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Abstract 
 

We present a Bayesian partial membership model that estimates the associations 

between an outcome, a small number of latent variables, and multiple observed ex- 

posures where the number of latent variables is specified a priori. We assign one 

observed exposure as the sentinel marker for each latent variable. The model allows 

non-sentinel exposures to have complete membership in one latent group, or partial 

membership across two or more latent groups. MCMC sampling is used to deter- 

mine latent group partial memberships for the non-sentinel exposures, and estimate 

all model parameters. We compare the performance of our model to competing ap- 

proaches in a simulation study, and apply our model to inflammatory marker data 

measured in a large mother-child cohort of the Seychelles Child Development Study 

(SCDS). In simulations, our model estimated model parameters with little bias, ad- 

equate coverage, and tighter credible intervals compared to competing approaches. 

Under our partial membership model with two latent groups, SCDS inflammatory 

marker classifications generally aligned with the scientific literature. Incorporating 

additional SCDS inflammatory markers and more latent groups produced similar 

groupings of markers that also aligned with the literature. Associations between 

covariates and birth weight were similar across latent variable models, and were 

consistent with earlier work in this SCDS cohort. 

 
 

Keywords: Immune response; Inflammation; Latent variables; Markov chain Monte 

Carlo; Multiple exposures; Seychelles Child Development Study. 
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1 Introduction 
 

Several challenges may arise when modeling the association between multiple observed 

exposures and an outcome of interest. When the observed exposures are correlated, 

standard approaches such as ordinary least squares (OLS) regression are complicated by 

collinearity and variance inflation (Carrico et al., 2015). Several alternatives to OLS re- 

gression have been developed, including weighted quantile sum (WQS) regression (Carrico 

et al., 2015), grouped WQS regression (Wheeler et al., 2021), Bayesian Kernel Machine 

Regression (Bobb et al., 2014), and structural equation models (SEMs) (Sánchez et al., 

2005). SEMs and variations on SEMs (Jedidi et al., 1997; Lee and Song, 2003; Muth én 

and Asparouhov, 2012) have been proposed as flexible approaches for modeling several 

predictors that may be correlated. While SEMs may consist of only observed variables, 

SEMs involving latent variables have been utilized in a wide variety of applications in- 

cluding nutritional epidemiology (Keller, 2006) and phthalate metabolites (Weuve et al., 

2006). 

SEMs allow associations between covariates, observed exposures, latent variables, and 

outcomes, however, in most cases relationships must be established a priori. For some 

applications, there may be interest in estimating a subset of these associations, particu- 

larly the assignment of observed exposures to latent variables. Researchers may wish to 

compare exposure assignments that are hypothesized a priori to exposure assignments 

that are estimated from data. Alignment between model-based exposure assignments 

and literature-based expectations may validate experimental data and strengthen scien- 

tific conclusions. Disagreement may alert researchers to potential data quality concerns, 

or lead to novel hypotheses regarding exposure relationships. 

Uncertainty in exposure assignments may arise when studying the roles of maternal 

T-helper type 1 (Th1) cytokines and T-helper type 2 (Th2) cytokines in relation to an out- 

come, such as birth weight. Th1 cytokines are generally associated with pro-inflammatory 

responses, while Th2 cytokines are associated with anti-inflammatory responses (Berger, 

2000). Some cytokines (i.e. interferon (IFN)-γ) are routinely classified as “Th1,” while 

other cytokines (i.e. interleukin (IL)-4) are routinely classified as “Th2.” However, de- 
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termining cytokine classifications is not always straightforward. Certain cytokines may 

have the capacity to behave as either pro-inflammatory or anti-inflammatory, depend- 

ing on the specific context (Cavaillon, 2001). For example, IL-6 has been noted to have 

both pro- and anti-inflammatory properties (Scheller et al., 2011). Separate non-cytokine 

factors (e.g. chemokines), may also influence the Th1/Th2 paradigm (Kidd, 2003). 

To address this uncertainty, Zavez et al. (2020) developed a latent Bayesian model 

for multiple observed exposures that allows exposure-specific slopes and variances, and 

additionally estimates the latent class membership for each exposure. The model assigns 

each observed exposure to exactly one latent group, and estimates the magnitude of the 

association between each exposure and its assigned latent group. The application of that 

model to prenatal inflammatory marker data collected from the Seychelles Child Devel- 

opment Study (SCDS) revealed that several cytokine permutations may be plausible, 

possibly indicating that certain cytokines do not belong completely to one latent group. 

A more flexible model that permits observed exposures (e.g., cytokines in this example) to 

have partial membership across multiple latent groups may be more effective at modeling 

the true relationships among these prenatal Th1/Th2 inflammatory markers. A partial 

membership model may also be desirable when modeling a larger set of inflammatory 

markers. For example, IL-6 was not categorized as “Th1” or “Th2” by McSorley et al. 

(2018) or Yeates et al. (2020) because it is not consistently classified as either Th1 or 

Th2 in the literature. IL-6, however, has a “dual” role in Th1/Th2 differentiation in that 

it promotes Th2 response by inhibiting Th1 polarization (Diehl and Rincón, 2002), and 

exhibits both pro- and anti-inflammatory properties (Scheller et al., 2011). 

For this reason, we propose a novel Bayesian approach that allows observed exposures 

to have either complete membership in one latent group, or partial membership across 

several latent groups. Under our proposed model, the number of latent groups must be 

specified a priori. In addition, one observed exposure must be selected as the sentinel 

exposure for each latent group to prevent label switching (Stephens, 2000) and ensure 

model identifiability. Each sentinel exposure is assumed to have complete membership in 

the one latent group to which it is assigned, while MCMC sampling is used to determine 
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the latent membership(s) for the non-sentinel exposures and estimate partial membership 

coefficients. 

We first apply our model to the seven Th1/Th2 cytokines previously analyzed by Mc- 

Sorley et al. (2018), Yeates et al. (2020), and Zavez et al. (2020) in the Seychelles Child 

Development Study (SCDS) Nutrition Cohort 2: IFN-γ, IL-2, IL-1β, tumor necrosis fac- 

tor (TNF)-α, IL-4, IL-5, and IL-10, as well as two latent variables: “Th1” and “Th2.” 

We then expand our analysis to thirteen markers by additionally including IL-6, mono- 

cyte chemoattractant protein (MCP)-1 , thymus- and activation-regulated chemokine 

(TARC), soluble fms-like tyrosine kinase 1 (sFlt-1), vascular endothelial growth factor 

(VEGF)-D, and C-reactive protein (CRP). Many of these additional markers may be in- 

volved with fetal development during pregnancy. MCP-1 and TARC are both chemokines, 

which may influence the maternal-fetal interface (Du et al., 2014), while sFlt-1 and VEGF- 

D may influence placental development (Yeates et al., 2020). Independently, CRP was 

a significant predictor of birth weight in the NC2 cohort (Yeates et al., 2020). For the 

expanded set of exposures, we fit our partial membership model under three latent groups 

and also under four latent groups. 

The rest of the paper is organized as follows. In Section 2, we introduce our model 

and MCMC sampling procedure. In Section 3, we evaluate the performance of our model 

in several related simulation studies. In Section 4, we fit our proposed partial member- 

ship model to the Seychelles inflammatory marker data under several different partial 

membership model conditions. We close with a discussion in Section 5. 

 
 

2 Model 
 
2.1 Notation and Models 

 
We center and scale all observed quantities (exposures, covariates, and the outcome) to 

account for the possibility of measurements on different scales and eliminate the need for 

intercept parameters. We use the indices (i, j, k) where i indexes the subject, j indexes the 

observed exposure, and k indexes the latent group, i = 1, ..., n, j = 1, ..., J , k = 1, ..., K, 
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k=1 

where K < J . To simplify notation, we omit indices that are not relevant to a given 

quantity. 

For the ith subject, we let yi denote the centered and scaled outcome, xi,1... xi,K 

denote the K unobserved latent groups, and wi,1, ..., wi,J denote the J centered and 

scaled observed exposures. We take a classical measurement error approach (Carroll 

et al., 2006), and model the observed exposures (w’s) conditional on the latent quantities 

(x’s). Our models for yi, xi,k, k = 1, ..., K, and wi,j, j = 1, ..., J are 

 
yi|xi, Zy,i, βx, βz, σ2 ∼ N (xiβx + Zy,iβz, σ2) 

 
xi,k|Zx,i, γk, η2 ∼ N (Zx,iγk, η2) 

k k 
 

wi,j|xi, λj, τ 2 ∼ N (xiλj, τ 2) 
j j 

 
where, for subject i, xi = (xi,1, ..., xi,K) is the K-dimensional vector of latent group 

variables, Zy,i = (Zy1,i, Zy2,i, ..., Zyp,i), is a p-dimensional vector of covariates associated 

with the outcome, and Zx,i = (Zx1,i, Zx2,i, ..., Zxq,i), a q-dimensional vector of covariates 

associated with the latent groups. In the model for yi, βx denotes the K-dimensional 

vector of coefficients for the K latent variables, and βy denotes the p-dimensional vector 

of coefficients for the Zy covariates. In the model for xk,i, γk denotes the q-dimensional 

vector of coefficients for the Zx covariates. In the model for wi,j, λj = (λj,1, ..., λj,k)T 

denotes the K-dimensional vector of coefficients for the K latent variables. We use 

λj,k ≥ 0 to denote the proportion of exposure j that is assigned to latent group k, 

where k = 1, ..., K and j = 1, ..., J . For each exposure, we denote the λj,k values with 

λj = (λj,1, ..., λj,K) and require that 
L.K

 λj,k = 1. The λj,k parameterization is discussed 
 

further in Section 2.2. 

It is relatively straightforward to develop a Bayesian modeling framework in which 

each observed exposure has membership in every latent group (see Web Appendix A of 

the Supporting Information for details). However, allowing all non-sentinel exposures to 

belong to all latent groups might not be biologically plausible, and may result in very small 

slopes that are difficult to interpret. For this reason, we utilize a parameterization that 
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K 

permits non-sentinel exposures to have either complete membership in one latent group 

or partial membership across two or more latent groups. Our model parameterization 

also discourages very small partial memberships, which increases interpretability. 

 

2.2 Parameterization Details 
 

Our λj,k parameterization was introduced by Xiao et al. (2014) in the context of multiple 

outcomes research, where child developmental outcomes may have partial membership in 

one or more latent domains. We adapt Xiao et al. (2014)’s approach in order to estimate 

partial memberships for the non-sentinel exposures, and write λj,k in the following way 

 

λj,k = L. 
zj,k exp(vj,k) 

kl=1 zj,kl exp(vj,kl ) 

 
, j = 1, ..., J ; k = 1, ..., K (1) 

 
where zj,k = 1 if exposure j has at least partial membership in the kth latent group, and 

zj,k = 0 otherwise. In this notation, exp(vj,k) represents the relative membership weight 

for exposure j in latent group k. Reparameterizing each λj,k in this way (i.e., by using 

vj,k and zj,k) allows some λj,k values to be zero. Modeling the λj,k parameters directly 

with a Dirichlet prior would not permit the same level of flexibility (Xiao et al., 2014). 

We fix a subset of the λj,k parameters to ensure identifiability and prevent label 

switching. We select one exposure as the sentinel marker for each of the K latent groups 

and set the corresponding λj,k parameter equal to one. For example, if exposure 2 is 

the sentinel exposure for the first latent group, λ2,1 = 1. The remaining (K − 1) λ2,k 

parameters, k = 2, ..., K for exposure 2 must be equal to 0. 

For each non-sentinel exposure, we have λj = (λj,1, ..., λj,K) where zj = (zj,1, ..., zj,K) 

is a binary vector, and vj = (vj,1, ..., vj,K) is a log-transformed weight vector. To ensure 

that the denominator in Equation 1 is always nonzero, we utilize prior information to 

make an a priori partial membership assignment (PMA) for each nonsentinel exposure 

by fixing one of it’s zj,k parameters at 1. Fixing zj,k = 1 for exposure j is equivalent to 

saying, “exposure j has at least partial membership in latent group k.” For each exposure, 

we can denote the corresponding latent group by k∗(j). For example, if we assume that 
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j 

∗ 

k 

2 

2 

v 

exposure 3 has at least partial membership in latent group 1, then k∗(3) = 1. 

For technical reasons, it will also be necessary to fix one vj,k equal to 0 for each 
 

exposure. This is because vj = (vj,1, ..., vj,K) and vi = (vj,1 + C, ..., vj,K + C) will produce 

the same λj, ∀C ∈ R. For each exposure, we follow the recommendation of Xiao et al. 

(2014) and fix the vj,k that corresponds to k (j) equal to zero. Thus, we set vj,k∗(j) = 0. 

 

2.3 MCMC Sampling Details 
 

We utilize an MCMC sampling scheme that is similar to the approach taken by Xiao 

et al. (2014). For all model parameters except λj, j = 1, ..., J we use Gibbs sampling to 

iteratively sample each parameter (or parameter vector) from its posterior, conditional 

on the values of the other model parameters. To obtain posterior samples for the set of 

λj parameters, we use a Metropolis-Hasting sampler to sample vj and Gibbs sampling 

to sample zj. Posterior distributions and further sampling details are provided in Web 

Appendix B of the Supporting Information. 

 

2.4 Model Priors 
 

We assume the same priors as Zavez et al. (2020) for β = (βx, βz), γk, σ2, and η2, k = 

1, ..., K. We let β ∼ N (β0, Σβ) and γk ∼ N (γ0, Σγ), k = 1, ..., K where β0 = γ0 = 0 

and Σβ = Σγ = diag(100). We assume that all variance parameters are independent 

and follow Inverse-Gamma (IG) distributions, thus, σ2 ∼ IG(aσ2 , bσ2 ), τj ∼ IG(aτ2 , bτ2 ), 

j = 1, ..., J and ηj ∼ IG(aη2 , bη2 ), j = 1, ..., J . For prior A, we fix the IG shape hyperpa- 

rameters aσ2 = aτ2 = aη2 = 0.05 and the IG scale hyperparameters bσ2 = bτ2 = bη2 = 0.01. 

For prior B, we fix aσ2 = aτ2 = aη2 = 0.50 and bσ2 = bτ2 = bη2 = 0.10. Zavez et al. (2020) 

provides further justification for the prior parameter values in the context of this Sey- 

chelles cohort. 

Like Xiao et al. (2014), we utilize a Bernoulli prior distribution for zj,k and a Nor- 

mal mixture prior for vj,k. Specifically, we assume that p(zj,k, vj,k) = p(zj,k)p(vj,k|zj,k), 

p(zj,k) ∼ Bernoulli(pj,k,0) and p(vj,k|zj,k) ∼ zj,kN(0, σ2) +(1 −zj,k)N−(0, gσ2), where g > 1 
v v 

is a fixed value. In this notation, N−(0, gσ2) represents the distribution of −|X| where 
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v 

v 

v 

v 

v 

X ∼ N (0, gσ2). 

Normal mixture priors have been utilized in other fields (Yi et al., 2003), and allow 

for greater flexibility than standard Normal priors. For example, zj,k = 0 implies that 

exposure j has no membership in latent group k. The corresponding exp(vj,k), which 

represents the relative membership of exposure j in the kth latent group, should be close 

to zero. This will be the case for large, negative values of vj,k, which are typical under 

the N−(0, gσ2) component of the mixture prior. 

Utilizing σ2 to govern the mixture prior variance allows for greater sampling flexibility 

than a fixed variance, and is the approach taken by Xiao et al. (2014). In sensitivity 

analyses, we evaluate the three values for g (g = 5, g = 10, g = 15) and three different 

conditions for σ2 (σ2 ∼ U (1, 4), σ2 = 1, σ2 = 4) considered by Xiao et al. (2014). While 
v v v v 

a fixed value for σ2 may be a feasible approach for some applications, our simulation 
 

results suggest that choosing a σ2 that is too large may adversely affect estimation of the 

λj,k parameters (see Web Appendix D of the Supporting Information for details). 

Use of a traditional “spike and slab” prior (Mitchell and Beauchamp, 1988), in which 

the coefficients of one component of the mixture distribution are exactly zero, is a rea- 

sonable alternative to the method we used. The results are likely to be similar to our 

method. In our method, zj,k = 0 sets λj,k to zero for that iteration. This has the same 

effect as taking λj,k = 0 for the spike at zero in the spike and slab prior at that iteration. 

 

3 Simulations 
 
3.1 Simulation Study Design 

 
We simulated data under the following model structure with three latent groups (K = 3) 

and nine observed exposures (J = 9): 

 
yi ∼ N (xiβx + Zy,iβz, σ2) where βx = (0.25, −0.15, 0.10); βz = (0.15, −0.10, 0.05) 
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2 

3 

j 

xi,1 ∼ N (Zx,iγ1, η2) where γ1 = (0.07, 0.21) 
 
 

xi,2 ∼ N (Zx,iγ2, η2) where γ2 = (0.15, 0.05) 
 
 

xi,3 ∼ N (Zx,iγ3, η2) where γ3 = (0.28, 0.11) 
 
 

wi,j ∼ N (xiλj, τ 2) j = 1, ..., 9; xi = (xi,1, xi,2, xi,3) 
 

We use a sample size of 500 and simulate each dataset from a multivariate Normal 

distribution. All observed exposures (wj’s), covariates (Zy; Zx), and the simulated out- 

come (y) are simulated to have mean zero and unit variance which defines the scale for 

the residual variances. For the latent groups, we fix V ar(xk) = 0.5 and set the pair- 

wise correlation between the xk’s equal to 0.15 to ensure valid models for each sentinel 

exposure (see Web Appendix C of the Supporting Information for further details) and 

produce correlations among the simulated wj’s that are representative of the correlations 

among the observed Th1/Th2 cytokines in the NC2 cohort. 

We set λ1 = λ2 = (1, 0, 0), λ3 = (0.6, 0.4, 0), λ4 = (0, 1, 0), λ5 = (0.3, 0.4, 0.3), λ6 = 

(0, 0.7, 0.3), λ7 = (0, 0.5, 0.5), λ8 = (0.3, 0, 0.7), and λ9 = (0, 0, 1). The first (w1), fourth 

(w4) and ninth (w9) simulated observed exposures are assumed to be the sentinel markers 

for the first (x1), second (x2) and third (x3) latent variables, respectively. The remaining 

non-sentinel exposures (w2, w3, w5, w6, w7, w8) are permitted to have partial membership 

across one or more latent group. Under this simulation design, the range of exposure 

correlations in the simulated data (range: -0.06 to 0.59) was similar to the correlation 

range observed among the NC2 cytokines (range: -0.10 to 0.65). 
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3.2 Simulation Results 

We simulate 100 datasets and evaluate our partial membership (PM) model against the 

single membership (SM) model presented by Zavez et al. (2020) and two different SEM- 

based approaches. For each model parameter, we compute parameter bias, credible in- 

terval length, and coverage. For bias, we report the mean of (θˆ − θ), where θˆ denotes 

the posterior mean of true parameter θ from which the data are generated. For interval 

length, we report the mean 95% equal-tailed posterior interval length, and for coverage, 

we report the proportion of these intervals that cover the true parameter value. 

Under all three competing approaches, each exposure is assumed to belong to exactly 

one latent group. For the SM model, the assignment is estimated using MCMC sampling, 

while for the SEM models assignments are specified a priori. For the first SEM-based 

model, we assume that each measured exposure is assigned to the latent group in which 

it has majority membership. We refer to this model as “SEM Best” because it assumes 

that optimal a priori decisions are made regarding exposure group memberships. For the 

second SEM-based model, we assume that each measured exposure is assigned poorly, and 

to a latent group in which it does not have majority membership. We refer to this model 

as “SEM Worst.” These three approaches provide insight into how a single membership 

model will perform when applied to data that are simulated under a partial membership 

model. 

Our partial membership model requires the specification of g and σ2. Detailed sen- 

sitivity analyses suggest that model performance can be enhanced by optimizing these 

parameters (see Web Tables 1-3 of the Supporting Information for details). For this sim- 

ulation, we fix g = 15 and σ2 = 4, which were shown to be relatively poor choices of g and 

σ2. This helps to ensure that we are not optimizing our proposed model compared to the 

competing approaches. For each approach (PM, SM, SEM Worst, and SEM Best), we 

run the MCMC for 4 chains with 5,000 iterations per chain. The first 1,000 iterations of 

each chain are considered “burn-in” draws and are discarded, while the remaining 16,000 

draws are used to estimate model parameters. 

Performance results for select model parameters are presented in Table 1. It is difficult 
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to compare exposure model parameters (i.e., λj’s, τ 2’s) across the four models because 

our partial membership model places certain constraints on the λj’s (e.g. 
L.K

 λj,k = 1) 
 

that are not enforced by the other approaches. For this reason, we focus on comparing 

outcome model parameters (β, σ2) and latent variable model parameters (γ’s, η2’s) across 

the four different models. 
 

Table 1: Simulation results with three latent groups under prior A (Beta(1,1); IG(0.05, 
0.01)) for our partial membership model (“PM”), the single membership model (“SM”), 
the best-choice SEM model (“SEM-B”) and worst-choice SEM model (“SEM-W”) for 
select model parameters, where (β, σ2) and (γ, η2) are slopes and variances for (y | x, Zy) 
and (x | Zx), respectively. Reported values are averages over 100 simulated datasets. For 
PM, we fix g = 15 and σ2 = 4. 

Bias Interval Length Coverage 
 
 
 
 

 
1 

 
2 

 
3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 

2 

3 

 
 

Overall, our partial membership model estimated model parameters with little bias 

and tighter intervals compared to the SM and SEM approaches, though all four methods 

performed similarly with regards to estimating the βz parameters. The biases for βx1 and 

βx3 under the SM model were fairly small, but were nonetheless 2-10 times larger than 

the corresponding biases under the PM model. The bias for βx2 under the SM model was 

half that of the PM model, but the length of the SM model credible interval was more 

than double that of the PM model. In addition, 20% of SM interval lengths were greater 

than 1.0, while 100% of PM intervals were smaller than 0.5 (See Web Appendix E for 

details). The SM model also performed worse than the PM model in estimating η2. The 

bias for η2 under the SM model was over 4 times larger than bias under the PM model, 

and SM model coverage for η2 (54%) was much lower than the PM model coverage for 

Truth PM SM SEM-B SEM-W PM SM SEM-B SEM-W PM SM SEM-B SEM-W 
βx1 0.250 -0.013 -0.021 -0.226 -0.502 0.291 0.362 1.527 3.564 0.950 0.940 0.960 0.860 
βx2 -0.150 0.028 -0.014 0.018 0.656 0.314 0.719 1.116 5.168 0.950 0.990 0.960 0.730 
βx3 0.100 0.004 0.049 -0.083 -0.045 0.317 0.446 1.486 1.589 0.950 0.950 0.970 0.970 
βZy 0.150 -0.000 -0.000 -0.000 -0.000 0.171 0.171 0.171 0.172 0.940 0.940 0.940 0.950 
βZy -0.100 0.001 0.001 0.001 0.001 0.171 0.171 0.171 0.172 0.960 0.950 0.970 0.940 
βZy 0.050 0.001 0.001 0.002 0.001 0.171 0.171 0.171 0.172 0.940 0.940 0.940 0.940 
σ2 0.918 0.001 -0.000 0.001 -0.011 0.237 0.242 0.240 0.267 1.000 1.000 1.000 1.000 
γ1,1 0.070 -0.003 0.008 -0.001 -0.013 0.148 0.144 0.150 0.128 0.940 0.900 0.940 0.950 
γ1,2 0.210 0.002 -0.006 -0.021 -0.179 0.147 0.154 0.186 0.086 0.960 0.950 0.960 0.010 
γ2,1 0.150 -0.001 0.019 0.010 -0.096 0.159 0.160 0.166 0.127 0.960 0.920 0.920 0.300 
γ2,2 0.050 -0.006 0.016 0.017 0.004 0.159 0.144 0.138 0.124 0.970 0.950 0.940 0.940 
γ3,1 0.280 0.001 -0.018 -0.028 -0.078 0.153 0.168 0.224 0.203 0.960 0.910 0.960 0.740 
γ3,2 0.110 0.009 0.025 0.014 0.017 0.153 0.146 0.168 0.152 0.980 0.940 0.960 0.910 
η2 0.451 0.027 -0.014 -0.041 -0.424 0.210 0.303 0.348 0.064 0.990 0.990 0.970 0.000 
η2 0.475 0.035 -0.183 -0.193 -0.451 0.330 0.437 0.299 0.059 0.970 0.540 0.350 0.000 
η2 0.409 0.022 -0.077 -0.097 -0.271 0.295 0.352 0.328 0.207 0.970 0.850 0.800 0.030 
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2 
2 (97%). Thus, the PM model produced more precise intervals, and generally smaller 

 

biases, than the SM membership model. In addition, the high SM coverage estimates for 

some parameters may be a reflection of larger credible intervals, and should be interpreted 

with this in mind. 

While SEM Best estimated most parameters with little bias and adequate coverage, 

the biases for two of the three βx parameters (the latent group slopes) under SEM Best 

were unacceptably large. In addition, credible intervals for βx were more than three times 

wider than those under the partial membership model. 

 

3.3 Sensitivity Analyses 

Traditional SEM-based approaches require that each observed exposure be completely 

assigned to one latent group when fitting the model, and require that the number of 

latent groups, K, be known. Our model allows partial membership of observed exposures 

to latent groups, while having three requirements: (1) K is known; (2) one exposure for 

each latent group is assigned a priori as the sentinel exposure with complete membership 

in that group; and (3) each non-sentinel exposure is assigned partial membership in one 

latent group a priori (see Section 2.2). The assignment of K sentinel exposures allows 

the remaining J − K exposures to have full or partial membership in latent group(s) 

as estimated by our partial membership model. We now evaluate the sensitivity of our 

model to these requirements. 
 
 

3.3.1 Sensitivity to Number of Latent Groups 
 

Our partial membership model requires the specification of K, the number of latent 

groups. To evaluate model sensitivity to this parameter, we performed additional simula- 

tions for the K = 3 simulation described above, but assuming either too few (K = 2) or 

too many (K = 4) latent groups. For the K = 2, K = 3, and K = 4 models, the first ob- 

served exposure (w1) and fourth observed exposure (w4) were assumed to be the sentinel 

exposures for the first (x1) and second (x2) latent groups, respectively. For the K = 3 

and K = 4 models, the ninth observed exposure (w9) was assumed to be the sentinel 

η 
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2 

exposures for the third (x3) latent group. For the K = 4 model, the seventh observed 

exposure (w7) was assumed to be the sentinel exposures for the fourth (x4) latent group. 

Since exposure model constraints are sensitive to K (e.g., 
L.K

 λj,k = 1), we compare 
 

outcome model parameters (β, σ2) and latent variable model parameters (γ’s, η2’s) across 

the K = 2, K = 3, and K = 4 models in Table 2. Since the fourth latent group does not 

exist under the K = 3 simulation design, no true values, biases, or coverages are provided 

for parameters specific to the fourth latent group (i.e., βx , γ4,1, γ4,2, and η2). 
4 4 

 

Table 2: Simulation results with three latent groups under prior A (Beta(1,1); IG(0.05, 
0.01)) for our partial membership model under three different K specifications: K = 2 
(too few latent groups), K = 3 (the correct number of latent groups), and K = 4 (too 
many latent groups). (β, σ2) and (γ, η2) are slopes and variances for (y | x, Zy) and 
(x | Zx), respectively. Reported values are averages over 100 simulated datasets. For 
each model, we fix g = 15 and σ2 = 4. 

Bias Interval Length Coverage 
 
 
 
 
 
 

1 
 

2 
 

3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 

2 

3 

 4  
 
 

The K = 2 model produced relatively large bias and poor coverage for the model 

parameters that are directly associated with the second latent group: βx2 , γ2,1, γ2,2, and 

η2. Compared to the K = 3 model, the K = 4 model produced relatively large intervals, 

larger bias, and weaker coverage for several of the variance parameters (i.e., η2 and η2). In 
2 3 

 

addition, convergence diagnostics from the K = 4 model showed clear convergence issues 

Truth K = 2 K = 3 K = 4 K = 2 K = 3 K = 4 K = 2 K = 3 K = 4 
βx1 0.250 -0.001 -0.013 -0.013 0.300 0.291 0.292 0.970 0.950 0.940 
βx2 -0.150 0.120 0.028 0.050 0.415 0.314 0.304 0.770 0.950 0.910 
βx3 0.100 - 0.004 -0.004 - 0.317 0.320 - 0.950 0.960 
βx4 - - - - - - 0.488 - - - 
βZy 0.150 -0.001 -0.000 -0.000 0.171 0.171 0.171 0.940 0.940 0.930 
βZy -0.100 0.001 0.001 0.001 0.171 0.171 0.171 0.960 0.960 0.960 
βZy 0.050 0.001 0.001 0.001 0.171 0.171 0.171 0.940 0.940 0.950 
σ2 0.918 0.013 0.001 -0.003 0.237 0.237 0.240 1.000 1.000 1.000 
γ1,1 0.070 0.001 -0.003 -0.004 0.148 0.148 0.149 0.940 0.940 0.950 
γ1,2 0.210 0.003 0.002 0.003 0.146 0.147 0.149 0.960 0.960 0.960 
γ2,1 0.150 0.062 -0.001 -0.002 0.111 0.159 0.169 0.380 0.960 0.960 
γ2,2 0.050 0.026 -0.006 -0.005 0.112 0.159 0.168 0.840 0.970 0.960 
γ3,1 0.280 - 0.001 0.002 - 0.153 0.162 - 0.960 0.940 
γ3,2 0.110 - 0.009 0.012 - 0.153 0.162 - 0.980 0.980 
γ4,1 - - - - - - 0.166 - - - 
γ4,2 - - - - - - 0.167 - - - 
η2 0.451 0.018 0.027 0.034 0.227 0.210 0.225 1.000 0.990 0.990 
η2 0.475 -0.243 0.035 0.167 0.115 0.330 0.538 0.000 0.970 0.830 
η2 0.409 - 0.022 0.142 - 0.295 0.512 - 0.970 0.900 
η2 - - - - - - 0.688 - - - 
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in traceplots, the Gelman-Rubin diagnostic (R̂ ), and the effective sample size estimates 

(neff ), especially for parameters associated with the non-existent group (Gelman et al., 

1992; Plummer et al., 2006). Further details are provided in Web Appendix F of the 

Supporting Information. 

 
3.3.2 Sensitivity to Choice of Sentinel Exposures 

 
Our partial membership model also requires the specification of one sentinel exposure for 

each latent group. In the simulations considered earlier, the sentinel exposures selected 

(w1, w4, and w9) had complete membership in the latent group to which they were 

assigned. 

We now evaluate our model’s performance under two additional sentinel exposure as- 

signments. Under Sentinel-2, we select the exposures with the second greatest proportion 

of membership (w2, w6, and w8) to be the sentinel markers. Under Sentinel-3, we select 

the exposures with the third greatest proportion of membership (w3, w5, and w7) to be 

the sentinel markers. Parameter results for this sensitivity analysis are presented in Table 

3. 

Table 3: Simulation results with three latent groups under prior A (Beta(1,1); IG(0.05, 
0.01)) for our partial membership model under three different sentinel marker arrange- 
ments: Sent-1 (w1, w4, and w9 as the sentinel markers), Sent-2 (w2, w6, and w8 as the 
sentinel markers), and Sent-3 (w3, w5, and w7 as the sentinel markers). (β, σ2) and (γ, η2) 
are slopes and variances for (y | x, Zy) and (x | Zx), respectively. Reported values are 
averages over 100 simulated datasets. For each model, we fix g = 15 and σ2 = 4. 

Bias Interval Length Coverage 
 
 
 
 
 
 

1 

 
2 

 
3 

 
 
 
 
 
 
 
 

1 

2 
η2 0.409 0.022 -0.051 -0.105 0.295 0.241 0.216 0.970 0.820 0.440 

 3  

Truth Sent-1 Sent-2 Sent-3 Sent-1 Sent-2 Sent-3 Sent-1 Sent-2 Sent-3 
βx1 0.250 -0.013 -0.041 0.011 0.291 0.291 0.359 0.950 0.930 0.970 
βx2 -0.150 0.028 0.018 0.112 0.314 0.368 0.576 0.950 0.970 0.780 
βx3 0.100 0.004 0.051 -0.091 0.317 0.372 0.478 0.950 0.930 0.800 
βZy 0.150 -0.000 -0.001 -0.001 0.171 0.171 0.171 0.940 0.960 0.940 
βZy -0.100 0.001 0.001 0.001 0.171 0.171 0.171 0.960 0.960 0.950 
βZy 0.050 0.001 0.000 0.000 0.171 0.171 0.172 0.940 0.940 0.940 
σ2 0.918 0.001 0.001 -0.001 0.237 0.239 0.242 1.000 1.000 1.000 
γ1,1 0.070 -0.003 -0.008 0.010 0.148 0.152 0.135 0.940 0.950 0.950 
γ1,2 0.210 0.002 0.005 -0.017 0.147 0.152 0.135 0.960 0.940 0.940 
γ2,1 0.150 -0.001 0.026 0.024 0.159 0.140 0.158 0.960 0.880 0.860 
γ2,2 0.050 -0.006 0.003 0.051 0.159 0.139 0.152 0.970 0.950 0.780 
γ3,1 0.280 0.001 -0.032 -0.048 0.153 0.146 0.147 0.960 0.870 0.740 
γ3,2 0.110 0.009 0.030 -0.024 0.153 0.146 0.140 0.980 0.860 0.900 
η2 0.451 0.027 0.057 -0.074 0.210 0.245 0.185 0.990 0.890 0.560 
η2 0.475 0.035 -0.103 -0.159 0.330 0.182 0.322 0.970 0.470 0.350 
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Two of the three latent group slopes (βx1 and βx3 ) showed larger bias under Sentinel-2 

than under Sentinel-1, and bias for βx was generally larger under Sentinel-3. Sentinel-3 

also produced wider intervals and lower coverage for βx2 , βx3 and select γ parameters. 

Under Sentinel-2 and Sentinel-3, η2 parameters were estimated with more bias, wider 

intervals, and poor coverage compared to Sentinel-1. 

 
3.3.3 Sensitivity to Partial Membership Assignments (PMAs) 

 
We first evaluate our model’s performance under three different a priori partial mem- 

bership assignments (PMAs). Under PMA-1, each non-sentinel observed exposure is 

assigned to have partial membership in the latent group in which it has majority mem- 

bership. Under PMA-2, non-sentinel exposures are assigned to have partial membership 

in latent groups in which they have at least partial membership. Under PMA-3, non- 

sentinel exposures are assigned to have partial membership in latent groups in which they 

have no membership. 

Parameter results for this sensitivity analysis are presented in Table 4 and Table 

5. First, we present outcome model and latent variable model parameters in Table 4. 

Performance was fairly consistent across PMA-1 and PMA-2, while βx credible intervals 

were slightly increased under PMA-3. For all three PMA conditions, parameters were 

estimated with very little bias and coverage probabilities were close to the 0.95 level. 

Estimates for the λj,k’s under the different PMAs are presented in Table 5. Overall, 

there was little difference in performance across PMA-1 and PMA-2. Under PMA-3, 

parameter bias was slightly higher for some λ parameters. Compared to PMA-1 and 

PMA-2, credible intervals under PMA-3 were wider, but still considerably tighter than 

the SEM Best intervals presented previously, in Table 1. Under PMA-3, some λ coverage 

probabilities were exactly zero when a non-sentinel exposure is partially assigned to a 

latent group in which it has no membership. Partially assigning exposure j to latent 

group k requires exposure j to have non-zero membership in latent group k. As a result, 

it must be the case that λj,k > 0. 

PMA misspecification may or may not affect the coverage of other λj,k parameters. 
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Table 4: Simulation results with three latent groups under prior A (Beta(1,1); IG(0.05, 
0.01)) for our partial membership model under three different partial membership as- 
signments: PMA-1 (optimal latent assignments), PMA-2 (intermediate assignments), 
and PMA-3 (inappropriate assignments). (β, σ2) and (γ, η2) are slopes and variances for 
(y | x, Zy) and (x | Zx), respectively. Reported values are averages over 100 simulated 
datasets. For each model, we fix g = 15 and σ2 = 4. 

Bias Interval Length Coverage 
 
 
 
 
 

1 
 

2 
 

3 

 
 
 
 
 
 
 
 
 

1 

2 η2 0.409 0.022 0.022 0.005 0.295 0.293 0.425 0.970 0.970 0.990 
 3  

 

For example, first consider non-sentinel exposure 6, which has partial membership in 

latent groups 2 and 3, but no membership in latent group 1. If exposure 6 is incorrectly 

assigned to have partial membership in latent group 1, λ6,1 cannot include the true value 

of 0, so the coverage for λ6,1 is zero. However, the coverage for λ6,2 and λ6,3 do not appear 

to be reduced by this misspecification. Alternatively, consider non-sentinel exposure 2, 

which has complete membership in latent group 1. If exposure 2 is incorrectly assigned 

partial membership to latent group 3, the coverage for both λ2,1 and λ2,3 will be zero. 

Since λ2,3 > 0 and since 
L.3

 λ2,k = 1, it must be the case that λ2,1 < 1. Therefore, the 
 

coverage for λ2,1, which has a true value of 1, must be zero. The coverage for λ2,3, which 

has a true value of 0, must also be zero. 

Truth PMA-1 PMA-2 PMA-3 PMA-1 PMA-2 PMA-3 PMA-1 PMA-2 PMA-3 
βx1 0.250 -0.013 -0.013 -0.013 0.291 0.291 0.310 0.950 0.940 0.960 
βx2 -0.150 0.028 0.028 0.019 0.314 0.315 0.355 0.950 0.950 0.980 
βx3 0.100 0.004 0.004 0.018 0.317 0.317 0.356 0.950 0.950 0.980 
βZy 0.150 -0.000 -0.000 -0.000 0.171 0.171 0.171 0.940 0.960 0.940 
βZy -0.100 0.001 0.001 0.001 0.171 0.171 0.171 0.960 0.970 0.970 
βZy 0.050 0.001 0.001 0.001 0.171 0.171 0.171 0.940 0.940 0.940 
σ2 0.918 0.001 0.001 0.001 0.237 0.237 0.238 1.000 1.000 1.000 
γ1,1 0.070 -0.003 -0.003 -0.003 0.148 0.148 0.149 0.940 0.940 0.940 
γ1,2 0.210 0.002 0.002 -0.002 0.147 0.147 0.149 0.960 0.960 0.970 
γ2,1 0.150 -0.001 -0.001 0.009 0.159 0.159 0.159 0.960 0.960 0.940 
γ2,2 0.050 -0.006 -0.006 -0.002 0.159 0.159 0.157 0.970 0.970 0.960 
γ3,1 0.280 0.001 0.001 -0.008 0.153 0.153 0.162 0.960 0.960 0.960 
γ3,2 0.110 0.009 0.009 0.013 0.153 0.153 0.154 0.980 0.980 0.980 
η2 0.451 0.027 0.028 0.014 0.210 0.210 0.281 0.990 0.990 1.000 
η2 0.475 0.035 0.036 -0.008 0.330 0.330 0.468 0.970 0.970 1.000 
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Table 5: Non-sentinel λ estimates under prior A (Beta(1,1); IG(0.05, 0.01)) for our partial 
membership model with three latent groups under three different partial membership 
assignments (denoted by *) where λj,k is the partial membership of the jth exposure for 
the kth latent group. Reported values are averages over 100 simulated datasets. For each 
model, we fix g = 15 and σ2 = 4. 

Bias Interval Length Coverage 
 Truth PMA-1 PMA-2 PMA-3 PMA-1 PMA-2 PMA-3 PMA-1 PMA-2 PMA-3 
λ2,1 1.000 -0.040* -0.040* -0.045 0.165* 0.166* 0.269 1.000* 1.000* 0.000 
λ2,2 0.000 0.021 0.021 0.007 0.116 0.118 0.071 1.000 1.000 1.000 
λ2,3 0.000 0.019 0.019 0.038* 0.114 0.114 0.236* 1.000 1.000 0.000* 
λ3,1 0.600 -0.012* -0.013 0.032 0.237* 0.237 0.578 0.960* 0.960 0.960 
λ3,2 0.400 -0.009 -0.010* -0.068 0.245 0.247* 0.530 0.960 0.970* 0.970 
λ3,3 0.000 0.021 0.023 0.036* 0.126 0.128 0.207* 1.000 1.000 0.000* 
λ5,1 0.300 0.008 0.005 -0.004 0.257 0.268 0.333 0.920 0.960 0.950 
λ5,2 0.400 0.000* 0.001 0.024 0.299* 0.316 0.448 0.910* 0.920 0.980 
λ5,3 0.300 -0.008 -0.007* -0.021* 0.306 0.303* 0.408* 0.910 0.930* 0.950* 
λ6,1 0.000 0.028 0.030 0.039* 0.126 0.127 0.182* 0.980 0.990 0.000* 
λ6,2 0.700 -0.047* -0.049 0.040 0.336* 0.330 0.606 0.940* 0.930 0.990 
λ6,3 0.300 0.019 0.019* -0.079 0.322 0.318* 0.541 0.990 0.970* 0.960 
λ7,1 0.000 0.024 0.025 0.032* 0.126 0.125 0.168* 1.000 1.000 0.000* 
λ7,2 0.500 -0.011 -0.012* 0.034 0.309 0.310* 0.794 0.960 0.960* 0.980 
λ7,3 0.500 -0.013* -0.013 -0.066 0.315* 0.310 0.781 0.950* 0.950 0.950 
λ8,1 0.300 0.006 0.005* -0.080 0.251 0.250* 0.439 0.970 0.970* 0.990 
λ8,2 0.000 0.029 0.031 0.060* 0.147 0.150 0.252* 0.990 1.000 0.000* 
λ8,3 0.700 -0.034* -0.036 0.021 0.297* 0.294 0.569 0.960* 0.960 0.990 

 
4 Application: Seychelles Child Development Study 

 
4.1 Study Background 

 
The Seychelles Child Development Study (SCDS) is an on-going, multi-center research 

collaboration studying the association between prenatal mercury exposure from fish con- 

sumption and child neurodevelopment. We illustrate our model with prenatal inflam- 

matory marker data collected from Nutrition Cohort 2 (NC2), the largest mother-child 

cohort (n = 1518 eligible mothers) in the SCDS. NC2 mothers were recruited between 

2008 and 2011 on Mah é, the main island of Seychelles. For a detailed description of the 

NC2 cohort, including exclusion and inclusion criteria, see Strain et al. (2015). 

Our partial membership model uses data from several observed exposures (i.e. in- 

flammatory markers), covariates, and one outcome, and makes use of multiple latent 

variables. Since markers of maternal inflammation may influence birth outcomes (Yeates 

et al., 2020), we select birth weight as the model outcome for our work. We consider 
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two different sets of inflammatory markers. We first fit our partial membership model 

to the seven inflammatory markers that were classified as either Th1 (IFN-γ, TNF-α, 

IL-1β, IL-2) or Th2 (IL-5, IL-10, and IL-4) by McSorley et al. (2018) and Yeates et al. 

(2020), with two latent variables representing “Th1” and “Th2.” This set of exposures 

was previously analyzed by Zavez et al. (2020) using a Bayesian single membership model 

with two latent variables. We then expand our analysis to include six additional NC2 

inflammatory markers (IL-6, MCP-1, TARC, sFlt-1, VEGF-D, and CRP), with either 

three or four latent variables. In this larger model, the first and second latent groups 

again represent “Th1” and “Th2” respectively. The third latent group is meant to repre- 

sent “Chemokines”, a class of non-cytokine factors that may influence both the Th1/Th2 

paradigm (Kidd, 2003) and birth weight. In the model with four latent variables, the 

fourth latent group is meant to represent “placental-fetal” circulatory markers, as some of 

these exposures (e.g., sFlt-1 and VEGF-D) may influence placental development (Yeates 

et al., 2020), and placental weight may be an important determinant of both birth weight 

and fetal growth (Roland et al., 2012). 

Previous analyses of these NC2 inflammatory markers (McSorley et al. (2018), Yeates 

et al. (2020), and Zavez et al. (2020)) used the natural logarithm of each marker (after 

adding a constant of 1) to better satisfy regression assumptions. We apply the same 

transformation procedure here. Like the single membership model presented by Zavez 

et al. (2020), our partial membership model requires covariates associated with the la- 

tent variables (denoted with Zx), and covariates associated with the outcome (denoted 

with Zy). To facilitate comparisons between the single membership and partial mem- 

bership approaches, we utilize the same covariates as Zavez et al. (2020). Specifically, 

we select maternal BMI, gestational age at time of blood draw, total n6 polyunsatu- 

rated fatty acids (PUFA), total n3 PUFA, maternal MeHg, and socioeconomic status as 

Zx1 , Zx2 , Zx3 , Zx4 , Zx,5 and Zx6 , respectively. For Zy, we select child sex (equal to 1 if male; 

0 if female), gestational age at birth, maternal BMI, maternal age, and socioeconomic 

status as Zy1 , Zy2 , Zy3 , Zy4 and Zy5 , respectively. 
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4.2 MCMC Details 
 

We fit our model using two different IG priors for model variances (prior A: IG(0.01, 0.05); 

prior B: IG(0.1, 0.5)) and two different values of g. These IG priors were also used 

in Zavez et al. (2020). For all applications, we fix σ2 = 1, as this showed improved 
 

performance in our simulation study sensitivity analyses compared to different options 
 

for σ2 (see Web Tables 1-3 of the Supporting Information for more details). For each 
 

Seychelles application, we fit our partial membership model using four MCMC chains 

with 10,000 iterations per chain. We discard the first 1,000 iterations of each chain as 

“burn-in” draws, and utilize the remaining iterations for inference. To determine model 

convergence, we investigate traceplots, compute the Gelman-Rubin diagnostic ( R̂ )  and 

compute effective sample size estimates (neff ) for each model parameter (Gelman et al., 

1992; Plummer et al., 2006). 

 

4.3 Seychelles Application for K = 2 
 

We first fit our partial membership model to the Seychelles application with seven inflam- 

matory markers and two latent groups. Like Zavez et al. (2020), we assign IFN-γ as the 

sentinel cytokine in the first (i.e., “Th1”) latent group and IL-4 as the sentinel cytokine 

in the second (i.e., “Th2”) latent group. Parameter estimates and posterior intervals for 

prior A and prior B (under g = 5 and g = 10) were similar and are presented in Web 

Table 6 and Web Table 7 of the Supporting Information. 

Estimates and intervals were similar under g = 5 and g = 10. TNF-α (w2), IL-1β (w3) 

and IL-2 (w4) had majority membership in the Th1 group with IFN-γ (w1), while IL-5 

(w5) and IL-10 (w6) had majority membership in the Th2 group with IL-4 (w7). Neither 

latent Th1 nor latent Th2 was associated with child birth weight. Several Zy covariates 

(child sex, gestational age at birth, maternal BMI, and maternal age) were positively 

associated with birth weight. Total n6 PUFA was positively associated with both latent 

Th1 and latent Th2, while maternal MeHg was negatively associated with both latent 

Th1 and latent Th2. Socioeconomic status was negatively associated with latent Th2. 

Zavez et al. (2020) analyzed the same dataset under the single membership model 
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(also with two latent groups). In the single membership model, there was also no asso- 

ciation between child birth weight and either latent Th1 or Th2. Covariate associations 

were preserved, with child sex, gestational age at birth, maternal BMI, and maternal 

age also having positive associations with child birth weight in the single membership 

model. Associations involving total n6 PUFA, maternal MeHg, and socioeconomic status 

were also similar. With regards to exposure classifications, the dominant membership 

(either Th1 or Th2) in the partial membership model generally aligned with the single 

membership model classification. There was only one difference in that IL-10 (w6) classi- 

fied in the Th1 group under the single membership model. The classification of IL-10 as 

primarily a Th2 cytokine in our partial membership model aligns with prior expectations 

of IL-10 classification, showing a possible, albeit unexpected, advantage of the partial 

membership model over the single membership model. 

 

4.4 Seychelles Application for K = 3 
 

We next fit our partial membership model to the Seychelles application with thirteen 

inflammatory markers and three latent groups. We assign IFN-γ as the sentinel cytokine 

in the first (i.e., “Th1”) latent group, IL-4 as the sentinel cytokine in the second (i.e., 

“Th2”) latent group, and MCP-1 as the sentinel cytokine in the third (i.e., “Chemokines”) 

latent group. Lower maternal concentrations of MCP-1 may be associated with abnormal 

fetal growth, specifically intra-uterine growth restriction Briana et al. (2007). Select 

parameter estimates and posterior intervals for prior A (under g = 5 and g = 10) are 

presented in Table 6. Like the K = 2 model, results under prior B were similar to results 

under prior A, and are provided in Web Table 7 of the Supporting Information. 

[Insert Table 6 about here] 

 
TNF-α (w2), IL-1β (w3) and IL-2 (w4) had majority membership in the Th1 group with 

IFN-γ (w1), while IL-5 (w5), IL-10 (w6), and IL-6 (w8) had majority membership in the 

Th2 group with IL-4 (w7). TARC (w10), sFLT-1 (w11), VEGF-D (w12) and CRP (w13) 

had majority membership in the Chemokines group with MCP-1 (w9). Neither latent 
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Table 6: Seychelles parameter estimates and 95% posterior intervals with K = 3 latent 
groups under prior A (IG(0.05, 0.01)) with σ2 = 1 for g = 5 and g = 10. β, λ, and γ are 
slopes for (y | x, Zy), (w | x), and (x | Zx), respectively, and η2 are variances for (x | Zx). 
For identifiability, λ1, λ7, and λ9 are fixed at (1,0,0), (0,1,0), and (0,0,1) respectively. 
Partial membership assignments for each non-sentinel exposure are denoted with *. 

g = 5 g = 10 
Mean  Median 95% Interval Mean  Median 95% Interval 

 

Coefficients for latent variables on outcome (birth weight) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T h1 

T h2 

Chem 

βT h1 0.059 0.059 (-0.075, 0.194) 0.065 0.065 (-0.072, 0.204) 
βT h2 -0.110 -0.109 (-0.312, 0.088) -0.117 -0.116 (-0.326, 0.089) 
βChem -0.289 -0.278 (-0.645, 0.004) -0.304 -0.293 (-0.665, -0.006) 
Partial membership estimates for observed exposure 2 (TNF-α) 
λ2,1∗ 0.783 0.794 (0.442, 1.000) 0.823 0.869 (0.473, 1.000) 
λ2,2 0.115 0.000 (0.000, 0.462) 0.096 0.000 (0.000, 0.450) 
λ2,3 0.102 0.004 (0.000, 0.434) 0.081 0.001 (0.000, 0.421) 
Partial membership estimates for observed exposure 3 (IL-1β) 
λ3,1∗ 0.770 0.775 (0.421, 1.000) 0.811 0.852 (0.455, 1.000) 
λ3,2 0.127 0.000 (0.000, 0.479) 0.106 0.000 (0.000, 0.467) 
λ3,3 0.103 0.000 (0.000, 0.434) 0.083 0.000 (0.000, 0.420) 
Partial membership estimates for observed exposure 4 (IL-2) 
λ4,1∗ 0.760 0.758 (0.410,1.000) 0.801 0.832 (0.438, 1.000) 
λ4,2 0.132 0.008 (0.000, 0.493) 0.109 0.001 (0.000, 0.478) 
λ4,3 0.108 0.000 (0.000, 0.438) 0.090 0.000 (0.000, 0.428) 
Partial membership estimates for observed exposure 5 (IL-5) 
λ5,1 0.118 0.000 (0.000, 0.459) 0.096 0.000 (0.000, 0.444) 
λ5,2∗ 0.756 0.749 (0.406, 1.000) 0.798 0.825 (0.436, 1.000) 
λ5,3 0.126 0.000 (0.000, 0.475) 0.106 0.000 (0.000, 0.462) 
Partial membership estimates for observed exposure 6 (IL-10) 
λ6,1 0.133 0.006 (0.000, 0.497) 0.113 0.001 (0.000, 0.490) 
λ6,2∗ 0.768 0.776 (0.409, 1.000) 0.808 0.851 (0.436, 1.000) 
λ6,3 0.099 0.000 (0.000, 0.439) 0.079 0.000 (0.000, 0.422) 
Partial membership estimates for observed exposure 8 (IL-6) 
λ8,1 0.131 0.004 (0.000, 0.497) 0.111 0.000 (0.000, 0.488) 
λ8,2∗ 0.768 0.775 (0.403, 1.000) 0.808 0.851 (0.432, 1.000) 
λ8,3 0.101 0.000 (0.000, 0.443) 0.081 0.000 (0.000, 0.430) 
Partial membership estimates for observed exposure 10 (TARC) 
λ10,1 0.101 0.001 (0.000, 0.437) 0.081 0.000 (0.000, 0.428) 
λ10,2 0.098 0.000 (0.000, 0.437) 0.079 0.000 (0.000, 0.426) 
λ10,3∗ 0.802 0.826 (0.470,1.000) 0.840 0.898 (0.502, 1.000) 
Partial membership estimates for observed exposure 11 (sFLT-1) 
λ11,1 0.118 0.000 (0.000, 0.444) 0.100 0.000 (0.000, 0.435) 
λ11,2 0.116 0.007 (0.000, 0.449) 0.095 0.001 (0.000, 0.440) 
λ11,3∗ 0.766 0.757 (0.433, 1.000) 0.805 0.830 (0.462, 1.000) 
Partial membership estimates for observed exposure 12 (VEGF-D) 
λ12,1 0.110 0.000 (0.000, 0.438) 0.091 0.000 (0.000, 0.424) 
λ12,2 0.126 0.004 (0.000, 0.474) 0.105 0.000 (0.000, 0.464) 
λ12,3∗ 0.764 0.757 (0.425, 1.000) 0.804 0.832 (0.454, 1.000) 
Partial membership estimates for observed exposure 13 (CRP) 
λ13,1 0.119 0.000 (0.000, 0.461) 0.099 0.000 (0.000, 0.453) 
λ13,2 0.133 0.005 (0.000, 0.517) 0.112 0.001 (0.000, 0.501) 
λ13,3∗ 0.748 0.740 (0.383, 1.000) 0.789 0.820 (0.407, 1.000) 
Coefficients for covariates on latent group 3 (chemokines) 
γChem,1 -0.018 -0.017 (-0.064, 0.027) -0.017 -0.017 (-0.063, 0.025) 
γChem,2 0.043 0.043 (0.006, 0.079) 0.042 0.042 (0.007, 0.078) 
γChem,3 0.031 0.031 (-0.008, 0.070) 0.031 0.031 (-0.007, 0.069) 
γChem,4 -0.018 -0.018 (-0.057, 0.021) -0.019 -0.019 (-0.056, 0.019) 
γChem,5 0.051 0.051 (0.015, 0.089) 0.050 0.050 (0.015, 0.086) 
γChem,6 -0.029 -0.029 (-0.065, 0.006) -0.029 -0.029 (-0.064, 0.005) 
Variance estimates for latent group models 
η2 0.378 0.375 (0.310, 0.465) 0.368 0.365 (0.303, 0.450) 
η2 0.240 0.238 (0.187, 0.304) 0.228 0.226 (0.179, 0.288) 
η2 0.107 0.105 (0.069, 0.153) 0.102 0.101 (0.066, 0.145) 
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Th1, latent Th2, nor latent Chemokines were associated with birth weight in the K = 3 

model. Associations between the Zy covariates and birth weight were similar to those in 

the K = 2 model, with child sex, gestational age at birth, maternal BMI, and maternal 

age all positively associated with birth weight (not shown). In the K = 3 model, Zx 

covariate associations involving latent Th1 and latent Th2 were similar to those observed 

in the K = 2 model (also not shown). There were significant positive associations between 

the latent Chemokine group and both gestational age at time of blood draw (γChem,2), 

and maternal Hg (γChem,5). 

 
4.4.1 Sensitivity Analyses 

 
We performed two sensitivity analyses for the K = 3 model. First, we performed the 

same sensitivity analysis as Zavez et al. (2020) (i.e., selecting IL-1β as the sentinel Th1 

cytokine instead of IFN-γ), and found that λ parameter estimates were similar under 

both models (see Web Table 8 of the Supporting Information for results). In a second 

sensitivity analysis, we changed the partial membership assignment (PMA) for IL-6 from 

the “Th2” latent group to the “Th1” latent group. While the IL-6 λ parameter estimates 

were altered by the change in partial membership, λ estimates for other exposures were 

not affected, and non-λ model parameter estimates were largely unchanged (see Web 

Table 9 of the Supporting Information for results). 

 

4.5 Seychelles Application for K = 4 
 

Lastly, we fit our partial membership model to the Seychelles application with the same 

thirteen inflammatory markers but with four latent groups. We assign IFN-γ as the 

sentinel cytokine in the first (i.e., “Th1”) latent group, IL-4 as the sentinel cytokine in 

the second (i.e., “Th2”) latent group, MCP as the sentinel cytokine in the third (i.e., 

“Chemokines”) latent group, and VEGF-D as the sentinel cytokine in the fourth (i.e., 

“placental-fetal circulatory”) latent group. Independently, VEGF-D was found to be a 

significant predictor of birth weight in the NC2 cohort (Yeates et al., 2020). 

For the K = 4 model, traceplots and convergence diagnostics ( R̂ ,  neff ) indicated poor 
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4 

4 

convergence for this model, specifically the estimation of βx4 (i.e., the “placental-fetal” 

slope in the model for birth weight) and η2 (the variance of x4|Zx). Increasing the model 

run time from 10,000 iterations per chain to 40,000 iterations per chain did improve R̂ 
2 

and neff metrics, but did not improve traceplots or alter estimates of βx4 or η (see Web 
 

Table 11 of the Supporting Information for details). These complications did not arise in 

simulated data with 13 observed exposures and three latent groups. 
2 

The extremely large estimate of βx4 and extremely small estimate of η may indicate 
 

overfitting with too many latent groups. Nonidentifiability and overfitting in finite mix- 

ture models is a known problem that may cause empty groups (Rousseau and Mengersen, 

2011; Love et al., 2017). Since our model assumes each latent group has a sentinel marker 

with complete membership in that group, an empty group is impossible. However, in the 

K = 4 model, the slope for the fourth latent variable (βx4 ) was unrealistically large 

(≈ −2.57) and posterior variance of the fourth latent variable (x4) was very close to zero 

(≈ 0.03). In contrast, the variances of latent x1, x2, and x3 were approximately 0.41, 

0.27, and 0.72 respectively, and their slopes were all less than 0.1 in absolute value. The 
2 

extreme and unrealistic posterior means for βx4 and η may be an indication of overfitting 
 

in our model when fit with four latent groups. 
 
 
4.6 Seychelles Application Model Comparison 

 
For the Seychelles application, we computed the Watanabe-Akaike Information Criteria 

(WAIC; Watanabe and Opper (2010)) for the K = 3 and K = 4 models, using the 

formula recommended by Gelman et al. (2014). WAIC for the K = 3 model (51,469) was 

smaller than WAIC for the K = 4 model (59,111), suggesting that three latent groups 

provide a better fit for the Seychelles NC2 application compared to four latent groups. 

 
 

5 Discussion 
 

We proposed a novel Bayesian modeling approach that permits non-sentinel observed 

exposures to have membership across one or more latent groups. We compared the per- 
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formance of our model to two different SEM-based approaches, and applied our model to 

inflammatory marker data collected in the SCDS NC2 cohort. In simulations, our model 

estimated outcome model and latent group model parameters with little bias. Parameter 

intervals were tighter relative to those produced by the competing approaches, and cover- 

age was close to the 95 percent level. Under reasonable partial membership assignments, 

our partial membership model estimated λ parameters with little bias. Under misspec- 

ified partial membership assignments, performance for outcome and latent group model 

parameters was preserved. 

For the SCDS NC2 inflammatory marker application, we find little evidence of an 

association between child birth weight and any of the latent groups. Covariate associ- 

ations were similar to those reported by Zavez et al. (2020), and were consistent with 

earlier Seychelles work (van Wijngaarden et al., 2014; McSorley et al., 2018; Yeates et al., 

2020). The λ posterior point estimates suggest that each exposure has majority mem- 

bership in one latent group. For the K = 3 model, one could interpret those exposures 

with majority membership in the first latent group as representing “Th1 expression,” 

exposures with majority membership in the second latent group as representing “Th2 

expression”, and exposures with majority membership in the third latent group as rep- 

resenting “Chemokines expression.” 

Much of the information about these majority latent group memberships is likely 

coming from correlations between the observed cytokines, some of which are fairly large. 

However, the posterior intervals for the λ estimates are all quite large, and sometimes 

intervals for one exposure are actually overlapping between latent groups. For example, 

TNF-α appears to have majority membership in the first latent group (λ2,1 = 0.783), but 

the lower bound of the interval for λ2,1 (0.442) is less than the upper bound of the interval 

for λ2,2 (0.462). These non-negligible partial memberships may suggest that either the 

affected cytokines do not fully belong to one latent group, or that the latent groups are not 

fully distinct from each other. Consistently large λ posterior intervals were unexpected, 

and not observed in the simulated data. One possible explanation is that correlations 

between the NC2 inflammatory markers and child birth weight (range: -0.05 to 0.05) 
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were generally weaker than correlations between the simulated exposures and simulated 

outcome variable (range for one simulated dataset: -0.05 to 0.12). In addition, while 

within-group correlations for the simulated data were moderately positive (ρ’s range: 

0.22 to 0.50), many of the within-group correlations among the Seychelles non-Th1/Th2 

exposures were weaker (ρ’s range: −0.1 to 0.20). The one exception was MCP-1 and 

TARC, which were strongly correlated (ρ = 0.65). For the Xiao et al. (2014) Seychelles 

application, outcomes within the same domain were positively correlated, though the 

correlation strengths varied (ρ’s range: 0.03 to 0.77). 

In addition to considering the posterior intervals for the λ estimates, researchers 

may find it beneficial to compute the posterior probability that an observed exposure’s 

partial membership in one latent group is greater than the observed exposure’s partial 

membership in a different latent group. Since our partial membership model uses a 

Bayesian approach to obtain posterior draws for all λ parameters, this is straightforward 

to calculate for any set of λ’s. For example, in the K = 3 Seychelles application, the 

posterior probability that TNF-α has majority membership in the first latent group (i.e., 

Pr[λ2,1 > λ2,2 and λ2,1 > λ2,3| data]) was 99.2%. 

Our λj,k parameterization and corresponding prior specifications permit λj,k values 

to be zero. While zero-valued λj,k parameters were estimated accurately in simulations, 

in the NC2 application our model produced several small λj,k parameter estimates for 

which the posterior median was non-zero. This also occurred, albeit less frequently, in the 

Seychelles application considered by Xiao et al. (2014) who modeled partial memberships 

of outcomes rather than exposures. Upon further investigation, we believe the differences 

in the number of non-zero medians may be partially attributable to differences between 

the simulated and Seychelles correlation structures, as discussed above. 

Our proposed partial membership model has three general requirements. First, the 

number of latent groups must be specified. For the Seychelles application with thirteen 

observed exposures, we considered a model with three latent groups (K = 3), as well 

as a model with four latent groups (K = 4). While there was scientific rationale for 

both of these approaches, convergence diagnostics for the K = 4 model suggest evidence 
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of possible model misspecification in the form of overfitting (Rousseau and Mengersen, 

2011; Love et al., 2017). 

In simulated data with three latent groups (K = 3), our sensitivity analyses suggest 

that, when the number of groups is not known, it may be better to overfit (K = 4) 

rather than underfit (K = 2) when specifying K. The K = 2 model produced relatively 

large bias and poor coverage for βx2 , which may alter the overall interpretation of the 

association between the second latent group and the model outcome. In comparison, the 

K = 4 model poorly estimated several variance parameters and convergence diagnostics 

for the empty group were poor. 

To determine the appropriate K for a given application, one can first fit the partial 

membership model for two (or more) values of K and compare the candidate models 

using a model fit statistic, such as WAIC. To help determine the optimal model, we 

also recommend investigating convergence diagnostics (e.g., traceplots, R̂ ,  neff ). For 
 

example, the Seychelles K = 4 traceplots and convergence metrics for the parameters 

related to the fourth latent group (i.e., βx , η2) were concerning (see Web Appendix 
4 4 

 

G of the Supporting Information for details), as they were for the K = 4 simulation 

with three true latent groups. There were no convergence diagnostic concerns in the 

K = 3 model fit to simulated data with three true latent groups, or in the Seychelles 

K = 3 model. Overall, both the WAIC results and diagnostic checks indicate that the 

partial membership model with three latent groups provides a better fit than the partial 

membership model with four latent groups for this Seychelles NC2 application with 13 

observed exposures. 

Second, our partial membership model requires one observed exposure to be identified 

as the sentinel exposure for each latent group. While this was also a requirement of the 

single membership model (Zavez et al., 2020), single membership model estimates were 

not sensitive to choice of sentinel marker. Similarly, for our partial membership model, 

sensitivity analyses in the NC2 application showed similar parameter estimates under a 

different sentinel Th1 cytokine. While both sentinel marker arrangements considered for 

the NC2 application were scientifically motivated, our simulation study provides evidence 
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that parameter estimates can be sensitive to sentinel marker assignments, particularly 

when exposures with the weakest relationship with the outcome are selected as sentinel 

markers. Researchers should be aware of this limitation, and may want to consider an 

alternative method if sentinel marker assignments cannot be made confidently. 

Lastly, our partial membership model requires one partial membership assignment 

(PMA) for each non-sentinel exposure. This is also the approach taken by Xiao et al. 

(2014) for non-sentinel outcomes and is reasonable when prior information about as- 

signing the exposures to latent groups is available. While other partial membership 

approaches have been proposed, those methods often require further assumptions regard- 

ing the membership assignments for each exposure. For example, in a Bayesian SEM 

model, Muth én and Asparouhov (2012) assume both a primary membership and smaller 

partial memberships for each exposure by placing priors with mean 0 and small variance 

on cross-loadings for all partial memberships. However, the primary membership and all 

non-zero secondary partial memberships must be specified a priori for each exposure. 

Our PMAs were based largely on earlier inflammatory marker work in the NC2 co- 

hort (McSorley et al., 2018; Yeates et al., 2020) as well as additional work on Th1/Th2 

expression (Stangou et al., 2016) and Th1/Th2 differentiation (Diehl and Rinc ón, 2002). 

While IL-6 is often classified as ‘Th2” (Stangou et al., 2016), it is frequently referred 

to as pro-inflammatory due to its role in innate immune responses to pathogens (Sykes 

et al., 2012; Tanaka et al., 2014). Our simulation sensitivity analyses indicate that esti- 

mates of exposure model slope parameters (i.e. partial memberships, λ’s) are generally 

not sensitive to PMA specifications. However, the NC2 IL-6 sensitivity results indicate 

a potential limitation of our model, in that λ parameter estimates for a given exposure 

may be strongly influenced by PMA in applications with weaker exposure correlation 

structures. 

The partial membership model may be utilized when sufficient information is available 

to assign sentinel markers and establish PMAs. However, researchers should consider 

model sensitivity to misspecification when reporting and interpreting results. For some 

applications, it may be appropriate to first consider a model where each exposure belongs 
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to exactly one group. For example, grouped WQS regression (Wheeler et al., 2021) may be 

used when group memberships of each exposure are known a priori. Under grouped WQS 

regression, the direction and magnitude of association is permitted to vary across exposure 

groups. Multiple index models (McGee et al., 2021) is another alternative that estimates 

the relationship between groups of exposures and an outcome, while allowing a possibly 

non-linear exposure-response surface. Like grouped WQS, this method requires that the 

partitioning of exposures into groups is known. If the exposure group memberships are 

not known a priori, the single membership model of Zavez et al. (2020) can be considered. 

In that model, MCMC sampling is used to estimate the group membership for each non- 

sentinel exposure. 

In future work, we intend to investigate the feasibility of a partial membership model 

that does not require partial membership assignments (PMAs). Xiao et al. (2014) briefly 

discuss a similar extension for multiple outcomes, which involves modifying the zj,k and 

pj,k priors. This may be advantageous for applications in which the PMAs are largely 

uncertain, or for applications such as the NC2 inflammatory markers, which show some 

sensitivity to PMA specification. Application of our partial membership model to data 

applications for which multiple measured exposures are believed to nest in (or across) 

two or more latent groups will be helpful for developing recommendations regarding 

applications that are best suited for the partial membership modeling approach. 
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