A very con-
venient way of combing is possible, if the information is repre-
sented by independent log-likelihood ratios (LLRs). In this case,
the optimum combination is simply the addition of the LLRs [1].

This combining of information is used for decoding of single
codes, e.g., [2]-[4], as well as for iterative decoding of parallel
and serially concatenated codes (turbo codes), e.g., [S]-[7], and
for iterative decoding of low-density parity-check codes, e.g.,
[8], [9]. The general framework for iterative decoding is de-
coding on graphs, see, e.g., [10]-[12].

In this paper, “information combining” will be used in a very
strict sense, namely, only for combining of mutual information.
This notion of information combining was introduced in [13],
[14] for design and analysis of parallel concatenated coding
schemes. In such a coding scheme, the overall mutual informa-
tion between the encoder inputs and the soft outputs of the itera-
tive decoder is a combination of the mutual information between
the encoder inputs and the extrinsic outputs of each constituent
decoder. A similar concept is used in the extrinsic information
transfer (EXIT) chart method [15], [16], in which iterative de-
coding is interpreted as processing of extrinsic (mutual) infor-
mation.

The general scenario for information combining is as follows.
Consider a certain number of code bits which are coupled by
code constraints. Such a constraint can be that code bits are re-
quired to be equal, denoted as equality constraint, or that code
bits are required to fulfill a parity-check equation, denoted as
parity-check constraint. The code bits are transmitted over inde-
pendent memoryless channels, and for each channel, the mutual
information is known. Then the question is: What is the mutual
information between a single code bit or info bit and all channel
outputs? This mutual information is denoted as combined in-
formation, since it is in some sense a combination of the mu-
tual informations of the individual channels. This general case
of transmission over independent channels includes the special
and practically relevant case of subsequent transmissions over
the same memoryless channel.

If the statistical properties of the channels are completely
known, the combined information can be computed exactly. On
the other hand, if only one statistical parameter of each channel
is known, namely, its mutual information, still an upper and a
lower bound on the combined information can be given. Such
bounds on information combining are addressed in this paper.

We restrict ourselves to binary-input symmetric memoryless
channels (BISMCs). Examples for such channels are the binary-
symmetric channel (BSC), the binary erasure channel (BEC),
and the binary-input AWGN channel (assuming the input values
“4+1” and “—1”). Regarding information combining, we focus
on three basic scenarios.

0018-9448/$20.00 © 2005 IEEE
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The first scenario is the parallel concatenation of two inde-
pendent BISMCs X — Y; and X — Y5, denoted as constituent
channels, having the same input X. The overall channel, X —
[Y1Y5], is denoted as parallel concatenated channel? (PCCh).
The main question in this context is: How is the mutual infor-
mation of the PCCh (the combined information) related to the
mutual informations of the two constituent channels.

The second and the third scenario comprises three code
bits X3, X5, and X3, which are transmitted over independent?
BISMCs X; — Y;,7 =1, 2, 3. In the second scenario, the code
bits are required to fulfill an equality constraint, and in the third
scenario, the code bits are required to fulfill a parity-check con-
straint. In both scenarios, the question is: How is the extrinsic
information on code bit X, I(X7;Y>Y3), related to the mutual
informations of the channels corresponding to code bits X5 and
X3, I(XQ; Yz) and I(X3; Y3)

For each of the three scenarios, upper and lower bounds on the
combined information are given. Furthermore, it is shown that
each bound is achieved by either the case that all BISMCs are
BEC:s or the case that all BISMCs are BSCs; thus, the bounds
are tight.

The notion of information combining was introduced in [13]
in the sense of optimal combining of mutual information. The
combined information is the mutual information between the
respective info bit or code bit and all channel outputs. Motivated
by [17], bounds on combined information were devised for the
parallel concatenation of two channels (first scenario described
above) in [18]. In the present paper, this concept is revised, and
it is generalized to the second and the third scenario described
above. For all three scenarios, we investigate the maximum and
the minimum of the combined information if for all individual
channels only their mutual informations are given.

Motivated by [18], results similar to that of the present paper
were independently found in [19], using a different approach.
Information combining is considered for equality and parity-
check constraints involving an arbitrary number of channels,
and the extremes of the combined information are determined
with respect to single channels; the results are applied to ana-
lyze iterative decoders for low-density parity-check codes. Fur-
thermore, a more general notion of information combining is
introduced, but only optimal combining is considered. As op-
posed to that, the present paper focuses on the case of two and
three channels, and the extremes are determined with respect to
all channels; as applications, the information-processing charac-
teristic (IPC) of a parallel concatenated code is computed based
on its EXIT chart, and the EXIT charts for repetition codes and
single parity-check codes of length 3 are considered.

The paper is organized as follows. In Section II, some def-
initions and properties for the single constituent channels are
given. In Section III, the parallel-concatenated channel (PPCh)
is addressed, and tight bounds on information combining are
stated and proven. Section IV deals with the extrinsic informa-
tion for the two simple codes given above and the corresponding

2The term “parallel concatenated channel” follows the term “parallel concate-
nated code.”

3As mentioned above, this includes the special and practically relevant case
that all code bits are transmitted over the same memoryless channel.
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bounds. For each scenario, an example is given in Section V. Fi-
nally, conclusions are drawn in Section VI.

II. CONSTITUENT CHANNELS

In this section, the constituent channels will be considered
separately. Since all constituent channels are BISMCs and thus
have the same properties, we will label the variables with the
generic subindex ¢, where i € {1,2,3}.

In the following, it will be shown how a BISMC can be sepa-
rated into subchannels which are BSCs. For this separation, the
absolute value of the channel output will be employed.

Let X; — Y; denote a BISMC with X; € X := {-1,+1}
and Y; € Y; C R, where X and Y; denote the input and the
output alphabet of the channel, respectively. The channel in-
puts are assumed to be independent and uniformly distributed.
The transition probabilities are given by py;|x, (y|z), denoting
the probability density function for continuous output alphabets
and the probability mass function for discrete output alphabets.
Since the channel is symmetric, we can assume

pviix; (Yl2) = pyix. (—yl — @)

forall z € X and y € Y, without loss of generality. The mutual
information of a constituent channel is defined as

Let the magnitude of Y; be defined as the random variable
JiEJi::{yEYiiyZO}

Ji = |Yi|.

Using .J;, the elements of the output alphabet Y,; can be grouped
into pairs

vit) ={ o

(The special treatment of the case j = 0 will be explained
below.) With these definitions, J; indicates which output set
Y;(j) the output symbol Y; belongs to.

The random variable J; separates the symmetric channel
X,; — Y into strongly symmetric subchannels X; — Y;|.J; =
75 it will therefore be denoted as subchannel indicator. The
subchannels are BSCs and occur with probability

for j € J;\{0}
for j = 0.

4i(4) == pr5.(j), for j € ;.
Their conditional crossover probabilities ¢;(j) are defined as

for j € J;\{0}

A) o — pY4|X7-7,]1-<_j|+17j)7
ali) =1 for j = 0.

Let
h(z):=—-zldz — (1 —2)ld (1 —z)z € [0,1],

denote the binary entropy function, and let h=*(y), y € [0,1],
denote its inverse for z € [07 %] . Then, the mutual information
of subchannel j is given as

Li(j) == I(X3; Y| Ji = j) = 1 — h(ei(4)). (1)
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Fig. 1. Parallel concatenation of two channels.

As mentioned earlier, j = 0 was treated as a special case in
the definitions. The actual subchannel, a BEC with erasure prob-
ability 1, was transformed into a BSC with crossover probability
%. This transformation does not change the mutual information
I;(0) = 0, but will simplify the following derivations, since thus
all subchannels are BSCs without exceptions.

Using the above definitions, the mutual information of a con-
stituent channel can be written as the expected value of the mu-
tual informations of its subchannels

Ii= E {L()} 2)
JjE€J;

The concept of separating a BISMC into BSCs can easily
be generalized to include channels with vector-valued outputs,
using definitions similar to those for channels with scalar out-
puts. This is not further considered as this paper addresses only
BISMCs with scalar outputs.

The separation of the constituent channels into binary-sym-
metric subchannels will be exploited in Sections III-V.

III. PARALLEL-CONCATENATED CHANNEL (PCCh)

The PCCh X — [Y1Y53] is composed of the two constituent
channels X — Y7 (CChl) and X — Y5 (CCh2), as depicted in
Fig. 1. The channel inputs X are assumed to be independent and
uniformly distributed, and the constituent channels are assumed
to be BISMCs. It can easily be seen that then the PCCh is a
symmetric memoryless channel (with vector-valued outputs).

In the following, it will be investigated how the mutual infor-
mation of the PCCh

I:=I(X;Y1Y3) 3)

is related to the mutual informations Iy = I(X;Y7) and I, =
I(X;Y3) of CChl and CCh2, respectively.
First, I can be written as

1 :I(X,Y1Y2)
=1(X;Y1) + 1(X;Y2) = 1(Y1;Y2)
:Il =+ 12 — I(YLYQ) (4)

Since I < I; + I, the value of 1(Y7;Y>) can be regarded as
the information defect* with respect to the combination of the
mutual informations /7 and I5.

For illustration, consider the following two examples (cf.
[14]). These examples will turn out to represent bounds on
information combining.

Example 1 (Two BECs): Let the two constituent channels
be BECs having erasure probabilities §; and 0s, respectively.
Then their mutual informations are given by Iy = 1 — ¢; and
Iy = 1 — §5. If the output of at least one constituent channel

4The term “information defect” follows the term “mass defect” used in nu-
clear physics.

is no erasure, the input can be recovered without error; accord-
ingly, the mutual information for this case is equal to 1. On the
other hand, if the outputs of both channels are erasures, the input
cannot be recovered; accordingly, the mutual information for
this case is equal to 0. Since the former case occurs with prob-
ability 1 — 6702, the combined information is given by

I(X,Y1Y2) =1 —5162
=1-(1-I)1-1)
=11+ 1y — I - I.

Using (4), the information defect
I(Yl,YQ) = Il - I2
is obtained.

Example 2 (Two BSCs): Let the two constituent channels
be BSCs having crossover probabilities ¢; and €9, respectively.
Then their mutual informations are given by Iy = 1 — h(eq)
and o = 1 — h(ey). For this example, it is easier to derive
the information defect first. The information defect is given by
the end-to-end mutual information of the serial concatenation
of the two BSCs Y; — X and X — Y5. Since X is uniformly
distributed, the crossover probability of the reversed constituent
channel Y7 — X is also given by €;. Thus, the crossover prob-
ability of the BSC Y; — Y5 can be computed as

e:=[1—e1]es + €1[1 — €3]
and we have
I(Yl,YQ) =1- }L(é).

Note that e; = h~(1 — I) and €5 = h~1(1 — I,). Using (4),
the combined information can be written as

I(X,Y1Y2> = Il + IQ +1-— h(E).

In both examples, the combined information and the informa-
tion defect are expressed solely by the mutual informations of
the constituent channels.

For the subsequent discussion, the following function will
show to be useful.

Definition 1 (Information Defect Function): For x1,x2 €
[0, 1], the information defect function (IDF) is defined as

f(d?l,il?Q) =1-—nh ([1 — 61]62 + 61[1 — 62])
with 1 = h_l(l — il?l) and €5 = h_l(l — 1172).
Thus, for Example 2 (two BSCs) the information defect may
be written as I(Y1;Ys2) = f(I1, I2).

Using this function, the main theorem of this paper can be
stated as follows.

Theorem 1 (Bounds on Information Combining): Given the
mutual informations I; = I(X;Y7) and I, = I(X;Y3) of
the constituent channels, the mutual information of the PPCh,
I = I(X;Y1Y5), is bounded as

Li+1— f(I1, L) <I<Li+I,—1I 1.
- $ / 4212

two BSCs

two BECs
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Fig. 2. Bounds on combined information I = I(X;Y:Y>) (PCCh) versus
I, = I(X;Y7) (CChl) for several I, = I(X;Y5) (CCh2). The lower bounds
(dashed lines) correspond to the case of two BSCs, the upper bounds (solid lines)
correspond to the case of two BECs.

As shown in the examples, the lower bound is achieved if
both channels are BSCs, and the upper bound is achieved if both
channels are BECs. Thus, for each bound, we have an example
actually achieving this bound. Consequently, these two bounds
are tight.

In Fig. 2, the bounds on [ are plotted versus /; with /5 as pa-
rameter (see also [14], [20]). As the gap between the two bounds
is very small, it can be concluded that the mutual informations
of the constituent channels dominate the value of the combined
information, rather than the actual structures of the constituent
channels.

Theorem 1 will be proven in three steps. First, the information
defect for the general case will be written as an expected value
which includes only the IDF. Second, two properties of the IDF
will be stated. Finally, these properties will be used to get an
upper and a lower bound on the information defect and thus on
the mutual information of the PCCh.

Taking the subchannel indicators .J; and .J, into account, the
information defect can be written as

I(Yl,Yz) :I(YlJl;Yzjz)
= I(Jl,Y2J2) +{(Y1, J2|J12+I(Y1, Y2|J1J2)

~

=0 =0
= E {I(Y1;Ye|)1 = j1,J2 = j2)}
J1€I
J2€J2
- b { B v n@n}.
J1€Jd1 (J2€J2

The following relations were applied: First line: J; is a func-
tion of Y7, and J5 is a function of Y5. Second line: Chain rule of
mutual information [21]. Third line: I(Y7;Y3|J1, J2) is written
as an expectation with respect to realizations of .J; and J». Last
line: For given realizations j; and jo, the argument of the ex-
pectation corresponds to the case of two BSCs and can thus be
written using the information defect function; as .J; and .J, are
statistically independent, the expectation can be separated.
Equation (5) provides a means for the exact evaluation of
the information defect. First, the two constituent channels have
to be separated into their binary-symmetric subchannels, and
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Fig. 3. Function g(«) versus x for several values of parameter a (cf. Lem-
ma 1).

the corresponding values of the subchannel probabilities ¢ (§)
and ¢2(j), and the subchannel crossover probabilities €; (j) and
€2(7) have to be computed. Then, the mutual informations of
the subchannels can be determined according to (1). In the final
step, (5) can be evaluated.

In the following, (5) will be employed for derivation of an
upper and a lower bound for the information defect. Two im-
portant properties of the IDF are stated in the following lemma.

Lemma 1 (Properties of the IDF): The information defect
function f(x1,x2), x1,z2 € [0, 1], has the following two prop-
erties:

a) f(x1,x2) is convex-N in zy for constant xo, and vice

versa,

b) f(x1,z2) is lower-bounded as

f(z1,22) > 21 - 2.

Proof:
a) Since the IDF is symmetric in x; and x5, it is sufficient
to consider the IDF as a function of z; with constant parameter
x9. For simplification, let us define the function

gx):=1—f(1 —=z,1— h(a))
=h([l — 2a]h"Y(x) + a)

€ [0,1], with parameter a € [0, 3]. (The range of a is chosen
such that the equality = (h(a)) = a can be applied when eval-
uating the above equation.) Then, f(z1,22) is convex-N in x4
for constant z» if and only if g(z) is convex-U in z for con-
stant a. For illustration, the function g(z) is plotted versus x
for several values of a in Fig. 3. The plot indicates that g(z)
is convex-U for all a. A formal proof may be found in [22,
Lemma 2], as noticed in [19].

b) For the time being, let x2 be constant. Furthermore, let
x9 = 1 — h(a) and let 7 = 1 — x. Then g(z) can be used to
write the (one-dimensional) bound equivalently as

h([1 —2a]lh™"(z) +a) < (1 — h(a)) z + h(a)

forz € [0,1]anda € [0, 1].Forz = 0andz = 1, the left-hand
side is equal to the right-hand side. Regarding this and the fact
that g(x) is convex-U, the right-hand side represents the secant
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of g(x) for x € [0, 1], and thus the inequality holds. Since these
considerations hold for all a, statement b) holds for all z,. [

The results of this lemma will now be used to give bounds
on the information defect I(Y7;Y3). The lower bound corre-
sponds to the case where both constituent channels are BECs,
and the upper bound corresponds to the case where both con-
stituent channels are BSCs.

Lemma 2 (Bounds on the Information Defect): The informa-
tion defect I(Y7;Y3) is bounded as

I - I, <IY;Ys) < f(l1,12).
~—— ——

two BECs two BSCs

Proof: As given in (5), the information defect can be
written as

IY1;Y2)= E {
J1€J1

B {0 R}
Jj2€J2

Since the function f(x1,z2) is convex-N in each dimension ac-
cording to Lemma 1, part a), Jensen’s inequality [21] can be
applied in the above expression first with respect to (w.r.t.) jo
and then w.r.t. j;. Thus, we obtain

J'1]€EJ1 {jngz {f (Il (j1)7 I2(J2))}}

J2€

<7 (B, (G} B (RG2)) = f(0 D)

where (2) was applied in the last equation. Notice that this proof
is based on the separation of BISMCs into BSCs and the con-
vexity of the IDF. (A similar technique was implicitly used in
[23] to extend Mrs. Gerber’s Lemma [22].)

On the other hand, since the function f(z1, ) can be lower-
bounded according to Lemma 1, part b), the information defect
can be lower-bounded as

R R XARATSHY

> B {E {11<j1>-12<j2>}}:zl.12. .
J1€Jd1 | J2€J2

The proof of Theorem 1 follows immediately from (4) and
Lemma 2.

IV. EXTRINSIC INFORMATION

In this section, the binary repetition code and the binary
single parity-check code, both of length three, will be con-
sidered. These simple examples represent two basic code
constraints and provide insights concerning bounds on extrinsic
information.

Let X1, X5, and X3 denote three code bits, which are
coupled by the respective constraints, and let the codewords
[X1, X2, X3] be equiprobable. The code bits are transmitted
over independent BISMCs X; — Y;, ¢ = 1,2,3 (cf. Foot-
note 3).

Due to the code constraints, information about a code bit
is provided not only by its direct observation, but also by the

X —Y:
Xy —»Y,
Xz —=Y;3

Fig.4. Three parallel channels coupled by an equality constraint on the inputs.

observations of the other code bits. This extrinsic information
plays an important role in the context of iterative decoding (see,
e.g., [5]). With information in the sense of mutual information
(ct.[15], [16]), the formal definition is as follows.

Definition 2: The extrinsic information I.; on code bit X is
defined as

Iel = I(Xl; Y2Y3)

i.e., all channel outputs except the observation Y; are taken into
account. The extrinsic informations on X, and X3 are defined
in an analogous way.

In the following, bounds on the extrinsic information will be
derived.

A. Equality Constraint

Consider the case that the three code bits are coupled by the
equality constraint

X; =X, =X,

as depicted in Fig. 4.

It is obvious that the extrinsic information I(X;;Y>Y3) ex-
actly corresponds to the case of the parallel concatenation of
two channels, where two independent observations of the same
bit are available. Thus, we can apply the bounds given in The-
orem 1.

Theorem 2 (Extrinsic Information for Equality Con-
straint): Given an equality constraint on the code bits Xi,
X9, X3, and the mutual informations I := I(X»;Y5) and
I3 := I(X3;Y3), the extrinsic information Iy := I(X7;Y1Y53)
is bounded as

L+13— f(Iy,3) <Ian<DL+I3—-1-I3.
s g /, N R

two BSCs

two BECs

The lower bound is achieved if all channels are BSCs, and the
upper bound is achieved if all channels are BECs. The bounds
are analogous for code bits X» and X3.

B. Parity-Check Constraint

Consider now the case that the three code bits are coupled by
a parity-check constraint, as depicted in in Fig. 5.

Let C1,C5,Cy € Fy := {0,1} be defined as C; = 0 for
X;=+4+1land C; = 1 for X; = —1,7 = 1,2, 3. The code bits
X1, Xs, and X3 are said to fulfill a parity-check constraint if
and only if

CL®Co®Cs = 0.
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X, —="
pop——
Xz —Y13

Fig. 5. Three parallel channels coupled by an parity-check constraint on the
inputs.

The extrinsic information on code bit X; can be expressed as
I(X1;Y2Y3) = H(Y2Y3) — H(Y2Y3|X1). (6)
The first term may be written as
H(Y>Y3) = H(Y2) + H(Y3(Y>2)

where H (Y3|Y2) = H(Y3), because Y5 and Y3 are independent
if no further information on X; or Y; is available. The second
term may be written as

H(Y,Y3|Xq) = H(Ys|Xq) + H(Y3]X1) — I(Ya2; Y5 Xq)

where H(Y2|X;) = H(Yz) and H(Y3|X;) = H(Y3), because
Y5 and X; are independent if no further information about X
or Yj is available, and Y5 and X are independent if no further
information about X5 or Y5 is available. Using these equalities
in (6), we obtain

I(X1;Y2Y3) = I(Ya; V3| X1).

For given X1, there is a one-to-one relation between Xs and
Xs. Thus, I(Y2; Y3|X1) is equal to the information defect of the
parallel concatenation of the channels X5 — Y5 and X3 — Y3,
and we can apply the bounds given in Lemma 2.

Theorem 3 (Extrinsic Informormation for Parity-Check Con-
straint): Given a parity-check constraint on the code bits X1,
X2, X3, and the mutual informations I := I(X»;Y3) and
I3 := I(X3;Y3), the extrinsic information I.; := I(X71;Y2Y3)
is bounded as

Iy-1I3 < Iy < f(la2,13). @)
~—— —_——
two BECs two BSCs

The lower bound is achieved if all channels are BECs, and
the upper bound is achieved if all channels are BSCs. (Note that
the converse holds for the equality constraint.) The bounds are
analogous for code bits X5 and X3.

V. APPLICATIONS

For each of the theorems given in the previous two sections,
a practical example will be provided now.

A. Farallel-Concatenated Coding Scheme

Theorem 1 can be used to link the EXIT chart [15] and the
IPC [14] of a parallel-concatenated coding scheme (turbo code)
[5].

Consider the original turbo code according to [5]: The en-
coder comprises two linear binary channel encoders as con-
stituent encoders, of which the outputs are only parity bits; the
turbo codeword is formed by three parts: the systematic bits,
the parity bits computed by the first encoder, and the parity bits
computed by the second encoder. The turbo codeword is trans-
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mitted over a symmetric memoryless channel (physical channel)
that has channel capacity C. The considered turbo decoder con-
sists of two optimum symbol-by-symbol decoders for the con-
stituent codes. In the following, we assume LogAPP decoders
[24]; equivalently, APP decoders can be employed [2], [25].
Each constituent decoder computes extrinsic LLRs based on
both the extrinsic LLRs provided by the other constituent de-
coder and the LLRs for the systematic bits.

If we assume long interleavers and take into account that we
are interested only in the average symbol-wise mutual informa-
tion (as done in [14], [15]), we have four virtual channels which
are BISMCs, each having a certain mutual information.

1) The channel between encoder inputs and channel LLRs
of the systematic bits; the mutual information is denoted
as systematic information I.

2) The channel between encoder inputs and extrinsic LLRs
computed by the first constituent decoder; the mutual in-
formation is denoted as extrinsic information I.;.

3) The channel between encoder inputs and extrinsic LLRs
computed by the second constituent decoder; the mutual
information is denoted as extrinsic information /5.

4) The channel between encoder inputs and post-decoding
LLRs of the iterative decoder; the mutual information is
denoted as overall information 1.

EXIT charts and IPCs were proposed as tools for analysis and
design of parallel-concatenated coding schemes. Although both
methods are based on average symbol-wise mutual information,
they address different aspects.

EXIT charts model the decoding behavior of the constituent
decoders during iterative decoding, and they describe it by
means of transfer characteristics. For the first constituent
decoder, the transfer characteristic is the function mapping
the average mutual information at the input I.» (the extrinsic
information provided by the other constituent decoder), to the
average mutual information at the output /.; (the extrinsic
information computed by this constituent decoder), under the
assumption’ that the input is distributed according to some
fixed (commonly Gaussian) distribution. The capacity C' of
the physical channel is regarded as parameter. The transfer
characteristic of the second constituent decoder is defined
in an analogous way, where I.; and .o are exchanged. The
transfer characteristics for the Berrou/Glavieux turbo code [5]
are depicted in Fig. 6.

Whereas EXIT charts describe properties of the constituent
decoders, the IPC describes properties of the overall coding
scheme. The IPC is defined as the function mapping the capacity
C of the physical channel to the overall mutual information
between encoder input and symbol-by-symbol decoder output,
i.e., in our case, the turbo decoder output.

The overall virtual channel is obviously a parallel concatena-
tion of the “systematic” virtual channel and the two “extrinsic”
virtual channels. Accordingly, the overall information I can be

5This assumption represents the modeling.
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Fig. 6. Extrinsic information transfer (EXIT) chart for the constituent codes
of the Berrou/Glavieux turbo code [5]. The extrinsic information I.; is plotted
versus the extrinsic information /.. with the channel capacity C' as parameter,
and vice versa. Mutual information is given in bits per use.

computed by first combining I.; and .5 to the (overall) ex-
trinsic information I, and then combing I, and I to the overall
information I. When computing the bounds according to The-
orem 1 in each combining step, we get an upper and a lower
bound on the IPC.

For the EXIT chart in Fig. 6, the resulting bounds on the IPC
are depicted in Fig. 7. Although due to the recursive combining,
the bounds may not be tight any more, they are very close to
each other. Thus, it is not necessary to compute the exact value
of the overall information, for which time-consuming simula-
tion of the iterative decoder would be necessary. It is rather suffi-
cient to compute the bounds based on the EXIT chart, for which
simulation can be carried out very quickly.

Further information on this and similar methods can be found
in [14], [26].

B. EXIT Charts for the Repetition Code and the Single
Parity-Check Code

The EXIT chart method has not only shown to be a useful tool
for analysis and design of parallel-concatenated codes, but also
for serially concatenated codes [16]. The EXIT chart of an outer
code of a serially concatenated coding scheme describes the
input—output behavior of the outer decoder. The input is charac-
terized by the symbol-wise a priori information® on the code bits
1,, and the output is characterized by the average symbol-wise
extrinsic information on the code bits

1 N
Ie.: N;IEL

where N denotes the code length. The EXIT characteristic is
the function mapping I, to I..

Using the theorems given in Section IV, the EXIT character-
istics for the simple codes considered above can be computed in
a straightforward manner. Due to symmetry, the extrinsic infor-

6This information is the same for all code bits, as the inputs of the decoder are
assumed to be distributed according to some fixed distribution, cf. Section V-A.
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Fig. 7. Bounds on the IPC of the Berrou/Glavieux turbo code [5] based on the
EXIT charts of the constituent codes. The overall information ! is plotted versus
the channel capacity C'. Mutual information is given in bits per use.
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Fig. 8. Upper and lower bounds on the EXIT characteristics for the repetition
(Rep.) code and the single parity-check (SPC) code of length three as outer
codes in a serially concatenated coding scheme. The extrinsic information 7. is
plotted versus the a priori information I, . (Dashed lines: all channels are BSCs;
solid lines: all channels are BECs.) Mutual information is given in bits per use.

mation is the same for all code bits X, X5, and X 3. The mutual
informations of the channels are given by the a priori informa-
tion

L=IL=I=1I,.

For the repetition code of length three, the extrinsic informa-
tion can be bounded using Theorem 2

21, — f(l.,1,) < 1. <21, — I?. (8)

For the single parity-check code of length three, the extrinsic
information can be bounded using Theorem 3

I2< 1, < f(lo, 1) ©)

These bounds on the EXIT characteristics are depicted in Fig. 8.

Since the repetition code and the single parity-check code
are dual codes, their EXIT characteristics are symmetric with
respect to the point [I, = 0.5,1, = 0.5] if the channels are

?
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BECs [27]. This corresponds to the upper bound for the repeti-
tion code and the lower bound for the single parity-check code
in Fig. 8. This symmetry property does not hold for the bounds
corresponding to BSCs, as can easily be seen by comparing the
curves.

Although the codes are very simple, they illustrate how the
concept of information combining may be used to obtain bounds
on the extrinsic information, based only on the a priori infor-
mation without further knowledge about the distribution of the
a priori soft values.

VI. CONCLUSION

We presented tight upper and lower bounds on combined
information which are based only on the mutual informations
of the individual channels. Furthermore, we showed that these
bounds are achieved by either the case that all channels are BSCs
or the case that all channels are BECs.

In this paper, we restricted ourselves to three simple but very
basic scenarios for information combining: a) the overall infor-
mation for the parallel concatenation of two channels; b) the ex-
trinsic information for the repetition code of length three; c) the
extrinsic information for the single parity-check code of length
three. Moreover, only BISMCs were taken into consideration.

Each scenario was illustrated by an example. This included
the conversion of the EXIT chart of a parallel-concatenated code
into its information-procession characteristic and the computa-
tion of the EXIT charts for (simple) outer codes of serially con-
catenated coding schemes.

The presented concept of bounding combined information
may lead to new techniques for analyizing or proving conver-
gence of iterative decoding schemes. This will provide new in-
sights into processing and combining of (mutual) information
in channel coding.
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