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Abstract (207 words) 11 

The paradigm for low-sulphidation (LS) volcanic-arc associated mineralization is the active 12 

geothermal systems located along the Taupo Volcanic Zone (e.g. Broadlands). However, this 13 

analogue is inapt where fluid salinities are consistently in excess of 3.5 wt % NaCl. 14 

LS mineralization on Milos (Aegean arc) records high paleofluid-salinities. The δD and δ18O 15 

data do not exemplify 18O-shifted meteoric waters—typical of terrestrial geothermal systems. 16 

Nor is a submarine origin indicated—stable isotope data show mixing between meteoric, 17 

seawater and volcanic-arc gases. Strontium isotope data are comparable to a nearby active 18 

seawater-entrained geothermal system. These are features seen in hydrothermal systems 19 

associated with emergent volcanoes.  20 

For the Milos LS mineralization, high-salinity fluids show it cannot be explained by a 21 

Broadlands-type model. The absence of saliferous sequences and significant intrusive rocks 22 

preclude these as salinity sources. The similarities between paleo and active systems in terms 23 

of salinity, δD–δ18O and strontium isotope systematics strongly suggest that seawater is the 24 

main source for Na and Cl. We suggest geothermal systems, containing seawater, associated 25 

with emergent volcanoes are an alternative analogue for LS epithermal mineralization. 26 

Furthermore, they bridge the gap between submarine, and large-scale terrestrial geothermal 27 

systems—the modern analogues for VHMS and epithermal mineralisation in the scheme of 28 

intrusion-centered hydrothermal mineralization. 29 

Keywords 30 
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Introduction 32 

Geothermal systems in convergent plate margin settings are the active equivalents of high-33 

level (2–3 km) intrusion-centred hydrothermal ore-deposits (e.g. Hedenquist and Lowenstern, 34 

1994). Close to magmatic activity, volcanic emanations are the surface expressions of 35 

porphyry-Cu and high-sulphidation epithermal-Au mineralizing processes at depth 36 

(Hedenquist et al., 1993). Located farther from the magmatic source are low-sulphidation 37 

(LS) epithermal deposits, for which the Broadlands–Ohaaki geothermal system is the 38 

paradigm (e.g. Simmons and Browne, 2000). Generally, in LS mineralization, fluid inclusions 39 

document low-salinity fluids (< 1 wt % dissolved salts + CO2) and these are equivalent to the 40 

low-chorinity (< 1000 ppm) fluids seen in Broadlands-type geothermal systems. However, 41 

they also identify saline fluids (up to 15 wt % salts) and, in this case, there are no documented 42 

active analogues (Hedenquist and Lowenstern, 1994). Conversely, deep water (> 1000 m) 43 

geothermal systems, such as TAG (e.g. You and Bickle, 1998) are exemplars for VHMS 44 

deposits. However, where boiling submarine geothermal fluids vent into shallow water (< 200 45 

m) mineralization is epithermal in style (Stoffers et al., 1999), but there are no clearly defined 46 

ancient equivalents (Huston, 2000). Thus, in both the submarine and subaerial environments 47 

there is a missing link between active geothermal systems and their ancient counterparts. 48 

Below, we provide new strontium isotope data and summarize features of epithermal systems 49 

on Milos island. By comparing these with well-characterised modern analogues we suggest 50 

that active geothermal systems with entrained seawater, such as those in the Aegean arc 51 

(Aegean arc-type), are an alternative to the Broadlands–Ohaaki LS paradigm in the scheme of 52 

intrusion-centred hydrothermal systems.  53 

The Aegean arc 54 

The Aegean arc is a zone of Pliocene to modern volcanism related to active back-arc 55 

extension caused by the subduction of the African plate beneath the Aegean micro-plate (e.g. 56 

Pe-Piper and Piper, 2002). It is built on continental crust, comprises seven major volcanic 57 

centres and is located 120–250 km north of the Hellenic trench (Fig. 1). The volcanic rocks 58 

are calc-alkaline with localised high-K variants and range from basalt to rhyolite in 59 

composition, with dominant andesites and dacites. Present day hydrothermal activity 60 

comprises both low-enthalpy (Aegina, Sousaki, Methana) and high-enthalpy systems (Milos, 61 

Nisyros). 62 



Naden J, Kilias, SP & Darbyshire, DPF: Geology manuscript 

Page 3 of 12 

Milos geology and LS epithermal Au-Ag mineralization  63 

Upper Pliocene (2.66 ± 0.07 Ma; Stewart and McPhie, 2003) submarine and Late Pleistocene 64 

to present (1.9–0.1 Ma) subaerial volcanic rocks overlay Mesozoic metamorphic basement 65 

and Upper Miocene–Lower Pliocene marine sediments, and record a transition from a shallow 66 

submarine (< 200 m) to subaerial volcanic setting (Fytikas et al., 1986; Rinaldi and Venuti, 67 

2003; Stewart and McPhie, 2003). Emergence probably occurred at 1.44 ± 0.08 Ma (Stewart 68 

and McPhie, 2003). Plutonic rocks are not known on Milos and have only been reported as 69 

ignimbrite-hosted granitic xenoliths from the nearby islet of Kimolos (Pe-Piper and Piper, 70 

2002).  71 

The oldest submarine volcanic rocks occur on western Milos and host LS Au–Ag 72 

mineralization (the Profitis Ilias [PI]–Chondro Vouno [CV] epithermal system), which 73 

extends over a 20 km2 area (this study; Kilias et al., 2001). Fluid inclusion data show the 74 

hydrothermal fluids underwent extreme boiling and vaporisation. Importantly, final ice-75 

melting (Tmice) data show that 70 % of the fluid inclusions have net salinities in excess of 76 

seawater (Tab. 1), showing that throughout its lifespan, fluids in the system were saline. The 77 

tops of the paleosystem (now ~600 masl) show crustiform/colloform quartz–barite±alunite 78 

veins and quartz-cemented breccias, with locally high gold (PI: 56 ppm; CV: 250 ppm) and 79 

silver (PI:  197 ppm; CV: 90 ppm). Deeper in the system (now ~300 masl), the mineralization 80 

is dominated by a base-metal-bearing stockwork. Elevated gold values at PI are concentrated 81 

above the base metal zone and are spatially related to boiling (Kilias et al., 2001).  82 

Active geothermal system 83 

In the active geothermal system (Liakopoulos, 1987; Pflumio et al., 1991), data indicate a 84 

two-component reservoir: (1) A high enthalpy system with deep seawater recharge located 1–85 

2 km below sea-level. Reservoir temperatures range 250–350 ºC and salinities can be 86 

significantly higher than seawater (up to 9 wt % salts). This results from Rayleigh distillation 87 

as seawater percolates, through progressively hotter rocks, into the reservoir. Due to its high 88 

salinity, venting of the deep geothermal fluid is accompanied by boiling close to the top of the 89 

reservoir and in some cases the reservoir may be two-phase. (2) A shallow reservoir (100–175 90 

ºC) overlies the high-enthalpy system. It is located close to sea-level, recharged by meteoric 91 

water and seawater intrusion, is commonly saline (up to 5 wt % salts) and heated by gas 92 

escapes from the underlying deep reservoir. Seawater, as a major component of both the deep 93 
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and shallow reservoirs, is documented on the basis of 87Sr/86Sr and δD–δ18O–Cl systematics 94 

(Pflumio et al., 1991). In the shallow (<100 m) submarine environment, venting geothermal 95 

fluids contain suspended particulate matter strongly enriched in Fe, Mn, Si and Ba and locally 96 

deposit APS minerals, pyrite, marcasite, barite, gypsum, and calcite (Baltatzis et al., 2001; 97 

Varnavas et al., 2000). In addition, the deep reservoir is metalliferous (Pb: 180 ppb; Zn: 1458 98 

ppb) (Christanis and Seymour, 1995) and has gold concentrations in the region of 0.3 ppb 99 

(Liakopoulos, 1987).  100 

Strontium isotopes 101 

Sr-isotope data show that the least altered igneous rocks have low 87Sr/86Sr, whereas their 102 

hydrothermally altered counterparts are closer to a seawater signature (Fig. 2). The basement 103 

rocks have variable strontium ratios (0.7033–0.7136)) (Fig. 2). In the modern system, 104 
87Sr/86Sr in the fluids vary from 0.7092–0.7102 (Pflumio et al., 1991). Barites from the 105 

Profitis Ilias mineralization display similar 87Sr/86Sr to the modern system (Fig. 2). All values 106 

for geothermal water and hydrothermal minerals are slightly more radiogenic than seawater 107 

but relatively constant. 108 

Discussion 109 

Seawater as a fluid component on Milos 110 

Tmice in fluid inclusions provides information on salinity. However, above –1.5 ºC, it is unable 111 

to distinguish between dissolved salt (< 2.5 wt % NaCl eq.) and gas (< 4.4 wt % CO2 eq.). 112 

This permits gas-charged low-chlorinity terrestrial geothermal systems to be the paradigm for 113 

LS epithermal mineralization, as excess chlorinity can be assigned to dissolved gas 114 

(Hedenquist and Henley, 1985). Moreover, in Broadlands–Ohaaki-type geothermal systems 115 

derivation of chlorinities in excess of 5000 ppm through fluid–rock interaction is extremely 116 

difficult and where high salinities are recorded they are attributed to boiling to dryness and 117 

have a localised effect (Simmons and Browne, 1997). Hence, when comparing ancient 118 

systems with Broadlands–Ohaaki-type equivalents, when the apparent salinity is up to 3–4 wt 119 

% NaCl eq there is an implicit requirement to assign freezing point depressions to dissolved 120 

gas rather than chlorinity. However, in our case > 70 % of the fluid inclusions have net 121 

salinities in excess of 3.5 wt % NaCl eq (Tab. 1). Thus, we cannot assign excess Tmice to 122 

dissolved gas. Nonetheless, our high salinities have to be explained. There are three main 123 

sodium and chlorine reservoirs available to large-scale geothermal systems: (1) evaporites and 124 
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evaporitic sediments (2) magmatic brines and (3) seawater. An evaporitic origin of salinity is 125 

considered highly improbable, as there is no record of saliferous rocks within the Milos 126 

sediments. Concerning a magmatic brine, it is estimated that during its lifetime a geothermal 127 

systems turns over between 106±1 km3 of water (Barnes and Seward, 1997). If it is assumed 128 

that andesitic magmas contain about 1000 ppm chlorine, then approximately 107±1 km3 of 129 

magma would be required maintain salinities in the geothermal system at 9 wt % NaCl. This 130 

is not impossible, but on Milos, geological and geophysical evidence is lacking (Pe-Piper and 131 

Piper 2002). Thus, a magmatic origin of salinity is also considered unlikely. This leaves a 132 

seawater origin for Na and Cl. We consider that the chemical similarities between the ancient 133 

and modern systems on Milos (see above) support a seawater origin for the PI–CV epithermal 134 

fluids. 135 

Comparison of δD–δ18O of inclusion fluids from the Profitis Ilias epithermal mineralization 136 

and several active geothermal systems associated with emergent volcanoes reveals remarkable 137 

similarities (Fig. 3). In the active systems, the geothermal fluids have a three component 138 

source (sea, meteoric and magmatic) and the waters fall in a zone projecting from the 139 

meteoric water line to values intermediate to seawater and volcanic-arc gases (Fig. 3). The 140 

fluid inclusion data for the Profitis Ilias LS mineralization show an analogous trend and lie in 141 

a similar zone; this is in sharp contrast to typical LS mineralization where stable isotope data 142 

show 18O-shifted fluids at constant δD (see Broadlands field in Fig. 3).  143 

In terms of strontium isotope data (Fig. 2, the basement metamorphic sequence has 87Sr/86Sr 144 

(0.7033–0.7137) encompassing the entire range, permitting a variety of fluid–rock interaction 145 

interpretations. However, we think the clustering of measured 87Sr/86Sr for the modern 146 

geothermal fluids (0.7092–0.7100) and mineralization (0.7096–0.7100 [epithermal Au–Ag]; 147 

0.7092–0.7098 [Mn–Ba] close to the value for late-Pliocene seawater (0.7090–70906), also 148 

indicates of a seawater source. In addition, as 87Sr/86Sr for the modern and ancient systems are 149 

significantly different from most of the unaltered igneous rocks (0.7050–0.7080) mitigates 150 

further against a magmatic fluid source. Indeed, most of the 87Sr/86Sr (0.7082–0.7098) for 151 

hydrothermally altered igneous rocks cluster within or close to the range recorded by the 152 

modern geothermal fluids and seawater. 153 

Taken together, the above lines of evidence show that in addition to being a fundamental 154 

component in the active system, seawater has played a key role in LS mineralization. 155 



Naden J, Kilias, SP & Darbyshire, DPF: Geology manuscript 

Page 6 of 12 

Hybrid epithermal systems and modern analogues 156 

It is clear that Broadlands–Ohaaki-type meteoric geothermal systems are not a valid analogue 157 

for the Milos Au–Ag mineralization and for moderately saline (> 15 000 ppm NaCl eq.) LS 158 

epithermal mineralization in general. Furthermore, there is a missing link between saline 159 

epithermal LS systems and their modern counterparts. We suggest that the best candidates, 160 

which recognize the key parameters of consistently high fluid inclusion salinities, δD–δ18O 161 

systematics indicating seawater and a seawater Sr isotope signature, are geothermal systems 162 

with entrained seawater. Typical examples are the active systems on Milos and Nisyros (Fig. 163 

3). These analogues are hybrids, containing elements of both submarine and terrestrial 164 

geothermal systems. Indeed, the occurrence of fossil hybrid systems is predicted (Huston, 165 

2000) though, to date, no ancient equivalents have been clearly identified. Here, in the 166 

emergent environment, circulating sea and meteoric water are the main fluid components. The 167 

fluids boil and result in auriferous quartz veins with epithermal textures and proximal quartz-168 

adularia, intermediate quartz–sericite–pyrite and distal propylitic/quartz–albite alteration 169 

halos—features that are comparable to the Milos epithermal mineralization. Thus, we suggest 170 

that epithermal mineralization where the involvement of seawater can be clearly demonstrated 171 

(e.g. Milos) are good candidates for fossil hybrid epithermal systems, and active geothermal 172 

systems with entrained seawater such as the Aegean-arc type, are their modern analogues. 173 

Features of hybrid epithermal systems can be reconstructed by putting geothermal systems 174 

associated with emergent volcanoes into a conceptual framework. Fig. 4 illustrates the 175 

model—gold-bearing epithermal veins are located between a shallow low-temperature (100–176 

175 ºC) steam-heated zone recharged by meteoric water and seawater intrusion, and a deep, 177 

seawater recharged, higher-temperature (250–350 ºC) base-metal bearing reservoir.  178 

Concluding remarks 179 

Broadlands-type models are not appropriate for LS epithermal systems with elevated salinities 180 

that cannot be reasonably explained by dissolved gas or localised boiling to dryness. 181 

Moreover, where high salinities of this nature are encountered, an explanation for them must 182 

be sought. One possibility is a seawater origin for the hydrothermal fluids, though to use this 183 

explanation, other parameters have to be consistent. In the case of Milos, the epithermal 184 

mineralization can be explained by analogy to seawater-entrained geothermal systems 185 

associated with emergent volcanoes (e.g. Nisyros, Milos) and the mineralization data 186 
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(geologic, isotope and fluid inclusion) are in accord with this model. We suggest that our 187 

Aegean-arc model should be considered as an additional paradigm in the scheme of intrusion-188 

centred metallogenesis. Moreover, it may provide a link between submarine and terrestrial 189 

mineralization processes. Appropriate indicators for its use are fluid inclusion data showing 190 

consistently elevated salinities (> 3.5 wt % NaCl eq.) and mineralization hosted in submarine 191 

or transitional to subaerial volcanic rocks in an island arc tectonic setting. However, it must 192 

be stressed that these are not definitive and other corroborating data must be sought, in our 193 

case, strontium isotope, δD and δ18O analyses. 194 
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Fig. 1. Maps showing A) the main geotectonic elements of the eastern Mediterranean along 284 

with volcanic centres and regions of geothermal activity; B) the main geological features of 285 

Milos island plus the location of LS epithermal mineralisation and the main surface 286 

manifestations of the geothermal system (Milos map adapted from Fytikas et al., 1986; LPl: 287 

Lower Pleistocene, LPo: Lower Pliocene; LMi: Lower Miocene, M: Mesozoic) 288 

Fig. 2. 'S'-curve of measured strontium isotope data from mineralisation on Milos, showing 289 
87Sr/86Sr for barite, fresh and altered igneous rocks, marine platform sediments basement 290 

rocks and geothermal waters (data: this study; Briqueu et al., 1986; Farrell et al., 1995; Hein 291 

et al., 2000; Pflumio et al., 1991) 292 

Fig. 3. Fluid-inclusion δD–δ18O data for Profitis Ilias, comparing the epithermal 293 

mineralisation with active systems on the Aegean arc with reference points for eastern 294 

Mediterranean seawater (crossed squares labelled S) and estimated present day geothermal 295 

liquids (filled triangles labelled M [Milos] and N [Nisyros]). (Milos epithermal mineralisation 296 

data: Naden et al., 2003; geothermal data: Brombach et al., 2003; Kavouridis et al., 1999; 297 

Liakopoulos, 1987; fields for volcanic arc gases and Broadlands derived from Giggenbach, 298 

1992 and Field and Fifarek, 1985 respectively) 299 

Fig. 4. Conceptual model of hybrid Aegean-arc-type epithermal systems (adapted from 300 

Kavouridis et al., 1999; Liakopoulos, 1987) 301 

302 
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 310 
TABLE 1. SUMMARY SALINITY DATA FOR PI–CV 311 

EPITHERMAL AU–AG MINERALISATION 312 
Salinity 

(wt % NaCl eq.) Deposit 
n Min. Max. Mean σ 

% FI with 
Tmice 

 < -2.5 ºC 
*CV 132 0.5 14.7 6.1 3.0 86% 
†PI 139 0.0 11.3 5.2 2.1 71% 
*this study 313 
†Kilias et al., 2001 314 
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