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On minimizing the risk of bias in randomized controlled trials in economics 

Alex Eble, Peter Boone, and Diana Elbourne 

 

Abstract 

   

Estimation of empirical relationships is prone to bias. Economists have carefully 

identified and addressed sources of bias in structural and quasi-experimental 

approaches, but the randomized control trial (RCT) has only recently begun to 

receive such scrutiny. In this paper, we argue that several lessons from medicine, 

derived from analysis of thousands of RCTs conducted over the past 60 years and 

establishing a clear link between certain practices and biased effect estimates, can 

be used to reduce the risk of bias in economics RCTs. We first identify the subset of 

these lessons applicable to RCTs in economics. We then use them to assess the risk 

of bias in estimates from economics RCTs published between 2001 and 2011. In 

comparison to medical studies, we find most economics studies do not report 

important details on study design necessary to assess risk of bias. Many report 

practices that suggest risk of bias, though this does not necessarily mean bias 

resulted. We conclude with suggestions on how to remedy these issues. 
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I. Introduction  

The practice of assigning different courses of action to different groups and comparing outcomes 

dates back thousands of years. In the Old Testament, King Nebuchadnezzar orders a group of his 

subjects to eat rich meat and drink wine while another group is made to adhere to vegetarianism 

in order to evaluate the merits of the two diets (1 Daniel 11-16, New International Version). 

Versions of this approach have since been used in countless other efforts to evaluate competing 

hypotheses, from 18th century studies of scurvy treatment to the A/B testing now common in 

technology firms.  

One particular version of this approach is the Randomized Controlled Trial (RCT). An 

RCT is usually a large-scale study, prospectively designed to test a small set of hypotheses by 

randomly assigning treatment(s) to participants. Medical scientists have implemented hundreds of 

thousands of RCTs since the mid-1940s to test hypotheses about treatment options and inform care 

decisions1. In the 1980s, several studies showed that RCTs in medical research yielded less biased 

treatment effect estimates than observational studies. The method has been adopted in several 

scientific fields, as well as by the US Food and Drug Administration (FDA) and other government 

agencies, as the “gold standard” of empirical evidence (Vader 1998).  

Not all RCTs are created equal, however. Meta-analysis of thousands of medical RCTs has 

revealed several pitfalls that skew effect estimates and lead to erroneous conclusions (Jüni, 

Altman, and Egger 2001). Broader conclusions based on flawed studies have led to the use of 

drugs or procedures that bring no measurable benefit and, in some cases, even cause harm 

(Goldacre 2014). In the past two decades, medical researchers have synthesized this research 

linking certain design choices and biased results to develop standards for the design and reporting 

of RCTs. These standards are intended to reduce the risk of bias from the identified pitfalls. 

Adherence to them is now required for publication in most major medical journals (Plint et al. 

2006). 

Since the early 2000s, economists and other social scientists have increasingly used RCTs 

to evaluate hundreds of questions of both academic and policy interest (Parker 2010; Vivalt 2015). 

Within academia, the RCT is now widely considered a part of the economist’s empirical toolkit 

 

1
 There were 183,991 trial protocols registered in the US Government’s Clinical Trials database 

(www.clinicaltrials.gov) as of 11 February 2015. It is perhaps impossible to know how many trials have ever been 

conducted, as public registration of trial protocols was not common practice until the late 1990’s. 

http://www.clinicaltrials.gov/


   

 

3 

 

(Angrist and Pischke 2010); beyond academia, RCTs are often used to determine government 

policy as well as guide decisions in large international organizations (Parker 2010; Council of 

Economic Advisors 2014).  

In this paper, we argue that several lessons from the medical literature’s work linking 

pitfalls in trial design and reporting to bias in effect estimates can be used to improve the accuracy 

of estimates generated by RCTs in economics and other social sciences. The medical literature has 

spent decades scrutinizing these issues and its potential evidence base spans tens of thousands of 

already-conducted RCTs. The result of this work is a large body of research establishing a direct 

link from aspects of RCT design and reporting to biased effect estimates. While there are concerns 

in the medical literature that may be inappropriate for economics (e.g. strict protocols for blinding 

participants), several others are already central in empirical economic research: selection bias, non-

classical measurement error, attrition, attenuation, and selective reporting. Recent work in 

economics has highlighted how some of these issues could lead to biased effect estimates (Bruhn 

and McKenzie 2009; Deaton 2010; Brodeur et al. 2013), but there is no consensus among 

economists on how an RCT should be designed and reported to avoid these problems (Miguel et 

al. 2014).  

In the first part of the paper, we aim to help fill this gap. We draw upon the medical 

literature described above and the economics literature on RCTs and program evaluation to 

identify potential sources of bias in economics RCT estimates for which there is applicable 

evidence from medicine.  

Having made the case for the importance of these issues, the second part of the paper 

addresses our main research question: have economists running RCTs taken the necessary steps to 

avoid the relevant bias-inducing pitfalls identified by the medical literature? To answer this 

question, we attempt to collect the universe of RCTs in economics published between 2001 and 

2011 in a set of well-regarded journals. For each study, we then generate two assessments: first, 

whether the article provides the reader with enough information to evaluate the risk of bias in its 

estimates, and second, whether the study falls into any of the traps that have been associated with 

biased treatment effect estimates in medicine.  

We find that most studies in our sample do not report several pieces of important 

information necessary for the reader to determine the risk of bias in the presented results. It is 

important to note that even in medicine, bad reporting is often associated with poor practice, it 

may also be the case that bad reporting masks good practice and may not necessarily imply bad 
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methods (Soares et al. 2004). Several of the studies in our sample report quite well in most regards 

and, as economics lacks standards for reporting, it is not surprising that reporting of RCTs in 

economics is uneven. Still, this reporting gap begs for remedy: we argue that the burden of proof 

of the unbiasedness of a study’s results rests with the study’s authors.  

Among those studies that do report key design and analysis decisions, we find that many 

fall into precisely the same pitfalls that have biased medical RCTs in the past. Our findings raise 

concerns about the strength of the conclusions reached in several of the studies scrutinized.  

Together, the first and second parts of our study suggest that a core set of reporting and 

design practices drawn from the medical literature can be used to enhance the accuracy and 

precision of estimates generated by RCTs in economics. We conclude the paper with a series of 

suggestions on how to improve RCT design and reporting going forward.  

 

II. Identifying sources of bias in RCTs 

 

Empirical work in economics has made increasing use of the RCT to test theory and generate 

parameter estimates, yet efforts within economics to address the risk of bias in RCT estimates are 

limited in scope. Bruhn and McKenzie (2009) show that randomization procedures are often not 

reported in RCTs and, particularly for small studies, certain procedures are more likely than others 

to lead to chance imbalances between treatment groups that in some cases cannot be addressed by 

ex-post adjustments. Franco et al. (2014) find that significant results were 40 percentage points 

more likely to be published than null results among a set of 221 National Science Foundation-

funded studies in the social sciences spanning political science, economics and psychology. 

Brodeur et al. (2013) and Vivalt (2015) find some evidence of selective reporting in economics 

RCTs, though much less than in observational studies. Allcott (2015) shows that choice of 

implementing partner can bias RCT results relative to the expressed treatment effect of interest. 

Miguel et al. (2014) argue for reporting standards in social science RCTs and document recent 

efforts to meet this need. These studies are all quite recent and focus on individual aspects of the 

larger set of biases that threaten RCT results. They are necessarily limited by the relatively small 

number of RCTs that have been conducted in economics to date.  

In this section, we argue that several lessons from the long history of conducting and 

scrutinizing RCTs in medical research are applicable to RCTs in economics. Though RCTs have 

long been seen as the “gold standard” of evidence in medicine, a series of studies demonstrated a 
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negative relationship between methodological quality of medical RCTs and measured effect size. 

A landmark 1995 article linked problems in trial design to exaggeration of treatment effect 

estimates (Schulz et al. 1995). Its results have since been confirmed by several other meta-analyses 

linking certain design and reporting practices to biased estimates (Jüni, Altman, and Egger 2001; 

Gluud 2006; Dwan et al. 2008; Lesley Wood et al. 2008). These findings instigated a movement 

to improve and standardize methods of reporting and scrutinizing RCTs. 

In the late 1990s, two groups began working independently on a set of reporting standards 

for use in publication of randomized trials. Their combined efforts resulted in two main outputs. 

The first is the CONSORT Statement (henceforth “CONSORT”), a set of guidelines for 

publication of reports of randomized controlled trials. Adherence to these standards is now 

required by most editors of major medical journals (Schulz, Altman, and Moher 2010). The second 

is the Cochrane Collaboration, an international organization that facilitates systematic review and 

meta-analysis of published studies in order to draw overall conclusions about efficacy of various 

treatments. It publishes a handbook that guides authors on how to conduct these reviews. The 

handbook includes a section on how to evaluate the risk of bias in estimates generated by RCTs 

based on the body of literature linking certain trial design and reporting decisions to biased 

treatment effect estimates. The handbook is updated frequently and has been used in 8,600 

systematic reviews of trials2, which have together assessed the risk of bias in hundreds of thousands 

of scholarly articles (The Cochrane Collaboration 2010). This increased scrutiny during peer 

review and after publication has resulted in a reduction, over time, in the presence of the biases 

described above in medical RCT reports (Plint et al. 2006).  

The US Food and Drug Administration (FDA) uses a similar set of standards to approve 

the sale of pharmaceuticals for public consumption. The progress of studies through each stage of 

this approval process illustrates the importance of such standards in screening false-positive 

results. For a drug to be approved by the FDA, it must pass three “phases” of trial. There is 

increasing scrutiny at each phase, such that phase two trials have a higher burden of proof than 

phase one but less than phase three, whose standards most resemble the CONSORT standards. 

Among trials that enter phase two, only 70 percent progress to phase three. Of those, 40 percent 

fail to show positive results in the two phase three trials usually necessary for FDA approval 

(Danzon, Nicholson, and Pereira 2005). 

 

2
 According to http://www.cochranelibrary.com/cochrane-database-of-systematic-reviews/index.html, accessed 11 February 2015. 

http://www.cochranelibrary.com/cochrane-database-of-systematic-reviews/index.html
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Both CONSORT and Cochrane identify six types of problem associated with systematic 

bias in treatment effect estimates: selection, performance, detection, attrition, reporting and sample 

size biases (Jüni et al. 1999; Higgins, Green, and Cochrane Collaboration 2008; Moher et al. 2010). 

All of these have been treated in the broad economics literature. Selection, attrition, reporting and 

sample size issues have been dealt with extensively (Ashenfelter, Harmon, and Oosterbeek 1999; 

Wooldridge 2010). Much of performance and detection biases can be seen through the lens of the 

Hawthorne effect and non-classical measurement error, respectively, also well-known threats to 

economists (Duflo, Glennerster, and Kremer 2007).  

The medical literature’s extensive evidence base, developed over six decades of running 

RCTs, is what allows it to make a novel contribution to the study of bias in economics RCTs. The 

CONSORT and Cochrane documents synthesize the results of thousands of studies and hundreds 

of meta-analyses to pinpoint the most likely candidates for RCT-specific bias and outline practices 

in avoiding them. These are the lessons we hope to use to improve RCT estimates in economics. 

Next, we discuss the sources of bias identified in decades of scrutiny of medical RCTs 

which we believe are applicable to economics RCTs. For each of the six biases (selection bias, 

attrition bias, performance bias, detection bias, reporting bias, sample size bias), we first explain 

the concern and its relation to economics. We then describe the reporting and design criteria that 

form the basis of the analysis we conduct in Section III.  

 

Sources of bias 

 

Selection bias  refers to the concern that systematic differences exist between treatment groups at 

the outset of the trial that could confound treatment effect estimation. There is a long literature in 

economics on selection bias in program evaluation, summarized by a recent Handbook of Labor 

Economics chapter (DiNardo and Lee 2011) and also discussed extensively in a Handbook of 

Development Economics chapter on running RCTs (Duflo, Glennerster, and Kremer 2007). The 

medical literature contributes evidence linking a set of mechanisms through which the RCT-

specific process of enrolling participants and assigning them to treatment and control groups can 

artificially generate a difference between the two unrelated to the treatment effect of interest.  

Identified problems with selection bias arise from two main sources. The first is non-

random assignment to groups. Historically, participants in medical RCTs have often tried to tamper 

with or predict the randomization procedure. In other cases, researchers used a randomization 
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method that led to systematic baseline differences between the two groups. A review of several 

meta-analyses found that studies with problematic randomization procedures generated results that 

were 12 percent more likely to be positive than studies with unbiased randomization procedures 

(Gluud 2006).  

The relevant lesson is that it is important for the study to clearly state how randomization 

was done so that “the reader can assess the methods used to generate the random allocation 

sequence and the likelihood of bias in group assignment” (Schulz, Altman, and Moher 2010). The 

Cochrane Handbook echoes this concern:  

The starting point for an unbiased intervention study is the use of a mechanism that 

ensures that the same sorts of participants receive each intervention...If future 

assignments can be anticipated, either by predicting them or by knowing them, then 

selection bias can arise due to the selective enrolment and non-enrolment of 

participants into a study in the light of the upcoming intervention assignment. 

Economists and medical researchers have identified another potential pitfall in this 

category: that systematic differences arise between the stated population from which the sample is 

drawn and the participants who are ultimately randomized or analyzed (selection bias after entry 

or attrition bias). Manski (2013) discusses this problem in the context of drug trials run for FDA 

approval. If the participants of the trial are not representative of the population that the RCT attests 

to study, he argues, then the resultant treatment effect estimate will be a biased estimate of the 

population treatment effect3. A study that evaluates a smoking cessation drug using only light 

smokers as participants, for example, is likely to generate a biased estimate of the effect of the 

drug if it attests to study efficacy for the population of all smokers. Frijters, Kong, and Liu (2015) 

show evidence of this effect biasing the result of an RCT in rural China.  A common issue in non-

blinded cluster randomized controlled trials, which are frequent in the economics literature, is how 

to specify eligibility criteria for the population that will be analyzed.  For example, in an 

intervention providing materials to schools, there is a risk that some parents will switch their 

children to the better-equipped schools from control or non-study schools.  This can lead to biased 

estimates of the effect of the intervention.  In situations like this, the study design can include 

measures which will reduce or eliminate such bias (e.g. by enumerating children for analysis prior 

 

3
 Note that this is separate from concerns of generalizability. While generalizability deals with the applicability of a treatment effect estimate to 

a population different from that which generated the estimate, the concern we discuss here is about the internal validity of the treatment effect 

estimate for the stated population. 
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to randomization, and/or, agreeing restrictions on school transfers with school authorities), but 

special care needs to be taken. 

To assess adequacy of reporting and risk related to selection bias, we look for three pieces 

of information. The first is detail about how randomization was performed and, if this is 

information is present, whether it was done in a way to prevent the two problems associated with 

randomization discussed above: one, the risk of a bad rule which could itself generate bias, and 

two, the risk of people predicting or switching the group they are assigned to. We ask if the authors 

mention the method of randomization (e.g. by computer, stratified, public lottery) or any other 

information to suggest that a non-deterministic, tamper-proof rule was used to assign individuals 

or clusters to treatment and control groups.  

The second piece of information we look for is detail on who is screened for eligibility, 

who is eligible, who is enrolled in the trial and who is excluded. . This information is necessary to 

determine whether, as in Manski (2013), there exists a discrepancy between the putative population 

being studied and the population for whom the treatment effect is actually estimated. We also used 

this information to examine whether, due to the nature of the trial design, members of the 

population included in the primary analysis might have had an opportunity to enter the trial, or 

switch arms in the trial, post randomization.  Where issues could be present, we checked whether 

the authors attempted to address, or at least reported and/or discussed those issues.  Finally, we 

look to see whether the authors provide a table showing baseline covariates by treatment group 

which might suggest successful randomization. It is important to note that there even with secure 

randomization there may be imbalance by chance especially if a trial is small, but also that a 

potentially problematic allocation sequence could lead to issues of bias even if there was balance 

on observables, as the selection-on-unobservables literature points out (Manski 2013; Oster 2013). 

Attrition bias refers to a systematic loss of participants over the course of a trial, 

differentially between the trial arms, in a manner that potentially destroys the comparability of 

treatment groups obtained by randomization. Economists have dealt with attrition thoroughly in 

the empirical literature on the use of observational data (Heckman 1979; DiNardo and Lee 2011). 

In the context of an RCT, loss of participants stems from similar reasons: drop-out, missing data, 

refusal to respond, death, or any exclusion rules applied after randomization. The issue, as in 

Heckman (1979), is that the incidence of attrition may be partly driven by the treatment group one 

is in. One famous case from medicine is a study which initially showed a large positive impact of 

a drug to treat heart disease. The first publication excluded participants who died during the trial, 
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though mortality differed substantially between control and intervention groups. Subsequent 

analyses that included all participants according to randomization status, performed by a third 

party after the initial publication, failed to reject the null of no treatment effect (Temple and 

Pledger 1980).  

Attrition bias can also stem from decisions of whom to exclude from the final analysis. 

This relates to the decision whether to present analysis according to the “intent-to-treat” (ITT) 

principle or a “treatment-on-the-treated” (TOT) analysis (also termed per-protocol analysis), the 

difference between which is well understood in economics as well as in medicine (Duflo, 

Glennerster, and Kremer 2007). The relevant lesson from medicine is primarily about reporting – 

the reader should know whether the analysis presented is the ITT or TOT estimate to ensure that 

an unbiased account of the result of the trial is given.  

In our assessment of attrition bias, we look for a few key pieces of information. The first 

is a clear discussion of how participants flowed through the trial, from enrollment to the final 

analysis. The relevant lesson from medicine is that it is essential to know how many people drop 

out in each treatment group, their characteristics, and whether or not this drop-out destroys the 

balance obtained at baseline through randomization.  

The second concern is the application of the “intent-to-treat” principle. We look either for 

an explicit mention of the principle or, in the absence of its explicit mention, evidence of deviation 

from it in the main analyses. Specifically, if ITT is not mentioned, we check to see whether the 

number of participants randomized is equal to the number of participants included in the final 

analysis and, if there is a difference, whether it is explained. A study is judged to be reported 

inadequately only if it does not mention ITT, either adherence to it or explaining the reason for 

and ways in which the study deviated from it, and does not explain discrepancies between the 

number of participants randomized and the number included in the analysis of outcomes. It is 

considered to be at high risk of bias if there are substantial unexplained discrepancies between 

these two figures, or the exclusions described by the authors are likely to introduce bias between 

treatment and control groups not present at baseline. 

Performance bias is also known as the set of “Hawthorne” and “John Henry” or “research 

participation” effects. There is a documented tendency both in economics and medicine for 

participants to change their behavior or responses to questions because they are aware of being in 

a study and, specifically in a trial, are aware of their treatment allocation (Leonard and Masatu 

2006; McCambridge, J et al. 2014; Noseworthy et al. 1994; Zwane et al. 2011). This can skew 
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treatment effect estimates either upwards or downwards. In medicine, blinding of participants is 

often used to minimize this type of bias. In many economics studies and some medical studies, 

however, blinding is either ethically or logistically infeasible. For example, in the study of village-

level education interventions, blinding participants with a placebo intervention would be unethical 

(although analysis could be conducted blind to allocation). In some economics studies, blinding 

may even be contrary to the goals of the research.  

The relevant lesson from medicine is that extra scrutiny must be applied in two cases. The 

first case is when outcomes are subjective (e.g. self-reports of pain or personal opinions). A meta-

analysis of studies of acupuncture treatment on back pain showed that while acupuncture was 

superior to control interventions in unblinded studies, it could not be proven to be superior to sham-

interventions in blinded studies (Ernst and White 1998). Though all outcome assessments can be 

influenced by lack of blinding, there is greater risk of bias with more subjective outcomes. Lack 

of blinding was associated with a 30% exaggeration in treatment effect estimates in a meta-analysis 

of studies with subjective outcomes (L. Wood et al. 2008). 

The second case is when patients are likely to change their behavior given their knowledge 

of which group they are assigned to. Knowledge of allocation status has been known to induce 

some control group participants to seek extra care, which, if effective, would introduce a 

systematic downward bias on treatment effect estimates. In economics this is often the stated 

purpose of the research, as in Akresh et al. (2013). In studies attempting to evaluate the effect a 

specific treatment, e.g. the effect of a medicine on an illness, however, unaccounted-for differential 

care seeking by treatment group could bias effect estimates.  

In our assessment, we look for information on these two concerns when blinding 

participants to which treatment group they are in is impossible. The first concern is whether the 

outcomes are subjective enough to be vulnerable to the Hawthorne Effect. The second is whether 

individuals are aware of the treatment under study and their assignment to treatment or control. If 

so, we ask whether this might induce them to act in a way that would offset or intensify the impact 

of the treatment the researchers are intending to measure. We flag this as a concern only when 

there is likely offsetting/intensifying behavior, such as differential care seeking, not accounted for 

in the description of the study. 

Detection bias (also called assessment bias) is concerned with data collectors unduly 

influencing either the behavior of participants or the data collected in a way that generates artificial 

differences between treatment groups. This is likely to work through one of two channels. The first 
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channel is similar to the placebo effect. CONSORT notes how data collectors’ knowledge of the 

treatment status of each participant may lead them to unconsciously filter the data they collect: 

“unblinded data collectors may differentially assess outcomes (such as frequency or timing), repeat 

measurements of abnormal findings, or provide encouragement during performance testing. 

Unblinded outcome adjudicators may differentially assess subjective outcomes” (Moher, Schulz, 

and Altman 2001). In a trial in which ill patients performed a walking test with and without 

encouragement from the data collector, encouragement alone was shown to improve time and 

distance walked by around 15 percent (Guyatt et al. 1984) and similar impacts of detection bias 

have been found in other medical RCTs (Noseworthy et al. 1994). The second channel is a simple 

case of incentive alignment. If data collectors are employed by the organization whose intervention 

is being evaluated in an RCT, there is a clear conflict of interest that raises concerns about the 

accuracy of the data collected.  

In our assessment, we first look to see whether data collectors are blinded to the treatment 

status of participants. If the data collectors are not blinded, we then look to see whether the data 

collectors are contractually related or otherwise linked to the organization administering the 

treatment in a way which might induce them to bias the data they collect. We also ask whether 

there is any other reason to suspect data collection might differ between the two arms in a 

substantive way, such as data collected at different scheduled times or by different individuals for 

treatment and control groups. 

Reporting bias points to the fact that it is exceedingly difficult, in any reading of empirical 

analysis, to know whether authors are presenting the entirety of the results of the study or only that 

subset of outcomes which is deemed interesting or sympathetic to the case they are trying to make. 

Recent meta-analysis has shown evidence of this among studies in economics (Brodeur et al. 2013) 

and in medicine, the latter of which finds that “statistically significant outcomes had a higher odds 

of being fully reported compared to non-significant outcomes (range of odds ratios: 2.2 to 4.7)” 

(Dwan et al. 2008). A meta-analysis of medical studies on anthelminth therapy and treatment for 

incontinence found that “more outcomes had been measured than were reported.” This study 

calculated that with a change in the assumptions about which outcomes the largest study chose to 

report, “the conclusions could easily be reversed” (Hutton and Williamson 2000).  

To combat this problem, many medical journals require that a protocol and statistical 

analysis plan be registered with a third-party database before the study begins. These documents 

record the plan for conduct of the trial, the intended sample size, and the analyses that the 
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researchers plan to undertake at the end. This is called a “pre-analysis plan” in economics. While 

there are tools in economics which can help mitigate some types of the multiple comparison 

problem (Kling, Liebman, and Katz 2007), a recent study in economics demonstrates how separate 

and contradictory erroneous conclusions could have been drawn from a randomized experiment in 

Sierra Leone in the absence of a pre-analysis plan (Casey, Glennerster, and Miguel 2012). We 

acknowledge that pre-analysis plans involve important tradeoffs in the context of economics 

research (Olken 2015), but argue that, at the very least, the decision of whether or not to have one 

should be documented in the final publication so that the readers can judge for themselves about 

the study-specific risk of bias this entails.  

Furthermore, to prevent authors from running analyses ad infinitum and unduly weighting 

only those which are statistically significant, medical journals require that both the protocol and 

subsequent article report which outcome is “primary” and thus given highest credence. For non-

primary outcomes, additional labels of “secondary” (pre-planned, but not the primary analysis) 

and “exploratory” (conceived of after the data was collected and examined) are assigned to the 

remaining presented results. Though exploratory analyses are seen as informative, they are given 

less weight than pre-specified analyses, as there is a wealth of evidence of false-positive results 

from ad hoc analyses conducted with the benefit of being able to look at the data first (Oxman and 

Guyatt 1992; Yusuf et al. 1991; Assmann et al. 2000; Casey, Glennerster, and Miguel 2012).  

The sophisticated statistical and econometric tools often employed in robustness checks 

and sensitivity analysis in economics provide some protection against this risk, and recent work in 

economics shows that reporting bias may be less of a concern in RCTs than observational studies 

(Brodeur et al. 2013). Vivalt (2015) also tests for reporting bias in a large set of trials and impact 

evaluations, finding little evidence of reporting bias in published RCTs.  

These studies, however, do not provide enough evidence to evaluate the broader risk of 

reporting bias in RCTs in economics. Brodeur et al. (2013) limit their analysis of experiments to 

only 37 articles from three top journals, two thirds of which are non-randomized laboratory 

experiments, not RCTs. The small sample size and journal spectrum of this exercise limit its 

generalizability. Vivalt (2015) scrutinizes a larger number of studies than is covered in our paper 

but focuses on generalizing from impact evaluations in development, which is a substantially 

different aim than that of our analysis. Commenting on her results related to reporting bias, she 

also notes that while “these figures look much better than the typical ones in the literature,” her 
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choice of which estimates to use in each eligible paper was “designed…partially to minimize bias, 

which could help explain the difference.”  

We look for a series of indicators to inform our assessment of the risk of reporting bias. 

The first is presence of a pre-registered protocol and/or analysis plan. We realize this is unlikely 

for many economics studies, particularly those published in our time frame; however the goal of 

our analysis is to document what is reported in published RCTs in economics and to assess the risk 

of bias in these studies. The medical literature clearly links over-weighting post hoc outcomes to 

risk of bias (Assmann et al. 2000). The potential for this bias is also documented in the economics 

literature (Casey, Glennerster, and Miguel 2012). The second piece of information we look for is 

specification of a “primary” analysis or outcome (in medicine, a “primary endpoint”, which is 

usually one single measure, although study designs can incorporate more than one primary 

endpoint and clearly specify how they will address multiple testing issues). We recognize this is 

similarly strict, however we point again to the unambiguous link between the lack of reporting 

constraints and the likelihood of finding significant results in the medical literature.  

 

Finally, under reporting bias, we examine the interpretation of results. Here we look for a 

clear and objective description of the study which  

 

 Summarizes the findings of the study 

 Considers alternative mechanisms and explanations of the results 

 Offers a comparison with relevant findings from other studies and a brief summary of the 

implications of the study in the context of other outcomes and evidence, evidence which is 

not limited to evidence that supports the results of the current trial 

 Offers some limitations of the present study 

 Exercises special care when evaluating multiple comparisons 

 

These five issues, taken directly from CONSORT, set a fairly low bar for what should be reported 

in the interpretation of a study. We include them in our assessment to determine whether the study 

expresses irrational exuberance about its results, another form of reporting bias identified in the 

medical and economics literatures (Deaton 2010), perhaps the result of labeling the RCT as the 

“gold standard” of evidence.  
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Sample size bias is better known among economists as the twin concerns of attenuation and undue 

bias from outliers. An insufficiently large sample size does not in itself lead to biased estimates of 

the treatment effect, but it can lead to imprecise estimation and, if not properly interpreted, 

incorrect conclusions (Wooldridge 2010).  Sample size calculations should be included in any pre-

analysis plan in order to understand the effect size the study is capable of measuring.   CONSORT 

describes the risk of small sample sizes: 

Reports of studies with small samples frequently include the erroneous conclusion that 

the intervention groups do not differ, when in fact too few patients were studied to 

make such a claim. Reviews of published trials have consistently found that a high 

proportion of trials have low power to detect clinically meaningful treatment effects. 

In reality, small but clinically meaningful true differences are much more likely than 

large differences to exist, but large trials are required to detect them. 

Guyatt and Mills and Elbourne (2008) debated the value of small trials in the medical literature, 

and a recent study of the issue also finds that trials with inadequate power have a high false-

negative error rate and are implicated as a source of publication bias (Dwan et al. 2008).  

The second concern is that without enough observations, draws from the extreme right or 

left tail are unduly weighted and could lead to exaggerated results. Two other studies in medicine 

link small sample sizes to overstating effect size because of the heightened influence of outliers 

(Moore, Gavaghan, et al. 1998; Moore, Tramèr, et al. 1998). To guard against these problems, both 

CONSORT and Cochrane expect researchers to conduct sample size calculations before collecting 

any data and report these calculations in trial publications4.  

In our assessment, we look for a description of the sample size calculation used to design 

the study in the paper, in a publicly available pre-study registration, or in an online appendix. It is 

important to note that the reader cannot always infer the necessary sample size from the reported 

standard errors on an RCT’s treatment estimates, as these too are sample moments which are more 

subject to bias the smaller the sample size is. The inclusion of a prior sample size calculation tells 

the reader what the trial was designed to measure and allows the reader to see whether there were 

enough observations collected to test the original hypothesis. It also links the main outcomes 

 

4
 One reader pointed out that our bias assessment tool includes many items (such as sample size calculations) which could be considered 

“common sense” to include in an RCT report. This emphasizes our points that 1) the absence of much of the information we are looking for is 

somewhat surprising, and 2) the shortcomings in reporting we identify prevent the reader from determining the risk of bias in many RCTs in 

economics.  
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presented to the original design of the trial, which helps guard against specification searching and 

misrepresentation of ad-hoc analysis. 

III. Assessing reporting and the risk of bias in RCTs in economics 

Using the issues identified in the previous section, we next attempt to answer two research 

questions. First, are the recent reports of RCTs in economics providing readers with sufficient 

information to assess the risk of bias in the study? Second, among these studies, what is the risk 

of each of the six types of bias, given the empirical evidence linking certain design and reporting 

choices and exaggerated treatment effect estimates in the medical literature?  

 

Identifying relevant concerns 

We first read the literature from economics and medicine on sources of bias in RCT estimates and 

program evaluation to identify the subset of concerns from the medical literature most applicable 

to economics RCTs. These concerns are described in the previous section. We then developed a 

reporting and bias assessment tool to determine, for each study, what is reported and the risk of 

bias for each identified concern5. Next, we attempted to collect all economics articles reporting 

RCTs published between 2001 and 2011 in a set of 52 major peer reviewed journals. This 

collection process is described in further detail below. To evaluate the validity of our assessment 

tool and to provide a benchmark for our assessments of articles in economics, we randomly 

selected an equal number of articles from three top peer-reviewed journals in medicine. Finally, 

we applied our assessment tool to both sets of articles.  

 The assessment tool was designed to facilitate and collect assessments of adequacy of 

reporting and risk of bias in terms of the six biases discussed above. Following the concerns 

outlined earlier, there are 12 specific issues we assess spread across the six biases6 with leading 

questions to aid assessment. For example: “does the paper give the number of participants in each 

group included in the analysis, and whether this analysis is according to the “Intention to Treat” 

principle? If not, is there evidence that the principle was followed?”  

The task of the assessor is to make two assessments for each issue: first, does the paper 

report adequately on the matter, providing the reader with enough information to assess the risk of 

 

5
 The assessment tool is given in the Web Appendix. 

6
 We began with 13 and removed one as it was excessively stringent. Details are given in the Web Appendix Where is this? 
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bias, and second, is the paper at low risk of bias from the relevant threat? The assessor circles 

either a yes or a no for each question and, if possible, provides a page number and/or explanation 

in the comment and quote boxes to the right of the question to justify each assessment. We decided 

on the following rule for assessment of risk of bias: if a paper did not report adequately on the 

issue, it could not be assessed as having a low risk of bias. This decision reflects our judgment, 

mentioned earlier, that the burden of proof of the unbiasedness of a study’s results rests with the 

author. The landmark meta-analysis assessing study quality in medicine uses a similar rule (Schulz 

et al. 1995). We present results on reporting and risk of bias for each individual issue as well as 

aggregated to the bias level under a simple rule – if a study is inadequately reported or not at low 

risk of bias for one issue, it is inadequately reported or not at low risk of bias for the relevant bias. 

We do not create an overall study-level assessment 7 , as expectations on both the sign and 

magnitude of bias vary across issues.  

We selected studies for assessment using the following process: 

1) We searched EconLit for journal articles published between 2000 and 2009 

that contained either the word randomized or randomization (or their 

alternative UK spellings) in the title or abstract. A search conducted on July 

6th, 2010 generated 527 results. This was amended on September 5th, 2012, to 

expand the time range to include papers from 2010 and 2011. The amendment 

yielded 235 additional results8. 

2) Within these results, we further limited eligibility by two criteria:  

a. We included only articles reporting results of prospectively randomized 

studies. As we are evaluating study design, it would be inappropriate to 

include studies not designed as trials (e.g. natural experiments).  

b. To limit heterogeneity of study quality, we further restricted eligibility to 

articles published in the top 50 journals as rated by journal impact within 

economics, taken from a Boston Fed working paper which ranks economics 

journals (Kodrzycki and Yu 2006). In the 2012 search amendment, we added 

papers from the American Economic Journal: Applied Economics and the 

 

7
 Several meta-analyses of the risk of bias in medicine follow this practice as well (Spiegelhalter and Best 2003). 

8
 We recognize that this is not the universe of published RCTs but believe it is a good approximation. Scanning the abstracts of all articles in 

these journals published over the period would have been prohibitively time-consuming. Including the word “experiment” in the search terms raises 

the number of initial results well into the thousands.  
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American Economic Journal: Economic Policy, from the journals’ inception 

in 2009 onward, in light of their prestige and the volume of RCT reports they 

publish. 

In total, this yielded 54 articles published between 2001 and 2011.  

We then conducted a search to collect studies reporting RCTs in three top peer-reviewed 

medical journals for assessment. This served two purposes – one, to calibrate our assessment tool9, 

and two, to provide a benchmark for how enforced standards might improve reporting. Articles in 

medicine were drawn from the top three medical journals according to impact factor in general 

and internal medicine on July 6th, 2010 from Thompson Journal and Citation Reports (Thompson 

Reuters 2010). These were The Lancet, The Journal of the American Medical Association, and The 

New England Journal of Medicine. This restriction was made for ease of processing, as it reduced 

the number of eligible studies in each year from several thousand to approximately 350, and to 

ensure we were evaluating the “gold standard” in medicine as described above. The selection 

process for medical articles was as follows: 

1) We searched Pubmed (a database similar to Econlit indexing articles in 

medical journals) for all articles reporting clinical trials in the three journals 

in years for which there was also an eligible economics article (all years in 

our range save 2002).  

2) From this list, we then randomly selected as many articles in a given year as 

there were eligible articles in economics from that year. Among studies 

published in a given year, selection was performed by assigning each article 

a random number between 0 and 1 using a random number generator. We 

sorted the articles by their randomly assigned number and, beginning with the 

lowest random numbers, we then selected the required number of articles.  

3) We excluded phase one and phase two trials in medicine as their methods, 

goals and sample size considerations are significantly different from phase 

three trials, which, similar to the economics trials we are concerned with, are 

more often used to inform policy.  

 

9
 Given that the medical trials we collected were published in journals that required adherence to the standards in the CONSORT Statement, if 

we were to find most medical trials were at high risk of many biases (low risk of all biases), we would be concerned that the instrument was too 

strict (lenient). 
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The final list of both sets of papers is given in the Appendix. If a trial generated more than one 

eligible publication, the article published earliest was selected and the remaining associated articles 

were used to provide additional information for assessment of the main article.  

The assessment tool was first piloted by all three authors and Miranda Mugford. Once it 

was finalized, two authors (AE/PB) first read each article and assessed the adequacy of reporting 

and risk of bias using the assessment tool individually. For each article, we then discussed our 

assessments. Any disagreements were resolved through deliberation, the result of which is the final 

assessment of each study. We adopted this method of individual assessment followed by 

deliberation for two reasons. First, the exercise was a novel one and we expected our assessments 

to improve through discussion. Second, we followed the example of several meta-analyses in the 

medical literature, which find that while independent assessment potentially provides better 

internal validity of the tool, the rate of agreement between assessors in such processes is often low 

(Clark et al. 1999). In practice, our mean rate of agreement on an issue was greater than 85 percent.  

 

Results 

For four of the six biases in our assessment tool, less than 30 percent of the articles collected are 

assessed as reporting adequately, and for no type of bias are more than three quarters of the 

economics articles assessed as reporting adequately. Among the subset of articles in which 

reporting is assessed as adequate, there are many cases in which there is high risk of bias, that is, 

in which the authors report having made trial design decisions which are known to have biased 

estimates in medicine. In the exercise used to calibrate our instrument, we found that medical 

RCTs, published in journals which require these standards be followed, have substantially better 

reporting and lower risk of bias, though for none of our bias categories do 100 percent of the 

articles report adequately or have low risk of bias.  

These overall performance ratings mask substantial heterogeneity on the different issues 

within the six biases. While in some issues (reporting and sample size) few papers are assessed as 

having low risk of bias, in others (performance and detection) most relevant issues are usually 

addressed. Indeed, in some cases the papers published in economics that we examine fare no 

differently than those we examine which are published in the top three medical journals.  

Below, we show summary statistics of our assessments at the issue and bias-level, and 

describe our assessments for each issue in detail. Figure 1 shows simple bar charts with 95 percent 

confidence intervals documenting performance of economics articles and medical articles in terms 
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of adequacy of reporting and risk of bias for each of the six biases. Similar charts breaking down 

the assessments of each bias by issue are given in Appendix 3. Table 1 provides the number of 

papers assessed as adequately reporting and at low risk of bias at the issue and bias levels with a 

chi-square test for equality of proportions between the assessments for economics and medicine.  

[ Insert Table 1 Here] 

[ Insert Figure 1 Here] 

 

Only 12 of the 54 eligible economics articles (22%) passed all of the reporting criteria for 

selection bias, while 40 of the 54 eligible medical articles did so. Performance varied across the 

three issues in this bias. Thirty-four of the 54 economics papers reported adequately on their 

randomization procedure, but five of these used clearly deterministic methods to assign treatment. 

An alphabetic rule was used in one case and sorting by date of employment commencement was 

used in another. Less than half of the economics studies provided adequate information about the 

flow of potential participants in the trial. In the majority of economics articles, information on the 

number of participants at three important stages - screening for eligibility and exclusion from the 

study before and after eligibility was assessed - was not given, raising concerns about potential 

undocumented discrepancies between the declared population of interest and the sample studied 

(Manski 2013; Frijters, Kong, and Liu 2015). All but six of the 54 economics papers provided a 

table showing whether there was balance on observables at the time of randomization, suggesting 

that randomization was usually successful. Two papers that gave this information showed evidence 

suggesting that the randomization did not achieve the desired balance.  

The largest issue related to attrition bias was failure to report how many participants 

progressed through the trial from enrolment to inclusion in the final analysis. More than two thirds 

of the economics RCTs we assessed had striking inconsistencies between the number of 

participants they enrolled and the number of observations included in the final analyses which 

were not discussed in the body of the paper or in the appendixes. The number of observations 

varied among final analyses in many of these papers, in some cases by up to 30 percent, often with 

no explanation for the difference. As reported in Table 1, the papers with flow of participants data 

clearly outlined avoided these problems. We suspect the discipline of monitoring and reporting the 

flow of participant data encourages trial designers to limit attrition, as well as helping ensure that 
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authors explain cases of substantial attrition.  Reporting of adherence to or deviation from the 

intent-to-treat principle was adequate in more than half of the studies we assessed. Two of these 

reported deliberate exclusions that suggested risk of bias.  

Thirty-eight of the 54 economics papers reported adequately in terms of performance bias 

and only one of these reported a design decision which raised concerns about risk of bias. In this 

case, there was possibility of unaccounted-for alternative care-seeking as a result of knowledge of 

treatment status which could have biased the effect the authors were trying to measure. In the 

sixteen studies assessed as not reporting adequately, the most common concern was a subjective 

outcome assessed without blinding and without mention of the possibility of bias from the 

Hawthorne Effect. These circumstances are linked clearly in medicine to exaggerated treatment 

effects (Lesley Wood et al. 2008). Overall, assessment of reporting and risk of performance bias 

in economics articles was not statistically distinguishable from our assessment of medical articles. 

Thirty-seven of the 54 studies reported adequately on the issues surrounding detection bias. 

Two of these 37 documented problematic practices. In both cases, the authors explicitly mentioned 

using data collectors who were employed by the same organization which administered the 

intervention. Of the seventeen not assessed as reporting adequately, most neglected to say who 

collected the data, leaving doubt as to whether a similar conflict of interest could have biased the 

results.  

No economics paper was assessed as adequately reporting in terms of reporting bias, and 

therefore none could be assessed as having low risk of bias in this category. This assessment attests 

to the absence of either a pre-analysis plan or registration of a study protocol prior to 

implementation of the trial. No economics paper in our sample mentioned either, though we are 

aware that writing a protocol and registering it is increasingly common in economics. Economics 

RCT protocol registries have been established by both the American Economic Association and J-

PAL, among others.  

The other relevant concern is the specification of a primary outcome and the differentiation 

between planned and ad-hoc secondary analyses. We enthusiastically support, and ourselves 

practice, conducting analyses conceived after a trial finishes. We agree with the medical literature, 

however, that they should be described as such to allow the reader to weight the different types of 

evidence provided in the paper. The final issue in our assessment of reporting bias in economics 

was interpretation of results. Nearly half of the economics papers did not mention whether there 

were any limitations in their methods nor did they condition their interpretation of the strength of 
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their results in light of the many comparisons that they presented. Interestingly, the medical papers 

in our sample also fared rather poorly in this final regard.  

Only two economics papers attested to perform a prior sample size calculation. We are 

almost certain that some others did (Banerjee et al. 2007; Parker 2010), but as none were reported, 

overall the economics literature did not report adequately on this bias. We decided against 

soliciting such information from authors in light of evidence that doing so was likely to lead to 

biased responses (Haahr and Hróbjartsson 2006) and our rule tying inadequacy of reporting to risk 

of bias was applied. 

 We calculated subgroup-specific bias assessments for a few categories of interest for both 

economics and medical RCTs. These results are shown in Figures 2-4. We found that more recent 

studies in economics (i.e. from the 2010-2011 amendment to our initial search) performed 

similarly to their earlier-published counterparts (Figure 2), though we suspect this is improving 

with the establishment of trial registries and the increased attention these issues have received in 

the past few years. In medicine, we observe better reporting and lower risk of the six biases in the 

more recently published group, likely a consequence of the increasing use of CONSORT 

guidelines by journal editors.  

[ Insert Figures 2-3 Here] 

Papers reporting the results of economics RCTs taking place in developing countries 

(Figure 3) had more issues with performance, detection, and attrition bias than papers reporting 

the results of trials taking place in the US, Canada, and Europe. Among economics studies taking 

place in the developing world, data collectors were more often related to the intervention being 

applied, outcomes were more often subjective, and the number of observations was less stable 

among the final analyses within a paper. We find no such differences between those medical RCTs 

run in developed countries compared to those run in developing countries. 

[ Insert Figure 4 Here] 

The performance of papers published in the “top five” journals (Econometrica, the 

American Economic Review, the Journal of Political Economy, the Quarterly Journal of 

Economics and the Review of Economic Studies) was similar to performance of papers in the other 

47 economics journals we included for all six of the biases (Figure 4). 
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IV. Ways Forward 

We have presented evidence that a large proportion of RCTs in economics published between 2001 

and 2011 did not report many pieces of information necessary for the reader to assess the risk of 

bias in the evidence provided. Among those studies that do report this information, we found that 

several made many of the same design choices that have been shown to lead to biased results in 

medical RCTs. As a result, we conclude that these trials are at unnecessarily high risk of presenting 

exaggerated treatment effect estimates.  

The economics literature has begun to address several of these issues. A series of “toolkits” 

on how to conduct RCTs have been put forth (Duflo, Glennerster, and Kremer 2007; Glennerster 

and Takavarasha 2013) and groups such as the Berkeley Initiative for Transparency in the Social 

Sciences conduct annual meetings which focus heavily on improving methods and transparency 

in social science research.  

Our paper contributes novel evidence to this discussion. We make the case that a series of 

lessons from the medical literature is applicable to economics RCTs and use them to scrutinize 

RCTs published in economics journals between 2001 and 2011. We show that there is ample room 

for these lessons to be used to improve both the reporting and design of RCTs in economics. 

To ensure that the evidence from RCTs published in the economics literature is as reliable 

as possible, we echo calls elsewhere (Miguel et al. 2014) to establish a system of reporting 

standards for RCTs in economics, similar to the CONSORT guidelines widely accepted in the 

medical literature. The contents of such a system would have to come from a consensus among 

economists on what constitutes good practice as well as which data are necessary to assess risk of 

bias. This should draw on the recent toolkits mentioned above.  

As Miguel et al. (2014) note, some standards for trials in economics will necessarily differ 

from those in medicine. The medical standards are imperfect by their own admission and, as 

discussed earlier, the goals of some economics research are in direct conflict with certain 

CONSORT strictures. A good starting point for the departure from medical reporting standards is 

the admissibility of and weight placed on non-pre-specified outcomes, given the sophisticated 

statistical and econometric tools often employed in robustness checks and sensitivity analysis.  

 However, in many areas the “good reporting” requirements for economics trials and 

medical trials will be similar.  The CONSORT guidelines included in our bias assessment tool 

were suitable for all of the economics studies we examined in this paper.  They address most 
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situations (multiple endpoints, non-blinded, cluster randomization) typically found in economics 

trials which are less common in medical trials (Campbell et. al. 2012).  In cases where the 

guidelines were implemented by authors, such as including “Flow of participant” diagrams, we 

noted a substantial lowering of specific risk of bias in economics papers.     

We strongly suggest that, at the very least, the following issues from CONSORT be part 

of any set of guidelines for RCT design and reporting: a CONSORT-style diagram of flow of 

participants; requiring either registration of protocols/pre-analysis plans prior to randomization or 

a discussion of why this was decided against; requiring pre-specification of a primary outcome 

accompanied by a link to the relevant sample size calculation conducted prior to trial entry; and, 

in cases where appropriate, insistence on the intent-to-treat principle for the primary analysis.  

There are a few productive avenues of inquiry we leave to future research. Monte-Carlo 

simulation of the impacts of different types of bias using existing data from economics RCTs and 

censuses could illustrate the likely magnitude of the biases outlined here. Standards on reporting 

related to generalizability, discussed elsewhere (Vivalt 2015; Allcott 2015), are arguably of similar 

importance and there is a rich literature on how to assess this in reports of RCTs (Rothwell 2006). 

Lastly, we would like to mention that a major weakness of our study is the number of 

assessors we used. Our assessment task was a long and tedious one and almost certainly not 

without some human error. An increase in the number of evaluators for each paper would almost 

certainly improve the reliability of our results. Nonetheless, our independent initial assessment by 

multiple individuals follows best practice in systematic review and the high level of agreement in 

our independent assessments suggests a high degree of objectivity. The application of our 

assessment tool to ongoing research would shed additional light on how recent efforts to improve 

the quality of economics RCTs have fared. 

V. Conclusion 

In this study, we make two main contributions. First, we identify a series of lessons from the 

medical literature on sources of bias in RCT estimates that are applicable to economics RCTs. 

Second, we use these lessons to assess the adequacy of reporting and risk of six major biases in 

economics RCTs published in 52 top economics journals between 2001 and 2011. We find that 

these articles often do not provide the reader with essential information on design and reporting 

decisions related to identified sources of bias. We conclude that RCTs in economics are at a far 

higher risk of reporting exaggerated treatment effects than necessary given what we know from 
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medicine about how to minimize bias in RCTs. We finished by suggesting, as have others, that 

one means by which to minimize this risk would be for economists to develop and adopt a set of 

reporting guidelines to ensure clarity and precision in the reports of RCTs. We offered several 

suggestions for the content of such standards. 

Going forward, we hope that our study will contribute to the establishment and acceptance 

of a set of standards for designing and reporting RCTs. Such standards would serve two purposes. 

First, they would improve the quality of RCTs going forward. Second, they would serve as a tool 

to help scholars and policymakers in assessing the risk of bias in estimates from existing studies. 

The medical example has shown that such repeated scrutiny is likely to increase efforts by 

researchers themselves to avoid these pitfalls in the design, execution, and analysis of their trials. 

We strongly believe that these efforts would lead to higher quality evidence and, we hope, improve 

the usefulness of RCTs in learning and policy decisions.   
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Figure 1. Assessment results overall, by field 
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Figure 2. Assessment results separated by date of publication and field 
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Figure 3. Assessment results from developing and developed countries, by field 
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Figure 4. Assessment results by ranking of journal, economics only 

 

 



  

 

Table 1—Assessment results by issue/bias and field 

  Economics (n = 54) Medicine (n = 54) P-value of Chi-square test  

Bias Issue Number 

reporting 

adequately 

Number at 

low risk of 

bias 

Number 

reporting 

adequately 

Number at 

low risk of 

bias 

Reporting Risk of bias 

Selection Randomization 34 29 52 52 <.001 <.001 

Selection Flow of participants 20 20 40 40 <.001 <.001 

Selection Baseline demographics 48 46 53 52 .051 .046 

Attrition Flow of participants 17 17 51 51 <.001 <.001 

Attrition Intent-to-treat 35 33 47 47 .007 .002 

Performance Data collection 43 43 51 51 .022 .022 

Performance Participant behavior 45 44 42 42 .466 .633 

Detection - 37 35 53 51 <.001 <.001 

Reporting Protocol/analysis plan 0 0 50 50 <.001 <.001 

Reporting Outcomes  0 0 49 49 <.001 <.001 

Reporting Interpretation of results 12 12 19 19 <.001 <.001 

Sample size - 34 34 51 51 <.001 <.001 

        

Aggregated to        

bias level        

Selection  9 12 39 40 <.001 <.001 

Attrition  15 16 46 46 <.001 <.001 

Performance  38 38 41 41 .515 .515 

Detection  37 35 53 51 <.001 <.001 

Reporting  0 0 17 17 <.001 <.001 

Sample size  1 1 52 52 <.001 <.001 

        

        

 


