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Incipient Sensor Fault Estimation and

Accommodation for Inverter Devices in

Electric Railway Traction Systems

Kangkang Zhang1,2, Bin Jiang1,2,∗, Xing-Gang Yan3, Zehui Mao1,2

Abstract

This paper proposes an incipient sensor fault estimation and accommodation method for three-

phase PWM inverter devices in electric railway traction systems. First, the dynamics of inverters and

incipient voltage sensor faults are modelled. Then, for theaugmented system formed by original inverter

system and incipient sensor faults, an optimal adaptive unknown input observer is proposed to estimate

the inverter voltages, currents and the incipient sensor faults. The designed observer guarantees that the

estimation errors converge to the minimal invariant ellipsoid. Moreover, based on the output regulator via

internal model principle, the fault accommodation controller is proposed to ensure that thevod andvoq

voltages track the desired reference voltages with the tracking error converging to the minimal invariant

ellipsoid. Finally, simulations based on the traction system in CRH2 (China Railway High-speed) are

presented to verify the effectiveness of the proposed method.

keywords: Incipient sensor faults, fault estimation and accommodation, inverter devices,

railway traction system.

I. INTRODUCTION

Safety is the first concern in high-speed railway operation,which is greatly dependent on the

reliability of information control systems of high-speed trains. The traction drive subsystem is

the core of information control systems in high-speed trainsystems, which plays an important
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role in electric railway running safety. Therefore, the fault diagnosis and FTC (fault-tolerant

control) mechanism are necessary for modern high-speed railway systems, especially for the

traction subsystems.

Modern railway traction power systems are fed by 2× 25KV/50Hz single phase ac current

sources in [1] or by 1500V dc voltage from electric railway substations in [2]. A typical ac/dc/ac

power system used for electrical traction drives is shown inFig. 1 (see, e.g. [3]), which includes

a catenary, a voltage transformer, a single phase PWM rectifier, a three-phase PWM inverter

and driving motors. In the traction systems, the electric power is transmitted to the drive motors

fC

R
L

Fig. 1. Railway traction circuit schematic diagram.

through catenaries, voltage transformers, single phase PWM rectifiers and three-phase PWM

inverters. The inverter is driven by the dc link voltage, provided by the rectifier, while the driving

motors are driven directly by the three-phase PWM inverter which affects the motion performance

of the driving motors greatly.Over a long period of time, aging components, such as electrolyte

loss effectiveness of electrolytic capacitors, in the current sensors and voltage sensors, may

deduce incipient faults, and further develop to serious failures, which would degrade performance

of the total traction systems seriously. Therefore, early incipient sensor fault diagnosis and FTC

should be designed and achieved to improve the reliability of the electric traction system.

Typically, abrupt faults affect safety-relevant systems where hard-failures have to be detected

early enough so that catastrophic consequences can be avoided by early system reconfiguration.

On the other end, incipient faults are closely related to maintenance problems and early detection

of worn equipment is necessary. In this case, the incipient faults are typically small and not easy

to be detected (see, e.g. [4] and [5]). In order to well plan maintenance in advance, it is necessary

to estimate the incipient faults as accurately as possible.In addition, fault estimation (FE) is one

of the most important components in active fault-tolerant control (AFTC), and work on FE is

discussed extensively in literature: see for example [5], [6], [7], [16], [19], [22] and [30]. Most

of AFTC schemes require ‘precise’ fault estimation as in [8] and [10]. Nevertheless, ‘precise’
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estimation of incipient faults is very challenging since incipient faults are so small that can be

drowned by disturbances and uncertainties. Therefore, it is significant to minimize the effect of

disturbances and uncertainties on incipient fault estimation.

During the past several decades, there are many results about the incipient fault estimation,

such as [11], [12] [13], [14], [15], [16] and [17]. Differentadaptive fault estimation modules

are proposed to estimate the fault parameters in [14], [15] and [22]. However, it is still very

challenging to apply these adaptive approaches to estimateincipient faults, especially in the

presence of disturbances and uncertainties. In [18], the adaptive approach andH∞ theory are

combined together such that the estimated parameters satisfy the optimal performance index

under theL2 disturbances. In [31], an invariant ellipsoid method is proposed to deal withL∞

disturbances, which motivates us to combine the adaptive approach and invariant ellipsoid method

to estimate incipient fault parameters. In terms of sensor FTC, fault estimation can be used

directly to ‘correct’ the sensor measurement before the erroneous information is used by the

controller [23]. However, in inverter systems, there are unmatched unknown inputs which cannot

be compensated through input channels directly. The outputregulator [24] via adaptive internal

model principle proposed in [25] provides an efficient method to reject the unmatched unknown

inputs in the output channels. Therefore, this work will develop an adaptive fault estimation

module and a fault-tolerant controller to ensure that the estimation errors and voltage tracking

errors converge into minimal invariant ellipsoids in the presence of disturbances.

In this paper, the incipient voltage sensor faults in inverter devices are considered. The invariant

ellipsoid method, adaptive unknown input observer and output regulator are combined to develop

an optimal sensor fault estimation module and incipient sensor fault accommodation method for

the inverter devices. The main contribution of this paper issummarized as follows.

1) An optimal adaptive unknown input observer is designed such that the estimation errors

converge to the minimal invariant ellipsoid.

2) A novel optimal fault-tolerant controller is proposed to“correct” faulty sensor outputs such

that the tracking errors converge to the minimal invariant ellipsoid.

3) The designed optimal fault estimation method and optimalfault accommodation (FA)

method are applied to the practical three-phase PWM inverter system successfully.

The rest parts of this paper are organized as follows. In Section II, the dynamics of three-

phase PWM inverters with incipient sensor faults are modelled. Preliminaries and assumptions

are presented. In Section III, an optimal adaptive unknown input observer is designed based on

the system decomposition. The incipient sensor fault is estimated in Section IV. In Section V,
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the optimal fault-tolerant controller based on the output regulator and internal model principle

is proposed. In section VI, the designed adaptive unknown input observer and fault-tolerant

controller are applied to the three-phase PWM inverter of the traction system in China Railway

High-speed to verify the effectiveness of the obtained results. Section VII concludes this paper.

II. PROBLEM FORMULATION

A. Dynamic Modeling of Inverter

The topology structure of the inverter device used in the CRH2’s traction system is shown in

Fig. 2, whereLf , Cf andr are the filter inductor, capacitor and equivalent resistance, respectively,

Vdc is the dc voltage source,vjn, j = a, b, c are the inverter bridge voltages,voj andioj , j = a, b, c

are the load voltages and currents, respectively. From Fig.2, based on the Kirchhoff current and

n
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Fig. 2. Three-phase PWM inverter topology

voltage principles, the currents and voltages ofa, b, c phases satisfy

iLa + iLb + iLc = 0, (1)

Lf

diLj
dt

+ riLj + voj = vjN + vjn, (2)

Cf

dvoj
dt

= iLj − ioj , j = a, b, c (3)

where

vjn = SjVdc, (4)

vjN = −
1

3

∑

r=a,b,c

SrVdc, j = a, b, c, (5)
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with Sj being IGBT’s switching control signals. Then the inverter system is expressed by

dvoj
dt

=
iLj
Cf

−
ioj
Cf

, (6)

diLj
dt

= −
riLj
Lf

+
voj
Lf

+
Vdc

Lf

u, j = a, b, c, (7)

eyr = vo − yr (8)

whereu =

(

Sj −
1
3

∑

r=a,b,c

Sr

)

, vo = col(voa, vob, voc) andyr is output voltage reference signal.

By introducing the Clarke and Park coordinate transformation xdq = Tdqxabc where the

expression ofTdq refers to [26], Eqs. (6), (7) and (8) become

ẋ = Ax+Bu+ Eio,

eyr = Cx− yr

(9)

wherex = col(vod, voq, iLd, iLq), i0 = col(iod, ioq),

A =












0 ω0
1
Cf

0

−ω0 0 0 1
Cf

− 1
Lf

0 − r
Lf

ω0

0 − 1
Lf

−ω0 − r
Lf












, B =












0 0

0 0

Vdc

Lf
0

0 Vdc

Lf












, E =












− 1
Cf

0

0 − 1
Cf

0 0

0 0












and

C =




1 0 0 0

0 1 0 0





with ω0 being constant operation frequency of the inverter device.

Remark 1. It should be pointed out that the outputsSj , j = a, b, c of PWM producer in (4)

and (5) are measurable, which implies thatu in (9) are measurable. Also, the load currentsi0 in

inverter system (9) are measurable. Therefore, both the control signalsu and the load currents

i0 in (9) can be used in observer design and will not affect faultsignal estimation. ∇

B. Incipient Sensor Fault Modeling

Since incipient faults are small in amplitude, piecewise continuous and develop slowly, they

can be modeled based on the following lemma.

Lemma 1. [21] For any piecewise continuous vector functionf : R+ → Rq, and a stableq× q

matrix Af , there always exists an input vectorξ ∈ Rq such thatḟ = Aff + ξ.
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From Lemma 1, incipient faultsf(t) can be modeled by

ḟ = Aff + ξ, f(0) = 0 (10)

whereAf is a stable matrix with appropriate dimensions, andξ = [ξT1 , · · · , ξ
T
q ]

T ∈ Rq is an

unknown vector. Taking the Laplace transformation on Eq. (10), it is clear to see that in the

frequency domain,f(s) = (sI − Af )
−1ξ, which shows that the fault signalf is determined by

ξ completely. It should be noted thatAf is not the designed parameter and that only the fault

modeled by (10) is considered in this paper, which may limit the application of the developed

results. However, such a class of faults widely exists in reality such as flight control systems

and electric motor systems, and it has been well studied in [5] and [27].

C. Preliminaries and Assumptions

Consider a class of linear systems described by

ẋ = Ax+Bu+ Ei0 + Ed,

eyr = Cx+ Ff − yr

(11)

wherex ∈ Rn is state vector,u ∈ Rm is control, i0 ∈ Rh is the real value of currents and

d ∈ Rh is the current noises. The signalf ∈ Rq represents the incipient sensor fault. It is

assumed throughout this paper thatn ≥ p ≥ q. MatricesA, B, C, E andF are known constant

with C being full row rank andF full column rank.

Let xa := col(x, f). System (11) and incipient sensor faults (10) can be represented in an

augmented form
ẋa = Aaxa +Bau+ Eai0 + Ead+Daξ,

eyr = Caxa − yr

(12)

where

Aa =




A

Af



 ∈ R(n+q)×(n+q), Ba =




B0

0



 ∈ R(n+q)×m, Ea =




B0

0



 ∈ R(n+q)×h,

Da =




0

Iq



 ∈ R(n+q)×q, Ca =
[

C F
]

∈ Rp×(n+q). Suppose thatF in (11) has the form

F =




0(p−q)×q

Iq



 . (13)
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Then rank(CaDa) = q and rank(Da) = q, which implies the relative degree of the triple

(Aa, Da, Ca) is inherently one.

Assumption 1. The invariant zeros of the triple(Aa, Da, Ca) (if any) lie in the left half plane.

Assumption 2. All the incipient fault parametersξ, ξ̇ and disturbanced satisfy that

ξTQξξ ≤ ξ0, ξ̇TQξ̇ ξ̇ ≤ ξ1, dTQdd ≤ d0 (14)

where the positive definite matricesQξ ∈ Rq×q, Qξ̇ ∈ Rq×q, Qd ∈ Rh×h and the positive

constantsξ0, ξ1, d0 are known.

Remark 2. Assumption 1 is necessary for the unknown input observer design (see, e.g. [9],

[29] and [28]). It has proved in [20] that the unobservable modes of the pair(A,C) are the

invariant zeros of the triple(Aa, Da, Ca). Therefore, in order to check Assumption 1, it only

requires to check whether all the unobservable modes of the pair (A,C) lie in the left-half

plane. Assumption 2 meansξ, ξ̇ andd are bounded. Therefore, both the fault signalf , and its

developing rate are assumed to be bounded, which are in consistence with the practical case.∇

To reject the bounded exogenous disturbances, the invariant ellipsoid concept is introduced.

Definition 1. The ellipsoid

ε(P ) = {x : xTPx < 1}, P > 0 (15)

with the center in the origin and a radius matrixP , is said to be an invariant ellipsoid for the

systemsẋ = Ax+Dω with respect to the bounded disturbancesω

• if x(0) ∈ ε(P ), thenx(t) ∈ ε(P ) for all t ≥ 0;

• and if x(0) /∈ ε(P ), thenx(t) → ε(P ) for t → ∞.

From definition 1, it follows that any trajectory of the system starting in the invariant ellipsoid

will stay in it for all t > 0, while a trajectory starting outside of the invariant ellipsoid will

converge to this ellipsoid (asymptotically or in finite time).

The tasks of fault detection and isolation (FDI) are to determine the occurrence of a fault

in the functional units of the process, and to determine the location and fault type. The fault

estimation (FE) is used to estimate the size and behavior of afault or parameters. In this paper,

an optimal adaptive FE is developed to estimate the parameters of incipient sensor faults, and

then an optimal fault-tolerant controller is proposed to complete the tracking task, which is able

to tolerate the incipient sensor faults.
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III. A DAPTIVE UNKNOWN INPUT OBSERVER DESIGN

In this section, an adaptive unknown input observer will be designed to estimate the system

statesx and the unknown inputsξ in (12) such that the estimation errors converge to an invariant

ellipsoid.

Based on [28], since the relative degree of the triple(Aa, Da, Ca) is one, there exists a

coordinate transformation for augmented system (12) such that the triple(Aa, Da, Ca) in the

new coordinates can be described by







Aa11 Aa12

Aa21 Aa22



 ,




0(n+q−p)×q

Da2



 ,
[

0p×(n+q−p) Ca2

]



 , Da2 =




0(p−q)×q

Da22



 (16)

whereAa11 ∈ R(n+q−p)×(n+q−p), Ca2 ∈ Rp×p is orthogonal andDa22 ∈ Rq×q is nonsingular.

Under Assumption 1, it follows from [30] that there exists a matrix L ∈ R(n+q−p)×p, described

by

L = [L1, 0] (17)

with L1 ∈ R(n+q−p)×(p−q), such thatAa11 + LAa21 is stable.

Denotexa = col(x1, x2) with x1 ∈ Rn+q−p and x2 ∈ Rp. It is assumed without loss of

generality, that the system (12) has the form

ẋ1 = Aa11x1 + Aa12x2 +Ba1u+ Ea1i0 + Ea1d,

ẋ2 = Aa21x1 + Aa22x2 +Ba2u+ Ea2i0 + Ea2d+Da2ξ,

eyr = Ca2x2 − yr,

(18)

whereBa1 andBa2 can be obtained from [30].

Then there exits a linear coordinate transformationz = Txa where

T =




In+q−p L

0 Ca2



 (19)

with L given in (17) such that the system (12) can be described by

ż1 = Â11z1 + Â12z2 + B̂1u+ Ê1i0 + Ê1d,

ż2 = Â21z1 + Â22z2 + B̂2u+ Ê2i0 + Ê2d+ D̂2ξ,

eyr = z2 − yr,

(20)

wherez := col(z1, z2) with z1 ∈ Rn+q−p and z2 ∈ Rp, Â11 = Aa11 + LAa21 is stable,Â12 =

−(Aa11 + LAa21)LC
−1
a2 + (Aa12 + LAa22)C

−1
a2 , Â21 = Ca2Aa21, Â22 = Ca2(Aa22 − Aa21L)C

−1
a2 ,

B̂1 = Ba1 + LBa2, B̂2 = C−1
a2 Ba2, Ê1 = Ea1 + LEa2, Ê2 = C−1

a2 Ea2 andD̂2 = C−1
a2 Da2.
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It should be pointed out that [28] has constructed the constraint Lyapunov matrix

P :=




P1 P1L

LTP1 P2 + LTP2L



 (21)

whereL is given in (17), and

(
T−1

)T
PT−1 =




P1

P0



 (22)

whereP1 ∈ R(n+q−p)×(n+q−p) andP0 = Ca2P2C
T
a2 ∈ Rp×p.

For system (20), an adaptive unknown input observer is proposed as

˙̂z1 =Â11ẑ1 + Â12ẑ2 +K1 (z2 − ẑ2) + B̂1u+ Ê1i0, (23)

˙̂z2 =Â21ẑ1 + Â22ẑ2 +K2 (z2 − ẑ2) + B̂2u+ Ê2i0 + D̂2ξ̂ (t) , (24)

˙̂
ξ =ΓD̂T

2 P0 (z2 − ẑ2)− σΓξ̂, (25)

êyr =ẑ2 − yr (26)

whereK1 is chosen asK1 = Â12 + G1 with G1 ∈ R(n+q−p)×p. The matrixK2 is chosen as

K2 = Â22+G2 with G2 ∈ Rp×p. The gain matricesG1, G2, the constantσ > 0 and the weighting

matrix Γ = ΓT > 0 are determined later. The update law (25) is the proposed adaptive law used

to estimate the unknown inputξ.

Let e1 = z1 − ẑ1, ey = z2 − ẑ2 and eξ = ξ − ξ̂. Then by comparing (20) and (23)-(26), the

error dynamical system is given by

ė1 = Â11e1 −G1ey + Ê1d,

ėy = Â21e1 −G2ey + Ê2d+ D̂2eξ,

˙̂
ξ = ΓD̂T

2 P0 (z2 − ẑ2)− σΓξ̂.

(27)

Consider the ellipsoid

ε(P) = {col(e1, ey, eξ) : col(e1, ey, eξ)
T
Pcol(e1, ey, eξ) < 1} (28)

whereP = diag{P1, P0,Γ
−1} > 0. Then the following theorem is ready to be presented.

Lemma 2. Under Assumptions 1 and 2, for certain σ > 0 and some α > 0, the set ε(P) is

an invariant ellipsoid for error system (27), if there exist SPD matrices P1 ∈ R(n+q−p)×(n+q−p),

September 27, 2016 DRAFT
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P0 ∈ Rp×p in (22) and Γ−1 ∈ Rq×q in (25), and matrices Y1 ∈ R(n+q−p)×p, W1 ∈ R(n+q−p)×p

and W2 ∈ Rp×p such that

P0 > 0, P1 > 0, Γ−1 > 0, (29)


















Θ11 + αP1 Θ12 0 0 0 Θ16

∗ Θ22 + αP0 0 0 0 Θ26

∗ ∗ −2σI + αΓ−1 σI Γ−1 0

∗ ∗ ∗ −α
γ
Qξ 0 0

∗ ∗ ∗ ∗ −α
γ
Qξ 0

∗ ∗ ∗ ∗ ∗ −α
γ
Qd



















< 0 (30)

where Θ11 = He (P1Aa11 + Y1Aa21), Θ12 = −W1+(Ca2Aa21)
TP0, Θ16 = P1Ea1+Y1Ea2, Θ22 =

−He (W2), Θ26 = P0C
−1
a2 Ea2 and γ = max{ξ0, ξ1, d0}. Then, the gain matrices L = P−1

1 Y1,

G1 = P−1
1 W1 and G2 = P−1

0 W2.

Proof: From (22), the functionV = eT1 P1e1 + eTy P0ey + eTξ Γ
−1eξ can be chosen as the

Lyapunov candidate function. Note thatėξ = ξ̇ −
˙̂
ξ. Then the time derivative ofV along the

trajectory of system (27) is

V̇ =eT1 (P1Â11 + ÂT
11P1)e1 − 2eT1 P1G1ey + 2eT1 P1Ê1d

+ 2eTy P0Â21e1 − eTy (P0G2 +GT
2 P0)ey + 2eTy P0D̂2eξ + 2eTy P0Ê2d

− 2eTξ D̂
T
2 P0ey − 2σeTξ eξ + 2σeTξ ξ + 2eTξ Γ

−1ξ̇

=



















e1

ey

eξ

ξ

ξ̇

d



















T 

















Ξ11 Ξ12 0 0 0 Ξ16

∗ Ξ22 0 0 0 Ξ26

∗ ∗ −2σI σI Γ−1 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0





































e1

ey

eξ

ξ

ξ̇

d



















(31)

whereΞ11 = He
(

P1Â11

)

, Ξ12 = −P1G1 + ÂT
21P0, Ξ16 = P1Ê1,Ξ22 = −He (P0G2), Ξ26 =

P0Ê2.
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Obviously, theε(P) is an invariant ellipsoid if and only iḟV < 0, for any(e1, ey, eξ) satisfying

(e1, ey, eξ)
TP(e1, ey, eξ) ≥ 1 and forcol(ξ, ξ̇, d) satisfying Assumption 2.

From Assumption 2,ξ, ξ̇ andd satisfy

1

γ



















e1

ey

eξ

ξ

ξ̇

d



















T 

















0 0 0 0 0 0

∗ 0 0 0 0 0

∗ ∗ 0 0 0 0

∗ ∗ ∗ Qξ 0 0

∗ ∗ ∗ ∗ Qξ̇ 0

∗ ∗ ∗ ∗ ∗ Qd





































e1

ey

eξ

ξ

ξ̇

d



















≤ 1. (32)

Define

A0 :=



















Ξ11 Ξ12 0 0 0 Ξ16

∗ Ξ22 0 0 0 Ξ26

∗ ∗ −2σI σI Γ−1 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0



















, A1 :=



















−P1 0 0 0 0 0

∗ −P0 0 0 0 0

∗ ∗ −Γ−1 0 0 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0



















,

A2 :=



















0 0 0 0 0 0

∗ 0 0 0 0 0

∗ ∗ 0 0 0 0

∗ ∗ ∗ 1
γ
Qξ 0 0

∗ ∗ ∗ ∗ 1
γ
Qξ̇ 0

∗ ∗ ∗ ∗ ∗ 1
γ
Qd



















andfi(ζ) := ζTAiζ whereζ = col(e1, ey, eξ, ξ, ξ̇, d).

According to the S-procedure, the inequalitiesf1(ζ) ≤ −1 and f2(ζ) ≤ 1 imply f0(ζ) < 0

if and only if there existτ1, τ2 ≥ 0 such thatA0 < τ1A1 + τ2A2 and 0 ≥ −τ1 + τ2. Since the

minimal ellipsoid is concerned,τ2 = τ2max = τ1.

Hence, by lettingτ1 = α, the result follows.
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Remark 3. In fact, if the adaptive law in (27) is constructed as˙̂ξ = −ΓD̂T
2 P2(z2 − ẑ2), then

e1 and ey can be constructed accurately in steady stage case. However, the unknown inputsξ

cannot be estimated because of “parameter drift”. Theσ−modification adaptive law in (27) is

used to reject the “parameter drift”. ∇

It follows from Lemma 2 that the estimation error (e1, ey, eξ) converges to an invariant ellipsoid.

From a qualitative point of view, a “big” radius matrixP provides a “small” ellipsoid. Hence,

an optimal problem will be proposed to minimize the estimation error to reconstruct states more

accurately.

Given the ellipsoid

ε(Q−1) = {col(e1, ey, eξ) : col(e1, ey, eξ)
T
Q

−1col(e1, ey, eξ) < 1}, Q ∈ R(n+q)×(n+q) > 0.

(33)

The following results are obtained.

Theorem 1. Under Assumptions 1 and 2, for certain σ > 0 and some α > 0, the ellipsoid ε(Q−1)

is the minimal invariant ellipsoid with respect to col(e1, ey, eξ), if there exist SPD matrices P1,

P0, Γ−1 and Q ∈ R(n+q)×(n+q), matrices Y1, W1 and W2 such that

tr (Q) → min (34)

subject to (29), (30) and 


P I

I Q



 ≥ 0, Q > 0. (35)

Proof: From Lemma 2, the setε(P) is an invariant ellipsoid with respect tocol(e1, ey, eξ).

Hence, ifQ satisfies

Q
−1 ≤ P, (36)

thenε(Q−1) is an invariant ellipsoid with respect tocol(e1, ey, eξ). Finally, the Schur component

provides the inequality (35).

It should be pointed out thatε(P) and ε(Q−1) are both invariant ellipsoid with respect to

col(e1, ey, eξ) andε(P) ⊂ ε(Q−1).

IV. I NCIPIENT FAULT ESTIMATION

In this section, the incipient fault will be estimated. Fromxa = col(x, f), it follows that

f = Cfxa (37)
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whereCf = [0, Iq], and

f = CfT
−1z (38)

whereT is given in (19). Further partitionC−1
a2 in (16) as

C−1
a2 =




C̄a21

C̄a22



 (39)

whereC̄a21 ∈ R(p−q)×p andC̄a22 ∈ Rq×p. Then the incipient faultf is constructed asf = C̄a22z2.

Based on the proposed observer (23)-(26), it follows thatf̂ = C̄a22Cz2col(z, ξ) and the estimation

error ef is expressed by

ef = C̄a22Cz2col(e1, ey, eξ) (40)

whereCz2 = [0p×(n+q−p), Ip, 0p×q].

Define an ellipsoid as

ε(Z−1) = {ef : eTf Z
−1ef < 1} (41)

whereZ ∈ Rq×q, Z > 0.

The objective here is to choose appropriate gainsΓ, L, G1 andG2 to minimize the invariant

ellipsoid ε(Z−1) to further minimizeef . The following theorem is ready to be presented.

Theorem 2. Under Assumptions 1 and 2, for certain σ > 0 and some α > 0, the ellipsoid ε(Z)

is the minimal invariant ellipsoid with respect to ef given in (40), if there exist SPD matrices

P1, P0, Γ−1 and Z ∈ Rq×q, and matrices Y1, W1, W2 such that

tr (Z) → min (42)

subject to (29), (30) and



P (C̄a22Cz2)

T

C̄a22Cz2 Z



 ≥ 0, Z > 0. (43)

Proof: The ellipsoidε(Z−1) defined in (41) can be presented by

eTf Z
−1ef = (col(e1, ey, eξ))

T (C̄a22Cz2)
TZ−1C̄a22Cz2col(e1, ey, eξ) < 1. (44)

From Lemma 1,ε(P) is an invariant ellipsoid with respect tocol(e1, ey, eξ). Thus, ifZ satisfies

(C̄a22Cz2)
TZ−1C̄a22Cz2 ≤ P, (45)

thenε(Z−1) is an invariant ellipsoid with respect toef . Finally, the Schur component provides

inequality (43).
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V. FAULT-TOLERANT CONTROLLER DESIGN

In this section, an output feedback fault-tolerant controller will be designed based on the

observer (23)-(26), which would ensure that the voltage tracking errors converge to the minimal

invariant ellipsoid.

Let ω̂ = col(ξ̂, yr, i0) ∈ Rq+p+h be the estimation ofω = col(ξ, yr, i0). Then the tracking error

eyr in (12) can be written as

eyr = z2 − yr = C0z +D0ω = C0z +D0ω̂ (46)

whereC0 = [0p×(n+q−p), Ip] andD0 = [0p×q,−Ip, 0p×h].

Note thatey = y − ŷ = z2 − ẑ2 = eyr − êyr. Based on the designed observer (23)-(26), the

regulator is designed as

˙̂z =
(

Â−H1C0

)

ẑ −H1D0ω̂ +Nω̂ + B̂u+H1eyr,

˙̂
ξ = −ΓD̂T

2 P0C0ẑ − σΓξ̂ − ΓD̂T
2 P0D0ω̂ + ΓD̂T

2 P0eyr,

ẏr = Myryr, i̇0 = Mi0i0

(47)

whereMi0 andMyr are matrices dependent on thei0 andyr, and

Â =




Â11 Â12

Â21 Â22



 , B̂ =




B̂1

B̂2



 , H1 =




−K1

−K2



 , N =
[
ˆ̂
D, 0, Ê

]

with

ˆ̂
D =




0

D̂2



 , Ê =




Ê1

Ê2



 .

Let ẑc = col(ẑ, ω̂). Then it follows from (47) that

˙̂zc = Ac0ẑc +Bcu+Heyr (48)

where

Ac0 =




Ac011 Ac012

Ac021 Ac022



 , Bc =




Bc1

Bc2



 , H =




H1

H2



 and M =








−σΓ 0 0

0 Myr 0

0 0 Mi0








with H2 = col(ΓD̂T
2 P2, 0, 0), Ac011 = Â−H1C0, Ac012 = N −H1D0, Ac021 = −H2C0, Ac022 =

M −H2D0, Bc1 = B̂, Bc2 = 0.
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Let Fc = [Fu, Fω] with Fu ∈ Rm×n andFω ∈ Rm×(q+p+h). The fault-tolerant controller is

designed as

u = −Fuẑ − Fωω̂ = −Fcẑc (49)

whereFu is the related to stabilization of the original system (20) and Fω is the disturbance

compensation gain. Then it follows that the output regulator (48) is described by

˙̂zc = Acẑc +Heyr (50)

where

Ac =




Â−H1C0 − B̂Fu N −H1D0 − B̂Fω

−H2C0 M −H2D0



 .

Denoteez = z− ẑ, eω = ω− ω̂. Substituting the output regulator (50) and controller (49) into

system (20) yields the closed-loop system



ż

żc





︸ ︷︷ ︸

żL

=




Â− B̂Fu 0

HC0 Ac





︸ ︷︷ ︸

AL




z

zc





︸ ︷︷ ︸

zL

+




N − B̂Fω

HD0





︸ ︷︷ ︸

NL

ω +




B̂Fc

0





︸ ︷︷ ︸

RL




ez

eω





︸ ︷︷ ︸

eL

+




Ê

0





︸ ︷︷ ︸

EL




d

0





︸ ︷︷ ︸

dL

,

(51)

eyr =CLzL +DLω (52)

whereez = z − ẑ, eω = ω − ω̂, CL = [C0, 0] andDL = D0. It should be noted thatCLD
T
L = 0.

Define the ellipsoid

ε(R−1) = {eyr : e
T
yrR

−1eyr < 1}, R ∈ Rq×q, R > 0. (53)

Then the following theorem is ready to be presented.

Theorem 3. For the closed-loop systems (51) and (52), the ellipsoid ε(R−1) given in (53) is

the minimal invariant ellipsoid with respect to the tracking error eyr if there exist matrices J

and Q such that

ÂJ − JM + B̂Q =N, (54)

AcS − SM =0, (55)

C0J =D0, (56)
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and for any α > 0, µ > 0 and Pzω = P T
zω > 0 satisfying that




I

JT



Pzω

[

I J
]

≤




P

Qω



 , (57)

there exist SPD matrices X ∈ R(n+q)×(n+q), R ∈ Rp×p, and matirx Yu ∈ Rm×(n+q) such that

tr (R) → min (58)

subject to

(Pzω)
−1 ≤ X, (59)




X Y T

u

∗ µ2I



 ≥0, (60)












ÂX +XÂT − B̂Yu − Y T
u B̂T + αX B̂ B̂Q Ê

∗ − α
µ2 I 0 0

∗ ∗ −αQω 0

∗ ∗ ∗ −αQd












≤0, (61)




Qω DT

0

R



 ≥ 0,




X XCT

0

∗ R



 ≥ 0, R > 0. (62)

where S = [JT ,−I]T , Q = −FcS, P is determined by Theorem 1 and Qd can be obtained

through Assumption 2, Qω is determined later. Then PL = X−1, Fu = YuPL and Fω = Q+FuJ .

Proof: There are four disturbances in system (51):NLω, RLeL, ELdL and DLω. Based

on linear superposition property, the effects of the disturbances oneyr can be divided aseyr =

eyr1 + eyr2 whereeyr1 = CLzL1 +DLω andeyr2 = CLzL2 with zL = zL1 + zL2, zL1 andzL2 will

be given later.

a) : In the presence ofNLω andDLω, the equations (51) and (52) are written as



ż

żc





︸ ︷︷ ︸

żL1

=




Â− B̂Fu 0

HC0 Ac





︸ ︷︷ ︸

AL




z

zc





︸ ︷︷ ︸

zL1

+




N − B̂Fω

HD0





︸ ︷︷ ︸

NL

ω,

eyr1 = CLzL1 +DLω.

(63)
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Let W = [JT , ST ]T . Then it follows that

CLW =
[

C0 0
]




J

S



 = C0J = D0

and

ALW −WM =




Â− B̂Fu 0

HC0 Ac








J

S



−




J

S



M =




ÂJ − B̂FuJ − JM

HC0J + AcS − SM



 = NL.

Hence, based on Lemma 1.4 in [24], ifFu is designed such that̂A − B̂Fu is Hurwitz and

Fω = Q+ FuJ , then in the presence ofNLω andDLω, eyr1 = 0.

b) : In the presence ofRLeL andELdL, the tracking erroreyr2 depends entirely onz which

can be obtained from (51) and expressed by

ż =
(

Â− B̂Fu

)

z + B̂Fuez + B̂Fωeω + Êd, (64)

eyr2 =C0z (65)

whereC0 is given in (46). FromFω = FuJ +Q, the equation (64) can be written as

ż =
(

Â− B̂Fu

)

z + B̂Fuezω + B̂Qeω + Êd. (66)

whereezω =
[

I J
]




ez

eω



 .

In fact, from (47),eω = [eTξ , 0p+h]
T . According to the invariant ellipsoidε(P) in Theorem 1,

the radius matrix of the invariant ellipsoid with respect toeω is expressed by

Qω =




Γ−1

Γ+∞



 (67)

whereΓ+∞ is a diagonal matrix with appropriate dimension and its eigenvalues tend to+∞.

Also, the radius matrix is expressed bydiag{P, Qω} of col(ez, eω). Then it follows from (57)

and (66) that

[

eTz eTω

]




I

JT



Pzω

[

I J
]




ez

eω



 ≤
[

eTz eTω

]




P

Qω








ez

eω



 < 1. (68)

Based on [31], the control inputFuz is constrained by‖Fuz‖ ≤ µ2 if

zTF T
u Fuz ≤ µ2, ∀z : zTPLz ≤ 1, (69)
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which holds if and only if (60) holds. It follows from (59) that Pzω ≥ PL. Thus, it yields that

eTzωF
T
u Fuezω ≤ µ2, ∀ezω : eTzωPzωezω ≤ 1, Pzω ≥ PL. (70)

Therefore, the inequality (59) and (60) can guarantee that the control inputFuz and disturbance

Fuezw are bounded. Based on [31] and [32], it can be inferred that the solution of the optimization

problem (58) subject to (59)- (61) provides a minimal invariant ellipsoidε(R−1) of eyr2.

Combining V-0a and V-0b, it infers thateyr will converge to the minimal invariant ellipsoid

ε(R−1).

Hence, the result follows.

Remark 4. In (51), the undesired termRLeL comes from the estimation errorcol(e1, ey, eξ) of

the designed observer (23)-(26) and the estimation errorcol(e1, ey, eξ) is guaranteed to converge

to the minimal invariant ellipsoidε(Q−1). In the presence ofRLeL, the parametersFu andFω in

Theorem 3 are optimized such that the tracking errors converge to the minimal invariant ellipsoid

ε(R−1). ∇

VI. SIMULATION

To verify the effectiveness of the designed adaptive unknown input observer and fault-tolerant

controller for inverter device used in traction system, simulation one the case that only one

incipient sensor fault occurs, is considered first and then the case that two incipient sensor faults

occurs simultaneously, follows. The practical parametersof the three-phase PWM inverter in

CRH2 from CRRC ZHUZHOU INSTITUTECO., LTD are provided in thefollowing table.

TABLE I

PARAMETERS OF THE INVERTER INCRH2.

Parameter Value Unit

r 0.144 Ω

Lf 1.417 × 10−3 H

Cf 6000× 10−6 F

Vdc 3600 V

ω0 314 rad/s
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A. One Incipient fault on voq voltage sensor

When only one incipient fault occurs in thevoq voltage sensor, the fault distribution matrix

is described byF = [0, 1]T . As in [21], the incipient sensor fault considered here is assumed to

be generated bẏf = −100f + ξ, f(0) = 0 where

ξ =







0, 0 ≤ t < 1s,

2000 sin(3t), 1s ≤ t.
(71)

The bounded noise is given by

d =




1.5 sin (10t)

2.0 sin (10t)



 . (72)

Thus, from (71) and (72),Qξ, Qξ̇, Qd, ξ0, ξ1 and d0 in Assumption 2 can be obtained, and

the augmented system can be established as (12). It can be verified that the augmented system

satisfies Assumption 1. Letσ = 0.1 andα = 0.5 in Theorem 1. It is calculated that the optimal

value min{trace(Q)} = 2243.783328. Furthermore, the designed parameters in the proposed

observer (23)-(26) are given by

Γ = 489.1435, P1 =








0.2006 −0.0010 −0.0584

−0.0010 0.2265 −0.0175

−0.0584 −0.0175 0.0844







, P0 =




1.0575 −0.0003

−0.0003 1.0579





L =








−0.4180 0

−0.1691 0

−2.1364 0







, G1 =








−13.0 −267.4

5.7 706.3

−57.5 −6978.0








and G2 =




6387.8 −442.4

−442.4 6291.3



 .

Since only 3D curve can be plotted by Matlab toolbox, the output estimation errorey and

unknown input estimation erroreξ are selected to be shown in Fig. 3.

It can be seen from Fig. 3 that in the presence of disturbances(72), the estimation error

col(ey, eξ) is bounded and converges to the invariant ellipsoidε(Q−1).
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Fig. 3. Invariant ellipsoidε(Q−1) and estimation errorcol(ey, eξ).

With the calculated observer parameters, the matricesJ andQ are calculated as

J =















−0.1033 101.8857, 5.2779 −1.0000 0.0000

−0.0057 6.3047 0.0000 0 −1.0000

−0.0277 27.3004 1.4142 0.0000 0.0000

0 −1.0000 0 0.0000 0

0 −0.0000 −1.0000 0 0















,

Q =




0.0000 −0.0014 −0.0002 0.0000 −0.0003

0.0000 −0.0304 −0.0015 0.0003 0.0000



 .

Let α = 53, µ = 10 and

Pzω =















0.0833 −0.0013 −0.0252 0.0000 0.0000

−0.0013 0.1132 −0.0086 0.0000 −0.0000

−0.0252 −0.0086 0.0413 −0.0000 −0.0000

0.0000 0.0000 −0.0000 0.5288 −0.0001

0.0000 −0.0000 −0.0000 −0.0001 0.5290















.
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Then the fault-tolerant controller parameters are calculated based on Theorem 3 as follows

Fu =




0.0048 −0.0027 −0.0166 0.9079 −0.8161

−0.0013 0.0029 0.0027 −0.4232 0.4727



 ,

Fω =




−0.0000 −0.8885 0.8181 −0.0048 0.0030

0.0000 0.4087 −0.4744 0.0010 −0.0029



 .

The time responses are shown in Figs. 4 and 5. It can bee seen from Figs. 4 and 5 that even
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Fig. 4. Time response of the output voltagesvod andvoq.
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Fig. 5. Invariant ellipsoidε(R−1) and the voltage tracking erroreyr = col(eyr1, eyr2).

in the presence of disturbances and the incipientvoq voltage sensor fault, the output voltages of

the inverter track the given reference signals with the voltage errors converging to the invariant

ellipsoid ε(R−1).
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On the other hand, to estimate fault signals more accurately, another unknown input observer

is designed based on Theorem 2. By direct calculation the optimal value,min{trace(Z)} =

997.237035. The actual incipient sensor fault signal (blue and dot line) and its estimation (red

an solid line) are given in Fig. 6, and the fault estimation error is given in Fig. 7. It can be seen
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Fig. 6. Time response of the fault estimation curve off̂ and actual fault curvef .
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Fig. 7. Invariant ellipsoidε(Z−1) andvoq incipient sensor fault estimation erroref .

from Figs. 6 and 7 that the fault estimation erroref also converges to the invariant ellipsoid

ε(Z−1).

The simulation of a single incipient fault occurring onvod voltage sensor is similar to the case

that single incipient fault occurs onvoq voltage sensor, which is omitted here. The next part will

provide simulation for the case when two incipient faults occur onvoq andvod voltage sensors

simultaneously.
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B. Two incipient faults on voq and vod voltage sensors simultaneously

When two incipient faults occur on thevod andvoq voltage sensors simultaneously, the fault

distribution matrixF is described by

F =




1 0

0 1



 . (73)

The incipient sensor faults are assumed to be generated by

ḟ =




−100

20 −100



 f +




ξ1

ξ2



 , f(0) = 0 (74)

where

ξ1 =







0, 0 ≤ t < 1s,

2000 sin(3t), 1s ≤ t,
ξ2 =







0, 0 ≤ t < 1s,

1000 sin(3t), 1s ≤ t.
(75)

The disturbances are described by (72).

Sincep = q, it follows thatL = 0 in Theorem 1. Giving appropriate parameters in Theorems

1 and 3, and calculating designed parameters, the simulation results are shown in Figs. 8-12.

e
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Fig. 8. Invariant ellipsoidε(Q−1) and estimation errorey = col(ey1 , ey2).

Fig. 8 confirms that the designed unknown input observer ensures that the estimation error

col(e1, ey, eξ) converges to the invariant ellipsoidε(Q−1) even in the presence of disturbanced

and time varyingξ. It is verified from Figs. 9 and 10 that the proposed fault-tolerant controller

guarantees that the output voltagesvod andvoq track the given voltage values with the tracking

errors converging to the invariant ellipsoidε(R−1) given by Theorem 3. Moreover, after incipient
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Fig. 10. Invariant ellipsoidε(R−1) and the voltage tracking erroreyr = col(eyr1 , eyr2).

sensor faults occur, the tracking errors will stay in the invariant ellipsoid. It can be seen from

Figs. 11 and 12 that the incipient fault signals are estimated by the proposed adaptive laws, and

the estimation error converges to the invariant ellipsoidε(Z−1).

VII. CONCLUSIONS

An incipient sensor fault estimation and accommodation method has been proposed for the

three-phase PWM inverters used in the electric railway traction systems. An adaptive unknown

input observer has been designed to estimate the inverter voltages, currents and incipient sensor

faults. The inverter incipient sensor fault accommodationmethod also been developed to guar-

antee that the output voltages of the inverter system track the reference voltages irrespective
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of sensor faults occurrence. In the presence of disturbances, the invariant ellipsoid has been

introduced such that the estimation errors and the voltage tracking errors converge to the corre-

sponding invariant ellipsoid.
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