NERC Open Research Archive

Article (refereed)

Anderson, O.R.J.; **Phillips, R.A.**; **Shore, R.F.**; McGill, R.A.R.; McDonald, R.A.; Bearhop, S. 2010. Element patterns in albatrosses and petrels: influence of trophic position, foraging range, and prey type. *Environmental Pollution*, 158 (1). 98-107. <u>10.1016/j.envpol.2009.07.040</u>

Copyright © 2009 Elsevier Ltd All rights reserved

This version available http://nora.nerc.ac.uk/7849/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the authors and/or other rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access

This document is the author's final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. Some differences between this and the publisher's version remain. You are advised to consult the publisher's version if you wish to cite from this article.

www.elsevier.com

Contact CEH NORA team at <u>noraceh@ceh.ac.uk</u>

The NERC and CEH trade marks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

1	Element patterns in albatrosses and petrels: influence of trophic
2	position, foraging range, and prey type
3	
4	O. R. J. Anderson ^{a, *} , R. A. Phillips ^b , R. F. Shore ^c , R. A. R. McGill ^d , R. A.
5	McDonald ^e , S. Bearhop ^{a,f}
6	
7	^a School of Biological Sciences, MBC, Queen's University Belfast, Lisburn Road, Belfast BT9 7BL, UK
8	^b British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road,
9	Cambridge CB3 0ET, UK
10	^c Centre for Ecology and Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP, UK
11	^d Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride
12	G75 0QF, UK
13	^e Central Science Laboratory, Sand Hutton, York YO41 1LZ, UK
14	^f Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Cornwall Campus,
15	Penryn TR10 9EZ, UK
16	
17	Trophic position, foraging range, and prey type were found to influence element
18	compositions and concentrations in Procellariiformes from South Georgia.
19	
20	Abstract

^{*} Corresponding author. Tel: +(44) 2890 972103 Fax: +(44) 2890 975877 Email: oanderson02@qub.ac.uk

22	We investigated the concentrations of 22 essential and non-essential elements
23	among a community of Procellariiformes (and their prey) to identify the extent to which
24	trophic position and foraging range governed element accumulation. Stable isotope analysis
25	(SIA) was used to characterise trophic ($\delta^{15}N$) and spatial patterns ($\delta^{13}C$) among species.
26	Few consistent patterns were observed in element distributions among species and diet
27	appeared to be highly influential in some instances. Arsenic levels in seabird red blood cells
28	correlated with $\delta^{15}N$ and $\delta^{13}C$, demonstrating the importance of trophic position and
29	foraging range for arsenic distribution. Arsenic concentrations in prey varied significantly
30	across taxa, and in the strength of association with $\delta^{15}N$ values (trophic level). In most
31	instances, element patterns in Procellariiformes showed the clearest separation among
32	species, indicating that a combination of prey selection and other complex species-specific
33	characteristics (e.g. moult patterns) were generally more important determining factors than
34	trophic level per se.
35	
36	Key words: Elements; Procellariiformes; Trophic Position; Diet; South Georgia
37	
38	1. Introduction

Some metals and metalloids are essential elements (EE) involved in physiological
and biochemical processes (Abdulla and Chmielnicka, 1990), but can be toxic when
exposure and assimilation is excessive. Others, such as lead (Pb), cadmium (Cd), arsenic
(As) and mercury (Hg), are non-essential elements (NEE) that are also potentially toxic.

Marine organisms can be exposed to elements from anthropogenic and natural sources, and
exposure is governed by various factors, including foraging location and trophic position.

46 Although the Southern Ocean is a remote environment, it is subject to 47 anthropogenic metal inputs due to global transport of elements in the atmosphere and 48 through oceanic circulation (Gaiero et al., 2003). Seabirds provide an ideal model with 49 which to investigate contaminant dynamics in marine food webs (see Gilbertson et al., 50 1987; Furness, 1993; Furness and Camphuysen, 1997) and the Procellariiformes exploit a 51 wide range of ecological niches in the Southern Ocean. Many species occupy high trophic 52 positions and so can act as sentinels of exposure, highlighting potential threats to other apex 53 predators. Previous studies have examined mercury (Hg) and other elements in lower order 54 species in the Southern Ocean (e.g. Bargagli et al., 1998; Negri et al., 2006) but, apart from 55 Hg, concentrations of other elements in biota at higher trophic levels have received much less attention (although see Lock et al., 1992; Stewart et al., 1999; González-Solís et al., 56 57 2002; Bocher et al., 2003).

58 Conventional approaches for quantifying dietary composition and assessing metal 59 intake, such as analysis of gut content or regurgitate, have a number of biases (see Votier et 60 al., 2003) and samples are often difficult to obtain over long periods. In this study, we 61 analysed stable isotopes to elucidate broad-scale, inter- and intra-specific dietary patterns in 62 Procellariiformes (Hobson et al., 1994), and so determine whether differences in foraging 63 strategy explained variation in elemental uptake. Use of stable isotopes for this purpose is based on the predictable increase in the ratio of ¹⁵N:¹⁴N (by ca. 3.4‰) with each trophic 64 level, and so δ^{15} N can be used as a proxy for trophic position (e.g. DeNiro and Epstein, 65 1981; Hobson and Welch, 1992; Bearhop et al., 1999). δ^{13} C can vary depending on whether 66

animals feed inshore or offshore, or on benthic or pelagic prey (e.g. Chisholm et al., 1982; Hobson et al., 1994); δ^{13} C values also vary with latitude (Cherel and Hobson, 2007) and, as such, provide a coarse-scale proxy for foraging location in wide-ranging organisms.

70 The overarching aim of the present study was to investigate the distributions and 71 dynamics of toxic heavy metals, essential metals and metalloids in Southern Ocean 72 seabirds, and assess the extent to which they may be bioaccumulated or biomagnified through foodchains (see Bargagli et al., 1996; McIntyre and Beauchamp, 2007). We 73 74 analysed red blood cells (hereafter blood) and feathers collected during the breeding season 75 to relate element assimilation to trophic position. The residence times of dietary isotopic 76 signatures are dependent on the regenerative time of the tissue analysed (Hobson and 77 Clarke, 1992a, 1992b; Hobson 1999). Blood cells are short-term integrators of dietary 78 isotope signatures and are derived from prey consumed within the past 2-3 weeks. Blood 79 metal concentrations also reflect recent exposure, concentrations equilibrating between the 80 blood and the body organs (Burger and Gochfeld, 1997). Hence, the isotopic signature and 81 element concentrations in blood are temporally matched and reflect foraging in the 82 breeding season. In contrast, most Procellariiformes grow feathers during the non-breeding 83 period and so feathers provide a means for characterising diet and element burdens 84 acquired at this time. Feathers, once grown, are metabolically inert. They therefore 85 provide a dietary isotope and element exposure 'snap-shot' for the period of feather growth 86 (Mizutani et al., 1990, 1992, Bearhop et al., 2002). By randomly sampling body feathers, 87 the measured isotope signature and element concentration is averaged over the moult period 88 (Bearhop et al., 2000). The temporal matching of the feather isotope signature and element 89 concentrations is unlikely to be as good as that for blood because feather data are based on

90 averaged values obtained over a relatively long time period. Overall, however, it is possible 91 to gather information on trophic level and foraging range for the breeding (blood stable 92 isotopes) and non-breeding season (feather stable isotopes), although it is also important to 93 determine isotope values for likely prey items (as determined from previous conventional 94 dietary studies) so that the extent to which certain prey types may affect metal 95 accumulation in birds can also be evaluated.

In this study, our specific objectives were to investigate: (1) current levels of exposure of Procellariiformes to a range of EE and NEE by measuring concentrations in blood and feathers; (2) the extent to which assimilation varies between species; and, (3) the extent to which foraging area, diet, and trophic level explains intra- and inter-individual variation in metal accumulation in Procellariiformes.

- 101
- 102 **2. Materials and methods**
- 103

104 2.1 Sample collection and preparation

105

Fieldwork was undertaken on Bird Island, South Georgia (54° 00'S, 38° 03'W) from December 2001 for a period of four months. Ten species were sampled in total: Antarctic prion (*Pachyptila desolata*), black-browed albatross (*Thalassarche melanophrys*), blue petrel (*Halobaena caerulea*), common diving petrel (*Pelecanoides urinatrix*), South Georgian diving petrel (*Pelecanoides georgicus*), grey-headed albatross (*T. chrysostoma*), northern giant petrel (*Macronectes halli*), southern giant petrel (*M. giganteus*), white112 chinned petrel (*Procellaria aequinoctialis*) and wandering albatross (*Diomedea exulans*). 113 Blood and feathers from adults of each species were taken from surface-nesting birds at the 114 end of the brood-guard period and from burrowing birds whilst mist-netting adjacent to 115 breeding colonies. Whole blood (0.2-1.0ml) (from the tarsal vein) was spun to separate 116 cells and plasma, immediately frozen, subsequently freeze-dried to a constant mass and 117 then again frozen until analysis. Only red blood cells were analysed for isotopes and trace 118 elements. Six to 8 feathers sampled at random were taken from the mantle region of each 119 bird. Feathers were stored in plastic bags at room temperature until analysed. Fresh prey 120 samples (muscle tissue) were obtained from seabird regurgitates, or from fisheries vessels 121 operating in waters surrounding South Georgia, and frozen at -20°C after identification. 122 Cephalopods were identified from beaks according to Clarke (1986) and Rodhouse et al. 123 (1992), fish from external morphology according to Gon and Heemstra (1990), or from 124 otloliths according to Reid (1996), and crustaceans from Kirkwood (1984). Identifications 125 were checked against BAS reference collections. Prey were of unknown size and age.

126

127 2.2 Stable isotope analyses

128

All blood and feather samples were homogenised in a freezer mill prior to analysis and oven-dried for >24hrs at 50°C to a constant mass. In the case of prey samples, lipids were extracted prior to SIA over a 4 hour period using Soxhlet apparatus containing 1:1 methanol to chloroform solvent mixture. Stable carbon and nitrogen isotope analyses were performed by continuous flow isotope ratio mass spectrometry (CF-IRMS) on 0.7mg subsamples of material loaded into tin cups and combusted in a Costech ECS 4010 elemental 135 analyser coupled to a Thermo Finnigan Delta Plus XP mass spectrometer. Every 8-10 136 samples were followed by two laboratory standards allowing correction for drift. Isotope 137 ratios are expressed in standard δ notation against international reference standards, vPDB (virtual Pee Dee Belemnite) for δ^{13} C and atmospheric nitrogen for δ^{15} N according to the 138 equation: 139 140 141 $\delta X = [(R_{sample}/R_{standard}) - 1] \times 1000$ 142 where X is ¹⁵N or ¹³C and R is the corresponding ratio ¹⁵N:¹⁴N or ¹³C:¹²C. Precision for 143 both δ^{13} C and δ^{15} N was routinely estimated to be < 0.2‰. 144 145 146 2.3 Element analyses 147 148 Samples were oven-dried for 24hrs at 50°C to a constant mass. Between 0.05 and 149 0.1g dry weight of sample (mean weights for each tissue type; 0.6g for prey, 0.09g for 150 blood, and 0.05g for feathers) was weighed accurately and added to 2ml nitric acid and left 151 to cold digest for 24hrs. Samples were then hot digested for 50 minutes at 120°C, after 152 which 0.5ml of hydrogen peroxide was added and left for a final 15 minutes. The samples 153 were made up to 5ml with deionised water. Total absolute concentrations for 22 essential

155 inductively coupled plasma mass spectrometer (DRC ICP-MS) (PerkinElmer, Connecticut,

and non-essential elements were measured using an ELAN 6100 dynamic reaction cell

154

156 US) with a reference material and internal standard run with every 10 unknowns. Spiked

157 samples and blanks were also run. Limits of detection (LoD) for particular elements are in

Table 1. Precision and accuracy (Table 2) were measured using replicate samples and certified reference material (TORT-2 lobster hepatopancreas, NRCC, Canada). Element concentrations are expressed throughout as mean \pm SD in ng.g⁻¹ on a dry weight basis, unless otherwise specified.

162

163 2.4 Data analyses

164

165 Elements with mean concentrations below LoD (beryllium (Be) for prey; aluminium 166 (Al), scandium (Sc), cobalt (Co), zinc (Zn), antimony (Sb), tungsten (W), and Be for blood; 167 and Sc, caesium (Cs), lithium (Li), Pb, and Be for feathers) are reported in the summary 168 statistics but are excluded from further consideration or statistical analyses. Among the 169 remaining elements, concentrations in some samples in some species were below the LoD 170 (maximum 13% of samples for rubidium (Rb) in feathers, 1-3% of samples for vanadium 171 (V), iron (Fe), molybdenum (Mo), nickel (Ni), Cs, Hg, manganese (Mn), and selenium (Se) 172 in various tissue types) and were assigned a value equal to half the LoD for the particular 173 tissue. Where element concentrations were below the LoD in >30% of samples overall for a 174 particular tissue type (V, barium (Ba), uranium (U), Li, and Pb for blood; V, Sb, and W for 175 feathers), those elements were also included in summary statistics but excluded from 176 subsequent statistical analyses, as in other studies (Borgå et al., 2006). Fe was excluded 177 from all statistical analyses of blood data because of its physiological function in this tissue. 178 For elements that were included in the statistical analysis, we first used principal component analyses (PCA) in Canoco 4.5 for Windows[®] to identify co-variance among 179 180 elements, and between elements and isotope ratios (the latter entered as passive variables,

181 following Borgå et al., 2006) in seabird tissues. PCA produces ordination axes that reduce the total residual sum of squares among all the variables included (i.e. all elements, $\delta^{15}N$, 182 183 and δ^{13} C). The primary axis (PC1) represents the greatest proportion of component 184 variation among the samples. The secondary axis (PC2) explains the greatest proportion of 185 any remaining variation that is uncorrelated with PC1. Variables are shown as lines, with 186 the length of each line demonstrating relative contribution of a particular variable to the 187 separation of samples in ordination space. Angles between lines represent a greater or lesser 188 degree of co-variance between elements; with acute angles representing the greatest degree 189 of co-variance, a 180° angle demonstrating a negative correlation, and a 90° angle represent 190 elements that are completely un-correlated. All PCA were performed on standardised 191 values, so that those elements with vastly different ranges could be analysed together. We 192 then used univariate general linear models (GLMs) to test the significance of relationships between species, $\delta^{15}N$, $\delta^{13}C$, and elements of high factor loadings that were identified 193 194 through PCA, (elements with ≥ 0.50 factor loadings for PC1 and/or PC2). These analyses 195 were applied to both blood and feather data separately and the most parsimonious 196 univariate models were determined using Akaike Information Criterion (AIC) (Akaike 197 1973). Absolute element concentrations were logarithmically transformed (\log_{10}) in some 198 instances to reduce skewness and heterogeneity. Model residuals were also examined by 199 way of Q-Q plots to assess goodness of fit. Statistical tests were performed in statistical packages R ver. 2.6.2 and SPSS[®] ver. 14. 200

201

202 **3. Results**

204 In total, we analysed samples for 22 essential and non-essential elements. Mercury 205 was detected in all three tissue types but, because of the particular biomagnification 206 properties and risks associated with this element, the results have been examined in greater 207 detail and reported elsewhere; essentially, mercury levels were found to increase with 208 trophic level, indicating strong biomagnification among Procellariiformes (Anderson et al. 209 2009). Fourteen elements were quantifiable in blood (Table 3) and seventeen in feathers 210 (Table 4). Species varied in the extent to which they accumulated different elements and no 211 single species accumulated the highest concentrations of all elements (Tables 3-5). Of all 212 the elements, Fe and Se had the highest concentrations in blood (Table 3), and Fe and Zn 213 the highest concentrations in feathers (Table 4).

In prev samples, 21 elements were detected, only Be was below detection limits. 214 215 Iron and Zn had the highest concentrations of all elements tested for (Table 5). Aluminium 216 concentrations were generally an order of magnitude higher in crustaceans than in fish and 217 cephalopods, and Cd concentrations were likewise some 10-fold higher in several squid 218 species and in Themisto gaudichaudii, compared with other species (Table 5). Benthic-219 feeding fish, such as Patagonian toothfish (Dissostichus eleginoides) (García de la Rosa et 220 al., 1997), often had the highest As concentrations. Isotopic analyses indicated a high degree of variation in trophic position ($\delta^{15}N$) and foraging range ($\delta^{13}C$) between seabird 221 222 species (Fig. 1), and considerable trophic overlap between fish and cephalopod prev. The greatest degree of spatial variation (largest range in δ^{13} C ratios) in prev was between fish 223 224 species (Fig. 1).

225 Initial PCA analyses identified strong associations between As concentrations and both $\delta^{15}N$ and $\delta^{13}C$ in blood (Fig. 2a). There was a similar but weaker association for 226 227 caesium (Cs), as indicated by the shorter line on the PCA plot (Fig. 2a), but no similar 228 associations for other elements in blood. The distribution of As in ordination space was 229 predominantly governed by white-chinned petrel, suggesting that blood As concentrations 230 were elevated in this species during the breeding season; this association did not occur in 231 feathers (Fig. 2b). There were other similar associations between specific elements and 232 seabird species. The positions of Rb and Cd in ordination space were largely governed by 233 grey-headed albatross, indicating that blood concentrations of these elements were highest 234 in this species during the breeding season (Fig. 2a); again there were no such associations 235 for feathers (Fig. 2b). The ordinal positions of white-chinned petrel and wandering albatross were influenced by δ^{15} N and δ^{13} C in both blood and feathers. Overall, As and Cd 236 237 (NEE) contributed most to PC1 in blood, while Se (EE), Rb (NEE), and Mo (EE) 238 contributed most to PC2 (Table 2, supplementary material). In contrast, Mn (EE), Fe (EE), 239 Co (EE), As (NEE), and Mo (EE) contributed most to PC1 in feathers, while Se and U 240 (NEE) contributed most to PC2.

With the exception of blood As, all elements contributing ≥0.50 to factor loadings
in the PCA were found to differ significantly between seabird species (Table 6). Univariate
GLM analyses identified significant differences between species for a number of elements.
Blood concentrations of Cd, Se, Rb, and Mo all differed significantly between species
(Table 6), and in feathers, significant differences between species were found in the levels
of Mn, Fe, Co, As, Mo, Se, and U.

247 Univariate GLMs demonstrated that there was a significant and positive association between As and δ^{15} N in blood, although the pattern of this relationship varied between 248 249 species, as demonstrated by the significant interaction term in the model (Table 6). Blood As concentrations were negatively associated with $\delta^{13}C$ across all species (i.e., at 250 community level, Table 6) but the exact nature of this relationship may also have varied 251 252 between species, the interaction term in the model approaching significance (Table 6). There was a significant relationship between Se and δ^{13} C in feathers (Table 6). There were 253 254 no other significant relationships between element concentrations and trophic position 255 and/or foraging location in either tissue type (Table 6).

The positive association between blood As concentrations and trophic position ($\delta^{15}N$) was consistent with the concept that As is bioconcentrated along food chains. To investigate this further, we examined how As concentrations in prey species varied with $\delta^{15}N$ and $\delta^{13}C$ values (Table 7). Arsenic concentrations differed significantly between taxonomic groups but also varied with $\delta^{15}N$ (Table 7). However, associations between $\delta^{15}N$ and As concentrations were not consistent between prey groups (Table 7), indicating that associations between the trophic position of species and As are complex (Fig. 3).

263

264 **4. Discussion**

265

The large number of elements analysed in this study required us to focus the discussion only on those elements for which a significant relationship was identified among the parameters in the univariate analyses. We have also focused particularly on those elements for which a significant relationship occurred in blood as blood is the better tissue for characterising trophic and spatial patterns in relation to element composition within these birds. This is because feathers have the potential to acquire element burdens both directly through diet and from remobilisation of elements from internal tissues (Lewis and Furness, 1991; Monteiro, 1996). This may be why the relationships identified between stable isotope ratios and elements in blood in the present study were not always mirrored with feathers.

276

277 *4.1 Arsenic*

278

Of the elements analysed in seabird blood, only As showed significant interactions 279 with $\delta^{15}N$ and $\delta^{13}C$ at the community level (Table 6), suggesting that trophic position 280 and/or foraging range affect As assimilation by Procellariiformes during the breeding 281 season. The significant and positive association between blood As and δ^{15} N may be due to 282 283 bioconcentration or reflect changes in isotopic baseline that coincide with variation in 284 environmental As concentrations. We found no evidence of bioconcentration of As through 285 the foodchain. Although As concentrations varied significantly between prey groups 286 (crustacea, cephalopods, and fish), there was no consistent relationship between As 287 concentrations and trophic position in prey (Table 7, Fig. 3).

Given the lack of clear evidence of bioconcentration, it is possible that foraging location is the prime factor affecting As assimilation in Procellariiformes during the breeding season, and any associations with δ^{15} N may be coincidental. In this respect, As strongly influenced the position of white-chinned petrel in the PCA ordination space (Fig.

2a), reflecting their high blood As concentrations (2500 ng g⁻¹ dry weight) relative both to 292 293 other species in this study and to other species elsewhere; reference values for blood As in birds from uncontaminated areas is 20 ng g⁻¹ wet weight (Burger and Gochfeld, 1997), 294 approximately equivalent to a dry weight red blood cell concentration of 400 ng g⁻¹. 295 296 White-chinned petrels have amongst the greatest foraging distances of any seabird and 297 breeding birds from South Georgia regularly forage on the northern Patagonian shelf, 298 >2000km from the colony (Phillips et al., 2006). Prey food webs on the Patagonian shelf 299 have greater trophic complexity than those in waters around South Georgia (Forero et al., 2004, 2005), and so δ^{15} N levels in birds feeding in that region may be elevated, reflecting 300 301 longer food chain lengths. The Patagonian shelf region is also more likely to be subject to 302 greater anthropogenic inputs from riverine influxes, mineral activities, and industry than the 303 more remote regions of the Southern Ocean (González-Solís et al., 2002), which could 304 explain the elevated arsenic levels in birds that feed there. It is also possible, however, that 305 enhanced environmental exposure to As may stem from natural processes. For example, 306 disruption in the phosphorus/nitrogen ratio could lead to greater As accumulation by 307 phytoplankton in a particular region and subsequently enhance As levels in the food chain.

In our study, there was no relationship between feather As concentrations and δ^{15} N. Feather As concentrations were highest in Antarctic prion (APR), but only about half the concentrations measured in black-footed albatross (*Phoebastria nigripes*) feathers from the North Pacific (Fujihara et al., 2004). Low feather As concentrations in Antarctic Procellariiformes may reflect exposure during the non-breeding season to relatively lowlevel natural levels of As. In our study, As concentrations in prey tended to be highest in benthic/demersal species (Table 5). This suggests that a major source of As in the prey of Antarctic Procellariiformes around South Georgia may stem from metallic mineralisation of the seabed rather than from atmospheric transport of particles. Indeed, marine sediments are thought to be the largest geochemical reservoir of arsenic with residence times of ca. 100 million years (Maher and Butler 1988). Furthermore, manganese (Mn) concentrations were also elevated in benthic species, again suggesting a natural source of As; elevated As levels *without* matching high levels of Mn are thought to be indicative of anthropogenic As input (Peterson and Carpenter, 1986).

Although there was a significant relationship between $\delta^{13}C$ and blood As 322 323 concentrations in the Procellariiformes in our study, no such relationship occurred among 324 prey species. This may be because prey were collected from a small geographic area, 325 relative to the foraging areas of the birds. However, there was still considerable variation in δ^{13} C ratios between prey species (Fig. 1) and this probably reflects the influence of depth 326 on prey δ^{13} C ratios. The lack of association between δ^{13} C and As in prey indicates that As 327 328 uptake by seabirds is unlikely to be influenced by the proportion of mesopelagic prey in the 329 diet, unlike patterns of Hg uptake which are heavily influenced by prey type (see Monteiro et al., 1996; Thompson et al., 1998). The association observed between $\delta^{13}C$ and As in 330 331 Procellariiformes is most likely due to geographical variation in background As 332 concentrations within the marine environment.

333

334 *4.2 Cadmium*

335

Blood cadmium concentrations in seabirds varied significantly between species but
 not with isotopic signatures, indicating that neither trophic position nor foraging location

338 dictated Cd burdens during the breeding season. Our results match those of Gonzalez-Solis 339 et al. (2002) in that Cd concentrations were greater in northern than southern giant petrels 340 (Table 3). Gonzalez-Solis et al. (2002) postulated that the former are exposed to higher 341 levels through foraging over the Patagonian shelf, as the region is thought to be more 342 exposed to heavy metal contamination than the waters immediately adjacent to South 343 Georgia. However, if latitudinal variation in foraging location was the major factor 344 affecting Cd assimilation in Antarctic Procellariiformes, we would anticipate a correlation between Cd concentrations in birds and δ^{13} C. It may be that foraging location does dictate 345 346 Cd uptake, but that any such influence reflects the existence of Cd 'hot spots' rather than a 347 latitudinal gradient per se. In fact, Nygård et al. (2001) linked deep ocean upwelling, which 348 is often naturally Cd-rich (Holm-Hansen, 1985), to high Cd concentrations in Antarctic krill 349 Euphausia superba and other prey of Procellariiform seabirds (Petri and Zauke, 1993).

350 Previous studies have attributed high Cd concentrations in Procellariiformes to 351 consumption of squid (Muirhead and Furness, 1988; Honda and Marcovecchio, 1990; 352 Elliott, 2005; Stewart et al., 1999). Our results support this, in that higher Cd levels were 353 found in the blood of grey-headed albatrosses and white-chinned petrels (Table 3). Both 354 white-chinned petrels and grey-headed albatrosses from South Georgia consume large 355 amounts of squid, the latter feeding in particular on *Martialia hyadesi*, and, also on lamprey 356 Geotria australis (Berrow and Croxall, 1999, Xavier et al., 2003). In our study, both these 357 prev types had relatively elevated Cd concentrations (Table 5). Hence, high Cd burdens in 358 Procellariiformes do not necessarily indicate anthropogenic contamination. Levels of 359 cadmium in feathers, for example, were largely similar to those in similar species, e.g.

black-footed and Laysan albatrosses (*Phoebastria immutabilis*) in the more contaminated
North Pacific (Burger and Gochfeld, 2000).

362 Squid are thought to accumulate high Cd concentrations naturally (Kurihara et al., 363 1993; Gerpe et al., 2000). Elevated burdens in Procellariiformes can also result from 364 amphipod consumption (Cheng et al., 1984; Elliott and Scheuhammer, 1997), and in our 365 study, it was notable that we recorded the highest Cd levels of any prey item in *Themisto* 366 gaudichaudii (Table 5). Rainbow (1989) concluded that *Themisto* species are a significant 367 source of Cd in the diets of some seabirds, and our findings are consistent with this as the 368 highest blood Cd levels in birds in our study were in blue petrels, a known predator of T. 369 gaudichaudii (Prince, 1980). Moreover, hyperiid amphipods may also contribute to the diet 370 of some squid species (Croxall and Prince, 1980) which can then be eaten by seabirds. 371 Thus, dietary preferences, rather than foraging area, may comprise the dominant influence 372 on Cd burdens in Procellariiformes.

373

374 4.3 Selenium

375

Blood (hence breeding season) concentrations of Se, an essential element, varied significantly between seabird species, but did not show a significant relationship with trophic position (δ^{15} N) and foraging location (δ^{13} C) (Table 6). Therefore, it seems probable that Se does not biomagnify among Procellariiformes. Additionally, our data suggest that foraging location does not dictate Se burdens in Southern Ocean Procellariiformes, although this may in fact reflect the constrained foraging ranges of many species during the breeding season rather than a true absence of association between the two parameters. 383 Selenium concentrations were the highest of any element in Procellariiformes blood except 384 Fe. Moreover, blood Se levels in both giant petrel species were consistent with those 385 previously recorded by González-Solís et al. (2002). Blue petrels and Antarctic prions had 386 the highest blood Se concentrations of the birds we analysed and both species feed 387 predominantly on crustacea, including Antarctic krill (Prince, 1980; Croxall et al., 1997). 388 Of the prey species we analysed, crustacea, especially Antarctic krill and T. gaudichaudii, 389 had high Se concentrations relative to other prey species and groups. The physico-chemical 390 form in which Se is sequestered by different prey may also vary and affect subsequent 391 bioavailability. Hence, it would appear that inter-specific variation in blood Se 392 concentrations in seabirds most likely reflects species differences in prey selection.

393 Selenium concentrations in feathers varied considerably between species and were also significantly and negatively related to foraging location (i.e. δ^{13} C) (Table 6). This was 394 395 unexpected as concentrations of Se might be expected to increase with decreasing latitude, 396 as birds move into potentially more contaminated waters north of the sub-Antarctic polar 397 front. The negative relationship in this instance is difficult to explain, but could potentially 398 stem from natural sources of Se being more elevated in specific regions closer to the 399 Antarctic continent. In other words, Se burdens accumulated by Procellariiformes in the 400 non-breeding period may be dictated by naturally occurring Se in the marine environment, 401 potentially stemming from Antarctic intermediate and bottom waters which are sporadically 402 rich in organic Se (Cutter and Cutter, 2001). Evidence to support this hypothesis, comes 403 from the comparable levels of Se in the species covered by this study, to those of other 404 studies. Burger and Gochfeld (2000) examined Se in feathers from black-footed and Laysan 405 albatrosses in the North Pacific, and identified levels comparable to those found in this406 study.

407

- 408 4.4 Rubidium and Molybdenum
- 409

410 Two other elements, Rb and Mo, also varied between seabird species, but not with either $\delta^{15}N$ or $\delta^{13}C$, indicating that trophic position and foraging location were not key 411 412 determinants in the distribution of these two elements within Procellariiformes. Rb is 413 known to bioaccumulate through the foodchain (Nyholm and Tyler, 2000), and in fact, Campbell et al. (2005) reported a significant correlation between Rb and $\delta^{15}N$ in marine 414 415 organisms, potentially suggesting biomagnification. While our results were not significant 416 in the presence of other parameters, there was a significant, albeit weak, positive relationship between Rb and δ^{15} N in blood (linear regression, $F_{1,140} = 9.9$, p = 0.002, $r^2 =$ 417 418 0.07). However, whether this is evidence of biomagnification of Rb within this particular 419 system is doubtful given there was no significant relationship between Rb concentrations and $\delta^{15}N$ in prey (linear regression, $F_{1,82} = 1.5$, p = 0.229, $r^2 = 0.02$). Given that the 420 421 accumulated evidence concerning Rb bioconcentration through foodchains is unclear, 422 further investigations into Rb distributions and bioaccumulation in the marine environment 423 appear warranted.

424

425 **5. Conclusions**

427 This study presents new data on the distributions and dynamics of heavy metals, 428 essential metals and metalloids in Southern Ocean seabirds. Our results indicate that there 429 are considerable differences in residues accumulated by different species. For arsenic, 430 residues in Procellariiformes appear to be partially explained by changes in foraging range 431 and trophic positioning, although these patterns were not always consistent across species. 432 Arsenic was accumulated at higher concentrations in Procellariiformes feeding at higher 433 trophic levels, although this may be confounded to some extent by individuals foraging across different food webs with varying δ^{15} N baselines. There was little or no evidence that 434 435 trophic level was important in the accumulation of other elements. Our data suggest that 436 differences between species in feeding preferences for prev and the location of the foraging 437 sites are the likely major factors determining element uptake by seabirds in the South 438 Atlantic.

439

440 **6. Acknowledgements**

441

442 Our thanks go to the many field workers on Bird Island, and to B. Phalan and D. 443 Roberts in particular, for their efforts in collecting samples. We are grateful to the fisheries 444 observers and field workers of King Edward Point, South Georgia for provision of fish 445 samples and to A. Atkinson for his assistance in obtaining krill samples. O.A. was funded 446 by a Dept. of Employment and Learning (DEL) grant. Stable isotope analyses were 447 conducted at SUERC, East Kilbride with financial support from a NERC Life Sciences 448 Stable Isotope Facility Grant. Element sample analyses were conducted at CEH Lancaster.

- 449 We are particularly grateful to Gill Ainsworth for her time and assistance in the preparation
- 450 and running of these samples, as well as for her tuition on the laboratory techniques.

451 **7. References**

453	Abdulla, M., Chmielnicka, J., 1990. New Aspects on the Distribution and Metabolism of
454	Essential Trace-Elements After Dietary Exposure to Toxic Metals. Biological
455	Trace Element Research 23, 25-53.

- Akaike, H., 1973. Information theory and an extension of the maximum likelihood
 principle. In: Petrov, B.N., Czaki, (Ed.), International symposium on information
 theory. Akademini Kindo, Budapest, pp. 267-281.
- Anderson, O.R.J., Phillips, R.A., McDonald, R.A., Shore, R.F., McGill, R.A.R., Bearhop,
 S., 2009. Influence of trophic position and foraging range on mercury levels within
 a seabird community. Marine Ecology-Progress Series 375, 277-288.
- Bargagli, R., Nelli, L., Ancora, S., Focardi, S., 1996. Elevated cadmium accumulation in
 marine organisms from Terra Nova Bay (Antarctica). Polar Biology 16 (7), 513520.
- Bearhop, S., Phillips, R.A., Thompson, D.R., Waldron, S., Furness, R.W., 2000.
 Variability in mercury concentrations of great skuas Catharacta skua: the influence
 of colony, diet and trophic status inferred from stable isotope signatures. Marine
 Ecology-Progress Series 195, 261-268.

469	Bearhop, S., Thompson, D.R., Waldron, S., Russell, I.C., Alexander, G., Furness, R.W.,
470	1999. Stable isotopes indicate the extent of freshwater feeding by cormorants
471	Phalacrocorax carbo shot at inland fisheries in England. Journal of Applied
472	Ecology 36 (1), 75-84.

- Bearhop, S., Waldron, S., Votier, S.C., Furness, R.W., 2002. Factors that influence
 assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian
 blood and feathers. Physiological and Biochemical Zoology 75 (5), 451-458.
- Berrow, S.D., Croxall, J.P., 1999. The diet of white-chinned petrels Procellaria
 aequinoctialis, Linnaeus 1758, in years of contrasting prey availability at South
 Georgia. Antarctic Science 11 (3), 283-292.
- Bocher, P., Caurant, F., Miramand, P., Cherel, Y., Bustamante, P., 2003. Influence of the
 diet on the bioaccumulation of heavy metals in zooplankton-eating petrels at
 Kerguelen archipelago, Southern Indian Ocean. Polar Biology 26 (12), 759-767.
- Borga, K., Campbell, L., Gabrielsen, G.W., Norstrom, R.J., Muir, D.C.G., Fisk, A.T.,
 2006. Regional and species specific bioaccumulation of major and trace elements
 in Arctic seabirds. Environmental Toxicology and Chemistry 25 (11), 29272936.
- Burger, J., Gochfeld, M. 2000. Metals in albatross feathers from Midway Atoll: Influence
 of species, age, and nest location. Environmental Research Section A 82, 207-221.

488	Burger, J., Gochfeld, M., 1997. Age differences in metals in the blood of herring (Larus
489	argentatus) and Franklin's (Larus pipixcan) gulls. Archives of Environmental
490	Contamination and Toxicology 33 (4), 436-440.

- 491 Cheng, L., Schulzbaldes, M., Harrison, C.S., 1984. Cadmium in Ocean-Skaters,
 492 Halobates-Sericeus (Insecta), and in their Seabird Predators. Marine Biology 79
 493 (3), 321-324.
- Cherel, Y., Hobson, K.A., 2006. Geographical variation in carbon stable isotope
 signatures of marine predators: a tool to investigate their foraging areas in the
 Southern Ocean. Marine Ecology-Progress Series 329, 281-287.
- Chisholm, B.S., Nelson, D.E., Schwarcz, H.P., 1982. Stable-Carbon Isotope Ratios as a
 Measure of Marine Versus Terrestrial Protein in Ancient Diets. Science 216
 (4550), 1131-1132.
- 500 Clarke, M. R. 1986. A handbook for the identification of cephalopod beaks. Clarendon
 501 Press, Oxford.
- 502 Croxall, J.P., Prince, P.A., 1996. Cephalopods as prey .1. Seabirds. Philosophical
 503 Transactions of the Royal Society of London Series B-Biological Sciences 351
 504 (1343), 1023-1043.

- 505 Croxall, J.P., Prince, P.A., 1980. Food, Feeding Ecology and Ecological Segregation of
 506 Seabirds at South Georgia. Biological Journal of the Linnean Society 14 (1), 103507 131.
- 508 Croxall, J.P., Prince, P.A., Reid, K., 1997. Dietary segregation of krill-eating south 509 Georgia seabirds. Journal of zoology 242, 531-556.
- 510 Deniro, M.J., Epstein, S., 1981. Influence of Diet on the Distribution of Nitrogen Isotopes
 511 in Animals. Geochimica et Cosmochimica Acta 45 (3), 341-351.
- Elliott, J.E., 2005. Trace metals, stable isotope ratios, and trophic relations in seabirds
 from the North Pacific Ocean. Environmental Toxicology and Chemistry 24
 (12), 3099-3105.
- Elliott, J.E., Scheuhammer, A.M., 1997. Heavy metal and metallothionein concentrations in
 seabirds from the Pacific Coast of Canada. Marine pollution bulletin 34 (10), 794801.
- Forero, M.G., Bortolotti, G.R., Hobson, K.A., Donazar, J.A., Bertelloti, M., Blanco, G.,
 2004. High trophic overlap within the seabird community of Argentinean
 Patagonia: a multiscale approach. Journal of Animal Ecology 73 (4), 789-801.
- Forero, M.G., Gonzalez-Solis, J., Hobson, K.A., Doncazar, J.A., Bertellotti, M., Blanco,
 G., Bortolotti, G.R., 2005. Stable isotopes reveal trophic segregation by sex and

- age in the southern giant petrel in two different food webs. Marine EcologyProgress Series 296, 107-113.
- Fujihara, J., Kunito, T., Kubota, R., Tanaka, H., Tanabe, S., 2004. Arsenic accumulation
 and distribution in tissues of black-footed albatrosses. Marine pollution bulletin
 48 (11-12), 1153-1160.
- Furness, R.W., 1993. Birds as monitors of pollutants. In: Furness, R.W. and Greenwood,
 J.J.D., (Ed.), Birds as Monitors of Environmental Change. Chapman & Hall,
 London, pp. 87-143.
- Furness, R.W., Camphuysen, C.J., 1997. Seabirds as monitors of the marine environment.
 ICES Journal of Marine Science 54 (4), 726-737.
- Gaiero, D.M., Probst, J.L., Depetris, P.J., Bidart, S.M., Leleyter, L., 2003. Iron and other
 transition metals in Patagonian riverborne and windborne materials: Geochemical
 control and transport to the southern South Atlantic Ocean. Geochimica et
 Cosmochimica Acta 67 (19), 3603-3623.
- Gerpe, M.S., de Moreno, J.E.A., Moreno, V.J., Patat, M.L., 2000. Cadmium, zinc and
 copper accumulation in the squid Illex argentinus from the Southwest Atlantic
 Ocean. Marine Biology 136 (6), 1039-1044.
- Gilbertson, M., Elliott, J.E., Peakall, D.B., 1987. Seabirds as indicators of marine
 pollution. ICBP Technical Publication 6231-247.

- Gon, O., and P. C. Heemstra. 1990. Fishes of the Southern Ocean. J.L.B. Smith Institute
 of Ichthyology, Grahamstown, South Africa.
- Gonzalez-Solis, J., Sanpera, C., Ruiz, X., 2002. Metals and selenium as bioindicators of
 geographic and trophic segregation in giant petrels Macronectes spp. Marine
 Ecology-Progress Series 244, 257-264.
- 547 Heinz, G.H., 1996. Selenium in birds. In: Beyer, W.N., Heinz, G.H. Redmon-Norwood,
 548 A.W., (Eds.), Environmental contaminants in wildlife: interpreting tissue
 549 concentrations. SEPTAC Special Publication Series, CRC Press, Boca Raton,
 550 Florida, pp. 447-458.
- Hobson, K.A., 1999. Tracing origins and migration of wildlife using stable isotopes: a
 review. Oecologia 120 (3), 314-326.
- Hobson, K.A., Clark, R.G., 1992. Assessing Avian Diets using Stable Isotopes .1. Turnover
 of C-13 in Tissues. Condor 94 (1), 181-188.
- Hobson, K.A., Clark, R.G., 1992. Assessing Avian Diets using Stable Isotopes .2. Factors
 Influencing Diet-Tissue Fractionation. Condor 94 (1), 189-197.
- 557 Hobson, K.A., Piatt, J.F., Pitocchelli, J., 1994. Using Stable Isotopes to Determine 558 Seabird Trophic Relationships. Journal of Animal Ecology 63 (4), 786-798.

559	Hobson, K.A., Welch, H.E., 1992. Determination of Trophic Relationships within a High
560	Arctic Marine Food Web using Delta-C-13 and Delta-N-15 Analysis. Marine
561	Ecology-Progress Series 84 (1), 9-18.
562	Holm-Hansen, O., 1985. Nutrient cycles in Antarctic marine ecosystems. In: Siegfried,
563	W.R., Condy, P.R., Laws, R.M., (Ed.), Antarctic nutrient cycles and food webs.
564	Springer, Berlin, pp. 6-10.
565	Honda, K., Marcovecchio, J.E., Kan, S., Tatsukawa, R., Ogi, H., 1990. Metal
566	Concentrations in Pelagic Seabirds from the North Pacific-Ocean. Archives of
567	Environmental Contamination and Toxicology 19 (5), 704-711.
568	Kirkwood, J. M. 1984. A Guide to the Decapoda of the Southern Ocean. Australian
569	Antarctic Division, Hobart, Australia.
570	Kurihara, H., Togawa, H., Hatano, M., 1993. Concentration of cadmium in livers of
571	several kinds of squid and an approach to its elimination. Bulletin of the Faculty
572	of Fisheries Hokkaido University 44, 32-37.
573	Lewis, S.A., Furness, R.W., 1991. Mercury accumulation and excretion by laboratory
574	reared black-headed gulls (Larus ridibundus) chicks. Archives of Environmental
575	Toxicology and Chemistry 21, 316-320.

Lock, J.W., Thompson, D.R., Furness, R.W., Bartle, J.A., 1992. Metal Concentrations in
Seabirds of the New-Zealand Region. Environmental Pollution 75 (3), 289-300.

- 578 Maher, W., Butker, E., 1988. Arsenic in the marine environment. Applied Organometallic
 579 Chemistry 2, 191-214.
- McIntyre, J.K., Beauchamp, D.A., 2007. Age and trophic position dominate
 bioaccumulation of mercury and organochlorines in the food web of Lake
 Washington. Science of the Total Environment 372 (2-3), 571-584.
- 583 Mizutani, H., Fukuda, M., Kabaya, Y., 1992. C-13 Enrichment and N-15 Enrichment
 584 Factors of Feathers of 11 Species of Adult Birds. Ecology 73 (4), 1391-1395.
- 585 Mizutani, H., Fukuda, M., Kabaya, Y., Wada, E., 1990. Carbon Isotope Ratio of Feathers
 586 Reveals Feeding-Behavior of Cormorants. Auk 107 (2), 400-403.
- Monteiro, L.R., 1996. Seabirds as monitors of mercury in the marine environment. Water
 Air Soil Pollution 80, 851-870.
- Monteiro, L.R., Costa, V., Furness, R.W., Santos, R.S., 1996. Mercury concentrations in
 prey fish indicate enhanced bioaccumulation in mesopelagic environments.
 Marine Ecology-Progress Series 141 (1-3), 21-25.
- Muirhead, S.J., Furness, R.W., 1988. Heavy-Metal Concentrations in the Tissues of
 Seabirds from Gough Island, South-Atlantic Ocean. Marine pollution bulletin 19
 (6), 278-283.

595	Negri, A., Burns, K., Boyle, S., Brinkman, D., Webster, N., 2006. Contamination in
596	sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environmental
597	Pollution 143 (3), 456-467.

- Nygard, T., Lie, E., Rov, N., Steinnes, E., 2001. Metal dynamics in an Antarctic food
 chain. Marine pollution bulletin 42 (7), 598-602.
- Nyholm, N.E.I., Tyler, G., 2000. Rubidium content of plants, fungi and animals closely
 reflects potassium and acidity conditions of forest soils. Forest Ecology and
 Management 134 (1-3), 89-96.
- Peterson, M.L., Carpenter, R., 1986. Arsenic Distributions in Porewaters and Sediments
 of Puget-Sound, Lake Washington, the Washington Coast and Saanich Inlet, Bc.
 Geochimica et Cosmochimica Acta 50 (3), 353-369.
- Petri, G., Zauke, G.P., 1993. Trace-Metals in Crustaceans in the Antarctic Ocean. Ambio
 22 (8), 529-536.
- Phillips, R.A., Silk, J.R.D., Croxall, J.P., Afanasyev, V., 2006. Year-round distribution of
 white- chinned petrels from South Georgia: Relationships with oceanography and
 fisheries. Biological Conservation 129 (3), 336-347.
- Prince, P.A., 1980. Food and Feeding Ecology of Blue Petrel (Halobaena-Caerulea) and
 Dove Prion (Pachyptila-Desolata). Journal of zoology 190 (JAN), 59-76.

613	Rainbow, P.S., 1989. Copper, Cadmium and Zinc Concentrations in Oceanic Amphipod
614	and Euphausiid Crustaceans, as a Source of Heavy-Metals to Pelagic Seabirds.
615	Marine Biology 103 (4), 513-518.
616	Reid, K. 1996. A Guide to the use of otoliths in the study of the diet of predators at Bird
617	Island, South Georgia. British Antarctic Survey, Cambridge.
618	Rodhouse, P.G., Arnbom, T.R., Fedak, M.A., Yeatman, J., Murray, A.W.A., 1992.
619	Cephalopod Prey of the Southern Elephant Seal, Mirounga-Leonina L. Canadian
620	Journal of Zoology-Revue Canadienne De Zoologie 70 (5), 1007-1015.
621	Salaun, M.L., Truchet, M., 1996. Sims investigation of Rubidium accumulation in the
622	soft tissues of the oyster Crassostrea gigas (Mollusc, Bivalve). Cahiers de Biologie
623	Marine 37 (4), 329-340.
624	Stewart, F.M., Phillips, R.A., Bartle, J.A., Craig, J., Shooter, D., 1999. Influence of
625	phylogeny, diet, moult schedule and sex on heavy metal concentrations in New
626	Zealand Procellariiformes. Marine Ecology-Progress Series 178, 295-305.
627	Thompson, D.R., Furness, R.W., Monteiro, L.R., 1998. Seabirds as biomonitors of
628	mercury inputs to epipelagic and mesopelagic marine food chains. Science of the

629 Total Environment 213 (1-3), 299-305.

Kavier, J.C., Croxall, J.P., Reid, K., 2003. Interannual variation in the diets of two
albatross species breeding at South Georgia: implications for breeding
performance. Ibis 145 (4), 593-610.

Fig. 1. Range plots for $\delta^{15}N$ (a) and $\delta^{13}C$ (b) values for all Procellariiformes (blood) and prey species. Species are ordered by increasing $\delta^{15}N$ values within each of the four groupings. Data is shown for Procellariiform blood samples and prey muscle samples.

636

Fig. 2. Biplot of Procellariiform species mean scores extracted by principal component
analyses (PCA) and element loadings on the two principal axes (PC1 and PC2), with
standardised element and isotope values in (a) blood and (b) feathers from ten species.
APR=Antarctic prion, BBA=Black-browed albatross, BLP=Blue petrel, CDP=Common
diving petrel, GDP=South Georgian diving petrel, GHA=Grey-headed albatross,
NGP=Northern giant petrel, SGP=Southern giant petrel, WCP=White-chinned petrel,
WNA=Wandering albatross.

644

645 **Fig. 3.** Patterns in \log_{10} arsenic concentrations in muscle tissue samples from three 646 Procellariiform prey groups in relation to (a) δ^{15} N values and (b) δ^{13} C values from the same 647 tissue samples.

Element	Prey LoD	Blood LoD	Feather LoD
Al	199	1357	2365
As	3	18	32
Ba	20	136	237
Be	1	7	12
Cd	1	5	8
Co	2	14	24
Cs	1	5	8
Cu	7	45	79
Fe	332	2261	3942
Li	1	7	12
Mn	2	14	24
Mo	10	68	118
Ni	3	23	39
Pb	20	136	237
Rb	1	5	8
Sb	3	23	39
Sc	17	113	197
Se	10	68	118
U	1	5	8
V	7	45	79
W	3	23	39
Zn	332	2261	3942

Table 1. Limits of Detection (LoD) for prey, blood, and feather samples (ng g^{-1}).

Table 2. TORT-2 lobster hepatopancreas reference material for elements; expected and obtained CRM values ($\mu g g^{-1} dry wt.$). All elements, where possible, were CRM checked against an expected value. However, not all elements tested had a reported certified concentration in the CRM. For these elements only the obtain CRM value is reported.

	Expected	± 95%	Obtained	± 95%
Element	CRM Value	CI	CRM Value	CI
Al			17.0	0.9
As	21.6	1.8	26.4	0.8
Ba			2.0	0.1
Be			0.01	0.0
Cd	26.7	0.6	28.8	0.8
Со	0.5	0.1	0.5	0.1
Cs			0.0.2	0.0
Cu	106.0	10.0	93.3	3.0
Fe	105.0	13.0	126.0	10.8
Li			0.3	0.0
Mn	13.6	1.2	12.8	0.4
Mo	0.9	0.1	1.1	0.1
Ni	2.5	0.2	2.4	0.1
Pb			0.2	0.0
Rb			2.7	0.1
Sb			0.1	0.0
Sc			0.1	0.0
Se	5.6	0.7	7.5	0.3
U			0.1	0.0
V	1.6	0.2	1.9	0.1
W			0.01	0.0
Zn	180.0	6.0	191.7	12.2

Table 3. Mean concentrations of elements (ng g^{-1} dry wt.) \pm SD in blood from 10 species of Procellariiformes.

Species	п	A1	As	Ba	Be	Cd	Co	Cs	Cu	Fe	Li	Mn	Mo	Ni	Ph	Rh	Sh	Sc	Se	U	V	W	Zn
Antarctic prion	16	<lod< td=""><td>431± 186</td><td>345 ± 289</td><td><lod< td=""><td>48 ± 58</td><td><lod< td=""><td>$5\pm$4</td><td>414 ± 366</td><td>2604580 ± 168540</td><td>1990 ± 7849</td><td>132 ± 66</td><td>226 ± 172</td><td>2140 ± 723</td><td>1052 ± 3203</td><td>4161 ± 523</td><td><lod< td=""><td><lod< td=""><td>198425 ± 59904</td><td>8 ± 5</td><td>85± 130</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	431± 186	345 ± 289	<lod< td=""><td>48 ± 58</td><td><lod< td=""><td>$5\pm$4</td><td>414 ± 366</td><td>2604580 ± 168540</td><td>1990 ± 7849</td><td>132 ± 66</td><td>226 ± 172</td><td>2140 ± 723</td><td>1052 ± 3203</td><td>4161 ± 523</td><td><lod< td=""><td><lod< td=""><td>198425 ± 59904</td><td>8 ± 5</td><td>85± 130</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	48 ± 58	<lod< td=""><td>$5\pm$4</td><td>414 ± 366</td><td>2604580 ± 168540</td><td>1990 ± 7849</td><td>132 ± 66</td><td>226 ± 172</td><td>2140 ± 723</td><td>1052 ± 3203</td><td>4161 ± 523</td><td><lod< td=""><td><lod< td=""><td>198425 ± 59904</td><td>8 ± 5</td><td>85± 130</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	$5\pm$ 4	414 ± 366	2604580 ± 168540	1990 ± 7849	132 ± 66	226 ± 172	2140 ± 723	1052 ± 3203	4161 ± 523	<lod< td=""><td><lod< td=""><td>198425 ± 59904</td><td>8 ± 5</td><td>85± 130</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>198425 ± 59904</td><td>8 ± 5</td><td>85± 130</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	198425 ± 59904	8 ± 5	85± 130	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Black-browed albatross	15	<lod< td=""><td>$\begin{array}{c} 373 \pm \\ 267 \end{array}$</td><td>$\begin{array}{c} 192 \pm \\ 234 \end{array}$</td><td><lod< td=""><td>86 ± 177</td><td><lod< td=""><td>$\begin{array}{c} 15 \pm \\ 10 \end{array}$</td><td>815 ± 579</td><td>$\begin{array}{r} 4330039 \pm \\ 6571356 \end{array}$</td><td>6± 10</td><td>$\begin{array}{c} 150 \pm \\ 128 \end{array}$</td><td>84± 113</td><td>1728 ± 1286</td><td>140 ± 172</td><td>4185 ± 1898</td><td><lod< td=""><td><lod< td=""><td>$\begin{array}{c} 102335 \pm \\ 85049 \end{array}$</td><td>11 ± 15</td><td>$\begin{array}{c} 140 \pm \\ 126 \end{array}$</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	$\begin{array}{c} 373 \pm \\ 267 \end{array}$	$\begin{array}{c} 192 \pm \\ 234 \end{array}$	<lod< td=""><td>86 ± 177</td><td><lod< td=""><td>$\begin{array}{c} 15 \pm \\ 10 \end{array}$</td><td>815 ± 579</td><td>$\begin{array}{r} 4330039 \pm \\ 6571356 \end{array}$</td><td>6± 10</td><td>$\begin{array}{c} 150 \pm \\ 128 \end{array}$</td><td>84± 113</td><td>1728 ± 1286</td><td>140 ± 172</td><td>4185 ± 1898</td><td><lod< td=""><td><lod< td=""><td>$\begin{array}{c} 102335 \pm \\ 85049 \end{array}$</td><td>11 ± 15</td><td>$\begin{array}{c} 140 \pm \\ 126 \end{array}$</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	86 ± 177	<lod< td=""><td>$\begin{array}{c} 15 \pm \\ 10 \end{array}$</td><td>815 ± 579</td><td>$\begin{array}{r} 4330039 \pm \\ 6571356 \end{array}$</td><td>6± 10</td><td>$\begin{array}{c} 150 \pm \\ 128 \end{array}$</td><td>84± 113</td><td>1728 ± 1286</td><td>140 ± 172</td><td>4185 ± 1898</td><td><lod< td=""><td><lod< td=""><td>$\begin{array}{c} 102335 \pm \\ 85049 \end{array}$</td><td>11 ± 15</td><td>$\begin{array}{c} 140 \pm \\ 126 \end{array}$</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	$\begin{array}{c} 15 \pm \\ 10 \end{array}$	815 ± 579	$\begin{array}{r} 4330039 \pm \\ 6571356 \end{array}$	6± 10	$\begin{array}{c} 150 \pm \\ 128 \end{array}$	84± 113	1728 ± 1286	140 ± 172	4185 ± 1898	<lod< td=""><td><lod< td=""><td>$\begin{array}{c} 102335 \pm \\ 85049 \end{array}$</td><td>11 ± 15</td><td>$\begin{array}{c} 140 \pm \\ 126 \end{array}$</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>$\begin{array}{c} 102335 \pm \\ 85049 \end{array}$</td><td>11 ± 15</td><td>$\begin{array}{c} 140 \pm \\ 126 \end{array}$</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	$\begin{array}{c} 102335 \pm \\ 85049 \end{array}$	11 ± 15	$\begin{array}{c} 140 \pm \\ 126 \end{array}$	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Blue petrel	2	<lod< td=""><td>388 ± 47</td><td>191 ± 174</td><td><lod< td=""><td>346 ± 27</td><td><lod< td=""><td><lod< td=""><td>71 ± 68</td><td>$\begin{array}{r} 2440536 \pm \\ 75575 \end{array}$</td><td>$3 \pm 0$</td><td>91 ± 3</td><td>$\begin{array}{c} 225 \pm \\ 46 \end{array}$</td><td>1652 ± 276</td><td>$\begin{array}{c} 68 \pm \\ 0 \end{array}$</td><td>$\begin{array}{c} 4368 \pm \\ 178 \end{array}$</td><td><lod< td=""><td><lod< td=""><td>261757 ± 131638</td><td>12 ± 3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	388 ± 47	191 ± 174	<lod< td=""><td>346 ± 27</td><td><lod< td=""><td><lod< td=""><td>71 ± 68</td><td>$\begin{array}{r} 2440536 \pm \\ 75575 \end{array}$</td><td>$3 \pm 0$</td><td>91 ± 3</td><td>$\begin{array}{c} 225 \pm \\ 46 \end{array}$</td><td>1652 ± 276</td><td>$\begin{array}{c} 68 \pm \\ 0 \end{array}$</td><td>$\begin{array}{c} 4368 \pm \\ 178 \end{array}$</td><td><lod< td=""><td><lod< td=""><td>261757 ± 131638</td><td>12 ± 3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	346 ± 27	<lod< td=""><td><lod< td=""><td>71 ± 68</td><td>$\begin{array}{r} 2440536 \pm \\ 75575 \end{array}$</td><td>$3 \pm 0$</td><td>91 ± 3</td><td>$\begin{array}{c} 225 \pm \\ 46 \end{array}$</td><td>1652 ± 276</td><td>$\begin{array}{c} 68 \pm \\ 0 \end{array}$</td><td>$\begin{array}{c} 4368 \pm \\ 178 \end{array}$</td><td><lod< td=""><td><lod< td=""><td>261757 ± 131638</td><td>12 ± 3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>71 ± 68</td><td>$\begin{array}{r} 2440536 \pm \\ 75575 \end{array}$</td><td>$3 \pm 0$</td><td>91 ± 3</td><td>$\begin{array}{c} 225 \pm \\ 46 \end{array}$</td><td>1652 ± 276</td><td>$\begin{array}{c} 68 \pm \\ 0 \end{array}$</td><td>$\begin{array}{c} 4368 \pm \\ 178 \end{array}$</td><td><lod< td=""><td><lod< td=""><td>261757 ± 131638</td><td>12 ± 3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	71 ± 68	$\begin{array}{r} 2440536 \pm \\ 75575 \end{array}$	3 ± 0	91 ± 3	$\begin{array}{c} 225 \pm \\ 46 \end{array}$	1652 ± 276	$\begin{array}{c} 68 \pm \\ 0 \end{array}$	$\begin{array}{c} 4368 \pm \\ 178 \end{array}$	<lod< td=""><td><lod< td=""><td>261757 ± 131638</td><td>12 ± 3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>261757 ± 131638</td><td>12 ± 3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	261757 ± 131638	12 ± 3	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Common diving petrel	15	<lod< td=""><td>$\begin{array}{c} 389 \pm \\ 129 \end{array}$</td><td>$\begin{array}{c} 187 \pm \\ 170 \end{array}$</td><td><lod< td=""><td>19± 29</td><td><lod< td=""><td><lod< td=""><td>$\begin{array}{c} 639 \pm \\ 1010 \end{array}$</td><td>$2265035 \pm 355674$</td><td>$3 \pm 0$</td><td>128 ± 78</td><td>217± 131</td><td>1442 ± 589</td><td>322 ± 718</td><td>$\begin{array}{c} 3612 \pm \\ 625 \end{array}$</td><td><lod< td=""><td><lod< td=""><td>$\begin{array}{r} 84842 \pm \\ 29419 \end{array}$</td><td>9 ± 6</td><td>$\begin{array}{c} 162 \pm \\ 285 \end{array}$</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	$\begin{array}{c} 389 \pm \\ 129 \end{array}$	$\begin{array}{c} 187 \pm \\ 170 \end{array}$	<lod< td=""><td>19± 29</td><td><lod< td=""><td><lod< td=""><td>$\begin{array}{c} 639 \pm \\ 1010 \end{array}$</td><td>$2265035 \pm 355674$</td><td>$3 \pm 0$</td><td>128 ± 78</td><td>217± 131</td><td>1442 ± 589</td><td>322 ± 718</td><td>$\begin{array}{c} 3612 \pm \\ 625 \end{array}$</td><td><lod< td=""><td><lod< td=""><td>$\begin{array}{r} 84842 \pm \\ 29419 \end{array}$</td><td>9 ± 6</td><td>$\begin{array}{c} 162 \pm \\ 285 \end{array}$</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	19± 29	<lod< td=""><td><lod< td=""><td>$\begin{array}{c} 639 \pm \\ 1010 \end{array}$</td><td>$2265035 \pm 355674$</td><td>$3 \pm 0$</td><td>128 ± 78</td><td>217± 131</td><td>1442 ± 589</td><td>322 ± 718</td><td>$\begin{array}{c} 3612 \pm \\ 625 \end{array}$</td><td><lod< td=""><td><lod< td=""><td>$\begin{array}{r} 84842 \pm \\ 29419 \end{array}$</td><td>9 ± 6</td><td>$\begin{array}{c} 162 \pm \\ 285 \end{array}$</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>$\begin{array}{c} 639 \pm \\ 1010 \end{array}$</td><td>$2265035 \pm 355674$</td><td>$3 \pm 0$</td><td>128 ± 78</td><td>217± 131</td><td>1442 ± 589</td><td>322 ± 718</td><td>$\begin{array}{c} 3612 \pm \\ 625 \end{array}$</td><td><lod< td=""><td><lod< td=""><td>$\begin{array}{r} 84842 \pm \\ 29419 \end{array}$</td><td>9 ± 6</td><td>$\begin{array}{c} 162 \pm \\ 285 \end{array}$</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	$\begin{array}{c} 639 \pm \\ 1010 \end{array}$	2265035 ± 355674	3 ± 0	128 ± 78	217± 131	1442 ± 589	322 ± 718	$\begin{array}{c} 3612 \pm \\ 625 \end{array}$	<lod< td=""><td><lod< td=""><td>$\begin{array}{r} 84842 \pm \\ 29419 \end{array}$</td><td>9 ± 6</td><td>$\begin{array}{c} 162 \pm \\ 285 \end{array}$</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>$\begin{array}{r} 84842 \pm \\ 29419 \end{array}$</td><td>9 ± 6</td><td>$\begin{array}{c} 162 \pm \\ 285 \end{array}$</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	$\begin{array}{r} 84842 \pm \\ 29419 \end{array}$	9 ± 6	$\begin{array}{c} 162 \pm \\ 285 \end{array}$	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
S. Georgian	15	<lod< td=""><td>476 ± 197</td><td>$\begin{array}{c} 310 \pm \\ 324 \end{array}$</td><td><lod< td=""><td>27 ± 32</td><td><lod< td=""><td>14± 6</td><td>196 ± 186</td><td>2570513 ± 582271</td><td>29 ± 20</td><td>$\begin{array}{c} 190 \pm \\ 76 \end{array}$</td><td>$\begin{array}{c} 88 \pm \\ 68 \end{array}$</td><td>$\begin{array}{c} 2007 \pm \\ 553 \end{array}$</td><td>$\begin{array}{c} 281 \pm \\ 446 \end{array}$</td><td>$\begin{array}{c} 3824 \pm \\ 967 \end{array}$</td><td><lod< td=""><td><lod< td=""><td>$\begin{array}{c} 118897 \pm \\ 60846 \end{array}$</td><td>10 ± 5</td><td>60 ± 97</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	476 ± 197	$\begin{array}{c} 310 \pm \\ 324 \end{array}$	<lod< td=""><td>27 ± 32</td><td><lod< td=""><td>14± 6</td><td>196 ± 186</td><td>2570513 ± 582271</td><td>29 ± 20</td><td>$\begin{array}{c} 190 \pm \\ 76 \end{array}$</td><td>$\begin{array}{c} 88 \pm \\ 68 \end{array}$</td><td>$\begin{array}{c} 2007 \pm \\ 553 \end{array}$</td><td>$\begin{array}{c} 281 \pm \\ 446 \end{array}$</td><td>$\begin{array}{c} 3824 \pm \\ 967 \end{array}$</td><td><lod< td=""><td><lod< td=""><td>$\begin{array}{c} 118897 \pm \\ 60846 \end{array}$</td><td>10 ± 5</td><td>60 ± 97</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	27 ± 32	<lod< td=""><td>14± 6</td><td>196 ± 186</td><td>2570513 ± 582271</td><td>29 ± 20</td><td>$\begin{array}{c} 190 \pm \\ 76 \end{array}$</td><td>$\begin{array}{c} 88 \pm \\ 68 \end{array}$</td><td>$\begin{array}{c} 2007 \pm \\ 553 \end{array}$</td><td>$\begin{array}{c} 281 \pm \\ 446 \end{array}$</td><td>$\begin{array}{c} 3824 \pm \\ 967 \end{array}$</td><td><lod< td=""><td><lod< td=""><td>$\begin{array}{c} 118897 \pm \\ 60846 \end{array}$</td><td>10 ± 5</td><td>60 ± 97</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	14± 6	196 ± 186	2570513 ± 582271	29 ± 20	$\begin{array}{c} 190 \pm \\ 76 \end{array}$	$\begin{array}{c} 88 \pm \\ 68 \end{array}$	$\begin{array}{c} 2007 \pm \\ 553 \end{array}$	$\begin{array}{c} 281 \pm \\ 446 \end{array}$	$\begin{array}{c} 3824 \pm \\ 967 \end{array}$	<lod< td=""><td><lod< td=""><td>$\begin{array}{c} 118897 \pm \\ 60846 \end{array}$</td><td>10 ± 5</td><td>60 ± 97</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>$\begin{array}{c} 118897 \pm \\ 60846 \end{array}$</td><td>10 ± 5</td><td>60 ± 97</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	$\begin{array}{c} 118897 \pm \\ 60846 \end{array}$	10 ± 5	60 ± 97	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Grey-headed	15	<lod< td=""><td>$\begin{array}{c} 896 \pm \\ 380 \end{array}$</td><td>$\begin{array}{c} 303 \pm \\ 198 \end{array}$</td><td><lod< td=""><td>228 ± 81</td><td><lod< td=""><td>$\begin{array}{c} 15 \pm \\ 10 \end{array}$</td><td>$\begin{array}{c} 670 \pm \\ 905 \end{array}$</td><td>$2483096 \pm \\ 239518$</td><td>$\begin{array}{c} 106 \pm \\ 46 \end{array}$</td><td>$\begin{array}{c} 252 \pm \\ 430 \end{array}$</td><td>$\begin{array}{c} 68 \pm \\ 80 \end{array}$</td><td>$\begin{array}{c} 1936 \pm \\ 530 \end{array}$</td><td>$\begin{array}{c} 235 \pm \\ 648 \end{array}$</td><td>4526 ± 777</td><td><lod< td=""><td><lod< td=""><td>194381 ± 43946</td><td>6 ± 5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	$\begin{array}{c} 896 \pm \\ 380 \end{array}$	$\begin{array}{c} 303 \pm \\ 198 \end{array}$	<lod< td=""><td>228 ± 81</td><td><lod< td=""><td>$\begin{array}{c} 15 \pm \\ 10 \end{array}$</td><td>$\begin{array}{c} 670 \pm \\ 905 \end{array}$</td><td>$2483096 \pm \\ 239518$</td><td>$\begin{array}{c} 106 \pm \\ 46 \end{array}$</td><td>$\begin{array}{c} 252 \pm \\ 430 \end{array}$</td><td>$\begin{array}{c} 68 \pm \\ 80 \end{array}$</td><td>$\begin{array}{c} 1936 \pm \\ 530 \end{array}$</td><td>$\begin{array}{c} 235 \pm \\ 648 \end{array}$</td><td>4526 ± 777</td><td><lod< td=""><td><lod< td=""><td>194381 ± 43946</td><td>6 ± 5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	228 ± 81	<lod< td=""><td>$\begin{array}{c} 15 \pm \\ 10 \end{array}$</td><td>$\begin{array}{c} 670 \pm \\ 905 \end{array}$</td><td>$2483096 \pm \\ 239518$</td><td>$\begin{array}{c} 106 \pm \\ 46 \end{array}$</td><td>$\begin{array}{c} 252 \pm \\ 430 \end{array}$</td><td>$\begin{array}{c} 68 \pm \\ 80 \end{array}$</td><td>$\begin{array}{c} 1936 \pm \\ 530 \end{array}$</td><td>$\begin{array}{c} 235 \pm \\ 648 \end{array}$</td><td>4526 ± 777</td><td><lod< td=""><td><lod< td=""><td>194381 ± 43946</td><td>6 ± 5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	$\begin{array}{c} 15 \pm \\ 10 \end{array}$	$\begin{array}{c} 670 \pm \\ 905 \end{array}$	$2483096 \pm \\ 239518$	$\begin{array}{c} 106 \pm \\ 46 \end{array}$	$\begin{array}{c} 252 \pm \\ 430 \end{array}$	$\begin{array}{c} 68 \pm \\ 80 \end{array}$	$\begin{array}{c} 1936 \pm \\ 530 \end{array}$	$\begin{array}{c} 235 \pm \\ 648 \end{array}$	4526 ± 777	<lod< td=""><td><lod< td=""><td>194381 ± 43946</td><td>6 ± 5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>194381 ± 43946</td><td>6 ± 5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	194381 ± 43946	6 ± 5	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Northern giant	16	<lod< td=""><td>417 ± 787</td><td><lod< td=""><td><lod< td=""><td>$\begin{array}{c} 88 \pm \\ 213 \end{array}$</td><td><lod< td=""><td>7 ± 4</td><td>$\begin{array}{c} 638 \pm \\ 246 \end{array}$</td><td>2333908 ± 659977</td><td>$\begin{array}{c} 60 \pm \\ 23 \end{array}$</td><td>97 ± 38</td><td>94 ± 26</td><td>1131 ± 966</td><td><lod< td=""><td>4991 ± 819</td><td><lod< td=""><td><lod< td=""><td>151170 ± 39472</td><td><lod< td=""><td>75 ± 188</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	417 ± 787	<lod< td=""><td><lod< td=""><td>$\begin{array}{c} 88 \pm \\ 213 \end{array}$</td><td><lod< td=""><td>7 ± 4</td><td>$\begin{array}{c} 638 \pm \\ 246 \end{array}$</td><td>2333908 ± 659977</td><td>$\begin{array}{c} 60 \pm \\ 23 \end{array}$</td><td>97 ± 38</td><td>94 ± 26</td><td>1131 ± 966</td><td><lod< td=""><td>4991 ± 819</td><td><lod< td=""><td><lod< td=""><td>151170 ± 39472</td><td><lod< td=""><td>75 ± 188</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>$\begin{array}{c} 88 \pm \\ 213 \end{array}$</td><td><lod< td=""><td>7 ± 4</td><td>$\begin{array}{c} 638 \pm \\ 246 \end{array}$</td><td>2333908 ± 659977</td><td>$\begin{array}{c} 60 \pm \\ 23 \end{array}$</td><td>97 ± 38</td><td>94 ± 26</td><td>1131 ± 966</td><td><lod< td=""><td>4991 ± 819</td><td><lod< td=""><td><lod< td=""><td>151170 ± 39472</td><td><lod< td=""><td>75 ± 188</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	$\begin{array}{c} 88 \pm \\ 213 \end{array}$	<lod< td=""><td>7 ± 4</td><td>$\begin{array}{c} 638 \pm \\ 246 \end{array}$</td><td>2333908 ± 659977</td><td>$\begin{array}{c} 60 \pm \\ 23 \end{array}$</td><td>97 ± 38</td><td>94 ± 26</td><td>1131 ± 966</td><td><lod< td=""><td>4991 ± 819</td><td><lod< td=""><td><lod< td=""><td>151170 ± 39472</td><td><lod< td=""><td>75 ± 188</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	7 ± 4	$\begin{array}{c} 638 \pm \\ 246 \end{array}$	2333908 ± 659977	$\begin{array}{c} 60 \pm \\ 23 \end{array}$	97 ± 38	94 ± 26	1131 ± 966	<lod< td=""><td>4991 ± 819</td><td><lod< td=""><td><lod< td=""><td>151170 ± 39472</td><td><lod< td=""><td>75 ± 188</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	4991 ± 819	<lod< td=""><td><lod< td=""><td>151170 ± 39472</td><td><lod< td=""><td>75 ± 188</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>151170 ± 39472</td><td><lod< td=""><td>75 ± 188</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	151170 ± 39472	<lod< td=""><td>75 ± 188</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	75 ± 188	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Southern giant	16	<lod< td=""><td>184± 156</td><td><lod< td=""><td><lod< td=""><td>$\begin{array}{c} 37 \pm \\ 105 \end{array}$</td><td><lod< td=""><td>5 ± 3</td><td>$\begin{array}{c} 690 \pm \\ 109 \end{array}$</td><td>$2447292 \pm 698505$</td><td>111± 70</td><td>$\begin{array}{c} 202 \pm \\ 494 \end{array}$</td><td>90± 13</td><td>$\begin{array}{c} 1480 \pm \\ 990 \end{array}$</td><td><lod< td=""><td>$\begin{array}{c} 5052 \pm \\ 712 \end{array}$</td><td><lod< td=""><td><lod< td=""><td>151432 ± 77353</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	184± 156	<lod< td=""><td><lod< td=""><td>$\begin{array}{c} 37 \pm \\ 105 \end{array}$</td><td><lod< td=""><td>5 ± 3</td><td>$\begin{array}{c} 690 \pm \\ 109 \end{array}$</td><td>$2447292 \pm 698505$</td><td>111± 70</td><td>$\begin{array}{c} 202 \pm \\ 494 \end{array}$</td><td>90± 13</td><td>$\begin{array}{c} 1480 \pm \\ 990 \end{array}$</td><td><lod< td=""><td>$\begin{array}{c} 5052 \pm \\ 712 \end{array}$</td><td><lod< td=""><td><lod< td=""><td>151432 ± 77353</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>$\begin{array}{c} 37 \pm \\ 105 \end{array}$</td><td><lod< td=""><td>5 ± 3</td><td>$\begin{array}{c} 690 \pm \\ 109 \end{array}$</td><td>$2447292 \pm 698505$</td><td>111± 70</td><td>$\begin{array}{c} 202 \pm \\ 494 \end{array}$</td><td>90± 13</td><td>$\begin{array}{c} 1480 \pm \\ 990 \end{array}$</td><td><lod< td=""><td>$\begin{array}{c} 5052 \pm \\ 712 \end{array}$</td><td><lod< td=""><td><lod< td=""><td>151432 ± 77353</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	$\begin{array}{c} 37 \pm \\ 105 \end{array}$	<lod< td=""><td>5 ± 3</td><td>$\begin{array}{c} 690 \pm \\ 109 \end{array}$</td><td>$2447292 \pm 698505$</td><td>111± 70</td><td>$\begin{array}{c} 202 \pm \\ 494 \end{array}$</td><td>90± 13</td><td>$\begin{array}{c} 1480 \pm \\ 990 \end{array}$</td><td><lod< td=""><td>$\begin{array}{c} 5052 \pm \\ 712 \end{array}$</td><td><lod< td=""><td><lod< td=""><td>151432 ± 77353</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	5 ± 3	$\begin{array}{c} 690 \pm \\ 109 \end{array}$	2447292 ± 698505	111± 70	$\begin{array}{c} 202 \pm \\ 494 \end{array}$	90± 13	$\begin{array}{c} 1480 \pm \\ 990 \end{array}$	<lod< td=""><td>$\begin{array}{c} 5052 \pm \\ 712 \end{array}$</td><td><lod< td=""><td><lod< td=""><td>151432 ± 77353</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	$\begin{array}{c} 5052 \pm \\ 712 \end{array}$	<lod< td=""><td><lod< td=""><td>151432 ± 77353</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>151432 ± 77353</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	151432 ± 77353	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
White-chinned	16	<lod< td=""><td>$\begin{array}{c} 2492 \pm \\ 1375 \end{array}$</td><td><lod< td=""><td><lod< td=""><td>179 ± 60</td><td><lod< td=""><td>10± 5</td><td>$\begin{array}{c} 241 \pm \\ 250 \end{array}$</td><td>$2482217 \pm 219636$</td><td>46 ± 31</td><td>192 ± 69</td><td>127 ± 71</td><td>1866 ± 561</td><td><lod< td=""><td>4532 ± 904</td><td><lod< td=""><td><lod< td=""><td>97951 ± 40289</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	$\begin{array}{c} 2492 \pm \\ 1375 \end{array}$	<lod< td=""><td><lod< td=""><td>179 ± 60</td><td><lod< td=""><td>10± 5</td><td>$\begin{array}{c} 241 \pm \\ 250 \end{array}$</td><td>$2482217 \pm 219636$</td><td>46 ± 31</td><td>192 ± 69</td><td>127 ± 71</td><td>1866 ± 561</td><td><lod< td=""><td>4532 ± 904</td><td><lod< td=""><td><lod< td=""><td>97951 ± 40289</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>179 ± 60</td><td><lod< td=""><td>10± 5</td><td>$\begin{array}{c} 241 \pm \\ 250 \end{array}$</td><td>$2482217 \pm 219636$</td><td>46 ± 31</td><td>192 ± 69</td><td>127 ± 71</td><td>1866 ± 561</td><td><lod< td=""><td>4532 ± 904</td><td><lod< td=""><td><lod< td=""><td>97951 ± 40289</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	179 ± 60	<lod< td=""><td>10± 5</td><td>$\begin{array}{c} 241 \pm \\ 250 \end{array}$</td><td>$2482217 \pm 219636$</td><td>46 ± 31</td><td>192 ± 69</td><td>127 ± 71</td><td>1866 ± 561</td><td><lod< td=""><td>4532 ± 904</td><td><lod< td=""><td><lod< td=""><td>97951 ± 40289</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	10± 5	$\begin{array}{c} 241 \pm \\ 250 \end{array}$	2482217 ± 219636	46 ± 31	192 ± 69	127 ± 71	1866 ± 561	<lod< td=""><td>4532 ± 904</td><td><lod< td=""><td><lod< td=""><td>97951 ± 40289</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	4532 ± 904	<lod< td=""><td><lod< td=""><td>97951 ± 40289</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>97951 ± 40289</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	97951 ± 40289	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Wandering albatross	15	<lod< td=""><td>686± 377</td><td><lod< td=""><td><lod< td=""><td>$\begin{array}{c} 50 \pm \\ 60 \end{array}$</td><td><lod< td=""><td>17± 6</td><td>889 ± 455</td><td>2398513 ± 681723</td><td>98 ± 47</td><td>86± 17</td><td>$92\pm \\50$</td><td>1312 ± 970</td><td><lod< td=""><td>3913 ± 653</td><td><lod< td=""><td><lod< td=""><td>$\begin{array}{c} 80187 \pm \\ 21270 \end{array}$</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	686± 377	<lod< td=""><td><lod< td=""><td>$\begin{array}{c} 50 \pm \\ 60 \end{array}$</td><td><lod< td=""><td>17± 6</td><td>889 ± 455</td><td>2398513 ± 681723</td><td>98 ± 47</td><td>86± 17</td><td>$92\pm \\50$</td><td>1312 ± 970</td><td><lod< td=""><td>3913 ± 653</td><td><lod< td=""><td><lod< td=""><td>$\begin{array}{c} 80187 \pm \\ 21270 \end{array}$</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>$\begin{array}{c} 50 \pm \\ 60 \end{array}$</td><td><lod< td=""><td>17± 6</td><td>889 ± 455</td><td>2398513 ± 681723</td><td>98 ± 47</td><td>86± 17</td><td>$92\pm \\50$</td><td>1312 ± 970</td><td><lod< td=""><td>3913 ± 653</td><td><lod< td=""><td><lod< td=""><td>$\begin{array}{c} 80187 \pm \\ 21270 \end{array}$</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	$\begin{array}{c} 50 \pm \\ 60 \end{array}$	<lod< td=""><td>17± 6</td><td>889 ± 455</td><td>2398513 ± 681723</td><td>98 ± 47</td><td>86± 17</td><td>$92\pm \\50$</td><td>1312 ± 970</td><td><lod< td=""><td>3913 ± 653</td><td><lod< td=""><td><lod< td=""><td>$\begin{array}{c} 80187 \pm \\ 21270 \end{array}$</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	17± 6	889 ± 455	2398513 ± 681723	98 ± 47	86± 17	$92\pm \\50$	1312 ± 970	<lod< td=""><td>3913 ± 653</td><td><lod< td=""><td><lod< td=""><td>$\begin{array}{c} 80187 \pm \\ 21270 \end{array}$</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	3913 ± 653	<lod< td=""><td><lod< td=""><td>$\begin{array}{c} 80187 \pm \\ 21270 \end{array}$</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>$\begin{array}{c} 80187 \pm \\ 21270 \end{array}$</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	$\begin{array}{c} 80187 \pm \\ 21270 \end{array}$	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
655																							

Table 4. Mean concentrations of elements (ng g^{-1} dry wt.) \pm SD in feathers from 10 species of Procellariiformes.

Species	n	Al	As	Ba	Be	Cd	Co	Cs	Cu	Fe	Li	Mn	Mo	Ni	Pb	Rb	Sb	Sc	Se	U	V	W	Zn
Antarctic prion	16	28396	411 ±	1654	<lod< td=""><td>59</td><td>605</td><td><lod< td=""><td>185292</td><td>1010868</td><td><lod< td=""><td>5254</td><td>3411</td><td>36011</td><td><lod< td=""><td>153</td><td>120</td><td><lod< td=""><td>7319</td><td>19</td><td>610</td><td>285</td><td>113658</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	59	605	<lod< td=""><td>185292</td><td>1010868</td><td><lod< td=""><td>5254</td><td>3411</td><td>36011</td><td><lod< td=""><td>153</td><td>120</td><td><lod< td=""><td>7319</td><td>19</td><td>610</td><td>285</td><td>113658</td></lod<></td></lod<></td></lod<></td></lod<>	185292	1010868	<lod< td=""><td>5254</td><td>3411</td><td>36011</td><td><lod< td=""><td>153</td><td>120</td><td><lod< td=""><td>7319</td><td>19</td><td>610</td><td>285</td><td>113658</td></lod<></td></lod<></td></lod<>	5254	3411	36011	<lod< td=""><td>153</td><td>120</td><td><lod< td=""><td>7319</td><td>19</td><td>610</td><td>285</td><td>113658</td></lod<></td></lod<>	153	120	<lod< td=""><td>7319</td><td>19</td><td>610</td><td>285</td><td>113658</td></lod<>	7319	19	610	285	113658
F		±	227	±		±	±		±	±		±	±	±		±	±		±	±	±	±	±
		25222		1930		110	1295		644966	3457595		16921	1216 3	68146		79	116		2192	9	2060	571	364227
Black-browed	16	17924	$121 \pm$	1481	<lod< td=""><td>578</td><td>270</td><td><lod< td=""><td>8613</td><td>610216</td><td><lod< td=""><td>2704</td><td>1686</td><td>3284</td><td><lod< td=""><td>194</td><td>84</td><td><lod< td=""><td>3381</td><td>17</td><td>321</td><td>128</td><td>39592</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	578	270	<lod< td=""><td>8613</td><td>610216</td><td><lod< td=""><td>2704</td><td>1686</td><td>3284</td><td><lod< td=""><td>194</td><td>84</td><td><lod< td=""><td>3381</td><td>17</td><td>321</td><td>128</td><td>39592</td></lod<></td></lod<></td></lod<></td></lod<>	8613	610216	<lod< td=""><td>2704</td><td>1686</td><td>3284</td><td><lod< td=""><td>194</td><td>84</td><td><lod< td=""><td>3381</td><td>17</td><td>321</td><td>128</td><td>39592</td></lod<></td></lod<></td></lod<>	2704	1686	3284	<lod< td=""><td>194</td><td>84</td><td><lod< td=""><td>3381</td><td>17</td><td>321</td><td>128</td><td>39592</td></lod<></td></lod<>	194	84	<lod< td=""><td>3381</td><td>17</td><td>321</td><td>128</td><td>39592</td></lod<>	3381	17	321	128	39592
albetross		±	39	±		±	±		±	±		±	±	±		±	±		±	±	±	±	±
albatioss	_	13028		1802		246	481		11995	1657667		6669	4057	6669		27	43		923	3	782	160	25311
Blue petrel	5	18704	$164 \pm$	1065	<lod< td=""><td>74</td><td>498</td><td><lod< td=""><td>8745</td><td>968705</td><td><lod< td=""><td>4972</td><td>3462</td><td>7862</td><td><lod< td=""><td>123</td><td>121</td><td><lod< td=""><td>6597</td><td>21</td><td>545</td><td>47</td><td>$6953 \pm$</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	74	498	<lod< td=""><td>8745</td><td>968705</td><td><lod< td=""><td>4972</td><td>3462</td><td>7862</td><td><lod< td=""><td>123</td><td>121</td><td><lod< td=""><td>6597</td><td>21</td><td>545</td><td>47</td><td>$6953 \pm$</td></lod<></td></lod<></td></lod<></td></lod<>	8745	968705	<lod< td=""><td>4972</td><td>3462</td><td>7862</td><td><lod< td=""><td>123</td><td>121</td><td><lod< td=""><td>6597</td><td>21</td><td>545</td><td>47</td><td>$6953 \pm$</td></lod<></td></lod<></td></lod<>	4972	3462	7862	<lod< td=""><td>123</td><td>121</td><td><lod< td=""><td>6597</td><td>21</td><td>545</td><td>47</td><td>$6953 \pm$</td></lod<></td></lod<>	123	121	<lod< td=""><td>6597</td><td>21</td><td>545</td><td>47</td><td>$6953 \pm$</td></lod<>	6597	21	545	47	$6953 \pm$
1		±	88	±		±	±		± 1052	±		±	±	±		±	±		±	±	± 700	±	10470
0	16	22291	177 +	291	<i ad<="" td=""><td>90 276</td><td>329</td><td><i ad<="" td=""><td>21254</td><td>1285689</td><td><i ad<="" td=""><td>5981 054</td><td>48//</td><td>9365</td><td><i ad<="" td=""><td>110</td><td>82</td><td><i ad<="" td=""><td>2029</td><td>/</td><td>799</td><td>40</td><td>201008</td></i></td></i></td></i></td></i></td></i>	90 276	329	<i ad<="" td=""><td>21254</td><td>1285689</td><td><i ad<="" td=""><td>5981 054</td><td>48//</td><td>9365</td><td><i ad<="" td=""><td>110</td><td>82</td><td><i ad<="" td=""><td>2029</td><td>/</td><td>799</td><td>40</td><td>201008</td></i></td></i></td></i></td></i>	21254	1285689	<i ad<="" td=""><td>5981 054</td><td>48//</td><td>9365</td><td><i ad<="" td=""><td>110</td><td>82</td><td><i ad<="" td=""><td>2029</td><td>/</td><td>799</td><td>40</td><td>201008</td></i></td></i></td></i>	5981 054	48//	9365	<i ad<="" td=""><td>110</td><td>82</td><td><i ad<="" td=""><td>2029</td><td>/</td><td>799</td><td>40</td><td>201008</td></i></td></i>	110	82	<i ad<="" td=""><td>2029</td><td>/</td><td>799</td><td>40</td><td>201008</td></i>	2029	/	799	40	201008
Common	10	+	177 ±	+	<l0d< td=""><td>+</td><td>+</td><td><l0d< td=""><td>+</td><td>+</td><td>\L0D</td><td>954 +</td><td>+</td><td>+</td><td>~L0D</td><td>140</td><td>192</td><td>\L0D</td><td>+</td><td>19</td><td>207</td><td>21 +</td><td>501098</td></l0d<></td></l0d<>	+	+	<l0d< td=""><td>+</td><td>+</td><td>\L0D</td><td>954 +</td><td>+</td><td>+</td><td>~L0D</td><td>140</td><td>192</td><td>\L0D</td><td>+</td><td>19</td><td>207</td><td>21 +</td><td>501098</td></l0d<>	+	+	\L0D	954 +	+	+	~L0D	140	192	\L0D	+	19	207	21 +	501098
diving petrel		70275	120	1108		349	115		58194	119824		837	437	15075		157	283		3878	14	525	4	481053
S Georgian	16	65277	$261 \pm$	1402	<lod< td=""><td>300</td><td>419</td><td><lod< td=""><td>20176</td><td>791151</td><td><lod< td=""><td>5077</td><td>2979</td><td>25442</td><td><lod< td=""><td>162</td><td>80</td><td><lod< td=""><td>9797</td><td>42</td><td>865</td><td>95</td><td>22283</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	300	419	<lod< td=""><td>20176</td><td>791151</td><td><lod< td=""><td>5077</td><td>2979</td><td>25442</td><td><lod< td=""><td>162</td><td>80</td><td><lod< td=""><td>9797</td><td>42</td><td>865</td><td>95</td><td>22283</td></lod<></td></lod<></td></lod<></td></lod<>	20176	791151	<lod< td=""><td>5077</td><td>2979</td><td>25442</td><td><lod< td=""><td>162</td><td>80</td><td><lod< td=""><td>9797</td><td>42</td><td>865</td><td>95</td><td>22283</td></lod<></td></lod<></td></lod<>	5077	2979	25442	<lod< td=""><td>162</td><td>80</td><td><lod< td=""><td>9797</td><td>42</td><td>865</td><td>95</td><td>22283</td></lod<></td></lod<>	162	80	<lod< td=""><td>9797</td><td>42</td><td>865</td><td>95</td><td>22283</td></lod<>	9797	42	865	95	22283
		±	163	±		±	±		±	±		±	±	±		±	±		±	±	±	±	±
diving petrel		34649		981		353	241		15166	572700		3490	2133	55886		115	84		4917	15	504	94	37587
Grev-headed	16	21372	$125 \pm$	769	<lod< td=""><td>196</td><td>161</td><td><lod< td=""><td>5661</td><td>229219</td><td><lod< td=""><td>1291</td><td>893</td><td>12683</td><td><lod< td=""><td>220</td><td>61</td><td><lod< td=""><td>5395</td><td>17</td><td>163</td><td>56</td><td>50115</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	196	161	<lod< td=""><td>5661</td><td>229219</td><td><lod< td=""><td>1291</td><td>893</td><td>12683</td><td><lod< td=""><td>220</td><td>61</td><td><lod< td=""><td>5395</td><td>17</td><td>163</td><td>56</td><td>50115</td></lod<></td></lod<></td></lod<></td></lod<>	5661	229219	<lod< td=""><td>1291</td><td>893</td><td>12683</td><td><lod< td=""><td>220</td><td>61</td><td><lod< td=""><td>5395</td><td>17</td><td>163</td><td>56</td><td>50115</td></lod<></td></lod<></td></lod<>	1291	893	12683	<lod< td=""><td>220</td><td>61</td><td><lod< td=""><td>5395</td><td>17</td><td>163</td><td>56</td><td>50115</td></lod<></td></lod<>	220	61	<lod< td=""><td>5395</td><td>17</td><td>163</td><td>56</td><td>50115</td></lod<>	5395	17	163	56	50115
albetrage		±	29	±		±	±		±	±		±	±	±		±	±		±	±	±	±	±
albatioss		27043		605		163	101		1820	190078		940	730	14224		46	59		1467	5	113	46	20426
Northern giant	16	11944	145 ± 72	641	<lod< td=""><td>83</td><td>90</td><td><lod< td=""><td>6211</td><td>103719</td><td><lod< td=""><td>608</td><td>552</td><td>3811</td><td><lod< td=""><td>243</td><td>59</td><td><lod< td=""><td>8377</td><td>16</td><td>124</td><td>25</td><td>67557</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	83	90	<lod< td=""><td>6211</td><td>103719</td><td><lod< td=""><td>608</td><td>552</td><td>3811</td><td><lod< td=""><td>243</td><td>59</td><td><lod< td=""><td>8377</td><td>16</td><td>124</td><td>25</td><td>67557</td></lod<></td></lod<></td></lod<></td></lod<>	6211	103719	<lod< td=""><td>608</td><td>552</td><td>3811</td><td><lod< td=""><td>243</td><td>59</td><td><lod< td=""><td>8377</td><td>16</td><td>124</td><td>25</td><td>67557</td></lod<></td></lod<></td></lod<>	608	552	3811	<lod< td=""><td>243</td><td>59</td><td><lod< td=""><td>8377</td><td>16</td><td>124</td><td>25</td><td>67557</td></lod<></td></lod<>	243	59	<lod< td=""><td>8377</td><td>16</td><td>124</td><td>25</td><td>67557</td></lod<>	8377	16	124	25	67557
petrel		± 8060	12	± 454		± 51	± 21		± 1550	± 54442		± 244	± 220	± 10126		±	± 45		± 2246	± 4	± 71	± 14	± 28067
	17	13030	112 +	434 815	<i od<="" td=""><td>280</td><td>101</td><td><i od<="" td=""><td>6877</td><td>95208</td><td><i od<="" td=""><td>244 587</td><td>500</td><td>10120 $030 \pm$</td><td><i od<="" td=""><td>246</td><td>43 <1 oD</td><td><l od<="" td=""><td>2340</td><td>4</td><td>/1</td><td>25</td><td>28007</td></l></td></i></td></i></td></i></td></i>	280	101	<i od<="" td=""><td>6877</td><td>95208</td><td><i od<="" td=""><td>244 587</td><td>500</td><td>10120 $030 \pm$</td><td><i od<="" td=""><td>246</td><td>43 <1 oD</td><td><l od<="" td=""><td>2340</td><td>4</td><td>/1</td><td>25</td><td>28007</td></l></td></i></td></i></td></i>	6877	95208	<i od<="" td=""><td>244 587</td><td>500</td><td>10120 $030 \pm$</td><td><i od<="" td=""><td>246</td><td>43 <1 oD</td><td><l od<="" td=""><td>2340</td><td>4</td><td>/1</td><td>25</td><td>28007</td></l></td></i></td></i>	244 587	500	10120 $030 \pm$	<i od<="" td=""><td>246</td><td>43 <1 oD</td><td><l od<="" td=""><td>2340</td><td>4</td><td>/1</td><td>25</td><td>28007</td></l></td></i>	246	43 <1 oD	<l od<="" td=""><td>2340</td><td>4</td><td>/1</td><td>25</td><td>28007</td></l>	2340	4	/1	25	28007
Southern glant	17	+	36	±	(LOD	±	±	~L0D	±	±	~L0D	±	±	1118	~LOD	240 ±	~L0D	\L0D	±	± 17	±	±	±
petrel		14005	50	631		93	60		3788	42181		184	142			35			3539	6	65	10	23541
White-chinned	16	13355	$127 \pm$	502	<lod< td=""><td>138</td><td>101</td><td><lod< td=""><td>13110</td><td>262076</td><td><lod< td=""><td>1399</td><td>1007</td><td>19449</td><td><lod< td=""><td>116</td><td><lod< td=""><td><lod< td=""><td>4819</td><td>8</td><td>177</td><td>50</td><td>77646</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	138	101	<lod< td=""><td>13110</td><td>262076</td><td><lod< td=""><td>1399</td><td>1007</td><td>19449</td><td><lod< td=""><td>116</td><td><lod< td=""><td><lod< td=""><td>4819</td><td>8</td><td>177</td><td>50</td><td>77646</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	13110	262076	<lod< td=""><td>1399</td><td>1007</td><td>19449</td><td><lod< td=""><td>116</td><td><lod< td=""><td><lod< td=""><td>4819</td><td>8</td><td>177</td><td>50</td><td>77646</td></lod<></td></lod<></td></lod<></td></lod<>	1399	1007	19449	<lod< td=""><td>116</td><td><lod< td=""><td><lod< td=""><td>4819</td><td>8</td><td>177</td><td>50</td><td>77646</td></lod<></td></lod<></td></lod<>	116	<lod< td=""><td><lod< td=""><td>4819</td><td>8</td><td>177</td><td>50</td><td>77646</td></lod<></td></lod<>	<lod< td=""><td>4819</td><td>8</td><td>177</td><td>50</td><td>77646</td></lod<>	4819	8	177	50	77646
winte-chinica		±	69	±		±	±		±	±		±	±	±		±			±	±	±	±	±
petrel		15522		407		132	56		17785	195334		992	646	25581		21			1202	2	120	38	17983
Wandering	16	7126	93	547	<lod< td=""><td>317</td><td>114</td><td><lod< td=""><td>6032</td><td>166858</td><td><lod< td=""><td>991</td><td>772</td><td>1720</td><td><lod< td=""><td>151</td><td><lod< td=""><td><lod< td=""><td>4574</td><td><lod< td=""><td>149</td><td>40</td><td>58160</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	317	114	<lod< td=""><td>6032</td><td>166858</td><td><lod< td=""><td>991</td><td>772</td><td>1720</td><td><lod< td=""><td>151</td><td><lod< td=""><td><lod< td=""><td>4574</td><td><lod< td=""><td>149</td><td>40</td><td>58160</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	6032	166858	<lod< td=""><td>991</td><td>772</td><td>1720</td><td><lod< td=""><td>151</td><td><lod< td=""><td><lod< td=""><td>4574</td><td><lod< td=""><td>149</td><td>40</td><td>58160</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	991	772	1720	<lod< td=""><td>151</td><td><lod< td=""><td><lod< td=""><td>4574</td><td><lod< td=""><td>149</td><td>40</td><td>58160</td></lod<></td></lod<></td></lod<></td></lod<>	151	<lod< td=""><td><lod< td=""><td>4574</td><td><lod< td=""><td>149</td><td>40</td><td>58160</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>4574</td><td><lod< td=""><td>149</td><td>40</td><td>58160</td></lod<></td></lod<>	4574	<lod< td=""><td>149</td><td>40</td><td>58160</td></lod<>	149	40	58160
albatross		±	±	±		±	±		±	±		±	±	±		±			±		±	±	±
albanoss		7482	30	344		478	123		2175	276706		1514	1275	2043		66			878		176	30	52039

660

Table 5. Mean concentrations of elements (ng g^{-1} dry wt.) \pm SD in muscle tissue of 17 prey species.

Species	п	Al	As	Ba	Be	Cd	Со	Cs	Cu	Fe	Li	Mn	Mo	Ni	Pb	Rb	Sb	Sc	Se	U	V	W	Zn
Crustaceans																							
Euphausia	10	240691	2344	46063	<lod< td=""><td>176 ±</td><td>155 ±</td><td>33 ±</td><td>22123</td><td>372020</td><td>463</td><td>7797</td><td>142 ±</td><td>1192</td><td>167</td><td>1960</td><td>$14 \pm$</td><td>299 ±</td><td>5486</td><td>61</td><td>1178</td><td>37 ±</td><td>49485</td></lod<>	176 ±	155 ±	33 ±	22123	372020	463	7797	142 ±	1192	167	1960	$14 \pm$	299 ±	5486	61	1178	37 ±	49485
superba		± 194587	± 251	$^{\pm}$ 27443		40	83	16	± 5644	± 230259	$^{\pm}_{284}$	± 4172	49	± 605	$^{\pm}$ 123	± 515	14	75	± 1141	$\frac{\pm}{20}$	± 761	101	± 18771
Themisto	7	162821	4119	10519	<lod< td=""><td>19229</td><td>4269</td><td>$10 \pm$</td><td>18279</td><td>395128</td><td>389</td><td>3927</td><td>$692 \pm$</td><td>1397</td><td>255</td><td>724</td><td>$6 \pm$</td><td>516 ±</td><td>5142</td><td>145</td><td>971</td><td>$2 \pm$</td><td>51472</td></lod<>	19229	4269	$10 \pm$	18279	395128	389	3927	$692 \pm$	1397	255	724	$6 \pm$	516 ±	5142	145	971	$2 \pm$	51472
vaudichaudii		±	±	±		±	±	2	±	±	±	±	919	±	±	±	10	169	±	±	±	0	±
Fish		30008	403	1319		2435	10014		4100	152045	134	992		1302	391	110			/11	54	514		23624
Chaumananh	16	8046 +	3795	1257	<lod< td=""><td>29+</td><td>38 +</td><td>65+</td><td>2053</td><td>82261</td><td>284</td><td>1108</td><td>41 +</td><td>281</td><td>33 +</td><td>1830</td><td>7 +</td><td>65 +</td><td>3043</td><td>10</td><td>189</td><td>4 +</td><td>43330</td></lod<>	29+	38 +	65+	2053	82261	284	1108	41 +	281	33 +	1830	7 +	65 +	3043	10	189	4 +	43330
Champsoceph-	10	7507	±	±	~L0D	16	28	40	±	±	±	±	45	±	88	±	5	19	±	±	±	5	±
aius gunnari	2	1036 +	2288	1266 168 +	<i od<="" td=""><td>1 +</td><td>14 +</td><td>117</td><td>1734</td><td>50544 47900</td><td>221</td><td>796 923 +</td><td>8 +</td><td>360 137</td><td>14 +</td><td>874 1716</td><td>5 +</td><td>63 +</td><td>518</td><td>9 2+</td><td>141</td><td>2 +</td><td>11102</td></i>	1 +	14 +	117	1734	50544 47900	221	796 923 +	8 +	360 137	14 +	874 1716	5 +	63 +	518	9 2+	141	2 +	11102
Dissostichus	2	118	9220 ±	31	<l0d< td=""><td>0</td><td>1</td><td>± 117</td><td>495</td><td>47900 ±</td><td>±</td><td>180</td><td>2</td><td>±</td><td>6</td><td>±</td><td>2</td><td>3</td><td>±</td><td>$\frac{2}{0}$</td><td>2</td><td>0</td><td>±</td></l0d<>	0	1	± 117	495	47900 ±	±	180	2	±	6	±	2	3	±	$\frac{2}{0}$	2	0	±
eleginoides	11	5707 1	2770	10/0	-1 -D	1049	20 1	21	4241	6075	17	550 1	40 -	110	10	224	5 .	40 -	258	4 .	207	2 -	2978
Geotria	11	3787 ± 3719	1698 ±	1060 ±	<l0d< td=""><td>1948 ±</td><td>30 ± 31</td><td>4 ± 3</td><td>4241 ±</td><td>43360 ±</td><td>39 ± 31</td><td>358 ± 242</td><td>49 ± 24</td><td>$\frac{86 \pm}{78}$</td><td>19± 15</td><td>480 ±</td><td>$\frac{5 \pm}{2}$</td><td>40 ± 21</td><td>1815 ±</td><td>4 ± 4</td><td>207 ±</td><td>3 ± 3</td><td>20012 ±</td></l0d<>	1948 ±	30 ± 31	4 ± 3	4241 ±	43360 ±	39 ± 31	358 ± 242	49 ± 24	$\frac{86 \pm}{78}$	19± 15	480 ±	$\frac{5 \pm}{2}$	40 ± 21	1815 ±	4 ± 4	207 ±	3 ± 3	20012 ±
australis		12 103	822	856		1151	77 3	1023	1370	21458	0.418	26418	2.43	0108	1.03	184	– 3	103	337	C 3	146	43	12891
Parachaenich-	1	4348"	4161"	2241"	<lod< td=""><td>426"</td><td>///"</td><td>103"</td><td>3089"</td><td>92029"</td><td>241"</td><td>2641"</td><td>34^ª</td><td>212"</td><td>10"</td><td>2081"</td><td>/"</td><td>48"</td><td>2801"</td><td>6[°]</td><td>168"</td><td>4^u</td><td>41845"</td></lod<>	426"	///"	103"	3089"	92029"	241"	2641"	34 ^ª	212"	10"	2081"	/"	48"	2801"	6 [°]	168"	4 ^u	41845"
thys georgianus	0	10750	50(0	20(5	4 D	1(0)	01	70	2 400	205201	020	7054	12 .	170	20	2701	14.	121	4100	22	442		(2002
Patagonotothen	8	10750 ±	5968 ±	2965 ±	<l0d< td=""><td>168 ± 148</td><td>91 ± 115</td><td>79 ± 88</td><td>2480 ±</td><td>285291 ±</td><td>930 ±</td><td>/854 ±</td><td>42 ± 43</td><td>4/6 ±</td><td>38 ± 47</td><td>2791 ±</td><td>14 ± 19</td><td>131 ± 158</td><td>4100 ±</td><td>33 ±</td><td>442 ±</td><td>11 ± 10</td><td>63892 ±</td></l0d<>	168 ± 148	91 ± 115	79 ± 88	2480 ±	285291 ±	930 ±	/854 ±	42 ± 43	4/6 ±	38 ± 47	2791 ±	14 ± 19	131 ± 158	4100 ±	33 ±	442 ±	11 ± 10	63892 ±
guntheri		11364	6388	2770					3288	369982	1170	9008		705		3064			4509	41	564		68792
Pseudochaenich-	5	4151 ± 1720	5152 +	426 ± 226	<lod< td=""><td>14 ± 14</td><td>31 ± 18</td><td>155</td><td>1011</td><td>104317</td><td>190 +</td><td>449 ± 181</td><td>9± 3</td><td>118</td><td>20 ± 12</td><td>2065 +</td><td>$\frac{8 \pm}{2}$</td><td>69 ± 23</td><td>2622 +</td><td>4 ±</td><td>128</td><td>2 ±</td><td>33603</td></lod<>	14 ± 14	31 ± 18	155	1011	104317	190 +	449 ± 181	9± 3	118	20 ± 12	2065 +	$\frac{8 \pm}{2}$	69 ± 23	2622 +	4 ±	128	2 ±	33603
thys georgianus		1720	882	220		14	10	37	161	75579	67	101	5	67	12	144	2	25	203	5	180	1	12931
Cephalopods																							
Galiteuthis	3	19409	1434	14951	<lod< td=""><td>2105</td><td>$44 \pm$</td><td>$8 \pm$</td><td>61979</td><td>66581</td><td>121</td><td>1161</td><td>$793 \pm$</td><td>704</td><td>682</td><td>578</td><td>$55 \pm$</td><td>$117 \pm$</td><td>3703</td><td>231</td><td>379</td><td>$17 \pm$</td><td>85928</td></lod<>	2105	$44 \pm$	$8 \pm$	61979	66581	121	1161	$793 \pm$	704	682	578	$55 \pm$	$117 \pm$	3703	231	379	$17 \pm$	85928
glacialis		± 8627	± 509	$^{\pm}$ 10737		± 1745	3	3	$^{\pm}$ 31048	± 11678	$^{\pm}$ 102	± 213	1109	$^{\pm}$ 446	± 547	$^{\pm}_{230}$	11	100	± 346	$^{\pm}$ 109	$^{\pm}$ 374	2	\pm 34899
Gonatus	2	6378 ±	2065	1378	<lod< td=""><td>901 ±</td><td>15 ±</td><td>6 ±</td><td>16853</td><td>19097</td><td>18±</td><td>1058</td><td>1423</td><td>549</td><td>$10 \pm$</td><td>353</td><td>$39 \pm$</td><td>26 ±</td><td>3162</td><td>75</td><td>401</td><td>$2 \pm$</td><td>94001</td></lod<>	901 ±	15 ±	6 ±	16853	19097	18±	1058	1423	549	$10 \pm$	353	$39 \pm$	26 ±	3162	75	401	$2 \pm$	94001
antarcticus		165	±	± 835		676	1	0	±	±	23	± 471	±	±	0	± 39	33	25	±	±	±	0	±
Kondakovia	2	7472 ±	596 1706	2133	<lod< td=""><td>9216</td><td>30 ±</td><td>23 ±</td><td>13774</td><td>46122</td><td>122</td><td>1021</td><td>$1894 \\ 181 \pm$</td><td>329 473</td><td>24 ±</td><td>1212</td><td>13 ±</td><td><lod< td=""><td>271 4734</td><td>48 118</td><td>409 246</td><td>2 ±</td><td>91585</td></lod<></td></lod<>	9216	30 ±	23 ±	13774	46122	122	1021	$1894 \\ 181 \pm$	329 473	24 ±	1212	13 ±	<lod< td=""><td>271 4734</td><td>48 118</td><td>409 246</td><td>2 ±</td><td>91585</td></lod<>	271 4734	48 118	409 246	2 ±	91585
longimana		3945	±	±		±	4	14	±	±	± 28	± 117	176	±	20	± 52	10		±	±	±	0	±
Martialia	2	4056 ±	113 4828	1636 82 ±	<lod< td=""><td>6413 14524</td><td>46 ±</td><td>18±</td><td>1778 28745</td><td>11729</td><td>139</td><td>1083</td><td>68 ±</td><td>262 353</td><td>51 ±</td><td>4997</td><td>1 ±</td><td>55 ±</td><td>381 3498</td><td>129 8 ±</td><td>184 109</td><td>2 ±</td><td>35517 69918</td></lod<>	6413 14524	46 ±	18±	1778 28745	11729	139	1083	68 ±	262 353	51 ±	4997	1 ±	55 ±	381 3498	129 8 ±	184 109	2 ±	35517 69918
Maritalla	2	1167	±	14	-100	±	5	2	±	±	±	±	3	±	31	±	0	8	±	2	±	0	±
nyaaesi	4	4830 +	1290	076 +	<i od<="" td=""><td>1805</td><td>32 +</td><td>12 +</td><td>10952</td><td>400</td><td>25</td><td>2</td><td>345 +</td><td>14 328</td><td><u> 00 +</u></td><td>464</td><td>22 +</td><td>46 +</td><td>347</td><td>47</td><td>34</td><td>17+</td><td>10882</td></i>	1805	32 +	12 +	10952	400	25	2	345 +	14 328	<u> 00 +</u>	464	22 +	46 +	347	47	34	17+	10882
MOroteuthis	7	3376	2944 ±	844	~LUD	±	17	5	±	±	±	±	551	520 ±	148	±	37	26	±	+, ±	±	31	±
<i>knipovitcni</i>	2	0120 -	1689	4509	<i ad<="" td=""><td>10296</td><td>27 -</td><td>2 </td><td>16023</td><td>40016</td><td>106</td><td>231</td><td>1176</td><td>142</td><td>61 -</td><td>1203</td><td>10 -</td><td>51</td><td>1817</td><td>63</td><td>183</td><td>2 </td><td>36352</td></i>	10296	27 -	2	16023	40016	106	231	1176	142	61 -	1203	10 -	51	1817	63	183	2	36352
Psychroteuthis	2	9130± 5520	± 94	4398 ±	<l0d< td=""><td>± 460</td><td>$\frac{37 \pm}{13}$</td><td>$\frac{2 \pm}{2}$</td><td>10054 ±</td><td>± 2526</td><td>95 ± 130</td><td>774± 383</td><td>11/0 ±</td><td>297 ±</td><td>61 ± 72</td><td>515 ±</td><td>10 ± 12</td><td>51 ± 62</td><td>4024 ±</td><td>153 ±</td><td>5// ±</td><td>2 ± 0</td><td>24226 ±</td></l0d<>	± 460	$\frac{37 \pm}{13}$	$\frac{2 \pm}{2}$	10054 ±	± 2526	95 ± 130	774± 383	11/0 ±	297 ±	61 ± 72	515 ±	10 ± 12	51 ± 62	4024 ±	153 ±	5// ±	2 ± 0	24226 ±
glacialis				4137					5875				1447	107		339			617	152	166		34026

663 ^a No SD available due to low sample size (included in table for completeness but excluded in statistical analyses).

664	Table 6. Univariate GLM results for element concentrations in blood and feathers of 10
665	Procellariiform species. Model components were selected by AIC from all possible model sub-sets
666	with two factorial levels. Parameter estimates (β) shown as Na if non-significant or from multi-level
667	parameters. Significance values represent values for the parameter within the overall model.

Tissue	Element	Parameter	df	F	p	β	s.e.
Blood	LogAs ^a	$\delta^{15}N$	1	13.8	< 0.001***	4.2	1.1
		$\delta^{13}C$	1	13.9	<0.001***	-2.8	0.7
		Species	8	1.9	0.061	Na	Na
		Species* δ^{13} C	8	1.9	0.067	Na	Na
		Species* δ^{15} N	8	2.9	0.006**	Na	Na
		$\delta^{13}C^* \delta^{15}N$	1	13.4	<0.001***	0.2	0.1
	LogCd ^b	Species	9	13.1	<0.001***	Na	Na
	Sec	$\delta^{13}C$	1	2.8	0.103	-19944.2	23857.4
		Species	9	2.4	0.014*	Na	Na
		Species* δ^{13} C	1	2.5	0.011*	Na	Na
	LogRb ^d	Species	9	4.9	<0.001***	Na	Na
	LogMo ^e	$\delta^{13}C$	1	3.9	0.052	-0.1	0.03
		Species	9	7.5	<0.001***	Na	Na
Feathers	LogMn ^f	Species	9	4.6	<0.001***	Na	Na
	LogFe ^g	Species	9	5.0	<0.001***	Na	Na
	LogCo ^h	Species	9	7.45	<0.001***	Na	Na
	LogAs ⁱ	Species	9	5.8	<0.001***	Na	Na
	-	$\delta^{15}N$	1	2.3	0.129	0.03	0.02
	LogMo ^j	Species	9	2.2	0.029*	Na	Na
	-	$\delta^{15}N$	1	2.6	0.112	0.2	0.1
		Species* δ ¹⁵ N	9	2.0	0.043*	Na	Na
	Se^k	$\delta^{13}C$	1	5.1	0.025*	-551.4	243.2
		Species	9	6.9	<0.001***	Na	Na
	$LogU^{l}$	Species	9	14.2	<0.001***	Na	Na
${}^{a}R^{2} = 0.69$	$\frac{g}{R^2} = 0.24$						
$^{\circ}R^{2} = 0.48$	$^{"}R^{2} = 0.32$						

668	${}^{a}R^{2} = 0.69$	$^{g}R^{2} = 0.24$
669	${}^{b}R^{2} = 0.48$	${}^{h}R^{2} = 0.32$
670	$^{\rm c} {\rm R}^2 = 0.51$	i R ² = 0.30
671	$^{\rm d} {\rm R}^2 = 0.25$	$^{j}R^{2} = 0.34$
672	$e^{R^2} = 0.37$	${}^{k}R^{2} = 0.44$
673	${}^{\rm f}{\rm R}^2 = 0.23$	${}^{1}\mathrm{R}^{2}=0.48$

Table 7. Univariate GLM results for log₁₀ transformed arsenic concentrations of tissue samples from

677 prey groups (see Table 5 for groups). Model components specified in table as selected by AIC from all

678 possible model sub-sets with two factorial levels. Parameter estimates (β) shown as Na for multi-level

679 parameters.

Demonstern	16	Б		0	
Parameter	aī	Г	p	р	s.e.
Group	2	8.9	<0.001***	Na	Na
δ^{15} N	1	5.6	0.021*	-0.2	0.1
$\delta^{13}C$	1	3.8	0.054	0.2	0.1
Group* δ ¹⁵ N	2	9.4	<0.001***	Na	Na
Cephalopod* δ^{15} N	1	Na	<0.001***	-0.3	0.1
Crustacea* δ^{15} N	1	Na	0.010*	-0.3	0.1
Fish* δ ¹⁵ N	1	0^{b}	0^{b}	0^{b}	0^{b}
$\delta^{13}C^* \delta^{15}N$	1	5.6	0.021*	-0.02	0.01

 $680 \quad {}^{a}R^{2} = 0.43$

^b This parameter is set to zero because it is redundant.