

CDNA-SNN: A New Spiking Neural Network for Pattern Classification using Neuronal
Assemblies

Saranirad, V., Dora, S., McGinnity, T. M., & Coyle, D. (2024). CDNA-SNN: A New Spiking Neural Network for
Pattern Classification using Neuronal Assemblies. IEEE Transactions on Neural Networks and Learning
Systems, 1-14. Advance online publication. https://doi.org/10.1109/TNNLS.2024.3353571

Link to publication record in Ulster University Research Portal

Published in:
IEEE Transactions on Neural Networks and Learning Systems

Publication Status:
Published online: 08/02/2024

DOI:
10.1109/TNNLS.2024.3353571

Document Version
Author Accepted version

General rights
Copyright for the publications made accessible via Ulster University's Research Portal is retained by the author(s) and / or other copyright
owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these
rights.

Take down policy
The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been
made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in
the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk.

Download date: 08/05/2024

https://doi.org/10.1109/TNNLS.2024.3353571
https://pure.ulster.ac.uk/en/publications/02c4b259-f895-4b60-b2cb-dce5589d9151
https://doi.org/10.1109/TNNLS.2024.3353571

This article has been accepted for publication in IEEE Transactions on Neural Networks and Learning Systems on December 1, 2023, DOI:
10.1109/TNNLS.2024.3353571. This is the author accepted manuscript (AAM) version of the article. The final published version may differ from this version.
For the purpose of open access, the author(s) has applied a Creative Commons Attribution (CC BY) license to any Author Accepted Manuscript version arising.

CDNA-SNN: A New Spiking Neural Network for
Pattern Classification using Neuronal Assemblies

Vahid Saranirad, Shirin Dora, Thomas Martin McGinnity, Senior Member, IEEE, and Damien Coyle, Senior
Member, IEEE

Abstract— Spiking neural networks (SNNs) mimic their
biological counterparts more closely than their predecessors and
are considered the third generation of artificial neural networks.
It has been proven that networks of spiking neurons have a higher
computational capacity and lower power requirements than
sigmoidal neural networks. This paper introduces a new type of
spiking neural network that draws inspiration and incorporates
concepts from neuronal assemblies in the human brain. The
proposed network, termed as CDNA-SNN, assigns each neuron
learnable values known as Class-Dependent Neuronal Activations
(CDNAs) which indicate the neuron’s average relative spiking
activity in response to samples from different classes. A new
learning algorithm that categorizes the neurons into different class
assemblies based on their CDNAs is also presented. These
neuronal assemblies are trained via a novel training method based
on Spike-Timing Dependent Plasticity (STDP) to have high
activity for their associated class and low firing rate for other
classes. Also, using CDNAs, a new type of STDP that controls the
amount of plasticity based on the assemblies of pre- and post-
synaptic neurons is proposed. The performance of CDNA-SNN is
evaluated on five datasets from the UCI machine learning
repository, as well as MNIST and Fashion MNIST, using nested
cross-validation for hyperparameter optimization. Our results
show that CDNA-SNN significantly outperforms SWAT
(p<0.0005) and SpikeProp (p<0.05) on 3/5 and SRESN (p<0.05) on
2/5 UCI datasets while using the significantly lower number of
trainable parameters. Furthermore, compared to other
supervised, fully connected SNNs, the proposed SNN reaches the
best performance for Fashion MNIST and comparable
performance for MNIST and N-MNIST, also utilizing much less
(1-35%) parameters.

Index Terms— class-dependent neuronal activation, CDNA,

neuronal assembly, leaky integrate and fire, spiking neural
network, spiking neurons.

I. INTRODUCTION

ompared to traditional neural networks, Spiking Neural
Networks (SNNs) more closely imitate the information
processing mechanisms employed by biological

neurons. SNNs comprise of neurons that transmit information
using spikes which are discrete events at specific time instants.
Consequently, SNNs consume lower power in hardware than
traditional neural networks, which represent information using
continuous real values [1]. It has been shown that an SNN has
higher computational capacity in comparison to its predecessors
[2]. However, the discontinuous nature of spikes makes a

V. Saranirad, T. M. McGinnity and D. Coyle are with the Intelligent
Systems Research Centre, School of Computing, Engineering and
Intelligent Systems, Ulster University, Londonderry, BT487JL, U.K. (e-
mail: saranirad-v@ulster.ac.uk; tm.mcginnity@ulster.ac.uk;
dh.coyle@ulster.ac.uk).

spiking neuron’s output non-differentiable with respect to the
weights. Therefore, popular gradient-based supervised training
techniques for sigmoidal neural networks cannot be applied
directly to SNNs.

To avoid computing gradients in SNNs, a number of studies
have developed methods to convert trained sigmoidal neural
networks into SNNs [3][4][5]. In these approaches, at first, a
sigmoidal neural network is trained using the conventional
backpropagation algorithm. Then the sigmoidal neurons in the
trained network are replaced by spiking neurons in such a way
that the responses of neurons in both networks are similar for
the same inputs. The resulting SNNs usually yield lower
classification accuracy compared to the trained sigmoidal
neural networks. Several techniques are employed to minimize
the loss of accuracy resulting from the conversion process, such
as constraining the neurons' firing rate and thresholds [3] and
synaptic weight normalization [6]. However, SNNs developed
using conversion techniques are unable to match the
performance of the network from which they were derived
[3][4].

Many researchers have proposed error backpropagation
based methods for SNNs that employ approximate derivatives
where a discontinuity exists [7][8][9][10][11][12][13][14][15].
SpikeProp [8] employs a mean square error based on the spike
timing of desired and actual output spike trains, assuming that
postsynaptic potential is a linear function of time in a period
close to the firing time. SpikeProp and its variations [16][17]
cannot handle the silent neuron problem, which refers to
neurons that stop spiking because of updates in their weights. It
is not possible to compute an error for such neurons, as a result,
they stop contributing to the network's output. SLAYER[9]
utilises the spike response model, in which the neuronal
membrane potential depends on current and past values of
inputs. This approach defines a temporal error between the
output and desired spike patterns and computes gradients using
the probability of switching between spiking and non-spiking
states of a neuron. SLAYER trains both weights and axonal
delays of SNN simultaneously and addresses the silent neurons
problem. The Macro-Micro backpropagation method [14]
decomposes the error backpropagation into three
components:1) macro-level that backpropagate error over firing
rates, 2) micro-level that uses spike trains to transfer error to the

S. Dora is with the Department of Computer Science, Loughborough
University, Loughborough, LE113TU, U.K. (e-mail: s.dora@lboro.ac.uk).

D. Coyle is also with The Bath Institute for the Augmented Human,
University of Bath, Bath, BA2 7AY, U.K. (e-mail: dhc30@bath.ac.uk).

C

2

previous layers, and 3) backpropagation of error using
interactions between the first two components. SLAYER and
Macro-Micro backpropagation can train multilayer
architectures of fully connected and convolutional SNNs.
However, the backward pass in spike-based backpropagation
integrates the gradients across all time steps, which increases
memory demands and computational complexity [18].

Inspired by biological neurons, a group of training methods
for SNNs have used spike-based formulations of Hebb's rule
[19][20][21]. According to the conventional Hebbian rule,
"neurons that fire together, wire together" [19]. Different
variants of this rule have been proposed but the most popular
one for SNNs is spike-timing-dependent plasticity (STDP),
which modifies the strength of synaptic connections based on
the spike timing of pre- and post-synaptic neurons [22].
According to STDP, the weight of a synapse between two
neurons is increased, when the presynaptic neuron generates a
spike before a spike emitted by the postsynaptic neuron. On the
contrary, the weight of a synapse is reduced, if the presynaptic
neuron fires after the postsynaptic neuron. The strengthening
and weakening of synaptic connections are termed as long-term
potentiation (LTP) and long-term depression (LTD),
respectively [23].

Although STDP is inherently unsupervised, it serves as the
foundation for supervised algorithms such as ReSuMe [24],
SWAT [25], and SEFRON [26]. These methods use a single
layer SNN and are inapplicable to multilayer SNNs because
STDP lacks a mechanism for propagating output errors across
layers in the network. To deal with this issue, some methods
trained multilayer SNNs employing STDP in a layer-wise
manner [20][21]. After training a given layer, they freeze its
synaptic weights, and the output of this layer is used to train the
next layer. Lee et al. [21] trained hidden layers of a multilayer
convolutional SNN using layer-wise unsupervised STDP.
However, for the last fully connected layer, they employed a
supervised variation of STDP. During the training process of
the last layer, each sample is only used to train the neuron
corresponding to the sample class. Thiele et al. [27][28]
introduced a biologically implausible scheme for end-to-end
training of a deep convolutional SNN using dual accumulator
neurons and STDP. Each neuron in their network has two
separate integrators with different thresholds; the integrator
with the higher threshold adjusts the synaptic weight of the
neuron with STDP, and the other integrator generates enough
spikes (information) to train the subsequent layers. All the
above STDP-based approaches train the network's layers
independently and only use the class information for the last
layer. Unsupervised learning in the hidden layers may result in
lower classification performance.

Mozafari et al. [29] introduced a reward-modulated STDP
to train a convolutional SNN. In this approach a
reward/punishment signal is transmitted to neurons in the last
hidden layer as a modulator [30] for STDP. A reward signal
updates the weights with normal STDP, but the punishment

modulator adjusts the weights using anti-STDP in which LTP
and LTD are swapped and the weights in other layers of the
network are trained using unsupervised STDP.

It is hypothesized that in the human brain an assembly or a
group of neurons are associated to certain sensory information
or cognitive data, such as a memory, a concept, or a phrase [31].
As one of the first studies at the level of neuronal groups, Hebb
[19] indicated that if particular receptors are stimulated
repeatedly, an area of cells will be associated with that stimulus,
called an assembly of neurons. This assembly acts as a unified
learning system or perception to create the simplest
representation of an idea or an image [19]. Gerstein et al. [32]
examined the characteristics of neuronal assemblies. They
concluded that the assembly of neurons is formed by learning
and strengthened by frequent use. Also, neuron assignments to
different assemblies are based on the correlation of spiking
between neurons, and neuronal assemblies corresponding to
different subjects or memories overlap. Overlapping means that
a neuron can be a part of multiple assemblies and contribute to
each of their actions. However, existing SNN training methods
do not utilize the idea of neuronal assemblies.

This paper introduces Class-Dependent Neuronal
Activation based Spiking Neural Network (CDNA-SNN),
which draws inspiration from neuronal assemblies. The
learning algorithm for CDNA-SNN estimates how strongly a
neuron fires for samples from a given class, using values
referred to as Class-Dependent Neuronal Activation (CDNA).
The proposed layer-wise learning method categorises the
neurons into class assemblies based on their CDNAs. These
assemblies enable the network to train the synaptic weights
using supervised STDP for all layers. In addition, the proposed
training algorithm can identify neurons with low relative
spiking activity in response to the training data. These neurons,
known as the hypoactive assembly, are deleted from the
network after training.

The performance of CDNA-SNN has been evaluated using
five numerical classification datasets from the UCI machine
learning repository, as well as MNIST and Fashion MNIST
image datasets. A statistical analysis has also been carried out,
including a one-way ANOVA followed by a pairwise
comparison employing Fisher’s least significant difference
(LSD) approach [33]. The results indicate that the proposed
network can achieve higher or comparable performance using
considerably fewer network parameters than other SNNs in
comparison.

The remainder of the paper is organized as follows. The
architecture and the learning algorithm for CDNA-SNN is
presented in section II. Next, in Section III, performance
evaluation of CDNA-SNN is described. The results of CDNA-
SNN on different benchmark datasets is presented in Section
IV. Section V discusses the results and highlights the
advantages and drawbacks of the proposed training algorithm.
Finally, Section VI presents conclusions.

3

Figure 1. The architecture of the proposed spiking neural network with class-dependent neuronal activation

II. SPIKING NEURAL NETWORK WITH CLASS-DEPENDENT

NEURONAL ACTIVATIONS

In this section, the architecture and learning algorithm for the
Class-Dependent Neuronal Activation based Spiking Neural
Network (CDNA-SNN) are presented.

A. Network Architecture

Figure 1 shows the architecture of CDNA-SNN with L
layers. The first layer is the input layer which is used to present
rate-coded spike patterns 𝑋 = [𝑥 , … , 𝑥] to the network. The
true class label for 𝑋 is denoted by 𝑐 ∈ [1, … , 𝑁] where 𝑁 is
the total number of classes. The input layer is followed by 𝐿 − 2
hidden layers and an output layer. All neurons in 𝑙 layer of
the network are fully connected to neurons in the (𝑙 + 1)
layer, and there are no connections between the neurons from
the same layer. The weight of the connection between the 𝑖
neuron in the 𝑙 layer and 𝑗 neuron in the (𝑙 + 1) layer is
denoted by 𝑤 . All spiking neurons in the network are
modelled using the Leaky Integrate and Fire (LIF) neuron
model. Based on the LIF neuron model, the membrane potential
(𝑣 (𝑡)) of the 𝑗 neuron in the 𝑙 layer at time 𝑡 is determined

using the differential equation given below [21]:

 𝜏
()

= −𝑣 (𝑡) + 𝐼 (𝑡), ∀𝑗, ∀𝑙 ∈ [2, … , 𝐿]

 𝐼 (𝑡) = ∑ 𝑤 𝛿 𝑡 − 𝑡,

where 𝜏 denotes the time constant of the membrane, 𝐼 (𝑡) is the

input current received by the 𝑗 neuron in the 𝑙 layer due to
spikes generated by neurons in the (𝑙 − 1) layer. 𝛿(𝑡) denotes

the Dirac delta function which has unit magnitude at 𝑡 = 0 and
zero elsewhere, and 𝛿 𝑡 − 𝑡 is the 𝑘 spike from neuron 𝑖.

When 𝑣 (𝑡) reaches a threshold 𝑉 , the neuron generates a
spike, and the membrane voltage is reset to zero for a refractory
period 𝜏 .

The class-dependent neuronal activation of a given neuron 𝑗
in 𝑙 layer for class 𝑘 is denoted by 𝜓 , . CDNAs are real
numbers in the range [0,1] that are indicative of the average
firing rate of a neuron for spike patterns from a given class
relative to its firing rate for other classes.

B. Learning Algorithm

In this section the learning algorithm for CDNA-SNN which
is used to estimate the synaptic weights and CDNAs of all
neurons in the network is presented. CDNA-SNN employs a
layer-wise training approach i.e., while training the 𝑙 layer in
the network, the weights and CDNAs of neurons in previous
layers are not changed.

Below, we first present the mechanism for estimating the
CDNAs and then the training algorithm for CDNA-SNN is
described.

1) Class-Dependent Neuronal Activations
Prior to training the 𝑙 layer in the network, the CDNAs of

all neurons in layer 𝑙 with 𝑁 neurons are initialised to equal
values as

 𝜓 , = ∀𝑗 ∈ [1, … , 𝑁], 𝑘 ∈ [1, … , 𝑁]

When an input spike pattern 𝑋 with class label 𝑐 is
presented to CDNA-SNN, the most active neuron 𝑗∗ in 𝑙 layer
is determined as:

4

 𝑗∗ = argmax 𝑟

where r is the firing rate of the 𝑗 neuron in the 𝑙 layer of
the network and is the total number of spikes that a neuron fires
in response to the current input divided by the simulation
duration. When more than one neuron spikes at the maximum
rate, one of them is chosen randomly as 𝑗∗. The CDNAs for the
neuron 𝑗∗ are updated such that

 ∑ 𝜓 ∗, = 1

which implies that the sum of class-dependent neuronal
activations for a given neuron is always equal to one. The
change in CDNA (∆ψ ∗,) of neuron 𝑗∗ corresponding to the

sample class 𝑐 with normalized firing rate 𝑔 ∗ is increased by:

 ∆𝜓 ∗, =
∗,

 𝑔
𝑗∗
𝑙

where 𝑔 ∗ is the normalized firing rate of the neurons and is
given by

 𝑔 ∗ =
 ∗

∑
𝑁𝑙
𝑗=1

and the change in CDNAs for neuron 𝑗∗ for other classes are as
follows.

 ∆𝜓 ∗, = −
∆ ∗,

 ∀𝑘|𝑘 ≠ 𝑐

According to equation (6), the higher a neuron's normalised
firing rate, the larger the amount of change in its CDNA.
Updating CDNAs using equations (6) and (8) ensures that the
sum of all CDNA for a given neuron are always equal to 1 (see
Equation (5)). At the end of training, the CDNAs of a neuron
represent its relative activity for each class. CDNAs separate
the neurons in every layer and form assemblies of neurons for
each class. Assembly 𝛺 of neurons corresponding to class 𝑐
in layer l can be defined as

 𝛺 = ∀𝑗|argmax 𝜓 , = 𝑐

According to equation (9), neurons are associated to the class
assembly for which they have the highest value of CDNA.
However, some neurons might have equal CDNAs for all
classes. These neurons are termed hypoactive because they
exhibit lower relative firing rates for samples from different
classes compared to other neurons in the same layer. The
assembly of hypoactive neurons 𝛺∅ in layer l can be formulated
as

 𝛺∅ = ∀𝑗| 𝜓 , = , ∀𝑘 ∈ [1, … , 𝑁]

CDNAs estimated using Equations (6) and (8) enable the
CDNA-SNN to perform supervised learning using STDP in all
layers.

2) Synaptic Weights
Synaptic weights are initialized to random values in the

interval [-1,1]. Without loss of generality, assume that the
network has been trained using several spike patterns. At this
stage neurons would be hypoactive or in one of the class
assemblies depending on their CDNAs. Now assume the
current spike pattern is 𝑋 which is associated with actual class
label 𝑐 . Based on the spiking activity of neurons in response to
𝑋 , three neurons in the 𝑙 layer of the network can be
determined:

 𝑗∗ : The most active neuron
 𝑗 : The most active neuron in the assembly of 𝑐
 𝑗 : The most active neuron in the hypoactive

assembly
Three possible scenarios can arise based on 𝑐 and CDNAs

of 𝑗∗. 𝑗∗ might be associated with the assembly of 1) desired
(actual) class, 2) undesired class, or 3) hypoactive neurons.
Below, the learning rules for each of the scenarios are
presented.

Desired Class: In this scenario the most active neuron 𝑗∗ has
the highest CDNA for the class 𝑐 . Since this neuron which
already belongs to the assembly 𝛺 has a relatively high spiking
activity for a spike pattern from the class 𝑐 , this is a desired
scenario. Therefore, STDP updates this neuron's weights to
increase its activity for class 𝑐 . The criterion for weight
updating is given by

If 𝑟𝑗∗ < 𝛼 Then update the weights of 𝑗∗
This thresholding puts a limit on the maximum firing rate of
neurons and prevents them from dominating the training
process.

Undesired Class: In this scenario 𝑗∗ has highest CDNA for
a class other than 𝑐 . As 𝑗∗ was the most active neuron for a
class incompatible with its maximum CDNA, anti-STDP is
used to adjust its synaptic weights such that it fires weakly for
samples from class 𝑐 . Anti-STDP is the inverse of STDP, i.e.,
the weight of a synapse between two neurons is reduced when
the presynaptic neuron fires before the postsynaptic neuron and
vice versa. Additionally, it is essential to enhance the spiking
activity of neurons in Ω in response to input patterns from 𝑐 .

Thereby, the most active neuron from Ω (𝑗) gets an STDP
update with the following criteria.

If 𝑟 ≥ 𝛽 Then update the weights of 𝑗

𝛽 prevents the weights of neurons with low firing rate from
being updated, and therefore prevents loss of previously stored
information in the network. If there is no neuron in Ω , then
the weights of the neuron with highest firing rate in the
hypoactive assembly (𝑗) are updated using STDP. After
several epochs of training, this neuron will start firing strongly
for spike patterns from class 𝑐 , improving its chance to join
𝛺 during the rest of the training process.

5

Algorithm 1: Training process of 𝑙 layer in the network

Input Dimension: 𝑀
Number of Neurons: 𝑁
Number of Classes: 𝑁

Initialise CDNAs: 𝜓 , = ∀𝑗 ∈ [1, … , 𝑁], 𝑘 ∈ [1, … , 𝑁]

Initialise Synaptic Weights: 𝑤 × ← 𝑁𝑜𝑟𝑚𝑎𝑙 (,)

FOR numbers of epochs:
FOR every SpikePattern 𝑋 in TrainingData with ClassLabel 𝑐 :

Present 𝑋 to the SNN

Firing rate of 𝑗 neuron: 𝑟

Find the most active neuron: 𝑗∗ = argmax 𝑟

Normalised firing rate of neuron 𝑗∗: 𝑔 ∗ =
 ∗

∑

Increase the CDNA of 𝑗∗ for the sample class:

 ∆𝜓 ∗, =
∗,

∗

Decrease the CDNAs of 𝑗∗ for other classes:

 ∆ψ ∗, = −
∆ ∗,

 ∀𝑘|𝑘 ≠ 𝑐

IF (𝑗∗𝜖𝛺∅) or (𝑗∗𝜖𝛺): // Hypoactive or Desired Class

IF (𝑟 ∗ < 𝛼):

Update the weights of 𝑗∗ by STDP
ENDIF

ELSEIF (𝑗∗𝜖𝛺 ∀𝑘|𝑘 ≠ 𝑐): // Undesired Class
Update the weights of 𝑗∗ by ANTI-STDP

IF (𝛺 ≠ ∅): // If there is at least one neuron in 𝛺

Find the most active neuron from 𝛺 : 𝑗

IF (𝑟 ≥ 𝛽):

 Update the weights of 𝑗 by STDP

ELSEIF (𝛺 = ∅): // There is no neuron in 𝛺

Find the hypoactive neuron with highest firing rate: 𝑗
Update the weights of 𝑗 by STDP

ENDIF
ENDIF

ENDFOR
ENDFOR
Remove all hypoactive neurons

Algorithm 2: Layer-wise Training Algorithm for CDNA-SNN

Number of Layers: 𝐿
Number of neurons in each layer: 𝑁 ∀𝑙 ∈ [2, … , 𝐿]

Thresholds for the neurons in each layer: 𝛼 , 𝛽 ∀𝑙 ∈ [2, … , 𝐿]
FOR layer 𝑙 in the interval 2 to 𝐿:

Initialize layer 𝑙 with 𝑁 neurons and parameters 𝛼 , 𝛽
IF (𝑙 == 2): //First Hidden Layer

Train the layer 𝑙 using Algorithm 1 and Conventional STDP
ELSE: //Subsequent Layers

Train the layer 𝑙 using Algorithm 1 and CDNA-Weighted STDP
ENDIF
𝑁 = 𝑁 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑦𝑝𝑜𝑎𝑐𝑡𝑖𝑣𝑒 𝑛𝑒𝑢𝑟𝑜𝑛𝑠
Freeze all the weights and CDNAs in the layer 𝑙

ENDFOR

Hypoactive Neurons: In this scenario 𝑗∗ has CDNAs equal
to the initial values, and therefore it is in the hypoactive
assembly. Since this neuron has the highest firing rate for 𝑐 ,
and it is not associated with any of the classes, STDP updates its
weights to increase its activity for class 𝑐 provided that its
firing rate is less than 𝛼 .

The proposed algorithm for estimating CDNAs and training
the synaptic weights of each layer of CDNA-SNN is
summarized in Algorithm 1. After training every layer, all the
hypoactive neurons are removed, and the weights and CDNAs
for the neurons in this layer are frozen.

The new STDP-based learning rule introduced in this paper
exploits the CDNAs of neurons in the (𝑙 − 1) layer, while
learning synaptic weights of the neurons in the 𝑙 layer of the
network. Since the input layer neurons do not have CDNAs, the
learning algorithm uses conventional STDP for learning the
synaptic weights of the connections between the input layer and
the first hidden layer. The following will explain each of these
learning rules.

Conventional STDP: The change in the synaptic weight
Δ𝑤 , ∗ of the connection between 𝑖 input neuron and the

neuron 𝑗∗ are estimated using an exponential variant of STDP
as

 ∆𝑤 ∗ = 𝐴. 𝑒
∗

 ∗

𝐵. 𝑒
∗

 ∗

where 𝜏 is the time constant for STDP, and spike times of the
pre- and post-synaptic neurons are represented by the variables
𝑡 and 𝑡 ∗, respectively. 𝐴 and 𝐵 denote whether the learning
rule is STDP or Anti-STDP as below

 𝐴 =
+1 STDP
−1 Anti − STDP

 , 𝐵 = −𝐴

CDNA-Weighted STDP: Conventional STDP only depends
on the spiking activity of pre and post synaptic neurons. CDNA-
Weighted STDP, as implied by its name, controls the amount
of plasticity with respect to the CDNAs of the pre-synaptic
neuron for the sample class 𝑐 .

 ∆𝑤 ∗ = 𝐴. 𝛹. 𝑒
∗

 ∗

𝐵. 𝛹. 𝑒
∗

 ∗

where 𝛹 is the normalized CDNA of pre-synaptic neuron for the
sample class 𝑐 as below

 𝛹 =
,

∑ ,

In CDNA-Weighted STDP the weights of connections from
all presynaptic neurons to a postsynaptic neuron are updated

6

based on the CDNAs of the corresponding presynaptic neurons
for the class of the current spike pattern. CDNA-Weighted
STDP aims to control the plasticity during the learning in a way
that presynaptic neurons can build strong connections with the
post synaptic neurons from the same assembly using STDP.
Also, this learning rule weakens the connections between pre-
synaptic neurons in 𝛺 and post-synaptic neurons from other
assemblies that have high firing rate for 𝑐 by anti-STDP.

The overall layer-wise algorithm for training CDNA-SNN is
summarized in Algorithm 2. According to Algorithm 1,
hypoactive neurons might join one of the class assemblies
throughout training; Otherwise, they will be removed after the
training of each layer. Thus, at the end of training process, each
neuron in the network would be associated with a specific class
assembly. Given an input spike pattern 𝑋 with class label 𝑐 .
The predicted class �̂� for this input is determined based on the
highest CDNA for the most active neuron (𝑗∗) in the output
layer (𝐿), given by

 �̂� = argmax 𝜓 ∗,

III. PERFORMANCE EVALUATION

This section defines the performance metrics used for
implementation, explains hyper-parameter optimization, and
finally describes datasets and experimental settings for each
dataset. CDNA-SNN was implemented in Python 3.7 using
NVIDIA Tesla v100 GPU and 64 GB memory. In all the
simulations for CDNA-SNN, the LIF model is used, and a rate
encoder converted real-valued data into spikes.

In the next subsection, we first present the approach for
hyperparameter optimization, and the metrics used for the
evaluation. Then, datasets and experimental settings are
explained.

A. Performance Metrics

Performance evaluation is conducted using testing
classification accuracy and number of trainable parameters.
classification accuracy (𝜂) is computed as the number of
correctly classified samples, given as

 𝜂 =
Number of correctly classified samples

Total number of samples

One-way ANOVA [34] has been utilized to evaluate if
testing classification accuracies obtained from various learning
algorithms are significantly different. When statistical
significance was observed using ANOVA, pairwise
comparison is done using Fisher’s Least Significant Difference
(LSD) method [35].

The number of trainable parameters for two-layer and three-
layer fully-connected networks is equal to (Ni×No) and
(Ni×Nh+Nh×No), respectively. CDNA-SNN estimates CDNAs
while training the synaptic weights. Accordingly the number of
trainable parameters for CDNA-SNN is equal to
(Ni×Nh+Nh×No)+(Nh+No)× Nc.

B. Hyper-parameter Optimization

The proposed training algorithm includes parameters 𝛼 and
𝛽 for hidden layers and output layer. In this paper,
hyperparameter optimisation is done by Nested Cross-
Validation (N-CV). N-CV nests cross-validation and
optimization of hyperparameters. Without N-CV, the same data
might be employed to optimize parameters and evaluate the
network performance. This may lead to a biased model
evaluation and inaccurate estimation of errors in training or
testing the network due to data leakage between training and
testing data [36].

C. Datasets and Experimental Settings

UCI Benchmark Datasets: Five benchmark classification
datasets from the UCI machine learning repository [37] are used
to evaluate the classification performance of the CDNA-SNN
with 2-layers and 3-layers. All benchmark datasets are
numerical datasets that consist of Iris, a three-class problem and
four binary classification problems, namely Pima Indians
diabetes, breast cancer Wisconsin (Original), Liver disorders
and Ionosphere. Datasets are randomly divided into N-CV folds
that contain a balanced number of samples in each class. Table
I shows the number of features and classes of all five datasets
and the number of folds in the inner and outer loops of N-CV.

Table II describes the parameters of CDNA-SNN used for
UCI Datasets. parameters 𝛼 and 𝛽 for hidden layer and output
layer were optimized by N-CV given the ranges in the table.
Initial number of neurons decreased after removing the
hypoactive neurons from each layer. The simulation parameters
of SpikeProp, SRESN, and SWAT have been set as in [38].

MNIST: CDNA-SNN is also evaluated on the MNIST
dataset, which contains 28*28 grayscale images of handwritten
digits 0-9 with 60000 training and 10000 testing samples. Table
III describes the parameters of CDNA-SNN used for MNIST.
Other simulation parameters are as in Table II.

Fashion MNIST: Compared to the original MNIST,
Fashion-MNIST is a more complex dataset consisting of 60,000
training and 10,000 testing samples. It includes 28x28 grayscale
images from the following ten categories: T-shirt/top, Trouser,
Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, and Ankle
boot. Fashion-MNIST is intended to be a drop-in replacement
for the original MNIST dataset for evaluating machine learning
methods. The simulation parameters for Fashion MNIST are the
same as MNIST.

N-MNIST: The Neuromorphic-MNIST dataset [39] is a
spiking version of the original MNIST. It consists of the same
60000 training and 10000 testing samples of MNIST converted
into neuromorphic data using a dynamic vision sensor (DVS).
This DVS was mounted on a motorized pan-tilt unit to capture
MNIST samples played on a monitor. DVS generates a spike
whenever a brightness change is detected, on or off. N-MNIST
consists of spatial-temporal patterns with a dimension of
34x34x2 recorded for 300ms with 1us resolution. In this paper,
the time step of N-MNIST is reduced to 1ms. Because of the
saccadic motion, this dataset is more challenging than MNIST.

7

IV. RESULTS

In this section, the results of CDNA-SNN on different
benchmark datasets are presented and compared with the state-
of-the-art SNNs. Also, a frequency analysis is presented to
examine the firing rate of assemblies in response to the samples
from different classes. Finally, CDNA-weighted STDP is
compared with the conventional STDP.

A. UCI Benchmark Datasets

Table IV compares the results of applying the two and three-
layer CDNA-SNN to other learning algorithms for SNNs,
which include SWAT [25], SpikeProp [8], and SRESN [40].
The simulation parameters of SpikeProp, SRESN, and SWAT
have been set as in [38]. Results are reported for both two and
three-layer CDNA SNN, and the comparison is based on
network architecture, the number of trainable parameters and
testing accuracy. Accuracies are reported in the form of mean
(standard deviation) across outer folds of nCV. The network
architecture format is Ni-Nh-No, denoting the number of input,
hidden, and output neurons. For CDNA-SNN and SRESN the
number of trainable parameters is equal to Ni×Nh+Nh×No.
SRESN is an evolving network that has a different number of
neurons for each outer fold. Also, since CDNA-SNN removes
the hypoactive neurons after training, it does not have equal
neurons for all folds. Accordingly, for these two algorithms the
number of neurons and number of trainable parameters are
reported as a range. SpikeProp is a three-layer SNN with 16
synapses with different delays between every pre- and post-
synaptic neuron. Accordingly, the number of weights for
SpikeProp is equal to 16×(Ni×Nh+Nh×No). CDNA-SNN uses
rate encoding that makes its number of inputs equal to the
number of data features plus a bias neuron. Other SNNs in this
comparison encode the data using population coding and
consequently have more input neurons. SWAT's hidden layer
serves as a frequency filter for feature extraction from input
patterns. Accordingly, this method has Nh×No trainable
parameters.

According to Table IV, for IRIS dataset, which is the three-
class classification problem, three-layer CDNA-SNN achieves
a testing accuracy that is 0.09-3.96% higher than others.
ANOVA results revealed that at least one method performs
significantly different from others (𝑝 < 0.0001). The LSD
pairwise statistical analysis confirmed that three-layer CDNA-
SNN significantly outperforms SpikeProp (𝑝 < 0.05) and
SWAT (𝑝 < 0.00001). Even two-layer CDNA-SNN with
considerably less trainable parameters has significantly better
performance than SpikeProp (𝑝 < 0.05) and SWAT (𝑝 <
0.00001).

For a simple binary classification dataset like breast cancer,
three-layer CDNA-SNN has the best performance among all
approaches. A one-way ANOVA proves that not all SNNs have
equal performance (𝑝 < 0.005), and post-hoc pairwise
comparison indicated that three-layer CDNA-SNN
significantly only outperformed SWAT for the breast cancer

dataset (𝑝 < 0.0005).
For Pima diabetes, a relatively complex classification task,

SpikeProp has the best results in terms of accuracy. Although
three-layer CDNA-SNN has 0.46% less accuracy than
SpikeProp, it uses a considerably more compact network with
almost 97% less network parameters. ANOVA shows a
significant difference between the compared SNNs (𝑝 <
0.000001); however, LSD pairwise comparison revealed that
SpikeProp is not significantly better than the two CDNA-SNNs
represented in Table IV (𝑝 > 0.2).

Regarding the most challenging dataset, liver disorders,
ANOVA results again indicate significant differences among
algorithms (𝑝 < 0.000005). Also, LSD proves that the two
CDNA-SNN architectures in the table significantly outperform
SRESN (𝑝 < 0.0005), SpikeProp (𝑝 < 0.05) and SWAT (𝑝 <
0.0005).

TABLE I
DESCRIPTION OF FIVE UCI BENCHMARK DATASETS AND THEIR N-CV SETUP

D
ata Set

C
lasses

Sam
ples

F
eatures

O
uter

L
oop

 F
olds

In
ner L

oop

F
olds

Iris 3 150 4 5 5

Breast Cancer 2 683 9 10 10

Pima diabetes 2 768 9 10 10

Liver disorders 2 345 6 5 5

Ionosphere 2 351 34 5 5

TABLE II
PARAMETERS OF CDNA-SNN USED FOR UCI DATASETS

Parameter Description Value/Range
𝜶𝒍 [5,10,15,20,25] Hz

𝜷𝒍 [0,5,10,15] Hz

Initial Number of Neurons in the Hidden Layer [30,50,70,90,110]

Initial Number of Neurons in the Output Layer [20,40,60,80,100]

Time Constant of STDP (𝝉). 50 ms

Learning Rate for CDNAs 1e-3

Learning Rate for Synaptic Weights 1e-2

Simulation Time 300 ms

Simulation Time Step 1 ms

Encoder’s Frequency Range 20-280 Hz

Batch Size 5

TABLE III
PARAMETERS OF CDNA-SNN USED FOR MNIST, FASHION MNIST AND

N-MNIST
Parameter Description Value/Range

𝜶𝒍 [40,50,60,70,80] Hz

𝜷𝒍 [30,40,50,60,70] Hz
Initial Number of Neurons in the Hidden

Layer [150,200,250,300,350]

Initial Number of Neurons in the Output
Layer

[100,150,200,250,300]

Batch Size 100

8

TABLE IV
COMPARISON OF CDNA-SNN, SRESN, SPIKEPROP, AND SWAT ON FIVE UCI BENCHMARK CLASSIFICATION DATASETS

Data Set Algorithm Network Architecture # Trainable Parameters Testing Accuracy (%)

Iris

2L-CDNA-SNN 5-(5-8) 40-64 97.75(0.92)
3L-CDNA-SNN 5-(5-8)-(7-10) 96-174 97.84(0.33)

SRESN 24-(5-11) 120-264 97.01(0.73)
SpikeProp 25-10-3 4480 96.13(0.83)

SWAT 24-312-3 936 93.88(1.80)

Breast Cancer

2L-CDNA-SNN 10-(6-9) (72-108) 97.35(1.66)
3L-CDNA-SNN 10-(6-9)-(5-7) 112-185 97.81(1.76)

SRESN 54-(9-13) 486-702 97.10(0.20)
SpikeProp 55-15-2 13680 97.04 (0.53)

SWAT 54-702-2 1404 95.66 (0.08)

Pima diabetes

2L-CDNA-SNN 10-(16-19) 192-228 76.57(1.17)
3L-CDNA-SNN 10-(16-19)-10 372-438 76.92(2.48)

SRESN 54-(10-13) 540-702 70.06 (1.82)
SpikeProp 55-20-2 16640 77.38(1.03)

SWAT 54-702-2 1404 72.11(1.38)

Liver disorders

2L-CDNA-SNN 7-(18-20) 162-180 70.33(4.65)
3L-CDNA-SNN 7-(18-20)-(9-10) 342-400 75.07(2.95)

SRESN 36-(7-10) 252-360 60.17(1.78)
SpikeProp 37-15-2 9360 64.23(3.92)

SWAT 36-468-2 936 60.43(2.72)

Ionosphere

2L-CDNA-SNN 35-(17-19) 629-703 89.78(1.26)
3L-CDNA-SNN 35-(17-19)-(8-12) 781-955 90.64(1.34)

SRESN 204-(15-21) 3060-4284 88.52(1.07)
SpikeProp 205-25-2 82800 86.89(2.00)

SWAT 204-2652-2 5304 90.04(1.87)

Figure 2. Variation in training and testing accuracy of a three-layer CDNA-SNN against variation in (a) 𝛼 , (b) 𝛽 , (c) 𝛼 , and (d) 𝛽 for the Liver disorders
problem. In each case the other three parameters are fixed

For Ionosphere, which has the highest number of features

among all five datasets, insignificant difference between the
two-layer CDNA-SNN and SWAT were observed
(0.26%, 𝑝 = 0.79), although SWAT uses almost six times
the number of CDNA-SNN's parameters. Additionally,
adding another layer to the CDNA-SNN improves the

network performance and the three-layer CDNA-SNN has
the highest accuracy. One-way ANOVA indicated that at
least one approach is significantly different from others (𝑝 <
0.01), and the Three-layer CDNA-SNN significantly
outperforms SRESN (𝑝 < 0.05) and SpikeProp (𝑝 <
0.005).

Figure 2 shows an example of the influence of 𝛼 and 𝛽

9

on the overall training and testing accuracy of a three-layer
CDNA-SNN for the Liver disorders problem. The upper row
(Figure 2 (a-b)) presents the effect of parameters in the
hidden layer, and Figure 2 (c-d) is allocated to the parameters
in the output layer. Only one parameter varies in each case,
and the other three are fixed. As can be seen, the variations
are not linear, and a hyperparameter optimization algorithm
is necessary.

B. MNIST

Table V compares CDNA-SNN with state-of-the-art
SNNs. All compared networks are feedforward, fully
connected, multi-layer SNNs with supervised training

algorithms. The method proposed by Jin et al. [14] has
slightly higher accuracy than CDNA-SNN, while CDNA-
SNN employs almost 93% fewer trainable parameters.

C. Fashion MNIST

Table VI compares the results of CDNA-SNN with state-
of-the-art feedforward, fully connected, multi-layer SNNs on
the Fashion MNIST dataset. CDNA-SNN outperformed
other feedforward SNNs by 3-6% in classification
performance while employing 72-99 % fewer trainable
parameters.

TABLE V
COMPARISON OF CDNA-SNN WITH SOME STATE-OF-THE-ART FEEDFORWARD, FULLY CONNECTED, MULTI-LAYER SNNS ON MNIST DATASET

Paper Learning Method
Network

Architecture
#Trainable
Parameters

Testing
Accuracy

(%)
#Epochs

#Time
Steps

Diehl et al., 2015[3]
Backpropagation, ANN to SNN

conversion
28x28-1200-1200-

10
2,392,800 98.68 50 500

O’Connor and Welling,
2016[10]

Fractional Stochastic Gradient descent 28x28-300-300-10 328,200 97.80 50 10

Wu et al., 2018[13] Spatio-temporal backpropagation 28x28-800-10 635,200 98.89 200 30

Jin et al., 2018[14]
Hybrid macro/micro level

backpropagation
28x28-800-10 635,200 98.93 100 400

Tavanaei and Maida
2019[15]

STDP-based backpropagation 28x28-500-150-10 468,500 97.20 1 9

Zhang et al. 2018[41]
Equilibrium learning +STDP +

backpropagation
28x28-4500-10 3,573,000 98.52 100 -

Hao et al. 2020[42] Unsupervised and supervised STDP 28x28-10000-10 7,850,000 96.73 20 1000

Zhao et al. 2020 [43] Global Feedback + STDP
28x28-800-800-

800-10
1,915,200 98.62 100 10

Kheradpisheh et al., 2020
[44]

Backpropagation with temporal
encoding 28x28-400-10 317,600 97.4 - 256

Zhang et al., 2020 [45] Threshold-driven Plasticity Algorithm 28x28-800-10 635,200 96.8 - -

Comsa et al. 2021 [46] Backpropagation with temporal
encoding 28x28-340-10 269,960 97.96 1000 -

Kheradpisheh et al., 2022
[47]

Backpropagation with temporal
encoding + Binary synaptic weights 28x28-600-10 476,400 97.0 500 256

Zhang et al., 2022 [48] Spike-Timing-Dependent
Backpropagation 28x28-800-10 635,200 98.5 150 -

CDNA-SNN
Supervised STDP + CDNA-Weighted

STDP
28x28-55-38 45,396 98.91 100 300

TABLE VI
COMPARISON OF CDNA-SNN WITH SOME STATE-OF-THE-ART FEEDFORWARD, FULLY CONNECTED, MULTI-LAYER SNNS ON FASHION MNIST DATASET

Paper Learning Method
Network

Architecture
#Trainable
Parameters

Testing
Accuracy

(%)
#Epochs #Time

Steps

Zhang et al., 2020 [49]
Temporal Spike Sequence Learning

Backpropagation
28x28-400-400-10 477,600 89.80 100 5

Hao et al., 2020 [42] Unsupervised and supervised STDP 28x28-6400-10 5,081,600 85.47 10 1000

Zhao et al., 2020 [43] Global Feedback + STDP
28x28-200-200-200-

200-200-10
318,800 89.05 200 10

Perez-Nieves and
Goodman, 2021 [50]

Backpropagation using Surrogate Gradient 28x28-200-10 158,800 82.2 100 100

Perez-Nieves and
Goodman, 2021 [50]

Backpropagation using Surrogate Gradient 28x28-300-300-300-
300-300-10 598,200 82.7 100 100

Kheradpisheh et al.,
2022 [47]

Backpropagation with temporal encoding +
Binary synaptic weights 28x28-1000-10 794,000 87.3 500 256

Zhang et al., 2022 [48] Spike-Timing-Dependent Backpropagation 28x28-1000-10 794,000 88.1 150 -
CDNA-SNN Supervised STDP + CDNA-Weighted STDP 28x28-53-46 44,188 90.12 100 300

10

TABLE VII
COMPARISON OF CDNA-SNN WITH SOME STATE-OF-THE-ART FEEDFORWARD, FULLY CONNECTED, MULTI-LAYER SNNS ON N-MNIST DATASET

Paper Learning Method
Network

Architecture
#Trainable
Parameters

Testing
Accuracy (%)

#Epochs #Time
Steps

Shrestha and
Orchard, 2018[9] Backpropagation 34x34x2-500-500-10 1,411,000 98.95 100 300

Lee et al., 2016 [51] Backpropagation 34x34x2-800-10 1,857,600 98.74 200 300
Cohen et al., 2016

[52]
Synaptic Kernel Inverse Method 34x34x2-10000-10 23,220,000 92.87 - 360

Wu et al., 2018[13] Spatio-temporal backpropagation 34x34x2-800-10 1,857,600 98.78 200 30
Jin et al. 2018 [53] Hybrid macro/micro level backpropagation 34x34x2-800-10 1,857,600 98.88 60 500
Perez-Nieves and

Goodman, 2021 [50]
Backpropagation using Surrogate Gradient 34x34x2-200-10 464,400 92.7 100 300

CDNA-SNN Supervised STDP + CDNA-Weighted STDP 34x34x2-69-48 163,074 98.43 100 300

D. Neuromorphic MNIST
In Table VII CDNA-SNN is compared to other fully

connected multi-layer SNNs with supervised training
algorithms. CDNA-SNN achieves a testing accuracy of
98.43 which is closer to the performance of the best-
performing method i.e. SLAYER [9], which achieves an
accuracy of 98.95%. It may be noted that CDNA-SNN
requires 88% fewer parameters compared to SLAYER for
this performance.

E. Frequency Analysis

Here we evaluate the firing rate of neurons in each
assembly after training in response to the testing patterns
from different classes. Figure 3 represents the mean firing
rate of assemblies of a 3-layer CDNA-SNN in response to
testing spike patterns from different classes for MNIST and
Fashion MNIST. The desired scenario for these assemblies
is to have relatively higher activity for their class and a lower
firing rate for the spike patterns from other classes. As can
be seen, assemblies in the hidden layer (a,c) could not
properly fulfil this objective. However, assemblies in the
output layer (b,d) have a relatively higher mean firing rate
and a considerably lower average activity for other classes.
Two-layer CDNA-SNN (input-hidden) could achieve
94.89% and 90.12% accuracy for MNIST and Fashion
MNIST, respectively. However, three-layer CDNA-SNN
improved the performance of two-layer CDNA-SNN to
98.91% for MNIST and 94.33% for Fashion MNIST. It
should be noted that CDNA-SNN relies on the most active
neuron in each assembly but having assemblies with
relatively higher average firing rates for the spike patterns
from their class will lead to better classification performance.

F. CDNA-weighted STDP versus STDP

In this section CDNA-weighted STDP is compared with
conventional STDP regarding classification performance
and the synaptic connections between assemblies in the
hidden layer and assemblies in the output layer. Figure 4
compares the average synaptic connections between
assemblies in the hidden layer and output layer of CDNA-
SNN, which is trained using algorithm 2 and different STDP
rules in the output layer, including (a) Conventional STDP,
and (b) CDNA-Weighted STDP for MNIST and Fashion

MNIST datasets. As shown, CDNA-Weighted STDP could
build stronger connections between neurons from the same
class than conventional STDP, while separating different
assemblies by weak or negative connections. The reason for
this result is that CDNA-Weighted STDP adjusts the weights
connected to all presynaptic neurons with respect to their
CDNAs of the sample class. In this example, all networks are
initialised with 200 hidden and 100 output neurons.
classification accuracies of conventional STDP are 95.26%
and 86.94% for MNIST and Fashion MNIST, respectively.
CDNA-Weighted STDP achieved 98.91% and 90.12%
accuracy for MNIST and Fashion MNIST. Employing
CDNA-SNN led to 38 and 46 output neurons for MNIST and
Fashion MNIST, respectively. In comparison, training with
conventional STDP resulted in 45 and 58 output neurons for
MNIST and Fashion MNIST.

G. Number of Layers of CDNA-SNN

It is possible to use the proposed algorithm for networks
with any number of layers. However, the results have been
reported for at most 3-layer CDNA-SNN with one hidden
layer because adding more layers did not improve the
performance of CDNA-SNN for the datasets used for
evaluation. Figure 5 shows the testing accuracy of CDNA-
SNN with different numbers of layers for MNIST and
Fashion MNIST. It can be observed that the network's
performance does not improve when more than three layers
are used.

IV. DISCUSSION

The proposed CDNA-SNN is a new type of SNN that
draws inspirations from assemblies of biological neurons.
The training algorithm for CDNA-SNN employs learnable
values known as CDNAs to form assemblies. Like biological
assemblies, these CDNA-based assemblies vary throughout
training, share some neurons with other assemblies, and are
associated with a specific piece of information (class). The
assemblies formed by CDNA have a relatively higher
average firing rate for training and testing patterns from their
associated class and a lower rate for other classes (Figure 3).

The training algorithm of CDNA-SNN concentrates on the
most active neurons in response to the spike patterns from
each class and estimates the average relative firing rate of

11

neurons for all classes using CDNAs. CDNAs are updated
throughout training such that neurons that are relatively more
active for a specific class are added to the relevant assembly,
and hypoactive neurons are identified. CDNA-SNN divides
neurons into class assemblies, trains each assembly to be
more active for its class, and removes untrained hypoactive
neurons, which has led to excellent performance with a
minimal number of neurons. Regarding the five UCI
datasets, CDNA-SNN achieved the best performance among
the compared methods on Iris, breast cancer, liver disorders,
and Ionosphere datasets and reached the close second-best
performance for Pima diabetes (TABLE IV). For all of these
datasets, three-layer CDNA-SNN used the least number of
parameters, which was considerably less than SpikeProp (81-
99% less) and SWAT (57-86% less). Considering MNIST,
CDNA-SNN has reached the near second-best performance,
with 83-99% fewer parameters (TABLE V). For Fashion
MNIST, CDNA-SNN has achieved 0.32-4.65% better
accuracy compared to all feedforward fully connected SNNs,
while requiring 72-99% fewer parameters (TABLE VI).
Finally for N-MNIST, CDNA-SNN has achieved close to the
best performance using 88% fewer network parameters
(TABLE VII).

The main advantage of CDNA-SNN over the other

methods in comparisons is using fewer parameters while
achieving higher or comparable classification performance,
as indicated by the results. CDNA-SNN utilises a small
number of neurons, and therefore it consumes low power
after implementation, making it an excellent candidate for
applications such as autonomous robotics [54]. Furthermore,
CDNA-SNN uses a simple training procedure based on
STDP and Anti-STDP, which is more suitable for directly
training SNNs on edge devices than gradient-based
algorithms [55].

CDNA-weighted STDP has been introduced in this paper
as a new type of STDP. CDNA-weighted STDP controls the
amount of plasticity with respect to the overall activity of
presynaptic neurons for the class associated with the
presented spike pattern (𝑐). In this approach, presynaptic
neurons with higher values of CDNA for 𝑐 will receive
more weight adjustment. Compared with conventional
STDP, CDNA-weighted STDP could build stronger
connections between assemblies of the same class in
different layers and weaker connections between assemblies
of different classes (Figure 4). The results show that CDNA-
weighted STDP outperformed conventional STDP by 3.65%
and 3.18% for MNIST and Fashion MNIST.

Figure 3. Mean firing rate of assemblies of a three-layer CDNA-SNN in response to testing spike patterns from different classes. The upper row shows the mean
firing rate of assemblies in the (a) hidden, and (b) output layer for MNIST and the lower row illustrates the mean firing rate of assemblies in the (c) hidden and (d)
output layer for Fashion MNIST. H represents the hypoactive assembly.

12

Figure 4. Average synaptic connections between assemblies in the hidden layer and output layer of CDNA-SNN, which are trained using algorithm 2 and different
STDP rules in the output layer. The upper row shows average connections using (a) Conventional STDP, and (b) CDNA-Weighted STDP for MNIST, and the
lower row displays average connections using (c) Conventional STDP, and (d) CDNA-Weighted STDP for Fashion MNIST

Figure 5. The accuracy of CDNA-SNN with different number of layers for MNIST and Fashion MNIST

A. Limitations

The CDNA-SNN employs a layerwise training algorithm.
Layerwise training demands more epochs than end-to-end
training because the total number of epochs in layerwise
learning is the sum of training epochs for each layer. The
training method of CDNA-SNN has no inhibitory
neuron/strategy, and its only obstacle towards becoming an
end-to-end approach is hypoactive neurons. According to
Algorithm 1, removing hypoactive neurons in each layer is

required before training the next layer. These neurons are
untrained and keeping them in the network may compromise
the overall classification performance of CDNA-SNN.
Additionally, the training algorithm for CDNA-SNN is
intended for fully connected architectures. It has been shown
that for image datasets like MNIST, convolutional SNNs may
reach better classification performance with fewer parameters
than fully connected networks with the same training algorithm
[3][11][13]. Convolutional SNNs have achieved 99.67%
accuracy [56] for MNIST which is 0.76% better than CDNA-

13

SNN. Also, for Fashion MNIST multi-layer convolutional
SNNs could reach a higher accuracy of 94.38% [57], which is
4.26% more than CDNA-SNN. This situation is even more
challenging for the colored image dataset CIFAR-10 [58] and
more difficult CIFAR10-DVS [59]. These datasets require
several layers of convolutional spiking neural networks to
achieve high performance [60][61]. CDNA-SNN with fully
connected layers did not achieve comparable results to state-of-
the-art convolutional SNNs on these datasets. Adapting CDNA-
SNN for CNNs may yield better performance for complex
image datasets like CIFAR-10 and CIFAR10-DVS and even
further reductions in the parameters associated with CNNs.

V. CONCLUSION

In this paper, a new spiking neural network known as CDNA-
SNN has been introduced, inspired by the concept of neuronal
assemblies in the human brain. The proposed training algorithm
for CDNA-SNN allocates learnable values called CDNAs to all
neurons based on their relative firing rate for the samples from
different classes. CDNAs enable this approach to categorize the
neurons into different assemblies associated with each class
while adjusting the synaptic weights. The novelty of this
training method is to identify the most active neurons for each
class, add them to the corresponding class assemblies, increase
each assembly's activity for its class, and lower its firing rate
for other classes. CDNAs enable the training approach to
employ layer-wise learning via supervised STDP for all layers
and identify and remove neurons with relatively low spiking
activity, known as hypoactive neurons.

The results on multiple benchmarks indicate that the
proposed network can achieve higher performance with
considerably fewer network parameters than other SNNs in
comparison. These characteristics make CDNA-SNN an
excellent candidate for autonomous robotics and edge
computing applications. As a part of the new training method,
a new type of STDP entitled CDNA-weighted STDP has been
proposed. In CDNA-weighted STDP CDNAs of the
presynaptic neurons control the amount of weight update for
their corresponding neurons. CDNA-weighted STDP,
compared to conventional STDP, builds stronger connections
between assemblies of the same class in consecutive layers and
weaker connections between different class assemblies, leading
to better classification performance.

Future work will develop an end-to-end training algorithm
for CDNA-SNN to make the training process faster. Also, the
proposed learning method is meant for fully connected SNNs.
It is intended to adapt CDNA-SNN for convolutional
architectures to improve its performance on image datasets like
CIFAR10 and CIFAR10-DVS while simultaneously lowering
the number of network parameters.

V. ACKNOWLEDGEMENT

This project was supported by Dr George Moore PhD
scholarship in intelligent data analytics. We are grateful for
access to the Tier 2 High Performance Computing resources
provided by the Northern Ireland High Performance Computing

(NI-HPC) facility funded by the UK Engineering and Physical
Sciences Research Council (EPSRC), Grant No. EP/T022175.
Damien Coyle holds a UKRI Turing AI Fellowship 2021-2025,
funded by the EPSRC (Grant number EP/V025724/1). This
article has been accepted for publication in IEEE Transactions
on Neural Networks and Learning Systems on December 1,
2023, DOI: 10.1109/TNNLS.2024.3353571. This is the author
accepted manuscript (AAM) version of the article. The final
published version may differ from this version. For the purpose
of open access, the author(s) has applied a Creative Commons
Attribution (CC BY) license to any Author Accepted
Manuscript version arising.

REFERENCES

[1] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A.
Maida, “Deep learning in spiking neural networks,” Neural
Networks, vol. 111. Elsevier Ltd, pp. 47–63, 01-Mar-2019.

[2] W. Maass, “Noisy spiking neurons with temporal coding have more
computational power than sigmoidal neurons,” in Advances in Neural
Information Processing Systems, 1997, pp. 211–217.

[3] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer,
“Fast-classifying, high-accuracy spiking deep networks through
weight and threshold balancing,” in 2015 International Joint
Conference on Neural Networks (IJCNN), 2015, vol. 2015-Sep, pp.
1–8.

[4] E. Hunsberger and C. Eliasmith, “Spiking Deep Networks with LIF
Neurons,” [Online]. Available: http://arxiv.org/abs/1510.08829,
Oct. 2015.

[5] S. K. Esser et al., “Convolutional networks for fast, energy-efficient
neuromorphic computing,” Proc. Natl. Acad. Sci. U. S. A., vol. 113,
no. 41, pp. 11441–11446, 2016.

[6] B. Rueckauer, I. A. Lungu, Y. Hu, M. Pfeiffer, and S. C. Liu,
“Conversion of continuous-valued deep networks to efficient event-
driven networks for image classification,” Front. Neurosci., vol. 11,
no. DEC, p. 682, Dec. 2017.

[7] Q. Meng, M. Xiao, S. Yan, Y. Wang, Z. Lin, and Z.-Q. Luo,
“Training High-Performance Low-Latency Spiking Neural Networks
by Differentiation on Spike Representation,” May 2022.

[8] S. M. Bohte, J. N. Kok, and H. La Poutre, “SpikeProp:
Backpropagation for networks of spiking neurons,” Neurocomputing,
vol. 48, no. 1–4, p. 17, 2002.

[9] S. B. Shrestha and G. Orchard, “Slayer: Spike layer error
reassignment in time,” Adv. Neural Inf. Process. Syst., vol. 2018-
Decem, no. NeurIPS, pp. 1412–1421, 2018.

[10] P. O’Connor and M. Welling, “Deep Spiking Networks,” [Online].
Available: https://arxiv.org/abs/1602.08323, 2016.

[11] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural
networks using backpropagation,” Front. Neurosci., vol. 10, no.
NOV, 2016.

[12] S. R. Kulkarni and B. Rajendran, “Spiking neural networks for
handwritten digit recognition—Supervised learning and network
optimization,” Neural Networks, vol. 103, pp. 118–127, Jul. 2018.

[13] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-Temporal
Backpropagation for Training High-Performance Spiking Neural
Networks,” Front. Neurosci., vol. 12, no. MAY, pp. 1–12, May 2018.

[14] Y. Jin, W. Zhang, and P. Li, “Hybrid Macro/Micro Level
Backpropagation for Training Deep Spiking Neural Networks,” in
Advances in Neural Information Processing Systems, 2018, vol. 31.

[15] A. Tavanaei and A. Maida, “BP-STDP: Approximating
backpropagation using spike timing dependent plasticity,”
Neurocomputing, vol. 330, pp. 39–47, 2019.

[16] S. B. Shrestha and Q. Song, “Robust spike-train learning in spike-
event based weight update,” Neural Networks, vol. 96, pp. 33–46,
Dec. 2017.

[17] S. McKennoch, L. Dingding, and L. G. Bushnell, “Fast modifications
of the SpikeProp algorithm,” in IEEE International Conference on
Neural Networks - Conference Proceedings, 2006, pp. 3970–3977.

[18] N. Rathi, G. Srinivasan, P. Panda, and K. Roy, “Enabling Deep
Spiking Neural Networks with Hybrid Conversion and Spike Timing

14

Dependent Backpropagation,” in International Conference on
Learning Representations (Virtual Conference), 2020.

[19] D. O. Hebb, The Organization of Behavior. Psychology Press, 2005.
[20] A. Shrestha, K. Ahmed, Y. Wang, and Q. Qiu, “Stable spike-timing

dependent plasticity rule for multilayer unsupervised and supervised
learning,” in 2017 International Joint Conference on Neural
Networks (IJCNN), 2017, vol. 2017-May, pp. 1999–2006.

[21] C. Lee, G. Srinivasan, P. Panda, and K. Roy, “Deep Spiking
Convolutional Neural Network Trained With Unsupervised Spike-
Timing-Dependent Plasticity,” IEEE Trans. Cogn. Dev. Syst., vol. 11,
no. 3, pp. 384–394, Sep. 2019.

[22] H. Markram, “A history of spike-timing-dependent plasticity,” Front.
Synaptic Neurosci., vol. 3, no. AUG, pp. 1–24, 2011.

[23] Y. Dan and M.-M. Poo, “Spike Timing-Dependent Plasticity: From
Synapse to Perception,” Physiol. Rev., vol. 86, no. 3, pp. 1033–1048,
Jul. 2006.

[24] F. Ponulak and A. Kasiński, “Supervised Learning in Spiking Neural
Networks with ReSuMe: Sequence Learning, Classification, and
Spike Shifting,” Neural Comput., vol. 22, no. 2, pp. 467–510, Feb.
2010.

[25] J. J. Wade, L. J. McDaid, J. A. Santos, and H. M. Sayers, “SWAT: A
Spiking Neural Network Training Algorithm for Classification
Problems,” IEEE Trans. Neural Networks, vol. 21, no. 11, pp. 1817–
1830, Nov. 2010.

[26] A. Jeyasothy, S. Sundaram, and N. Sundararajan, “SEFRON: A New
Spiking Neuron Model With Time-Varying Synaptic Efficacy
Function for Pattern Classification,” IEEE Trans. Neural Networks
Learn. Syst., vol. 30, no. 4, pp. 1231–1240, Apr. 2019.

[27] J. C. Thiele, O. Bichler, and A. Dupret, “A Timescale Invariant
STDP-Based Spiking Deep Network for Unsupervised Online
Feature Extraction from Event-Based Sensor Data,” in 2018
International Joint Conference on Neural Networks (IJCNN), 2018,
vol. 2018-July, pp. 1–8.

[28] J. C. Thiele, O. Bichler, and A. Dupret, “Event-Based, Timescale
Invariant Unsupervised Online Deep Learning With STDP,” Front.
Comput. Neurosci., vol. 12, no. June, pp. 1–13, Jun. 2018.

[29] M. Mozafari, S. R. Kheradpisheh, T. Masquelier, A. Nowzari-Dalini,
and M. Ganjtabesh, “First-Spike-Based Visual Categorization Using
Reward-Modulated STDP,” IEEE Trans. Neural Networks Learn.
Syst., vol. 29, no. 12, pp. 6178–6190, Dec. 2018.

[30] W. Gerstner, M. Lehmann, V. Liakoni, D. Corneil, and J. Brea,
“Eligibility Traces and Plasticity on Behavioral Time Scales:
Experimental Support of NeoHebbian Three-Factor Learning Rules,”
Front. Neural Circuits, vol. 12, no. July, pp. 1–16, Jul. 2018.

[31] C. H. Papadimitriou, S. S. Vempala, D. Mitropolsky, M. Collins, and
W. Maass, “Brain computation by assemblies of neurons,” Proc.
Natl. Acad. Sci., vol. 117, no. 25, pp. 14464–14472, Jun. 2020.

[32] G. L. Gerstein, P. Bedenbaugh, and A. M. H. J. Aertsen, “Neuronal
assemblies,” IEEE Trans. Biomed. Eng., vol. 36, no. 1, pp. 4–14,
1989.

[33] R. A. Fisher, “The design of experiments,” 1949.
[34] R. A. Fisher, “On the’probable error’of a coefficient of correlation

deduced from a small sample,” Metron, vol. 1, pp. 1–32, 1921.
[35] R. A. Fisher, “The Design of Experiments,” British Medical Journal,

vol. 1, no. 3923. p. 554, Mar-1936.
[36] R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy

Estimation and Model Selection,” Int. Jt. Conf. Artif. Intell., 1995.
[37] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[38] S. Dora, S. Sundaram, and N. Sundararajan, “An Interclass Margin

Maximization Learning Algorithm for Evolving Spiking Neural
Network,” IEEE Trans. Cybern., vol. 49, no. 3, pp. 989–999, Mar.
2019.

[39] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, “Converting
static image datasets to spiking neuromorphic datasets using
saccades,” Front. Neurosci., vol. 9, no. NOV, p. 437, 2015.

[40] S. Dora, K. Subramanian, S. Suresh, and N. Sundararajan,
“Development of a Self-Regulating Evolving Spiking Neural
Network for classification problem,” Neurocomputing, vol. 171, pp.
1216–1229, Jan. 2016.

[41] T. Zhang, Y. Zeng, D. Zhao, and M. Shi, “A plasticity-centric
approach to train the non-differential spiking neural networks,” 32nd
AAAI Conf. Artif. Intell. AAAI 2018, pp. 620–627, 2018.

[42] Y. Hao, X. Huang, M. Dong, and B. Xu, “A biologically plausible
supervised learning method for spiking neural networks using the

symmetric STDP rule,” Neural Networks, vol. 121, pp. 387–395, Jan.
2020.

[43] D. Zhao, Y. Zeng, T. Zhang, M. Shi, and F. Zhao, “GLSNN: A Multi-
Layer Spiking Neural Network Based on Global Feedback Alignment
and Local STDP Plasticity,” Front. Comput. Neurosci., vol. 14, p.
576841, Nov. 2020.

[44] S. R. Kheradpisheh and T. Masquelier, “Temporal Backpropagation
for Spiking Neural Networks with One Spike per Neuron,” Int. J.
Neural Syst., vol. 30, no. 06, p. 2050027, Jun. 2020.

[45] M. Zhang et al., “An Efficient Threshold-Driven Aggregate-Label
Learning Algorithm for Multimodal Information Processing,” IEEE
J. Sel. Top. Signal Process., vol. 14, no. 3, pp. 592–602, Mar. 2020.

[46] I.-M. Comsa, K. Potempa, L. Versari, T. Fischbacher, A. Gesmundo,
and J. Alakuijala, “Temporal Coding in Spiking Neural Networks
With Alpha Synaptic Function: Learning With Backpropagation,”
IEEE Trans. Neural Networks Learn. Syst., pp. 1–14, 2021.

[47] S. R. Kheradpisheh, M. Mirsadeghi, and T. Masquelier, “BS4NN:
Binarized Spiking Neural Networks with Temporal Coding and
Learning,” Neural Process. Lett., vol. 54, no. 2, pp. 1255–1273, Apr.
2022.

[48] M. Zhang et al., “Rectified Linear Postsynaptic Potential Function for
Backpropagation in Deep Spiking Neural Networks,” IEEE Trans.
Neural Networks Learn. Syst., vol. 33, no. 5, pp. 1947–1958, May
2022.

[49] W. Zhang and P. Li, “Temporal spike sequence learning via
backpropagation for deep spiking neural networks,” in Advances in
Neural Information Processing Systems, 2020, vol. 2020-Decem.

[50] N. Perez-Nieves and D. F. M. Goodman, “Sparse Spiking Gradient
Descent,” Adv. Neural Inf. Process. Syst., vol. 15, pp. 11795–11808,
May 2021.

[51] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training Deep Spiking
Neural Networks Using Backpropagation,” Front. Neurosci., vol. 10,
no. NOV, Nov. 2016.

[52] G. K. Cohen, G. Orchard, S.-H. Leng, J. Tapson, R. B. Benosman,
and A. van Schaik, “Skimming Digits: Neuromorphic Classification
of Spike-Encoded Images,” Front. Neurosci., vol. 10, no. APR, p.
184, Apr. 2016.

[53] Y. Jin, W. Zhang, and P. Li, “Hybrid macro/micro level
backpropagation for training deep spiking neural networks,” in
Advances in Neural Information Processing Systems, 2018, vol.
2018-Decem, pp. 7005–7015.

[54] Z. Bing, C. Meschede, F. Röhrbein, K. Huang, and A. C. Knoll, “A
Survey of Robotics Control Based on Learning-Inspired Spiking
Neural Networks,” Front. Neurorobot., vol. 12, p. 35, Jul. 2018.

[55] K. Bai, S. Liu, and Y. Yi, “High Speed and Energy Efficient Deep
Neural Network for Edge Computing,” Proc. 4th ACM/IEEE Symp.
Edge Comput., 2019.

[56] G. Shen, D. Zhao, and Y. Zeng, “Backpropagation with biologically
plausible spatiotemporal adjustment for training deep spiking neural
networks,” Patterns, vol. 3, no. 6, p. 100522, Jun. 2022.

[57] W. Fang, Z. Yu, Y. Chen, T. Masquelier, T. Huang, and Y. Tian,
“Incorporating Learnable Membrane Time Constant to Enhance
Learning of Spiking Neural Networks,” in 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), 2021, pp.
2641–2651.

[58] H. Li, H. Liu, X. Ji, G. Li, and L. Shi, “CIFAR10-DVS: An event-
stream dataset for object classification,” Front. Neurosci., vol. 11, no.
MAY, p. 244131, May 2017.

[59] G. Kevin Cohen et al., “Citation: CIFAR10-DVS: An Event-Stream
Dataset for Object Classification,” Front. Neurosci. |
www.frontiersin.org, vol. 1, p. 309, 2017.

[60] H. Wu et al., “Training Spiking Neural Networks with Accumulated
Spiking Flow,” 2021.

[61] A. Safa, I. Ocket, A. Bourdoux, H. Sahli, F. Catthoor, and G. Gielen,
“A New Look at Spike-Timing-Dependent Plasticity Networks for
Spatio-Temporal Feature Learning,” Nov. 2021.

15

Vahid Saranirad received the B.S. degree
in electrical engineering from the Sadjad
University of Technology, Mashhad, Iran,
in 2010 and the M.Sc. degree in biomedical
engineering from the Ferdowsi University
of Mashhad, Mashhad, Iran, in 2014. He is
currently working toward the Ph.D. degree
in computer science with Intelligent
Systems Research Centre (ISRC), School

of Computing, Engineering and Intelligent Systems, Ulster
University, Derry/Londonderry, U.K. His research interests
focus on enhancing the biological plausibility of deep learning
for computer vision.

Shirin Dora is a lecturer in the Department
of Computer Science at Loughborough
University. Prior to joining Loughborough
University, he briefly worked as a lecturer in
the Intelligent Systems Research Centre at
the Ulster University in Northern Ireland.
He received his PhD from Nanyang
Technological University, Singapore in
2017. During his PhD, he focused on

developing energy-efficient learning algorithms for spiking
neural networks using inspirations from the brain. After his
PhD, he joined the Cognitive and Systems Neuroscience Group
at the University of Amsterdam as a postdoctoral researcher. In
Amsterdam, he delved deeper into the plasticity mechanisms in
the brain specifically focusing on predictive coding for
perception and multisensory integration. His current research
interests include efficient techniques for lifelong learning, few-
shot learning and distributed AI.

T. Martin McGinnity (SM’09) received
the BSc degree in Physics (First Class
hons.) from the New University of Ulster
in 1975 and a PhD degree from the
University of Durham, U.K. in 1979.
Currently he is an Emeritus Professor in
the School of Computing, Engineering and
Intelligent Systems at Ulster University

(UU). Before taking semi-retirement in 2018, he was formerly
Pro Vice Chancellor and Head of the College of Science and
Technology at Nottingham Trent University (NTU), Dean of
Science and Technology at NTU, Founding Director of the
Intelligent Systems Research Centre at UU, and Head of the
School of Computing and Intelligent Systems at UU. He is the
author or co-author of over 300 research papers, has supervised
over 30 PhD students to successful completion and attracted
over £40 million in research funding. His research interests are
focused on computational intelligence, computational
neuroscience, modelling of biological information processing
in FPGA reconfigurable hardware and sensory systems in
cognitive robotics.

Damien Coyle (Senior Member, IEEE) is a
Professor of Neurotechnology, Director of
the Bath Institute for the Augmented Human
and a UKRI Turing AI Acceleration Fellow
2021-25. He was Director of Ulster
University’s Intelligent Systems Research
Centre 2017-2022. His research focuses on
developing AI to address challenges
associated with translating

electrophysiological signals into control signals for brain-
computer interface (BCI) based neurotechnology and trialing
these developments on a large scale with patients and end-users.
He has published over 190 research papers in areas such as
computational intelligence/AI, bio-signal processing,
computational neuroscience, neuroimaging, neurotechnology
and brain-computer interface (BCI) applications and has won a
number of prestigious international awards including the 2008
IEEE Computational Intelligence Society (CIS) Outstanding
Doctoral Dissertation Award, the 2011 International Neural
Network Society (INNS) Young Investigator of the Year
Award and the IET and E&T Innovation of the Year Award
2018. He was an Ulster University Distinguished Research
Fellow in 2011 and Ulster Senior Distinguished Research
Fellow 2020, a Royal Academy of Engineering/The
Leverhulme Trust Senior Research Fellow in 2013, and a Royal
Academy of Engineering Enterprise Fellow in 2016-2017. He
secured over £20m external grant income and managed several
industry-led data analytics projects. He has supervised 22 PhD
researchers (14 completed). He is a founding member of the
International Brain-Computer Interface Society, an IEEE Brain
Technical Community Steering Committee member, advisory
board member for the UK Neurotechnology Innovation
Network, and previously chaired the IEEE Computational
Intelligence Society (CIS) UKIreland chapter. He is Founder
and CEO of NeuroCONCISE Ltd (www.neuroconcise.co.uk),
an award-winning, AI-enabled, wearable neurotechnology
company.

