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Abstract 1 

Background: The relative frequency of wind and animal pollinated plants is non-randomly 2 

distributed across the globe and numerous hypotheses have been raised for the greater occurrence of 3 

wind pollination in some habitats and towards higher latitudes. To date, however, there has been no 4 

comprehensive global investigation of these hypotheses.  5 

Aims: Investigating a range of hypotheses for the role of biotic and abiotic factors as determinants 6 

of the global variation in animal versus wind pollination. 7 

Methods: We analysed 67 plant communities ranging from 70º North to 34º South. For these we 8 

determined habitat type, species richness, insularity, topographic heterogeneity, current climate and 9 

Late-Quaternary climate change. The predictive effects of these factors on the proportion of wind- 10 

and animal-pollinated plants were tested using correlations, ordinary least squares (OLS) and 11 

logistic regression analyses with information-theoretic model selection. 12 

Results: The proportion of animal-pollinated plant species was positively associated with plant 13 

species richness and current temperature. Furthermore, in forest, animal pollination was positively 14 

related to precipitation. Historical climate was only weakly and idiosyncratically correlated with 15 

animal pollination. 16 

Conclusion: Results were consistent with the hypothesised reduced chance for wind-transported 17 

pollen reaching conspecific flowers in species-rich communities, fewer constraints on nectar 18 

production in warm and wet habitats, and reduced relative effectiveness of wind dispersal in humid 19 

areas. There was little evidence of a legacy of historical climate change affecting these patterns. 20 

Keywords: abiotic, biotic, community ecology, forest, mutualism, open vegetation, pollen 21 

dispersal, precipitation, species richness, temperature. 22 

 23 

 24 



3 

 

Introduction 1 

Pollination is a fundamental ecological process that is crucial for the functioning of most terrestrial 2 

ecosystems (Kearns et al. 1998; Ollerton et al., 2011; Lever et al., 2014). Plants achieve pollen 3 

transfer among conspecifics using biotic (animal) and abiotic (wind and, rarely, water) pollen 4 

vectors. Wind pollination occurs in about 20% of angiosperm families and most groups of 5 

gymnosperms (Ackerman 2000), an estimated 12.5% of all angiosperm species are wind pollinated 6 

(Ollerton et al. 2011). Wind pollination is a derived condition that has evolved independently more 7 

than 60 times within otherwise animal-pollinated clades (Ackerman 2000; Friedman and Barrett 8 

2009; Hu et al. 2012), with occasional reversions to biotic pollination (e.g. Wragg and Johnson 9 

2011). 10 

Wind pollination is currently understood to be a reproductive strategy that evolves when 11 

pollinators become unpredictable or unavailable (Barrett 1996; Culley et al. 2002; Friedman and 12 

Barrett 2009). Supporting this idea, the proportion of wind-pollinated plants is higher in the 13 

temperate zone (Culley et al. 2002; Ollerton et al. 2011), where climate is less stable seasonally 14 

(Cramer et al. 1999) and over longer glacial–interglacial time scales (Sandel et al. 2011). In 15 

temperate regions usually < 80% of the plant species within a community are animal pollinated, 16 

whereas animal pollination is more common in the tropics where on average ≥90 % of all co-17 

occurring plants are pollinated by animals (Whitehead 1969; Regal 1982; Ollerton et al. 2011). 18 

Although this latitudinal pattern is already known, no study has quantitatively assessed the possible 19 

factors related to the global variation of community-level differences in wind versus animal 20 

pollination (Barrett 1996; Schemske et al. 2009; Ollerton et al. 2011). 21 

The efficiency of wind and animal pollination may depend on the biotic and abiotic 22 

environment where plants occur. A number of testable hypotheses for geographic variation in wind 23 

versus animal pollination have been put forward (Whitehead 1969; Culley et al. 2002). For instance, 24 
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extensive, dense and species-rich forests with high canopy and low wind speeds are supposed to be 1 

unfavourable places for wind pollination because the chance of wind transporting pollen to a 2 

conspecific should be rather low (Whitehead 1969; Regal 1982; Ollerton et al. 2006, 2011; Culley 3 

et al. 2002). Climate may also affect the efficiency of wind pollination. High humidity should make 4 

the cytoplasm of the pollen grains to collapse or become heavier and cause them to clump, reducing 5 

pollen dispersal distance (Whitehead 1969; Niklas 1985). Additionally, high temperature and 6 

precipitation may increase productivity and support more nectar production for animal pollination. 7 

Thus, both mean annual temperature and precipitation should correlate positively with the 8 

proportion of animal pollination. On the other hand, high temperature and precipitation seasonality 9 

may promote wind pollination as pollinator abundances will fluctuate through the year, becoming 10 

less reliable pollen vectors (Regal 1982), unless pollination is in synchrony with these seasonal 11 

fluctuations in pollinator abundances, thereby causing no measurable effect on pollination mode 12 

(McKinney et al. 2012). Finally, in topographically flat environments such as coastal plains wind 13 

pollination could be favoured due to more constant and fast winds. Likewise wind pollination could 14 

be more frequent on islands because wind-pollinated plants are independent of pollinator 15 

colonisation to maintain reproduction (Kühn et al. 2006; Crawford et al. 2011). 16 

Paleoclimate has been linked to contemporary ecological patterns, such as species 17 

distributions and endemism (Svenning and Skov 2007; Cárdenas et al. 2011; Sandel et al. 2011; 18 

Kissling et al. 2012), and the structure of interactions within communities of plants and pollinators 19 

(Dalsgaard et al., 2011, 2013; Groom et al., 2014). Past climatic instability may have broken up 20 

mutualistic associations between plant species and their pollinating animals (Dalsgaard et al., 2011, 21 

2013, McKinney et al., 2012) that may have favoured wind pollination and could be related to the 22 

contemporary composition of plant communities. 23 
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Here, we use a global dataset to describe (1) latitudinal patterns in pollination mode, and (2) 1 

the relationships between putative contemporary and historical factors, and the proportion of animal 2 

versus wind pollinated species in plant communities around the world. Specifically, following on 3 

from the discussion of abiotic and biotic factors that other authors have presented, we test the 4 

following hypotheses: 5 

1. Wind pollination is less frequent in closed forest habitats compared to more open habitats, 6 

such as grasslands.  7 

2. Animal pollination is more frequent in areas with higher mean annual temperature and 8 

precipitation. 9 

3. Conversely, wind pollination is more frequent in regions with lower temperature and 10 

greater seasonality of precipitation. 11 

4. Animal pollination is more frequent in communities with high plant species richness. 12 

5. Wind pollination is more frequent in topographically flat environments. 13 

6. Animal pollination is less frequent on islands. 14 

7.  Wind pollination is more frequent in those areas of the world that have experienced 15 

greater climatic instability during the Quaternary. 16 

 17 

Materials and methods 18 

Animal versus wind pollination datasets 19 

The dataset was taken from 82 published and unpublished community-based assessments of the 20 

proportion of wind and animal pollinated species. These studies are censuses of all native 21 

angiosperm species in flower in a given community at a specific time. Gymnosperms were not 22 

considered by most of the published studies, hence we excluded gymnosperms from all 23 

communities. The latitudes ranged from 34º S to 70º N (Figure 1). When the same geographic 24 
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coordinates were attributed to communities within the same vegetation type by the original authors, 1 

we pooled them together and used the mean of pollination mode proportion as a descriptor of the 2 

proportion of animal pollination for those coordinates. Doing this, we reduced the dataset to 67 data 3 

points for the spatial analysis (Appendix Table S1). 4 

 In some of the published community studies no species list was available, just data on 5 

the proportions of wind and animal pollinated species observed, preventing us from attributing 6 

genera or families to the data analysed by the original authors. For those studies having a species 7 

list, pollination mode at the species level was highly correlated with higher taxa, i.e. genera and 8 

families (Table 1). This does not mean that species within the same genus have always the same 9 

pollination mode. It implies that proportions are constant across taxonomic levels and therefore any 10 

level may be used in the analysis. For the published studies we followed the information provided 11 

by the original authors as to the pollination mode (wind or animal) of a given species. For our own 12 

field observations, flowers were assessed in terms of presence or absence of: mass pollen release 13 

when an inflorescence was shaken, reduced corolla, and feathery stigmas (wind pollination); or 14 

large and colourful flowers with scent or nectar, and the presence and behaviour of potential flower 15 

visitors (animal pollination) (Figure 2; see also Table 1 in Friedman and Barrett 2009). We paid 16 

particular attention to species with small, dull flowers, e.g. some tropical trees, where only the 17 

presence of scent, nectar, and/or insect visitation distinguished biotic from abiotic pollination. 18 

The proportion of animal-pollinated plant species could be underestimated because some 19 

plant species that possess wind pollination traits can also be visited and sometimes pollinated by 20 

animals (Figueredo and Sazima 2000). There might also be cases of obligatory self-pollinating and 21 

non-sexually reproducing species coded as wind or animal pollinated, though this should be a 22 

relatively minor and not spatially structured bias and, hence, should not affect our results (Ollerton 23 

et al. 2011). Similarly to Ollerton et al. (2011), we took a community-level approach as we were 24 
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interested in the ecological question of how large a proportion of plant species in terrestrial 1 

communities are animal or wind pollinated, and the possible factors related to these proportions. 2 

However, first, we measured the phylogenetic signal for pollination mode by means of Phylogenetic 3 

Eigenvector Regression (PVR) considering the species lists where plants were identified up to the 4 

species level (Diniz-Filho et al. 2012). Species lists were available for 56 plant communities, 5 

including 1689 genera. Phylogenetic information was extracted at genus level from Phylomatic 6 

(R20120829 stored tree, Webb and Donoghue 2005) and the tree generated by using Phylocom 7 

(Webb et al. 2008). PVR was calculated by using a principal coordinate analysis (PCoA) of the 8 

phylogenetic distance matrix and selecting the 50 first axes. Phylogenetic signal was obtained by 9 

the logistic regression coefficient (R2) between the selected phylogenetic eigenvectors and the 10 

binomial pollination mode (Diniz-Filho et al. 2012). Phylogenetic signal significance was tested by 11 

measuring PVR on 1000 randomisations of the pollination mode in the phylogeny. The analysis was 12 

carried out by using the package PVR for R (Santos et al. 2013). Since phylogenetic signal of 13 

pollination mode was very low (PVR for 50 eigenvectors = 0.0411; P = 0.47; DF = 50; Deviance = 14 

50.2) no taxonomic correction was required. The low phylogenetic signal probably came out of 15 

many independent origins of wind pollination and, due to many genera having one pollination mode 16 

also showing a minority of species possessing the other pollination mode. 17 

 18 

Correlates of pollination mode 19 

For each site, we extracted variables of contemporary and historical climate conditions 20 

hypothesised to affect the degree of wind versus animal pollination. Current climate descriptors 21 

included mean annual temperature (MAT), mean annual precipitation (MAP), temperature 22 

seasonality (MAT seasonality) and precipitation seasonality (MAP seasonality) extracted at 2.5 arc-23 

minute resolution (approximately 16 km2) from the WorldClim dataset (www.worldclim.org; 24 
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Hijmans et al. 2005). As different climate change metrics may capture different effects of climate 1 

change (Garcia et al. 2014), we considered two measures of historical climate stability: (1) the 2 

velocity of mean annual temperature (MAT velocity) and that of mean annual precipitation (MAP 3 

velocity) between the Last Glacial Maximum (LGM) and the present; and (2) the anomaly of mean 4 

annual temperature (MAT anomaly) and mean annual precipitation (MAP anomaly) between the 5 

LGM and the present (current minus LGM precipitation/temperature – i.e. positive values indicate 6 

wetter or warmer contemporary conditions, respectively). Velocities reflect the speed of climate 7 

change irrespective of the direction, integrating macroclimatic changes and local spatial topoclimate 8 

gradients (Loarie et al. 2009; Sandel et al. 2011), whereas anomalies reflect the direction of climate 9 

change. Paleoclimate estimates were obtained from the CCSM3 model (Collins et al. 2006; Otto-10 

Bliesner et al. 2006), and statistically downscaled to 2.5 arc-minute resolution to match the current 11 

climate data (Hijmans et al. 2005). 12 

In addition, we determined potentially important non-climate descriptors of local 13 

conditions at each site, including whether the site was on the mainland (coded as 0) or on an island 14 

(1), topographic heterogeneity, regional proportion of tree cover, plant species richness, and 15 

whether the vegetation was forest (0; n = 16) or open vegetation type (1; grassland, scrubland, and 16 

other low and open vegetation types, n = 51). Topographic heterogeneity was calculated as the 17 

range of elevation values observed in a 0.2° × 0.2° window (ca. 20 km × 20 km) centered on the 18 

sampling location, using the WorldClim 1-km DEM (Farr et al. 2007). The regional proportion of 19 

tree cover was calculated as the average tree cover observed within a window of 64 km x 64 km 20 

around each site, based on the Vegetation Continuous Fields product applied to MODIS data 21 

(Hansen et al. 2003).  22 

 23 

Statistical analyses 24 
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For all analyses, plant species richness, MAT anomaly, precipitation and temperature 1 

velocities were log10-transformed; contemporary mean annual precipitation and topography were 2 

square-root transformed; the proportion of regional tree cover was arcsine square-root transformed. 3 

The proportion of animal pollinated plant species in each community was arcsine square-root 4 

transformed for ordinary least squares (OLS) regression, but was left untransformed for logistic 5 

regression. All other variables were left untransformed. 6 

 First, the latitudinal pattern in pollination mode was tested with a quadratic regression 7 

between latitude and the proportion of animal pollination. Second, for all vegetation types, and 8 

separately for open vegetation types and forest, we tested the univariate associations between all 9 

predictor variables and between the proportion of animal pollinated plant species and all predictor 10 

variables (Appendix Table S2). This identified predictor variables that were strongly inter-11 

correlated. For all further analyses, we excluded temperature seasonality as it was strongly 12 

correlated with mean annual temperature (r = -0.73, P < 0.001, n = 67), and we excluded the 13 

proportion of regional tree cover as it was unavailable for three island datasets and strongly 14 

correlated with contemporary precipitation (r = 0.73, P < 0.001, n = 64; see Appendix Table S2). 15 

Due to the strong positive relationship between precipitation and the proportion of regional tree 16 

cover, we adjusted our above hypothesis of a unidirectional positive effect of precipitation on 17 

animal pollination. For forest, we still expected a positive correlation between precipitation and the 18 

proportion of animal pollination. For open vegetation types, on the other hand, we expected a less 19 

strong (or even zero) effect of precipitation due to the possible opposite effects of increasing 20 

precipitation (favouring animal pollination) and associated increasing fragmentation of open 21 

vegetation communities surrounded by increasing amounts of forests as precipitation and regional 22 

tree cover coincide (increased fragmentation favouring wind pollination). 23 
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To test the study hypotheses, we used ordinary least squares (OLS) and logistic 1 

regression, conducting information-theoretic model selection, as outlined by Diniz-Filho et al. 2 

(2008). In doing so, we tested the effect of both measures of historical climate stability, i.e. 3 

temperature/precipitation velocity and anomaly; the anomaly models generally performed the best 4 

(highest R2 and lowest AIC), so we focus the discussion on these models (but we also report models 5 

including velocity). First, we fitted models with all combinations of the explanatory variables: 6 

forest versus open vegetation, insularity, plant species richness, contemporary precipitation, 7 

contemporary temperature, precipitation seasonality, topography and historical climate stability as 8 

measured by temperature and precipitation anomaly. Furthermore, due to the possible different 9 

effect of precipitation in open and forest vegetation, we included an interaction term between 10 

precipitation and forest versus open vegetation. We then identified minimum adequate models 11 

(MAMs) among these as any model with ∆AICc < 2 (n = 67, 1023 alternative models; Table 2). 12 

When using temperature and precipitation velocity as a measure of climate stability, we excluded 13 

topography as it is strongly correlated with velocities (Appendix S2), i.e. when using velocity as our 14 

historical climate variable we compared 511 models. We were unable to estimate velocities for one 15 

island data point, therefore in models using velocities there is one data point fewer. 16 

Standardised regression coefficients are reported for both a multi-model average 17 

regression model based on weighted wi and the MAMs (Diniz-Filho et al. 2008). We tested whether 18 

significant (P < 0.05) positive spatial autocorrelation remained in OLS model residuals, tested using 19 

10 distance classes and applying a permutation test with 10,000 iterations. As no spatial 20 

autocorrelation was found in our anomaly models that performed the best, we did not use spatial 21 

models. All correlations and OLS regression analyses were conducted using Spatial Analysis in 22 

Macroecology 4.0 (Rangel et al. 2010). Logistic model selection analyses were carried out in R (R 23 

Development Core Team, 2014) using the ‘MuMIn’ package (Barton 2015). 24 
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 1 

Results 2 

The proportion of animal-pollinated plants in a community decreased with latitude (Figure 1). This 3 

pattern appeared to be largely symmetrical across the Equator, though there was a geographical bias 4 

to the distribution of the studies, and more data from Africa and Asia, in particular, are needed to 5 

confirm the observed pattern. 6 

The models to assess the relative importance of the factors tested as determinants of 7 

the proportion of animal pollination showed that overall the explanatory power was considerably 8 

higher for current climate variables (ca. 32% < R2 < 36%) than for species richness (ca. 4% < R2 < 9 

5%) and historical climate variables (ca. 0% < R2 < 2%; Table 2 and Appendix S3). The proportion 10 

of animal pollination in both simple univariate correlations and in regression models was strongly 11 

and positively associated with current temperature and species richness (Figure 3; Table 2; 12 

Appendix S3). Furthermore, the interaction term between precipitation and vegetation type was 13 

included in the best-fit regression model (Table 2; Appendix S3), indicating that precipitation 14 

correlated strongly with the proportion of animal pollination in forest (Figure 3; Appendix S2). 15 

There were only weak associations with topography and temperature anomaly and velocity (Table 16 

2, Appendix S2). In addition to explaining little variation in pollination mode, topography and 17 

historical temperature anomaly/velocity associated positively with animal pollination in regression 18 

models (Table 2), but were unrelated in simple univariate correlations (Table S1). In logistic, but 19 

not in OLS, regression islands were found to have a lower proportion of animal pollination. 20 

Seasonality, precipitation anomaly, and precipitation velocity were not statistically significant in 21 

simple univariate correlations nor were they included in any MAMs (Table 2 and Appendix S3). 22 

 23 

Discussion 24 
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The proportion of plant species using animal versus wind pollination in a given community is non-1 

random with respect to latitude, animal pollination being especially dominant in the tropics (Figure 2 

1), confirming previous studies, but with a much larger and geographically widespread data set. We 3 

found that differences in the proportion of animal pollinated species were associated mainly with 4 

current climate (Figure 3). Notably, temperature was overall positively related to the prevalence of 5 

animal pollination (partly supporting hypothesis 2), and in forests animal pollination was more 6 

frequent in areas with higher precipitation (supporting both hypothesis 1 and, in part, hypotheses 2 7 

and 3). However, the ‘more wind pollination with greater precipitation seasonality’ aspect of 8 

hypothesis 3 was not supported, perhaps due to the different nature of seasonality in the lowland 9 

tropics (wet, dry) compared with the temperate or high altitude zones (cold and warm). In addition 10 

to current climate, we found that communities with greater local plant species richness have a 11 

higher proportion of animal pollination (supporting hypothesis 4). On the other hand, topography 12 

had little effect on frequency of pollination mode, not supporting hypothesis 5. Kühn et al. (2006) 13 

showed that wind pollination in Germany is more frequent in the flat landscapes of north relative to 14 

other parts of the country, although it increases also toward the southern Alpine uplands. This 15 

suggests that the effect of topography is scale- and context-dependent, which may explain its weak 16 

effect in our global analysis. Insularity also had only a minor influence on pollination-mode, with 17 

islands tending to have lower proportions of animal-pollination, but only when also taking climate 18 

into account (Table 2), which only partly supports hypothesis 6. In contrast to the strong 19 

associations with current factors (Table 2; Appendix S2), historical climate was associated only 20 

weakly and idiosyncratically with animal pollination, varying independently when using regression 21 

models or simple univariate correlations (Table 2 and Appendix S2), and therefore not supporting 22 

hypothesis 7. Overall, this suggests that the relative proportions of different pollination modes are 23 

more linked to current climate and ecological factors than to historical legacies. 24 
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 Although these results support the greater influence of contemporary ecological 1 

factors over historical ones, it is not straightforward to determine the exact mechanism responsible 2 

for this pattern. For example, current precipitation was strongly related to the percentage of regional 3 

tree cover, hence, animal pollination is associated with both high precipitation and forest habitat. 4 

Wet forests clearly offer poor conditions for pollen dispersal, but it is difficult to disentangle 5 

whether this is because of mechanical restrictions imposed by dense vegetation or because air 6 

humidity decreases pollen dispersability, or both (Whitehead 1969; Niklas 1985). In open areas, 7 

especially in the tropics, the distribution of plant individuals tends to be sparse and floral resources 8 

less abundant. For example, an estimate of nectar energy available per hectare in the Atlantic rain 9 

forest in Brazil showed that forests produced twice as much floral energy as the nearby open 10 

‘restinga’ (coastal scrub) vegetation (Fonseca 2013, Fonseca et al. 2015). Moreover, the distribution 11 

of an Andean plant species was associated with a progressive disruption of its animal pollination 12 

mutualism accompanied by the gradual decrease in precipitation (Chalcoff et al. 2012). This 13 

illustrates the potential role of vegetation structure and precipitation in determining the functioning 14 

of animal-dependent mutualisms, but disentangling the roles of correlated factors is a major 15 

challenge for macroecology. 16 

 Interestingly, current climate may play a similar role for seed dispersal as there is also 17 

a pattern of higher importance of animal dispersers in rain forests, whereas in dry forests wind and 18 

self-dispersal are more common (Howe and Smallwood 1982; Jordano 2000 and references 19 

therein). For instance, current precipitation patterns are largely correlated with proportion of 20 

endozoochory across the Atlantic forest of Brazil, animals being more important dispersers in the 21 

wetter areas (Almeida-Netto et al. 2008), although large-scale studies are not available to confirm 22 

this hypothesis. One tentative joint explanation for the lower frequency of animal-pollinated and 23 

animal-dispersed plants at drier sites could be the higher metabolic costs of producing nectar and 24 
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fleshy fruit, as was originally proposed only for fruit (Wilson et al. 1989; Almeida-Neto et al. 1 

2008). Associated with humidity, high temperature may also increase nectar production and 2 

therefore influence animal pollination, although, as temperature and temperature seasonality were 3 

found to be negatively correlated, we cannot rule out the possibility that seasonality promotes wind 4 

pollination (Regal 1982). 5 

 Another factor positively associated with animal pollination was plant species 6 

richness. Other trophic interactions between plants and animals respond to the bottom-up effect of 7 

plant species richness (Kissling et al. 2007; Scherber et al. 2010); for instance, in the Neotropics the 8 

diversity of pollinating birds and bats is associated with their food plant species richness (Fleming 9 

2005; Kissling et al. 2007). Meanwhile, as plant species richness increases, the density of 10 

conspecifics per unit area tends to decrease (Comita et al. 2010), which may also reduce the 11 

efficiency of pollen dispersion by wind (Whitehead 1969; Regal 1982). Plant species richness may 12 

also play an important role in sustaining pollinator communities (Ebeling et al. 2008; Dorado and 13 

Vázquez 2014) via two main mechanisms: (1) more plant species per unit area may ensure a more 14 

predictable and diverse food supply through complementarity (Waser and Real 1979; Rathcke 1983; 15 

Blüthgen and Klein 2011; Yang et al. 2013); and (2) more plant species also increases species 16 

redundancy within functional groups (‘biodiversity insurance effect’), reducing the extinction risk 17 

of functionally specialised interactions (Bartomeus et al. 2013; Fründ et al. 2013). For instance, 18 

manipulative experiments have shown that high functional diversity of plants enhances the number 19 

of pollinators, and the functional diversity of pollinators increases individual plant fitness and 20 

community persistence over time (Fontaine et al. 2006; Albrecht et al. 2012). 21 

 22 

Conclusions 23 
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We tested a range of previously proposed hypotheses and found that a subset of contemporary 1 

climate and ecological processes are the factors more strongly related to the global pattern of animal 2 

than to wind pollination at the community level. The deduced limited influence of historical climate 3 

instability on the contemporary prevalence of animal and wind pollination is in contrast with 4 

previous findings of high importance of historical factors on the structuring of plant-pollinator 5 

interaction networks (Dalsgaard et al., 2011, 2013; Martín González et al. 2015) and the distribution 6 

of animal and plant life on earth (Svenning and Skov 2007; Cárdenas et al. 2011; Sandel et al. 2011; 7 

Kissling et al. 2012), but is in accordance with studies of the organisation of plant-frugivore 8 

interaction networks (Schleuning et al. 2014). In future studies, it would be interesting to examine if 9 

other measures of historical processes, e.g. geological differences or historical measures of plant 10 

migration rates, influence plant reproduction. The large scale drivers of plant reproductive ecology 11 

will be better understood with similar studies examining also the role of both historical and 12 

contemporary factors on other processes, such as plant reproduction via autogamy and seed 13 

dispersal. In addition, to improve the certainties of the conclusions presented here will require 14 

additional sampling effort in Africa, Asia, Russia and oceanic islands, where so few data have been 15 

collected on plant reproductive ecology at the community level.  16 
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Table and Figures 

Table 1. Correlations among the proportion of units in different taxonomic categories regarding pollination mode (animal versus wind 

pollination). 

Taxa Pearson correlation t-value Degrees of freedom P-value 

Species and Genera 0.971 31.2131 59 < 0.001 

Species and Families 0.776 9.4789 59 < 0.001 

Genera and Families 0.836 11.7435 59 < 0.001 
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Table 2. Contemporary and historical correlates (precipitation and temperature anomalies) of the proportion of animal-pollinated plant 

species in plant communities worldwide (n=67). The standardised regression coefficients are reported both for ordinary least square (OLS) 

and logistic regression, and reported for both an averaged model based on weighted wi and minimum adequate models (MAMs), as in 

Diniz-Filho et al. (2008). For all MAMs based on OLS, we give AICc, Condition Number, Moran’s I, and coefficients of determination 

(R2). Finally, “R2
species richness”, “R2

topography”, “R2
current climate” and “R2

historical climate” reflect the unique variation explained by species richness, 

topography, current climate and historical climate, respectively. Note that historical climate stability is represented by temperature and 

precipitation anomaly between 21,000 years ago and the present (current minus Last Glacial Maximum - LGM precipitation/temperature, 

i.e. positive values reflect areas having been drier or colder at LGM than at present). See Appendix Table 2 for similar calculations when 

using temperature and precipitation velocities as historical climate stability measures. 

 OLS  Logistic 

 Σ wi Averaged MAM†   Σ wi Averaged MAM ¶ 

Insularity 0.22 +0.02   0.96 -0.33 -0.33 

Topography 0.84 +0.28 +0.28  1.00 +0.45 +0.42 

Plant species richness 0.83 +0.23 +0.22  0.93 +0.24 +0.25 
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Open vegetation vs. forest 0.42 -0.22   1.00 +0.27 +0.29 

MAP x Open vegetation vs forest 0.64 +0.37 +0.18  1.00 +1.18 +1.23 

MAP (Mean Annual Precipitation) 0.25 -0.05   1.00 +0.13 +0.18 

MAT (Mean Annual Temperature) 1.00 +0.69 +0.74  1.00 +1.42 +1.34 

MAP seasonality 0.31 -0.11   0.48 -0.17  

MAT anomaly 0.70 +0.25 +0.25  1.00 +0.84 +0.85 

MAP anomaly 0.24 +0.00   0.51 +0.18  

AIC (Akaike Information Criteriac)    -73.29    668.9 

Moran’s Index   ≤0.08NS   

Condition Number   2.6   

R2   0.49   

R2
species richness   0.04   



27 

 

R2
topography   0.01   

R2
current climate   0.36   

R2
historical climate   0.02   

**, P < 0.01; *, P < 0.05; NS, non-significant. † three models were equally fit (i.e. ∆AICc ≤ 2) containing the following variables, 1) Open 

vegetation vs forest, plant species richness, MAT, MAP x Open vegetation versus forest, topography, MAT anomaly; 2) plant species 

richness, MAT, topography, MAT anomaly; 3) Open vegetation vs forest, plant species richness, MAT, topography, MAT anomaly. ¶ three 

other models were equally fit (i.e. ∆AICc ≤ 2) containing the following variables, 1) Open vegetation vs forest, insularity, plant species 

richness, MAT, MAP, MAP x Open vegetation versus forest, MAP seasonality, topography, MAT anomaly, MAP anomaly ; 2) Open 

vegetation vs forest, insularity, plant species richness, MAT, MAP,  MAP x Open vegetation versus forest, MAP seasonality, topography, 

MAT anomaly; 3) Open vegetation vs forest, insularity, plant species richness, MAT, MAP,  MAP x Open vegetation versus forest, 

topography, MAT anomaly, MAP anomaly. 
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Figure 1. Geographic patterns of animal pollination in 67 communities surveyed across the world. Fitted curves are second order 

polynomials; r2 = 0.28, F2, 47, 13.85, P< 0.001. On the map, dots were separated slightly within a small range to reduce the overlap of 

nearby sites. 

Figure 2. Examples of species having traits representing wind (A-D) and animal (E-G) pollination used to classify plant species according 

to pollination mode in this study. A, Ambrosia artemisiifolia L. (Asteraceae) a diclinous wind pollinated plant with minute flowers that 

produce a large amount of pollen (Photo by Andrew Butko via Wiki images), B, Mercurialis annua L. (Euphorbiaceae) a dioecious wind-

pollinated plant species; the circle highlights the female flower and, in detail at the right side of the image, we show the inflorescence of a 

male individual (Photo by Hasan Yldirin), C, Olyra ciliatifolia Raddi (Poaceae) female flower with feathery stigmas (Photo by Pedro 

Viana), D, Paspalum notatum Flüggé (Poaceae) showing the flexible white filaments; the arrow is pointing to the wide anther aperture 

(Photo by Pedro Viana), E, Turnera ulmifolia L. (Passifloraceae) a 3D heterostyle species and a butterfly, one of its animal pollinators, F, 

Couroupita guianensis Aubl. (Lecythidaceae) with food (colourful) and pollination (white) specialised stamens (Photo by Hipolito Neto), 

G, Gongora bufonia Lindl. (Orchidaceae) being pollinated by a male euglossine bee (Eufrisea violacea) when collecting scented oil from 

its labellum (Photo by Carlos Eduardo Coquinho). 

Figure 3. The relationship between the proportion of animal pollinated plant species per community and the most important and consistent 

predictors, a) plant richness; b) temperature; c) precipitation. Open symbols illustrate open vegetation types whereas filled symbols 
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illustrate forest communities. All relationships significant in simple univariate correlations are shown: all vegetation types (n = 67; dashed 

line); open vegetation types (n = 51, dotted line); and forest (n = 16, full line). See Table 2 and Tables S1-S2 for statistics. 
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Appendix Table S1. Site descriptions for each community analysed in the study: “The macroecology of animal versus wind pollination”. Each 

number in the first column corresponds to a reference below. 

Nº Study site Mainland = 0 

Island = 1 

Forest: 1 

Other = 0 

Total 

plants: 

Nº wind 

pol. species 

% animal 

pollination 

Latitude 

Decimalised 

Longitude 

Decimalised 

1 Juan Fernandez Islands, Chile 1 0 149 70 53.02 -33.64 -78.84 
2 Coastal scrub, UK 1 0 37 9 75.68 54.40 -0.51 
3 Degraded tropical scrub/secondary 0 1 82 3 96.34 22.28 114.2 
4 Serra da Bocaina - Grassland 0 0 179 55 69.27 -22.73 -44.61 
5 Cerrado, Brazil 0 0 294 52 82.31 -22.87 -48.49 
6 semi-arid scrub - Spain 0 0 31 6 80.65 37.01 -6.55 
7 Amami Island, Japan  1 0 103 6 94.17 28.32 129.42 
8 All habitats across New Caledonia 1 0 97 3 96.91 -21.17 165.25 
9 La Selva, Costa Rica 0 1 283 13 95.41 10.45 -84.00 

10 Caatinga, Brazil 0 0 147 3 97.96 -8.45 -36.76 
11 various localities, Faroe Islands 1 0 70 19 72.86 62.00 6.783 
12 Guyana Highlands, Venezuela 0 0 55 6 89.09 5.58 -61.71 
13 Rainforest, Malaysia 1 1 262 0 100.00 4.20 114.5 
14 Alpine pavement plain, California 0 0 17 4 76.47 34.30 -116.86 
15 Woodland, USA 0 1 208 57 72.60 42.1 -111.59 
16 various localities, St Kilda 1 0 92 39 57.61 57.81 -8.58 
17 Palm swamp, Venezuela 0 1 33 5 84.85 8.93 -67.25 
18 Prairie, Illinois 0 0 409 14 96.58 39.46 -89.90 
19 Flooded/Upland Rainforest, Colombia 0 1 90 2 98.51 -0.61 -72.33 
20 Lower alpine, Scotland 1 0 153 8 94.77 56.50 -3.11 
21 Serra do Cipo 0 0 64 5 92.19 -23.336667 -45.14 
22 Botucatu 0 0 34 3 91.18 -22.844167 -48.68 
23 Santa Virginia 0 1 70 8 88.57 -19.334722 -43.58 
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24 Picinguaba - restinga 0 0 47 5 89.36 -23.358056 -44.85 
25 Picinguaba - Atlantic forest 0 1 43 2 95.35 -23.338611 -44.83 
26 La Floresta - Canelones - Uruguay - 0 0 24 10 58.33 -34.760706 -55.69 
27 Quebrada de los Cuervos - Uruguay - 0 0 42 14 66.67 -32.935091 -54.46 
28 Kumu - Guyana - rainforest 0 1 59 3 94.92 3.266667 -59.75 
29 Kumu - Guyana - savannah 0 0 43 6 86.05 3.266667 -59.77 
30 Wahroonga - South Africa 0 0 73 4 94.52 -29.616667 30.13 
31 Mantanay - Peru 0 0 148 6 95.95 -13.2 -72.08 
32 Scrub Field - Northampton - UK 1 0 162 35 78.40 52.26 -0.88 
33 Bahia de Patano - Venezuela 0 0 78 12 84.62 10.466667 -67.75 
34 Guimar Badlands, Tenerife 1 0 18 2 88.89 28.33 -16.42 
35 Mean JasperRidge Plant Covariates - 0 0 109 24 78.98 37.417 -122.19 
36 Mean JasperRidge Plant Covariates – 0 1 78 16 77.85 37.417 -122.19 
37 JasperRidge Plant Covariates – 1 0 16 7 56.25 37.701067 -123.00 
38 MatherPlantCovariatesPUPPLEEsEt – 0 0 92 31 66.30 37.8774 -119.25 
39 MatherPlantCovariatesPUPPLEEsEt – 0 0 58 6 89.66 37.8374 -120.30 
40 MatherPlantCovariatesPUPPLEEsEt – 0 1 132 19 85.61 37.8774 -119.29 
41 MatherPlantCovariatesPUPPLEEsEt – 0 0 134 33 75.37 38.0095 -123.00 
42 TimberlinePlantDataPurple – Dore 0 0 60 19 68.33 37.9683 -119.30 
43 TimberlinePlantDataPurple – 0 0 95 47 50.53 37.9382 -119.25 
44 TimberlinePlantDataPurple – 0 1 91 34 62.64 37.9612 -119.29 
45 TimberlinePlantDataPurple – Talus 0 0 126 38 69.84 37.9462 -119.25 
46 Virginia Basin (Colorado) 0 0 64 6 90.63 38.98 -106.966667 
47 Mean Hangklip, South Africa 0 0 124 41 65.55 -34.25 18.75 
48 Brattnesdalen, Norway  0 0 18 8 55.56 70.25 22.07 
49 Fjorddalen, Norway 0 0 31 10 67.74 70.19 22.10 
50 various localities, Australia 0 1 148 8 94.59 -19.18 146.75 
51 Torrey Pines - California 0 0 85 21 75.29 32.89 -117.24 
52 Japatul Valley - California 0 0 91 15 83.52 32.78 -116.68 
53 Echo Valley - California 0 0 56 4 92.86 32.89 -116.65 
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54 Mount Laguna - California 0 1 65 15 76.92 32.86 -116.41 
55 Ocotillo - California 0 0 80 14 82.50 32.74 -115.99 
56 Papudo - Chile 0 0 95 23 75.79 -32.55 -71.44 
57 Fundo Santa Laura - Chile 0 0 106 18 83.02 -33.26 -70.85 
58 Cerro Potrerillo - Chile 0 0 47 11 76.60 -30.29 -70.57 
59 El Tofo - Chile 0 0 44 5 88.64 -29.88 -71.20 
60 Alpine - montane Colorado 0 0 68 17 75.00 38.68 -107.115532 
61 Aspen - montane Colorado 0 1 56 15 73.21 38.73 -106.772653 
62 Sage - montane Colorado 0 0 45 9 80.00 38.73 -106.823376 
63 Grassland - montane Colorado 0 0 103 24 76.70 38.95 -106.988824 
64 Spruce-fir - montane Colorado 0 1 50 11 78.00 38.86 -107.101081 
65 Salt marsh, Canada 0 0 18 6 66.67 49.08 -125.85 
66 Sphagnum bog, Canada 0 0 33 13 60.61 49.08 -125.86 
67 Subalpine meadow, Canada 0 0 45 11 75.56 49.11 -120.84 
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Appendix Table S2. Correlations between the proportion of animal pollinated plant species and all predictor variables for all vegetation types (n 

= 67, except for velocities which had one data point less as we were unable to extract it for St Kilda Island, Scotland) above the diagonal, and 

separately for open vegetation types (n = 51, except for velocities which had one data point less as we were unable to extract it for St Kilda 

Island, Scotland) below the diagonal. 

 % animal 

pollinated 

Plant 

richness 

MAT MAP MAP 

seasonality 

Topography MAT 

anomaly 

MAP 

anomaly 

MAT 

velocity 

MAP 

velocity 

% animal pollinated  +0.32** +0.57* +0.29† +0.09NS -0.11NS -0.14NS +0.03NS +0.07NS +0.13NS 

Plant richness +0.28*  +0.11NS +0.11NS -0.05NS -0.11NS +0.06NS +0.23NS +0.16NS +0.05NS 

MAT (Mean Annual Temperature) +0.42* +0.09NS  +0.44* +0.35* -0.45** -0.50* +0.01NS +0.05NS +0.37** 

MAP (Mean Annual Precipitation) -0.02NS -0.04NS +0.24NS  -0.17NS -0.25† -0.20NS +0.33** +0.14NS +0.25* 

MAP seasonality +0.14NS +0.02NS +0.39* -0.18*  +0.12NS -0.53* -0.05NS -0.36† +0.20NS 

Topography +0.04NS -0.08NS -0.36** -0.17NS +0.19NS  -0.04NS -0.16NS -0.71** -0.47** 

MAT anomaly -0.08NS +0.12NS -0.51* -0.10NS -0.60** -0.13NS  -0.17NS +0.50** -0.21NS 

MAP anomaly -0.22NS +0.08NS -0.17NS +0.22NS +0.06NS -0.01NS -0.13NS  +0.16NS +0.10NS 

MAT velocity +0.01NS +0.16NS -0.04NS +0.10NS -0.41* -0.70** +0.58** +0.05NS  +0.40* 

MAP velocity +0.02NS -0.01NS +0.29** +0.14NS +0.17NS -0.42** -0.15NS -0.05NS +0.43*  
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**P < 0.01; *P < 0.05 when P-values based on degrees of freedom corrected for spatial autocorrelation using Dutilleul’s (1993) method; 

†significant when using traditional non-spatial statistics, but non-significant when corrected for spatial autocorrelation; NSnon-significant. 
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Appendix Table S2, continued. Correlations between predictor variables separately for forest (n = 16).  

 

**P < 0.01; *P < 0.05 when P-values based on degrees of freedom corrected for spatial autocorrelation using Dutilleul’s (1993) method; 

†significant when using traditional non-spatial statistics, but non-significant when corrected for spatial autocorrelation; NSnon-significant. 

Appendix Table S3. Contemporary and historical determinants (precipitation and temperature velocities) of the proportion of animal-pollinated 

plant species in plant communities worldwide (n=66). The standardized regression coefficients are reported both for ordinary least square (OLS) 

 % animal 

pollinated 

Plant 

richness 

MAT MAP MAP 

seasonality 

Topography MAT 

anomaly 

MAP 

anomaly 

MAT 

velocity 

MAP 

velocity 

% animal pol.  +0.30NS +0.82† +0.84* -0.01NS -0.59† -0.46NS +0.37NS +0.32NS +0.50† 

Plant richness   +0.05NS +0.38NS -0.29NS -0.22NS -0.29NS +0.57* +0.21NS +0.26NS 

MAT (Mean Annual Temperature)    +0.74† +0.32NS -0.73† -0.67† +0.19NS +0.34NS +0.58† 

MAP (Mean Annual Precipitation)     -0.13NS -0.52† -0.70* +0.42NS +0.33NS +0.58† 

MAP seasonality      -0.14NS -0.26NS -0.30NS -0.13NS +0.26NS 

Topography       +0.55† -0.56* -0.78* -0.61† 

MAT anomaly        -0.41NS -0.17NS -0.64* 

MAP anomaly         +0.56* +0.44NS 

MAT velocity          +0.36NS 

MAP velocity           



40 

 

and logistic regression, and reported for both an averaged model based on weighted wi and minimum adequate models (MAMs), as in Diniz-

Filho et al. (2008). For all MAMs based on OLS, we give AICc, Condition Number, Moran’s I, and coefficients of determination (R2). Finally, 

“R2
species richness”, “R2

current climate” and “R2
historical climate” reflect the unique variation explained by species richness, current climate and historical 

climate, respectively. Notice that historical climate stability is represented by temperature and precipitation velocity between 21000 years ago 

and now, and that topography is not included as strongly correlated with velocities. See Table 2 for similar calculations using precipitation and 

temperature anomalies as historical climate stability measures. 

 OLS  Logistic 

 Σ wi Averaged MAM†   Σ wi Averaged MAM  

Insularity 0.25 +0.05   0.75 -0.24 -0.25 

Plant species richness 0.85 +0.24 +0.24  0.85 +0.21 +0.20 

Open vegetation vs forest 0.44 -0.24   1.00 +0.31 +0.29 

MAP x Open vegetation vs forest 0.67 +0.39 +0.20  1.00 +1.22 +1.23 

MAP (Mean Annual Precipitation) 0.27 -0.07   1.00 +0.03 +0.02 

MAT (Mean Annual Temperature) 1.00 +0.50 +0.47  1.00 +0.82 +0.84 
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MAP seasonality 0.31 -0.10   0.87 -0.26 -0.27 

MAT velocity  0.23 -0.00   1.00 +0.42 +0.40 

MAP velocity 0.29 -0.09   0.22 -0.01  

Akaike Information Criteriac   -69.94    675.9 

Moran’s Index   ≤0.14*   

Condition Number   1.5   

R2   0.43   

R2
species richness   0.05   

R2
current climate   0.32   

R2
historical climate   0.00   

**P < 0.01; *P < 0.05; NSnon-significant. † five other models were equally fit (i.e. ∆AICc ≤ 2) containing the following variables, 1) Open 

vegetation vs forest, plant species richness, MAT, MAP x Open vegetation versus forest; 2) plant species richness, MAT; 3) plant species 
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richness, MAT, MAP x Open vegetation versus forest, MAP velocity; 4) plant species richness, MAT, MAP x Open vegetation versus forest, 

MAP seasonality; 5) Open vegetation vs forest, plant species richness, MAT.  


