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CDNA-SNN: A New Spiking Neural Network for 
Pattern Classification using Neuronal Assemblies 

 

Vahid Saranirad, Shirin Dora, Thomas Martin McGinnity, Senior Member, IEEE, and Damien Coyle, Senior 
Member, IEEE

Abstract— Spiking neural networks (SNNs) mimic their 
biological counterparts more closely than their predecessors and 
are considered the third generation of artificial neural networks. 
It has been proven that networks of spiking neurons have a higher 
computational capacity and lower power requirements than 
sigmoidal neural networks. This paper introduces a new type of 
spiking neural network that draws inspiration and incorporates 
concepts from neuronal assemblies in the human brain. The 
proposed network, termed as CDNA-SNN, assigns each neuron 
learnable values known as Class-Dependent Neuronal Activations 
(CDNAs) which indicate the neuron’s average relative spiking 
activity in response to samples from different classes. A new 
learning algorithm that categorizes the neurons into different class 
assemblies based on their CDNAs is also presented. These 
neuronal assemblies are trained via a novel training method based 
on Spike-Timing Dependent Plasticity (STDP) to have high 
activity for their associated class and low firing rate for other 
classes. Also, using CDNAs, a new type of STDP that controls the 
amount of plasticity based on the assemblies of pre- and post-
synaptic neurons is proposed. The performance of CDNA-SNN is 
evaluated on five datasets from the UCI machine learning 
repository, as well as MNIST and Fashion MNIST, using nested 
cross-validation for hyperparameter optimization. Our results 
show that CDNA-SNN significantly outperforms SWAT 
(p<0.0005) and SpikeProp (p<0.05) on 3/5 and SRESN (p<0.05) on 
2/5 UCI datasets while using the significantly lower number of 
trainable parameters. Furthermore, compared to other 
supervised, fully connected SNNs, the proposed SNN reaches the 
best performance for Fashion MNIST and comparable 
performance for MNIST and N-MNIST, also utilizing much less 
(1-35%) parameters. 

 
Index Terms— class-dependent neuronal activation, CDNA, 

neuronal assembly, leaky integrate and fire, spiking neural 
network, spiking neurons. 

I. INTRODUCTION 

ompared to traditional neural networks, Spiking Neural 
Networks (SNNs) more closely imitate the information 
processing mechanisms employed by biological 

neurons. SNNs comprise of neurons that transmit information 
using spikes which are discrete events at specific time instants. 
Consequently, SNNs consume lower power in hardware than 
traditional neural networks, which represent information using 
continuous real values [1]. It has been shown that an SNN has 
higher computational capacity in comparison to its predecessors 
[2]. However, the discontinuous nature of spikes makes a 
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spiking neuron’s output non-differentiable with respect to the 
weights. Therefore, popular gradient-based supervised training 
techniques for sigmoidal neural networks cannot be applied 
directly to SNNs. 

To avoid computing gradients in SNNs, a number of studies 
have developed methods to convert trained sigmoidal neural 
networks into SNNs [3][4][5]. In these approaches, at first, a 
sigmoidal neural network is trained using the conventional 
backpropagation algorithm. Then the sigmoidal neurons in the 
trained network are replaced by spiking neurons in such a way 
that the responses of neurons in both networks are similar for 
the same inputs. The resulting SNNs usually yield lower 
classification accuracy compared to the trained sigmoidal 
neural networks. Several techniques are employed to minimize 
the loss of accuracy resulting from the conversion process, such 
as constraining the neurons' firing rate and thresholds [3] and 
synaptic weight normalization [6]. However, SNNs developed 
using conversion techniques are unable to match the 
performance of the network from which they were derived 
[3][4]. 

Many researchers have proposed error backpropagation 
based methods for SNNs that employ approximate derivatives 
where a discontinuity exists [7][8][9][10][11][12][13][14][15]. 
SpikeProp [8] employs a mean square error based on the spike 
timing of desired and actual output spike trains, assuming that 
postsynaptic potential is a linear function of time in a period 
close to the firing time. SpikeProp and its variations [16][17] 
cannot handle the silent neuron problem, which refers to 
neurons that stop spiking because of updates in their weights. It 
is not possible to compute an error for such neurons, as a result, 
they stop contributing to the network's output. SLAYER[9] 
utilises the spike response model, in which the neuronal 
membrane potential depends on current and past values of 
inputs. This approach defines a temporal error between the 
output and desired spike patterns and computes gradients using 
the probability of switching between spiking and non-spiking 
states of a neuron. SLAYER trains both weights and axonal 
delays of SNN simultaneously and addresses the silent neurons 
problem. The Macro-Micro backpropagation method [14] 
decomposes the error backpropagation into three 
components:1) macro-level that backpropagate error over firing 
rates, 2) micro-level that uses spike trains to transfer error to the 
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previous layers, and 3) backpropagation of error using 
interactions between the first two components. SLAYER and 
Macro-Micro backpropagation can train multilayer 
architectures of fully connected and convolutional SNNs. 
However, the backward pass in spike-based backpropagation 
integrates the gradients across all time steps, which increases 
memory demands and computational complexity [18]. 

Inspired by biological neurons, a group of training methods 
for SNNs have used spike-based formulations of Hebb's rule 
[19][20][21]. According to the conventional Hebbian rule, 
"neurons that fire together, wire together" [19]. Different 
variants of this rule have been proposed but the most popular 
one for SNNs is spike-timing-dependent plasticity (STDP), 
which modifies the strength of synaptic connections based on 
the spike timing of pre- and post-synaptic neurons [22]. 
According to STDP, the weight of a synapse between two 
neurons is increased, when the presynaptic neuron generates a 
spike before a spike emitted by the postsynaptic neuron. On the 
contrary, the weight of a synapse is reduced, if the presynaptic 
neuron fires after the postsynaptic neuron. The strengthening 
and weakening of synaptic connections are termed as long-term 
potentiation (LTP) and long-term depression (LTD), 
respectively [23]. 

Although STDP is inherently unsupervised, it serves as the 
foundation for supervised algorithms such as ReSuMe [24], 
SWAT [25], and SEFRON [26]. These methods use a single 
layer SNN and are inapplicable to multilayer SNNs because 
STDP lacks a mechanism for propagating output errors across 
layers in the network. To deal with this issue, some methods 
trained multilayer SNNs employing STDP in a layer-wise 
manner [20][21]. After training a given layer, they freeze its 
synaptic weights, and the output of this layer is used to train the 
next layer. Lee et al. [21] trained hidden layers of a multilayer 
convolutional SNN using layer-wise unsupervised STDP. 
However, for the last fully connected layer, they employed a 
supervised variation of STDP. During the training process of 
the last layer, each sample is only used to train the neuron 
corresponding to the sample class. Thiele et al. [27][28] 
introduced a biologically implausible scheme for end-to-end 
training of a deep convolutional SNN using dual accumulator 
neurons and STDP. Each neuron in their network has two 
separate integrators with different thresholds; the integrator 
with the higher threshold adjusts the synaptic weight of the 
neuron with STDP, and the other integrator generates enough 
spikes (information) to train the subsequent layers. All the 
above STDP-based approaches train the network's layers 
independently and only use the class information for the last 
layer. Unsupervised learning in the hidden layers may result in 
lower classification performance. 

Mozafari et al. [29] introduced a reward-modulated STDP 
to train a convolutional SNN. In this approach a 
reward/punishment signal is transmitted to neurons in the last 
hidden layer as a modulator [30] for STDP. A reward signal 
updates the weights with normal STDP, but the punishment 

modulator adjusts the weights using anti-STDP in which LTP 
and LTD are swapped and the weights in other layers of the 
network are trained using unsupervised STDP. 

It is hypothesized that in the human brain an assembly or a 
group of neurons are associated to certain sensory information 
or cognitive data, such as a memory, a concept, or a phrase [31]. 
As one of the first studies at the level of neuronal groups, Hebb 
[19] indicated that if particular receptors are stimulated 
repeatedly, an area of cells will be associated with that stimulus, 
called an assembly of neurons. This assembly acts as a unified 
learning system or perception to create the simplest 
representation of an idea or an image [19]. Gerstein et al. [32] 
examined the characteristics of neuronal assemblies. They 
concluded that the assembly of neurons is formed by learning 
and strengthened by frequent use. Also, neuron assignments to 
different assemblies are based on the correlation of spiking 
between neurons, and neuronal assemblies corresponding to 
different subjects or memories overlap. Overlapping means that 
a neuron can be a part of multiple assemblies and contribute to 
each of their actions. However, existing SNN training methods 
do not utilize the idea of neuronal assemblies. 

This paper introduces Class-Dependent Neuronal 
Activation based Spiking Neural Network (CDNA-SNN), 
which draws inspiration from neuronal assemblies. The 
learning algorithm for CDNA-SNN estimates how strongly a 
neuron fires for samples from a given class, using values 
referred to as Class-Dependent Neuronal Activation (CDNA). 
The proposed layer-wise learning method categorises the 
neurons into class assemblies based on their CDNAs. These 
assemblies enable the network to train the synaptic weights 
using supervised STDP for all layers. In addition, the proposed 
training algorithm can identify neurons with low relative 
spiking activity in response to the training data. These neurons, 
known as the hypoactive assembly, are deleted from the 
network after training. 

The performance of CDNA-SNN has been evaluated using 
five numerical classification datasets from the UCI machine 
learning repository, as well as MNIST and Fashion MNIST 
image datasets. A statistical analysis has also been carried out, 
including a one-way ANOVA followed by a pairwise 
comparison employing Fisher’s least significant difference 
(LSD) approach [33]. The results indicate that the proposed 
network can achieve higher or comparable performance using 
considerably fewer network parameters than other SNNs in 
comparison. 

The remainder of the paper is organized as follows. The 
architecture and the learning algorithm for CDNA-SNN is 
presented in section II. Next, in Section III, performance 
evaluation of CDNA-SNN is described. The results of CDNA-
SNN on different benchmark datasets is presented in Section 
IV. Section V discusses the results and highlights the 
advantages and drawbacks of the proposed training algorithm. 
Finally, Section VI presents conclusions. 
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Figure 1. The architecture of the proposed spiking neural network with class-dependent neuronal activation 

 

II. SPIKING NEURAL NETWORK WITH CLASS-DEPENDENT 

NEURONAL ACTIVATIONS 

In this section, the architecture and learning algorithm for the 
Class-Dependent Neuronal Activation based Spiking Neural 
Network (CDNA-SNN) are presented. 

A. Network Architecture 

Figure 1 shows the architecture of CDNA-SNN with L 
layers. The first layer is the input layer which is used to present 
rate-coded spike patterns 𝑋 = [𝑥 , … , 𝑥 ] to the network. The 
true class label for 𝑋  is denoted by 𝑐 ∈ [1, … , 𝑁 ] where 𝑁  is 
the total number of classes. The input layer is followed by 𝐿 − 2 
hidden layers and an output layer. All neurons in 𝑙  layer of 
the network are fully connected to neurons in the (𝑙 + 1)  
layer, and there are no connections between the neurons from 
the same layer. The weight of the connection between the 𝑖  
neuron in the 𝑙  layer and 𝑗  neuron in the (𝑙 + 1)  layer is 
denoted by 𝑤 . All spiking neurons in the network are 
modelled using the Leaky Integrate and Fire (LIF) neuron 
model. Based on the LIF neuron model, the membrane potential 
(𝑣 (𝑡)) of the 𝑗  neuron in the 𝑙  layer at time 𝑡 is determined 

using the differential equation given below [21]: 

 𝜏
( )

= −𝑣 (𝑡) + 𝐼 (𝑡),   ∀𝑗, ∀𝑙 ∈ [2, … , 𝐿] 

 𝐼 (𝑡) = ∑ 𝑤 𝛿 𝑡 − 𝑡,  

where 𝜏 denotes the time constant of the membrane, 𝐼 (𝑡) is the 

input current received by the 𝑗  neuron in the 𝑙  layer due to 
spikes generated by neurons in the (𝑙 − 1)  layer. 𝛿(𝑡) denotes 

the Dirac delta function which has unit magnitude at 𝑡 = 0 and 
zero elsewhere, and 𝛿 𝑡 − 𝑡  is the 𝑘  spike from neuron 𝑖. 

When 𝑣 (𝑡) reaches a threshold 𝑉 , the neuron generates a 
spike, and the membrane voltage is reset to zero for a refractory 
period 𝜏 . 

The class-dependent neuronal activation of a given neuron 𝑗 
in 𝑙  layer for class 𝑘 is denoted by 𝜓 , . CDNAs are real 
numbers in the range [0,1] that are indicative of the average 
firing rate of a neuron for spike patterns from a given class 
relative to its firing rate for other classes.  

B. Learning Algorithm 

In this section the learning algorithm for CDNA-SNN which 
is used to estimate the synaptic weights and CDNAs of all 
neurons in the network is presented. CDNA-SNN employs a 
layer-wise training approach i.e., while training the 𝑙  layer in 
the network, the weights and CDNAs of neurons in previous 
layers are not changed. 

Below, we first present the mechanism for estimating the 
CDNAs and then the training algorithm for CDNA-SNN is 
described. 

1) Class-Dependent Neuronal Activations 
Prior to training the 𝑙  layer in the network, the CDNAs of 

all neurons in layer 𝑙 with 𝑁  neurons are initialised to equal 
values as 

 𝜓 , =     ∀𝑗 ∈ [1, … , 𝑁 ], 𝑘 ∈ [1, … , 𝑁 ] 

When an input spike pattern 𝑋  with class label 𝑐  is 
presented to CDNA-SNN, the most active neuron 𝑗∗ in 𝑙  layer  
is determined as: 
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 𝑗∗ = argmax  𝑟  

where  r  is the firing rate of the 𝑗  neuron in the 𝑙  layer of 
the network and is the total number of spikes that a neuron fires 
in response to the current input divided by the simulation 
duration. When more than one neuron spikes at the maximum 
rate, one of them is chosen randomly as 𝑗∗. The CDNAs for the 
neuron 𝑗∗ are updated such that 

 ∑ 𝜓 ∗, = 1 

which implies that the sum of class-dependent neuronal 
activations for a given neuron is always equal to one. The 
change in CDNA (∆ψ ∗, ) of neuron 𝑗∗ corresponding to the 

sample class 𝑐  with normalized firing rate  𝑔 ∗ is increased by: 

 ∆𝜓 ∗, =
∗,

 𝑔
𝑗∗
𝑙
 

where  𝑔 ∗ is the normalized firing rate of the neurons and is 
given by 

  𝑔 ∗ =
 ∗

∑  
𝑁𝑙
𝑗=1

 

and the change in CDNAs for neuron 𝑗∗ for other classes are as 
follows. 

 ∆𝜓 ∗, = −
∆ ∗,

    ∀𝑘|𝑘 ≠ 𝑐  

According to equation (6), the higher a neuron's normalised 
firing rate, the larger the amount of change in its CDNA. 
Updating CDNAs using equations (6) and (8) ensures that the 
sum of all CDNA for a given neuron are always equal to 1 (see 
Equation (5)). At the end of training, the CDNAs of a neuron 
represent its relative activity for each class. CDNAs separate 
the neurons in every layer and form assemblies of neurons for 
each class. Assembly 𝛺  of neurons corresponding to class 𝑐  
in layer l can be defined as 

 𝛺 = ∀𝑗|argmax  𝜓 , = 𝑐  

According to equation (9), neurons are associated to the class 
assembly for which they have the highest value of CDNA. 
However, some neurons might have equal CDNAs for all 
classes. These neurons are termed hypoactive because they 
exhibit lower relative firing rates for samples from different 
classes compared to other neurons in the same layer. The 
assembly of hypoactive neurons 𝛺∅ in layer l can be formulated 
as 

 𝛺∅ = ∀𝑗| 𝜓 , = , ∀𝑘 ∈ [1, … , 𝑁 ] 

CDNAs estimated using Equations (6) and (8) enable the 
CDNA-SNN to perform supervised learning using STDP in all 
layers. 

2) Synaptic Weights 
Synaptic weights are initialized to random values in the 

interval [-1,1]. Without loss of generality, assume that the 
network has been trained using several spike patterns. At this 
stage neurons would be hypoactive or in one of the class 
assemblies depending on their CDNAs. Now assume the 
current spike pattern is 𝑋  which is associated with actual class 
label 𝑐 . Based on the spiking activity of neurons in response to 
𝑋 , three neurons in the 𝑙  layer of the network can be 
determined: 

 𝑗∗  : The most active neuron 
 𝑗   : The most active neuron in the assembly of 𝑐  
 𝑗  : The most active neuron in the hypoactive 

assembly 
Three possible scenarios can arise based on 𝑐  and CDNAs 

of 𝑗∗. 𝑗∗ might be associated with the assembly of 1) desired 
(actual) class, 2) undesired class, or 3) hypoactive neurons. 
Below, the learning rules for each of the scenarios are 
presented. 

Desired Class: In this scenario the most active neuron 𝑗∗ has 
the highest CDNA for the class 𝑐 . Since this neuron which 
already belongs to the assembly 𝛺  has a relatively high spiking 
activity for a spike pattern from the class 𝑐 , this is a desired 
scenario. Therefore, STDP updates this neuron's weights to 
increase its activity for class 𝑐 . The criterion for weight 
updating is given by 

If  𝑟𝑗∗ <  𝛼  Then update the weights of 𝑗∗ 
This thresholding puts a limit on the maximum firing rate of 
neurons and prevents them from dominating the training 
process. 

Undesired Class: In this scenario 𝑗∗ has highest CDNA for 
a class other than 𝑐 . As 𝑗∗ was the most active neuron for a 
class incompatible with its maximum CDNA, anti-STDP is 
used to adjust its synaptic weights such that it fires weakly for 
samples from class 𝑐 . Anti-STDP is the inverse of STDP, i.e., 
the weight of a synapse between two neurons is reduced when 
the presynaptic neuron fires before the postsynaptic neuron and 
vice versa. Additionally, it is essential to enhance the spiking 
activity of neurons in Ω  in response to input patterns from 𝑐 . 

Thereby, the most active neuron from Ω  (𝑗 ) gets an STDP 
update with the following criteria. 

If  𝑟 ≥  𝛽  Then update the weights of 𝑗  

𝛽  prevents the weights of neurons with low firing rate from 
being updated, and therefore prevents loss of previously stored 
information in the network. If there is no neuron in Ω , then 
the weights of the neuron with highest firing rate in the 
hypoactive assembly (𝑗 ) are updated using STDP. After 
several epochs of training, this neuron will start firing strongly 
for spike patterns from class 𝑐 , improving its chance to join 
𝛺  during the rest of the training process. 
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Algorithm 1: Training process of 𝑙  layer in the network 

Input Dimension: 𝑀 
Number of Neurons: 𝑁  
Number of Classes: 𝑁  

Initialise CDNAs: 𝜓 , =     ∀𝑗 ∈ [1, … , 𝑁 ], 𝑘 ∈ [1, … , 𝑁 ] 

Initialise Synaptic Weights: 𝑤 × ← 𝑁𝑜𝑟𝑚𝑎𝑙 ( , )  

FOR numbers of epochs: 
FOR every SpikePattern 𝑋  in TrainingData with ClassLabel 𝑐 : 

Present 𝑋  to the SNN 

Firing rate of 𝑗  neuron:  𝑟  

Find the most active neuron: 𝑗∗ = argmax  𝑟  

Normalised firing rate of neuron 𝑗∗:  𝑔 ∗ =
 ∗

∑  
 

Increase the CDNA of 𝑗∗ for the sample class: 

 ∆𝜓 ∗, =
∗,

∗
 

Decrease the CDNAs of 𝑗∗ for other classes: 

 ∆ψ ∗, = −
∆ ∗,

    ∀𝑘|𝑘 ≠ 𝑐 

IF (𝑗∗𝜖𝛺∅) or (𝑗∗𝜖𝛺 ): // Hypoactive or Desired Class 

IF (𝑟 ∗ < 𝛼 ): 

Update the weights of 𝑗∗ by STDP 
ENDIF 

ELSEIF (𝑗∗𝜖𝛺   ∀𝑘|𝑘 ≠ 𝑐 ): // Undesired Class 
Update the weights of 𝑗∗ by ANTI-STDP 

IF (𝛺 ≠ ∅): // If there is at least one neuron in 𝛺  

Find the most active neuron from 𝛺 : 𝑗  

IF ( 𝑟 ≥  𝛽 ): 

        Update the weights of 𝑗  by STDP 

ELSEIF (𝛺 = ∅): // There is no neuron in 𝛺  

Find the hypoactive neuron with highest firing rate: 𝑗  
Update the weights of 𝑗  by STDP 

ENDIF 
ENDIF 

ENDFOR 
ENDFOR 
Remove all hypoactive neurons 

 
 

Algorithm 2: Layer-wise Training Algorithm for CDNA-SNN 

Number of Layers: 𝐿 
Number of neurons in each layer: 𝑁   ∀𝑙 ∈ [2, … , 𝐿] 

Thresholds for the neurons in each layer: 𝛼 , 𝛽   ∀𝑙 ∈ [2, … , 𝐿] 
FOR layer 𝑙 in the interval 2 to 𝐿: 

Initialize layer 𝑙 with 𝑁  neurons and parameters 𝛼 , 𝛽  
IF (𝑙 == 2):  //First Hidden Layer 

Train the layer 𝑙 using Algorithm 1 and Conventional STDP 
ELSE:  //Subsequent Layers 

Train the layer 𝑙 using Algorithm 1 and CDNA-Weighted STDP 
ENDIF 
𝑁 = 𝑁 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑦𝑝𝑜𝑎𝑐𝑡𝑖𝑣𝑒 𝑛𝑒𝑢𝑟𝑜𝑛𝑠  
Freeze all the weights and CDNAs in the layer 𝑙 

ENDFOR 

Hypoactive Neurons: In this scenario 𝑗∗ has CDNAs equal 
to the initial values, and therefore it is in the hypoactive 
assembly. Since this neuron has the highest firing rate for 𝑐 , 
and it is not associated with any of the classes, STDP updates its 
weights to increase its activity for class 𝑐  provided that its 
firing rate is less than 𝛼 . 

The proposed algorithm for estimating CDNAs and training 
the synaptic weights of each layer of CDNA-SNN is 
summarized in Algorithm 1. After training every layer, all the 
hypoactive neurons are removed, and the weights and CDNAs 
for the neurons in this layer are frozen. 

The new STDP-based learning rule introduced in this paper 
exploits the CDNAs of neurons in the (𝑙 − 1)  layer, while 
learning synaptic weights of the neurons in the 𝑙  layer of the 
network. Since the input layer neurons do not have CDNAs, the 
learning algorithm uses conventional STDP for learning the 
synaptic weights of the connections between the input layer and 
the first hidden layer. The following will explain each of these 
learning rules. 

Conventional STDP: The change in the synaptic weight 
Δ𝑤 , ∗  of the connection between 𝑖  input neuron and the 

neuron 𝑗∗ are estimated using an exponential variant of STDP 
as 

 ∆𝑤 ∗ =  𝐴. 𝑒
∗

   ∗

𝐵. 𝑒
∗

   ∗

 

where 𝜏 is the time constant for STDP, and spike times of the 
pre- and post-synaptic neurons are represented by the variables 
𝑡  and 𝑡 ∗, respectively. 𝐴 and 𝐵 denote whether the learning 
rule is STDP or Anti-STDP as below 

 𝐴 =  
+1                   STDP
−1     Anti − STDP

  ,    𝐵 = −𝐴 

CDNA-Weighted STDP: Conventional STDP only depends 
on the spiking activity of pre and post synaptic neurons. CDNA-
Weighted STDP, as implied by its name, controls the amount 
of plasticity with respect to the CDNAs of the pre-synaptic 
neuron for the sample class 𝑐 . 

 ∆𝑤 ∗ =  𝐴. 𝛹. 𝑒
∗

   ∗

𝐵. 𝛹. 𝑒
∗

   ∗

 

where 𝛹 is the normalized CDNA of pre-synaptic neuron for the 
sample class 𝑐  as below 

 𝛹 =
,

∑ ,

 

In CDNA-Weighted STDP the weights of connections from 
all presynaptic neurons to a postsynaptic neuron are updated 
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based on the CDNAs of the corresponding presynaptic neurons 
for the class of the current spike pattern. CDNA-Weighted 
STDP aims to control the plasticity during the learning in a way 
that presynaptic neurons can build strong connections with the 
post synaptic neurons from the same assembly using STDP. 
Also, this learning rule weakens the connections between pre-
synaptic neurons in  𝛺 and post-synaptic neurons from other 
assemblies that have high firing rate for 𝑐  by anti-STDP. 

The overall layer-wise algorithm for training CDNA-SNN is 
summarized in Algorithm 2. According to Algorithm 1, 
hypoactive neurons might join one of the class assemblies 
throughout training; Otherwise, they will be removed after the 
training of each layer. Thus, at the end of training process, each 
neuron in the network would be associated with a specific class 
assembly. Given an input spike pattern 𝑋  with class label 𝑐 . 
The predicted class �̂�  for this input is determined based on the 
highest CDNA for the most active neuron (𝑗∗) in the output 
layer (𝐿), given by 

 �̂� = argmax  𝜓 ∗,   

III. PERFORMANCE EVALUATION 

This section defines the performance metrics used for 
implementation, explains hyper-parameter optimization, and 
finally describes datasets and experimental settings for each 
dataset. CDNA-SNN was implemented in Python 3.7 using 
NVIDIA Tesla v100 GPU and 64 GB memory. In all the 
simulations for CDNA-SNN, the LIF model is used, and a rate 
encoder converted real-valued data into spikes. 

In the next subsection, we first present the approach for 
hyperparameter optimization, and the metrics used for the 
evaluation. Then, datasets and experimental settings are 
explained. 

A. Performance Metrics 

Performance evaluation is conducted using testing 
classification accuracy and number of trainable parameters. 
classification accuracy (𝜂) is computed as the number of 
correctly classified samples, given as 

 𝜂 =  
Number of correctly classified samples

Total number of samples
 

One-way ANOVA [34] has been utilized to evaluate if 
testing classification accuracies obtained from various learning 
algorithms are significantly different. When statistical 
significance was observed using ANOVA, pairwise 
comparison is done using Fisher’s Least Significant Difference 
(LSD) method [35]. 

The number of trainable parameters for two-layer and three-
layer fully-connected networks is equal to (Ni×No) and 
(Ni×Nh+Nh×No), respectively. CDNA-SNN estimates CDNAs 
while training the synaptic weights. Accordingly the number of 
trainable parameters for CDNA-SNN is equal to 
(Ni×Nh+Nh×No)+(Nh+No)× Nc. 

B. Hyper-parameter Optimization 

The proposed training algorithm includes parameters 𝛼  and 
𝛽  for hidden layers and output layer. In this paper, 
hyperparameter optimisation is done by Nested Cross-
Validation (N-CV). N-CV nests cross-validation and 
optimization of hyperparameters. Without N-CV, the same data 
might be employed to optimize parameters and evaluate the 
network performance. This may lead to a biased model 
evaluation and inaccurate estimation of errors in training or 
testing the network due to data leakage between training and 
testing data [36]. 

C. Datasets and Experimental Settings 

UCI Benchmark Datasets: Five benchmark classification 
datasets from the UCI machine learning repository [37] are used 
to evaluate the classification performance of the CDNA-SNN 
with 2-layers and 3-layers. All benchmark datasets are 
numerical datasets that consist of Iris, a three-class problem and 
four binary classification problems, namely Pima Indians 
diabetes, breast cancer Wisconsin (Original), Liver disorders 
and Ionosphere. Datasets are randomly divided into N-CV folds 
that contain a balanced number of samples in each class. Table 
I shows the number of features and classes of all five datasets 
and the number of folds in the inner and outer loops of N-CV. 

Table II describes the parameters of CDNA-SNN used for 
UCI Datasets. parameters 𝛼  and 𝛽  for hidden layer and output 
layer were optimized by N-CV given the ranges in the table. 
Initial number of neurons decreased after removing the 
hypoactive neurons from each layer. The simulation parameters 
of SpikeProp, SRESN, and SWAT have been set as in [38]. 

MNIST: CDNA-SNN is also evaluated on the MNIST 
dataset, which contains 28*28 grayscale images of handwritten 
digits 0-9 with 60000 training and 10000 testing samples. Table 
III describes the parameters of CDNA-SNN used for MNIST. 
Other simulation parameters are as in Table II. 

Fashion MNIST: Compared to the original MNIST, 
Fashion-MNIST is a more complex dataset consisting of 60,000 
training and 10,000 testing samples. It includes 28x28 grayscale 
images from the following ten categories: T-shirt/top, Trouser, 
Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, and Ankle 
boot. Fashion-MNIST is intended to be a drop-in replacement 
for the original MNIST dataset for evaluating machine learning 
methods. The simulation parameters for Fashion MNIST are the 
same as MNIST. 

N-MNIST: The Neuromorphic-MNIST dataset [39] is a 
spiking version of the original MNIST. It consists of the same 
60000 training and 10000 testing samples of MNIST converted 
into neuromorphic data using a dynamic vision sensor (DVS). 
This DVS was mounted on a motorized pan-tilt unit to capture 
MNIST samples played on a monitor. DVS generates a spike 
whenever a brightness change is detected, on or off. N-MNIST 
consists of spatial-temporal patterns with a dimension of 
34x34x2 recorded for 300ms with 1us resolution. In this paper, 
the time step of N-MNIST is reduced to 1ms. Because of the 
saccadic motion, this dataset is more challenging than MNIST. 
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IV. RESULTS 

In this section, the results of CDNA-SNN on different 
benchmark datasets are presented and compared with the state-
of-the-art SNNs. Also, a frequency analysis is presented to 
examine the firing rate of assemblies in response to the samples 
from different classes. Finally, CDNA-weighted STDP is 
compared with the conventional STDP. 

A. UCI Benchmark Datasets 

Table IV compares the results of applying the two and three-
layer CDNA-SNN to other learning algorithms for SNNs, 
which include SWAT [25], SpikeProp [8], and SRESN [40]. 
The simulation parameters of SpikeProp, SRESN, and SWAT 
have been set as in [38]. Results are reported for both two and 
three-layer CDNA SNN, and the comparison is based on 
network architecture, the number of trainable parameters and 
testing accuracy. Accuracies are reported in the form of mean 
(standard deviation) across outer folds of nCV. The network 
architecture format is Ni-Nh-No, denoting the number of input, 
hidden, and output neurons. For CDNA-SNN and SRESN the 
number of trainable parameters is equal to Ni×Nh+Nh×No. 
SRESN is an evolving network that has a different number of 
neurons for each outer fold. Also, since CDNA-SNN removes 
the hypoactive neurons after training, it does not have equal 
neurons for all folds. Accordingly, for these two algorithms the 
number of neurons and number of trainable parameters are 
reported as a range. SpikeProp is a three-layer SNN with 16 
synapses with different delays between every pre- and post-
synaptic neuron. Accordingly, the number of weights for 
SpikeProp is equal to 16×(Ni×Nh+Nh×No). CDNA-SNN uses 
rate encoding that makes its number of inputs equal to the 
number of data features plus a bias neuron. Other SNNs in this 
comparison encode the data using population coding and 
consequently have more input neurons. SWAT's hidden layer 
serves as a frequency filter for feature extraction from input 
patterns. Accordingly, this method has Nh×No trainable 
parameters. 

According to Table IV, for IRIS dataset, which is the three-
class classification problem, three-layer CDNA-SNN achieves 
a testing accuracy that is 0.09-3.96% higher than others. 
ANOVA results revealed that at least one method performs 
significantly different from others (𝑝 < 0.0001). The LSD 
pairwise statistical analysis confirmed that three-layer CDNA-
SNN significantly outperforms SpikeProp (𝑝 < 0.05) and 
SWAT (𝑝 < 0.00001). Even two-layer CDNA-SNN with 
considerably less trainable parameters has significantly better 
performance than SpikeProp (𝑝 < 0.05) and SWAT (𝑝 <
0.00001). 

For a simple binary classification dataset like breast cancer, 
three-layer CDNA-SNN has the best performance among all 
approaches. A one-way ANOVA proves that not all SNNs have 
equal performance (𝑝 < 0.005), and post-hoc pairwise 
comparison indicated that three-layer CDNA-SNN 
significantly only outperformed SWAT for the breast cancer 

dataset (𝑝 < 0.0005). 
For Pima diabetes, a relatively complex classification task, 

SpikeProp has the best results in terms of accuracy. Although 
three-layer CDNA-SNN has 0.46% less accuracy than 
SpikeProp, it uses a considerably more compact network with 
almost 97% less network parameters. ANOVA shows a 
significant difference between the compared SNNs (𝑝 <
0.000001); however, LSD pairwise comparison revealed that 
SpikeProp is not significantly better than the two CDNA-SNNs 
represented in Table IV (𝑝 > 0.2). 

Regarding the most challenging dataset, liver disorders, 
ANOVA results again indicate significant differences among 
algorithms (𝑝 < 0.000005). Also, LSD proves that the two 
CDNA-SNN architectures in the table significantly outperform 
SRESN (𝑝 < 0.0005), SpikeProp (𝑝 < 0.05) and SWAT (𝑝 <
0.0005). 

TABLE I 
DESCRIPTION OF FIVE UCI BENCHMARK DATASETS AND THEIR N-CV SETUP 

D
ata Set 

# C
lasses 

# Sam
ples 

# F
eatures 

# O
uter 

L
oop

 F
olds 

# In
ner L

oop
 

F
olds 

Iris 3 150 4 5 5 

Breast Cancer 2 683 9 10 10 

Pima diabetes 2 768 9 10 10 

Liver disorders 2 345 6 5 5 

Ionosphere 2 351 34 5 5 
 

TABLE II 
PARAMETERS OF CDNA-SNN USED FOR UCI DATASETS 

Parameter Description Value/Range 
𝜶𝒍 [5,10,15,20,25] Hz 

𝜷𝒍 [0,5,10,15] Hz 

Initial Number of Neurons in the Hidden Layer [30,50,70,90,110] 

Initial Number of Neurons in the Output Layer [20,40,60,80,100] 

Time Constant of STDP (𝝉). 50 ms 

Learning Rate for CDNAs 1e-3 

Learning Rate for Synaptic Weights 1e-2 

Simulation Time 300 ms 

Simulation Time Step 1 ms 

Encoder’s Frequency Range 20-280 Hz 

Batch Size 5 
 

TABLE III 
PARAMETERS OF CDNA-SNN USED FOR MNIST, FASHION MNIST AND 

N-MNIST 
Parameter Description Value/Range 

𝜶𝒍 [40,50,60,70,80] Hz 

𝜷𝒍 [30,40,50,60,70] Hz 
Initial Number of Neurons in the Hidden 

Layer [150,200,250,300,350] 

Initial Number of Neurons in the Output 
Layer 

[100,150,200,250,300] 

Batch Size 100 



8 
 
 
 

 

TABLE IV 
COMPARISON OF CDNA-SNN, SRESN, SPIKEPROP, AND SWAT ON FIVE UCI BENCHMARK CLASSIFICATION DATASETS 

Data Set Algorithm Network Architecture # Trainable Parameters Testing Accuracy (%) 

Iris 

2L-CDNA-SNN 5-(5-8) 40-64 97.75(0.92) 
3L-CDNA-SNN 5-(5-8)-(7-10) 96-174 97.84(0.33) 

SRESN 24-(5-11) 120-264 97.01(0.73) 
SpikeProp 25-10-3 4480 96.13(0.83) 

SWAT 24-312-3 936 93.88(1.80) 

Breast Cancer 

2L-CDNA-SNN 10-(6-9) (72-108) 97.35(1.66) 
3L-CDNA-SNN 10-(6-9)-(5-7) 112-185 97.81(1.76) 

SRESN 54-(9-13) 486-702 97.10(0.20) 
SpikeProp 55-15-2 13680 97.04 (0.53) 

SWAT 54-702-2 1404 95.66 (0.08) 

Pima diabetes 

2L-CDNA-SNN 10-(16-19) 192-228 76.57(1.17) 
3L-CDNA-SNN 10-(16-19)-10 372-438 76.92(2.48) 

SRESN 54-(10-13) 540-702 70.06 (1.82) 
SpikeProp 55-20-2 16640 77.38(1.03) 

SWAT 54-702-2 1404 72.11(1.38) 

Liver disorders 

2L-CDNA-SNN 7-(18-20) 162-180 70.33(4.65) 
3L-CDNA-SNN 7-(18-20)-(9-10) 342-400 75.07(2.95) 

SRESN 36-(7-10) 252-360 60.17(1.78) 
SpikeProp 37-15-2 9360 64.23(3.92) 

SWAT 36-468-2 936 60.43(2.72) 

Ionosphere 

2L-CDNA-SNN 35-(17-19) 629-703 89.78(1.26) 
3L-CDNA-SNN 35-(17-19)-(8-12) 781-955 90.64(1.34) 

SRESN 204-(15-21) 3060-4284 88.52(1.07) 
SpikeProp 205-25-2 82800 86.89(2.00) 

SWAT 204-2652-2 5304 90.04(1.87) 

 

Figure 2. Variation in training and testing accuracy of a three-layer CDNA-SNN against variation in (a) 𝛼 , (b) 𝛽 , (c) 𝛼 , and (d) 𝛽  for the Liver disorders 
problem. In each case the other three parameters are fixed 

 

 
For Ionosphere, which has the highest number of features 

among all five datasets, insignificant difference between the 
two-layer CDNA-SNN and SWAT were observed 
(0.26%, 𝑝 = 0.79), although SWAT uses almost six times 
the number of CDNA-SNN's parameters. Additionally, 
adding another layer to the CDNA-SNN improves the 

network performance and the three-layer CDNA-SNN has 
the highest accuracy. One-way ANOVA indicated that at 
least one approach is significantly different from others (𝑝 <
0.01), and the Three-layer CDNA-SNN significantly 
outperforms SRESN (𝑝 < 0.05) and SpikeProp (𝑝 <
0.005). 

Figure 2 shows an example of the influence of 𝛼  and 𝛽  
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on the overall training and testing accuracy of a three-layer 
CDNA-SNN for the Liver disorders problem. The upper row 
(Figure 2 (a-b)) presents the effect of parameters in the 
hidden layer, and Figure 2 (c-d) is allocated to the parameters 
in the output layer. Only one parameter varies in each case, 
and the other three are fixed. As can be seen, the variations 
are not linear, and a hyperparameter optimization algorithm 
is necessary. 

B. MNIST 

Table V compares CDNA-SNN with state-of-the-art 
SNNs. All compared networks are feedforward, fully 
connected, multi-layer SNNs with supervised training 

algorithms. The method proposed by Jin et al. [14] has 
slightly higher accuracy than CDNA-SNN, while CDNA-
SNN employs almost 93% fewer trainable parameters. 

C. Fashion MNIST 

Table VI compares the results of CDNA-SNN with state-
of-the-art feedforward, fully connected, multi-layer SNNs on 
the Fashion MNIST dataset. CDNA-SNN outperformed 
other feedforward SNNs by 3-6% in classification 
performance while employing 72-99 % fewer trainable 
parameters. 

 

 

TABLE V 
COMPARISON OF CDNA-SNN WITH SOME STATE-OF-THE-ART FEEDFORWARD, FULLY CONNECTED, MULTI-LAYER SNNS ON MNIST DATASET 

Paper Learning Method 
Network 

Architecture 
#Trainable 
Parameters 

Testing 
Accuracy 

(%) 
#Epochs 

#Time 
Steps 

Diehl et al., 2015[3] 
Backpropagation, ANN to SNN 

conversion 
28x28-1200-1200-

10 
2,392,800 98.68 50 500 

O’Connor and Welling, 
2016[10] 

Fractional Stochastic Gradient descent 28x28-300-300-10 328,200 97.80 50 10 

Wu et al., 2018[13] Spatio-temporal backpropagation 28x28-800-10 635,200 98.89 200 30 

Jin et al., 2018[14] 
Hybrid macro/micro level 

backpropagation 
28x28-800-10 635,200 98.93 100 400 

Tavanaei and Maida 
2019[15] 

STDP-based backpropagation 28x28-500-150-10 468,500 97.20 1 9 

Zhang et al. 2018[41] 
Equilibrium learning +STDP + 

backpropagation 
28x28-4500-10 3,573,000 98.52 100 - 

Hao et al. 2020[42] Unsupervised and supervised STDP 28x28-10000-10 7,850,000 96.73 20 1000 

Zhao et al. 2020 [43] Global Feedback + STDP 
28x28-800-800-

800-10 
1,915,200 98.62 100 10 

Kheradpisheh et al., 2020 
[44] 

Backpropagation with temporal 
encoding 28x28-400-10 317,600 97.4 - 256 

Zhang et al., 2020 [45] Threshold-driven Plasticity Algorithm 28x28-800-10 635,200 96.8 - - 

Comsa et al. 2021 [46] Backpropagation with temporal 
encoding 28x28-340-10 269,960 97.96 1000 - 

Kheradpisheh et al., 2022 
[47] 

Backpropagation with temporal 
encoding + Binary synaptic weights 28x28-600-10 476,400 97.0 500 256 

Zhang et al., 2022 [48] Spike-Timing-Dependent 
Backpropagation 28x28-800-10 635,200 98.5 150 - 

CDNA-SNN 
Supervised STDP + CDNA-Weighted 

STDP 
28x28-55-38 45,396 98.91 100 300 

TABLE VI 
COMPARISON OF CDNA-SNN WITH SOME STATE-OF-THE-ART FEEDFORWARD, FULLY CONNECTED, MULTI-LAYER SNNS ON FASHION MNIST DATASET 

Paper Learning Method 
Network 

Architecture 
#Trainable 
Parameters 

Testing 
Accuracy 

(%) 
#Epochs #Time 

Steps 

Zhang et al., 2020 [49] 
Temporal Spike Sequence Learning 

Backpropagation 
28x28-400-400-10 477,600 89.80 100 5 

Hao et al., 2020 [42] Unsupervised and supervised STDP 28x28-6400-10 5,081,600 85.47 10 1000 

Zhao et al., 2020 [43] Global Feedback + STDP 
28x28-200-200-200-

200-200-10 
318,800 89.05 200 10 

Perez-Nieves and 
Goodman, 2021 [50]  

Backpropagation using Surrogate Gradient 28x28-200-10 158,800 82.2 100 100 

Perez-Nieves and 
Goodman, 2021 [50]  

Backpropagation using Surrogate Gradient 28x28-300-300-300-
300-300-10 598,200 82.7 100 100 

Kheradpisheh et al., 
2022 [47] 

Backpropagation with temporal encoding + 
Binary synaptic weights 28x28-1000-10 794,000 87.3 500 256 

Zhang et al., 2022 [48] Spike-Timing-Dependent Backpropagation 28x28-1000-10 794,000 88.1 150 - 
CDNA-SNN Supervised STDP + CDNA-Weighted STDP 28x28-53-46 44,188 90.12 100 300 
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TABLE VII 
COMPARISON OF CDNA-SNN WITH SOME STATE-OF-THE-ART FEEDFORWARD, FULLY CONNECTED, MULTI-LAYER SNNS ON N-MNIST DATASET 

Paper Learning Method 
Network 

Architecture 
#Trainable 
Parameters 

Testing 
Accuracy (%) 

#Epochs #Time 
Steps 

Shrestha and 
Orchard, 2018[9] Backpropagation 34x34x2-500-500-10 1,411,000 98.95 100 300 

Lee et al., 2016 [51] Backpropagation 34x34x2-800-10 1,857,600 98.74 200 300 
Cohen et al., 2016 

[52] 
Synaptic Kernel Inverse Method 34x34x2-10000-10 23,220,000 92.87 - 360 

Wu et al., 2018[13] Spatio-temporal backpropagation 34x34x2-800-10 1,857,600 98.78 200 30 
Jin et al. 2018 [53] Hybrid macro/micro level backpropagation 34x34x2-800-10 1,857,600 98.88 60 500 
Perez-Nieves and 

Goodman, 2021 [50]  
Backpropagation using Surrogate Gradient 34x34x2-200-10 464,400 92.7 100 300 

CDNA-SNN Supervised STDP + CDNA-Weighted STDP 34x34x2-69-48 163,074 98.43 100 300 

D. Neuromorphic MNIST 
In Table VII CDNA-SNN is compared to other fully 

connected multi-layer SNNs with supervised training 
algorithms. CDNA-SNN achieves a testing accuracy of 
98.43 which is closer to the performance of the best-
performing method i.e. SLAYER [9], which achieves an 
accuracy of 98.95%. It may be noted that CDNA-SNN 
requires 88% fewer parameters compared to SLAYER for 
this performance. 

E. Frequency Analysis 

Here we evaluate the firing rate of neurons in each 
assembly after training in response to the testing patterns 
from different classes. Figure 3 represents the mean firing 
rate of assemblies of a 3-layer CDNA-SNN in response to 
testing spike patterns from different classes for MNIST and 
Fashion MNIST. The desired scenario for these assemblies 
is to have relatively higher activity for their class and a lower 
firing rate for the spike patterns from other classes. As can 
be seen, assemblies in the hidden layer (a,c) could not 
properly fulfil this objective. However, assemblies in the 
output layer (b,d) have a relatively higher mean firing rate 
and a considerably lower average activity for other classes. 
Two-layer CDNA-SNN (input-hidden) could achieve 
94.89% and 90.12% accuracy for MNIST and Fashion 
MNIST, respectively. However, three-layer CDNA-SNN 
improved the performance of two-layer CDNA-SNN to 
98.91% for MNIST and 94.33% for Fashion MNIST. It 
should be noted that CDNA-SNN relies on the most active 
neuron in each assembly but having assemblies with 
relatively higher average firing rates for the spike patterns 
from their class will lead to better classification performance. 

F. CDNA-weighted STDP versus STDP 

In this section CDNA-weighted STDP is compared with 
conventional STDP regarding classification performance 
and the synaptic connections between assemblies in the 
hidden layer and assemblies in the output layer. Figure 4 
compares the average synaptic connections between 
assemblies in the hidden layer and output layer of CDNA-
SNN, which is trained using algorithm 2 and different STDP 
rules in the output layer, including (a) Conventional STDP, 
and (b) CDNA-Weighted STDP for MNIST and Fashion 

MNIST datasets. As shown, CDNA-Weighted STDP could 
build stronger connections between neurons from the same 
class than conventional STDP, while separating different 
assemblies by weak or negative connections. The reason for 
this result is that CDNA-Weighted STDP adjusts the weights 
connected to all presynaptic neurons with respect to their 
CDNAs of the sample class. In this example, all networks are 
initialised with 200 hidden and 100 output neurons. 
classification accuracies of conventional STDP are 95.26% 
and 86.94% for MNIST and Fashion MNIST, respectively. 
CDNA-Weighted STDP achieved 98.91% and 90.12% 
accuracy for MNIST and Fashion MNIST. Employing 
CDNA-SNN led to 38 and 46 output neurons for MNIST and 
Fashion MNIST, respectively. In comparison, training with 
conventional STDP resulted in 45 and 58 output neurons for 
MNIST and Fashion MNIST. 

G. Number of Layers of CDNA-SNN 

It is possible to use the proposed algorithm for networks 
with any number of layers. However, the results have been 
reported for at most 3-layer CDNA-SNN with one hidden 
layer because adding more layers did not improve the 
performance of CDNA-SNN for the datasets used for 
evaluation. Figure 5 shows the testing accuracy of CDNA-
SNN with different numbers of layers for MNIST and 
Fashion MNIST. It can be observed that the network's 
performance does not improve when more than three layers 
are used. 

IV. DISCUSSION 

The proposed CDNA-SNN is a new type of SNN that 
draws inspirations from assemblies of biological neurons. 
The training algorithm for CDNA-SNN employs learnable 
values known as CDNAs to form assemblies. Like biological 
assemblies, these CDNA-based assemblies vary throughout 
training, share some neurons with other assemblies, and are 
associated with a specific piece of information (class). The 
assemblies formed by CDNA have a relatively higher 
average firing rate for training and testing patterns from their 
associated class and a lower rate for other classes (Figure 3). 

The training algorithm of CDNA-SNN concentrates on the 
most active neurons in response to the spike patterns from 
each class and estimates the average relative firing rate of 
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neurons for all classes using CDNAs. CDNAs are updated 
throughout training such that neurons that are relatively more 
active for a specific class are added to the relevant assembly, 
and hypoactive neurons are identified. CDNA-SNN divides 
neurons into class assemblies, trains each assembly to be 
more active for its class, and removes untrained hypoactive 
neurons, which has led to excellent performance with a 
minimal number of neurons. Regarding the five UCI 
datasets, CDNA-SNN achieved the best performance among 
the compared methods on Iris, breast cancer, liver disorders, 
and Ionosphere datasets and reached the close second-best 
performance for Pima diabetes (TABLE IV). For all of these 
datasets, three-layer CDNA-SNN used the least number of 
parameters, which was considerably less than SpikeProp (81-
99% less) and SWAT (57-86% less). Considering MNIST, 
CDNA-SNN has reached the near second-best performance, 
with 83-99% fewer parameters (TABLE V). For Fashion 
MNIST, CDNA-SNN has achieved 0.32-4.65% better 
accuracy compared to all feedforward fully connected SNNs, 
while requiring 72-99% fewer parameters (TABLE VI). 
Finally for N-MNIST, CDNA-SNN has achieved close to the 
best performance using 88% fewer network parameters 
(TABLE VII ). 

The main advantage of CDNA-SNN over the other 

methods in comparisons is using fewer parameters while 
achieving higher or comparable classification performance, 
as indicated by the results. CDNA-SNN utilises a small 
number of neurons, and therefore it consumes low power 
after implementation, making it an excellent candidate for 
applications such as autonomous robotics [54]. Furthermore, 
CDNA-SNN uses a simple training procedure based on 
STDP and Anti-STDP, which is more suitable for directly 
training SNNs on edge devices than gradient-based 
algorithms [55]. 

CDNA-weighted STDP has been introduced in this paper 
as a new type of STDP. CDNA-weighted STDP controls the 
amount of plasticity with respect to the overall activity of 
presynaptic neurons for the class associated with the 
presented spike pattern (𝑐 ). In this approach, presynaptic 
neurons with higher values of CDNA for 𝑐  will receive 
more weight adjustment. Compared with conventional 
STDP, CDNA-weighted STDP could build stronger 
connections between assemblies of the same class in 
different layers and weaker connections between assemblies 
of different classes (Figure 4). The results show that CDNA-
weighted STDP outperformed conventional STDP by 3.65% 
and 3.18% for MNIST and Fashion MNIST. 

 
 

 
Figure 3. Mean firing rate of assemblies of a three-layer CDNA-SNN in response to testing spike patterns from different classes. The upper row shows the mean 
firing rate of assemblies in the (a) hidden, and (b) output layer for MNIST and the lower row illustrates the mean firing rate of assemblies in the (c) hidden and (d) 
output layer for Fashion MNIST. H represents the hypoactive assembly. 



12 
  
 

 

 
Figure 4. Average synaptic connections between assemblies in the hidden layer and output layer of CDNA-SNN, which are trained using algorithm 2 and different 
STDP rules in the output layer. The upper row shows average connections using (a) Conventional STDP, and (b) CDNA-Weighted STDP for MNIST, and the 
lower row displays average connections using (c) Conventional STDP, and (d) CDNA-Weighted STDP for Fashion MNIST 

 

 
Figure 5. The accuracy of CDNA-SNN with different number of layers for MNIST and Fashion MNIST 

 

A. Limitations  

The CDNA-SNN employs a layerwise training algorithm. 
Layerwise training demands more epochs than end-to-end 
training because the total number of epochs in layerwise 
learning is the sum of training epochs for each layer. The 
training method of CDNA-SNN has no inhibitory 
neuron/strategy, and its only obstacle towards becoming an 
end-to-end approach is hypoactive neurons. According to 
Algorithm 1, removing hypoactive neurons in each layer is 

required before training the next layer. These neurons are 
untrained and keeping them in the network may compromise 
the overall classification performance of CDNA-SNN. 
Additionally, the training algorithm for CDNA-SNN is 
intended for fully connected architectures. It has been shown 
that for image datasets like MNIST, convolutional SNNs may 
reach better classification performance with fewer parameters 
than fully connected networks with the same training algorithm 
[3][11][13]. Convolutional SNNs have achieved 99.67% 
accuracy [56] for MNIST which is 0.76% better than CDNA-
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SNN. Also, for Fashion MNIST multi-layer convolutional 
SNNs could reach a higher accuracy of 94.38% [57], which is 
4.26% more than CDNA-SNN. This situation is even more 
challenging for the colored image dataset CIFAR-10 [58] and 
more difficult CIFAR10-DVS [59]. These datasets require 
several layers of convolutional spiking neural networks to 
achieve high performance [60][61]. CDNA-SNN with fully 
connected layers did not achieve comparable results to state-of-
the-art convolutional SNNs on these datasets. Adapting CDNA-
SNN for CNNs may yield better performance for complex 
image datasets like CIFAR-10 and CIFAR10-DVS and even 
further reductions in the parameters associated with CNNs. 

V. CONCLUSION 

In this paper, a new spiking neural network known as CDNA-
SNN has been introduced, inspired by the concept of neuronal 
assemblies in the human brain. The proposed training algorithm 
for CDNA-SNN allocates learnable values called CDNAs to all 
neurons based on their relative firing rate for the samples from 
different classes. CDNAs enable this approach to categorize the 
neurons into different assemblies associated with each class 
while adjusting the synaptic weights. The novelty of this 
training method is to identify the most active neurons for each 
class, add them to the corresponding class assemblies, increase 
each assembly's activity for its class, and lower its firing rate 
for other classes. CDNAs enable the training approach to 
employ layer-wise learning via supervised STDP for all layers 
and identify and remove neurons with relatively low spiking 
activity, known as hypoactive neurons.  

The results on multiple benchmarks indicate that the 
proposed network can achieve higher performance with 
considerably fewer network parameters than other SNNs in 
comparison. These characteristics make CDNA-SNN an 
excellent candidate for autonomous robotics and edge 
computing applications. As a part of the new training method, 
a new type of STDP entitled CDNA-weighted STDP has been 
proposed. In CDNA-weighted STDP CDNAs of the 
presynaptic neurons control the amount of weight update for 
their corresponding neurons. CDNA-weighted STDP, 
compared to conventional STDP, builds stronger connections 
between assemblies of the same class in consecutive layers and 
weaker connections between different class assemblies, leading 
to better classification performance. 

Future work will develop an end-to-end training algorithm 
for CDNA-SNN to make the training process faster. Also, the 
proposed learning method is meant for fully connected SNNs. 
It is intended to adapt CDNA-SNN for convolutional 
architectures to improve its performance on image datasets like 
CIFAR10 and CIFAR10-DVS while simultaneously lowering 
the number of network parameters. 
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