

Heterogeneous microgeographic genetic structure of the common cockle (Cerastoderma edule) in the Northeast Atlantic Ocean: biogeographic barriers and environmental factors

Vera, Manuel; Wilmes, Sophie-Berenice; Maroso, Francesco; Hermida, Miguel; Blanco, Andrés; Casanova, Adrian ; Iglesias, David; Cao, Asunción; Culloty, S.C.; Mahony, Kate; Orvain, Francis; Bouza, Carmen; Robins, Peter; Malham, Shelagh; Lynch, Sharon; Antonio, Villalba; Martínez, Paulino Heredity

E-pub ahead of print: 18/08/2023

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Vera, M., Wilmes, S.-B., Maroso, F., Hermida, M., Blanco, A., Casanova, A., Iglesias, D., Cao, A., Culloty, S. C., Mahony, K., Orvain, F., Bouza, C., Robins, P., Malham, S., Lynch, S., Antonio, V., & Martínez, P. (2023). Heterogeneous microgeographic genetic structure of the common cockle (Cerastoderma edule) in the Northeast Atlantic Ocean: biogeographic barriers and environmental factors. Heredity. Advance online publication. https://www.nature.com/articles/s41437-023-00646-1

Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1	Manuscript, June 2023
2	Do not distribute without authors' permission
3	Manuel Vera ^{1*} , Sophie B. Wilmes ² , Francesco Maroso ¹ , Miguel Hermida ¹ , Andrés
4	Blanco ¹ , Adrián Casanova ¹ , David Iglesias ³ , Asunción Cao ³ , Sarah C. Culloty ^{4,5,6} ,
5	Kate Mahony ^{4,5} , Francis Orvain ⁷ , Carmen Bouza ¹ , Peter E. Robins ² , Shelagh K.
6	Malham ² , Sharon Lynch ^{4,5} , Antonio Villalba ^{3,8,9} , The Cockle's Consortium, Paulino
7	Martínez ^{1*}
8	
9	Heterogeneous microgeographic genetic structure of the common cockle (Cerastoderma
10	edule) in the Northeast Atlantic Ocean: biogeographic barriers and environmental
11	factors
12	
13	¹ Department of Zoology, Genetics and Physics Anthropology. ACUIGEN group.
14	Faculty of Veterinary. Campus Terra. University of Santiago de Compostela. 27002
15	Lugo, Spain
16	² School of Ocean Sciences, Marine Centre Wales, Bangor University, Menai Bridge,
17	UK
18	³ Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia. 36620
19	Vilanova de Arousa, Spain
20	⁴ School of Biological, Earth and Environmental Sciences/Aquauculture and Fisheries
21	Development Centre, University College Cork. North Mall, Cork, Ireland
22	⁵ Environmental Research Institute, University College Cork, Cork, Ireland
23 24	⁶ MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland
25	⁷ UNICAEN - UMR BOREA "Biologie des ORganismes et Ecosystèmes Aquatiques"
26	MNHN, UPMC, UCBN, CNRS-7208, IRD-207, University of Caen, Caen, France

27	⁸ Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871 Alcalá de
28	Henares, Spain
29	⁹ Research Centre for Experimental Marine Biology and Biotechnology (PIE),
30	University of the Basque Country (UPV/EHU), 48620 Plentzia, Basque Country, Spain
31	
32	* to whom correspondence should be addressed
33	TLF +34 982 82 24 25
34	Fax +34 982 82 24 28
35	e-mail: manuel.vera@usc.es, paulino.martinez@usc.es
36	Running title: Fine-scale genetic structuring of common cockle
37	Word count (excluding references, tables and figures): 6,829
38	

39 Abstract

Knowledge of genetic structure at the finest level is essential for conservation of 40 41 genetic resources. Despite no visible barriers limiting gene flow, significant genetic structure has been shown in marine species. The common cockle (Cerastoderma edule) 42 is a bivalve of great commercial and ecological value inhabiting the Northeast Atlantic 43 Ocean. Previous population genomics studies demonstrated significant structure both 44 45 across the Northeast Atlantic, but also within small geographic areas, highlighting the 46 need to investigate fine-scale structuring. Here, we analysed two geographic areas that 47 could represent opposite models of structure for the species: 1) the SW British Isles 48 region, highly fragmented due to biogeographic barriers, and 2) Galicia (NW Spain), a 49 putative homogeneous region. 9,250 SNPs genotyped by 2b-RAD on 599 individuals from 22 natural beds were used for the analysis. The entire SNP dataset mostly 50 51 confirmed previous observations related to genetic diversity and differentiation, 52 however, neutral and divergent SNP outlier datasets enabled disentangling physical barriers from abiotic environmental factors structuring both regions. While Galicia 53 showed a homogeneous structure, the SW British Isles region was split into four 54 55 reliable genetic regions related to oceanographic features and abiotic factors, such as sea surface salinity and temperature. The information gathered supports specific 56 57 management policies of cockle resources in SW British and Galician regions also considering their particular socio-economic characteristics; further, these new data will 58 59 be added to those recently reported in the Northeast Atlantic to define sustainable management actions across the whole distribution range of the species. 60

61 Introduction

62 Knowledge of genetic diversity distribution is crucial for the sustainable management 63 and conservation of natural resources (Leary et al. 2009; Sa-Pinto et al. 2012). This distribution is affected by larval connectivity, demographic parameters and selective 64 processes operating on species populations. Scarcity of physical barriers in marine 65 environments is expected to promote higher connectivity among populations in 66 67 comparison to terrestrial species (Waples 1998). Moreover, marine species usually show large population sizes, which along with pelagic larval stages, often lasting 68 69 several weeks, facilitate population genetic homogenization across wide regions (Sa-70 Pinto et al. 2012; do Prado et al. 2018). Despite these general features, genetic studies 71 on marine organisms have frequently detected genetic differentiation, even at local scales (i.e., below the geographic scale of effective dispersal of the species studied, 72 known as chaotic genetic patchiness (CGP); see Eldon et al. 2016), which can be 73 74 explained by historical and reproductive/demographic factors (e.g. high fecundity and high mortality in early life stages, sweepstakes reproductive success; see Parrondo et al. 75 2022), natural selection associated with environmental conditions (Vilas et al. 2015; do 76 Prado et al. 2018; Vera et al. 2019) and oceanic features such as residual currents, 77 bathymetry, coastline shape, upwelling, fronts, gyres and eddies (Vera et al. 2016; 78 79 Coscia et al. 2020; Handal et al. 2020; Fisher et al. 2022; Vera et al. 2022). Different types of ocean fronts have been described across the Northeast Atlantic 80 81 region, encompassing tidal mixing fronts, shelf break fronts, and freshwater fronts 82 separating estuarine freshwater and higher salinity coastal waters (Sharples and 83 Simpson 2019). Examples of these frontal systems on the NW European Shelf include the Celtic Sea Front (NE Celtic Sea), the Irish Sea Front (NW Irish Sea), the Alderney 84 85 Race (with one of the strongest current in Europe) and the Ushant Front (W English

86	Channel) (Suberg et al. 2019). These fronts may influence genetic structure acting as
87	barriers to cross-front planktonic dispersal and as conduits through along-front dispersal
88	by frontal jets, with important influences on the pelagic distribution of larvae of marine
89	species (Galarza et al. 2009). Biogeographical barriers can also limit dispersal in marine
90	environments. In the Northeast Atlantic region, Cape Finisterre, the Cornwall
91	Peninsula, the tip of Brittany, the Llyn Peninsula, and the Alderney race along Cotentin
92	Peninsula have been identified as potential barriers to the connectivity of marine
93	organisms due to their oceanographic features, including fish (Abaunza et al. 2008;
94	Larmuseau et al. 2009) and molluscs (Dupont et al. 2007; Piñeira et al. 2008; Martinez
95	et al. 2015; Handal et al. 2020; Vera et al. 2022).
96	The common cockle, Cerastoderma edule, is a bivalve mollusc naturally distributed
97	throughout the Northeast Atlantic coast, from Senegal, West Africa, to Norway,
98	northern Europe, where it inhabits on intertidal and shallow subtidal soft sediments
99	(Hayward and Ryland 1995). The species is commercially exploited and provides a
100	wealth of services to coastal communities mainly in Ireland, United Kingdom, France,
101	Spain and Portugal, where it is harvested (Flach and de Bruin 1994; Carss et al. 2020;
102	Jackson-Bue et al. 2022). Cockle harvest has been reduced since the 1980s (> 100,000
103	tonnes) to nowadays (~ 25,000 tonnes in 2019) due to changes in fisheries policies,
104	overfishing, variable recruitment and mass mortalities produced by pollution, climate
105	events and parasites (Villalba et al. 2014; Mahony et al. 2020; Pampin et al. 2023).
106	Furthermore, cockles are considered keystone for ecosystem due to their role as reef
107	engineers, agents of carbon sequestration and their linking between primary producers
108	and higher trophic levels (Norris et al. 1998; Carss et al. 2020). The species is dioecious
109	and can live up to 10 years displaying fast sexual maturation (reached in the first year of
110	life) and high fecundity (Honkoop and van der Meer 1998). The reproductive period

111	occurs from April to August (Malham et al. 2012), but it can be extended to September
112	in more southern European countries such as Portugal (Mahony et al. 2021), and
113	planktonic larvae can remain in the water column for 30 days facilitating widespread
114	dispersal (de Montaudouin et al. 2003; Dare et al. 2004).
115	Genetic studies throughout the natural cockle's distribution have identified three main
116	population genetic units: i) a southern group encompassing the Atlantic coast from
117	Morocco to the Bay of Biscay; ii) a central group comprising of the Celtic and Irish
118	Seas, the English Channel and the southern North Sea; and iii) a northern group
119	consisting of the northern North Sea (Beaumont et al. 1980; Hummel et al. 1994;
120	Martínez et al. 2013; 2015). These results have been recently confirmed by Vera et al.
121	(2022) through a wide genome scan (~10,000 single nucleotide polymorphisms, SNPs),
122	but additionally enabled identifying substructure within the main genetic groups using
123	outlier loci under divergent selection, mostly in accordance with residual current
124	patterns and environmental variables.
125	However, due to the limited number of markers and/or the scale of sample collection, a
126	comprehensive picture of population connectivity in the common cockle is still
127	incomplete. Information at the microgeographic level, always considering the dispersal
128	capacity of the species (Eldon et al. 2016; Vera et al. 2022), is relevant for the
129	management of fisheries (Bernatchez et al. 2017). Using a wide SNP genomic
130	screening, Coscia et al. (2020) identified three genetic clusters (global $F_{ST} = 0.021$) of
131	cockles in the Celtic and Irish seas and that could be associated with residual ocean
132	currents, salinity and geographical proximity using information on larval dispersal.
133	This study aimed to analyse the genetic structure of the common cockle at a
134	microgeographic scale using 2b Restriction Associated DNA sequencing (2b-RADseq).
135	Two regions were investigated: (1) the SW British Isles and the English Channel,

136 characterised by putative habitat fragmentation due to tidal mixing fronts and

137 biogeographical barriers; and (2) the Northwest coast of Spain (Galicia), representing a

138 quite homogeneous region according to previous information on other mollusc species

139 (Diz and Presa 2009; Vera et al. 2016). The results confirmed the significant

140 differentiation of cockles' populations at microgeographic scale, but also the power of

141 larval dispersal to homogenize rather wide coastal areas, thus providing essential

information for proper management of this valuable resource.

143

144 Material and methods

145 Sample area and oceanography

146 Two geographic areas along the Northeast Atlantic coast were investigated (Fig. 1).

147 The first was focused on the British Isles and English Channel (hereafter called the SW

148 British Isles region), where previous, though incomplete information, supported

significant genetic sub-structuring (e.g. Coscia et al. 2020; Vera et al. 2022). The

second area was Galicia (Northwest Spain), which may be genetically homogeneous

according to information in other mollusc species (Diz and Presa 2009; Vera et al.

152 2016).

153 Over the cockle reproductive season (May to September; Mahony et al. 2020), the

154 coastline of Galicia is characterised by wind-driven upwelling of cold waters resulting

in sea surface temperatures (SSTs) that are several degrees colder than off-shore SSTs

156 (Supplementary Fig. 1b). Also driven by the predominantly northerly winds in the

summer months, the Portugal coastal current transports waters southwards along the

158 coastline of Iberia (Teles-Machado et al. 2016) with residual current strengths along the

159 Galician coastline exceeding 0.15 m/s (Supplementary Fig. 1d). The SW British Isles

160 region is divided into distinct oceanographic regions (the English Channel, the Celtic

161	Deep, the Celtic Sea and the Irish Sea) by diverging current or seasonal frontal systems
162	(Galparsoro et al. 2014). Several tidal mixing fronts separate seasonally stratified and
163	mixed waters (Supplementary Fig. 1a): the Ushant Front (Group "Grepma", 1988), the
164	Celtic Sea Front, and the Irish Sea Front (Simpson and Pingree, 1978). The Celtic Sea
165	is characterised by northward flow along the western coast of Cornwall which merges
166	into the Celtic Sea Front jet and links into the Irish Coastal Current which transports
167	water clockwise along the south and west coast of Ireland (Supplementary Fig. 1c;
168	Brown et al. 2003; Fernand et al. 2006). Northward currents along the Ushant Front
169	link the Amorican Shelf with the Celtic Sea. The southern English Channel coast is
170	dominated by northeastward flow, with the strongest currents occurring around the
171	Cotentin Peninsula.
172	
173	Sample collection
173 174	Sample collection A total of 374 cockles from 14 wild natural beds were collected across the
173 174 175	Sample collection A total of 374 cockles from 14 wild natural beds were collected across the aforementioned two regions in the period 2017-2020 and stored in 100% ethanol for
173 174 175 176	Sample collectionA total of 374 cockles from 14 wild natural beds were collected across theaforementioned two regions in the period 2017-2020 and stored in 100% ethanol foranalyses (Table 1). Additionally, 231 cockles from eight beds previously analysed
173 174 175 176 177	Sample collection A total of 374 cockles from 14 wild natural beds were collected across the aforementioned two regions in the period 2017-2020 and stored in 100% ethanol for analyses (Table 1). Additionally, 231 cockles from eight beds previously analysed (Vera et al. 2022: identified as IDA_18, IDC_18, WDE_17, WBY_17, FBS_17,
173 174 175 176 177 178	Sample collection A total of 374 cockles from 14 wild natural beds were collected across the aforementioned two regions in the period 2017-2020 and stored in 100% ethanol for analyses (Table 1). Additionally, 231 cockles from eight beds previously analysed (Vera et al. 2022: identified as IDA_18, IDC_18, WDE_17, WBY_17, FBS_17, FAR_17, SNO_17 and SLO_17, where 17 and 18 in the codes represent 2017 and
173 174 175 176 177 178 179	Sample collectionA total of 374 cockles from 14 wild natural beds were collected across theaforementioned two regions in the period 2017-2020 and stored in 100% ethanol foranalyses (Table 1). Additionally, 231 cockles from eight beds previously analysed(Vera et al. 2022: identified as IDA_18, IDC_18, WDE_17, WBY_17, FBS_17,FAR_17, SNO_17 and SLO_17, where 17 and 18 in the codes represent 2017 and2018, respectively) were included in the analysis to achieve a comprehensive picture of
173 174 175 176 177 178 179 180	Sample collectionA total of 374 cockles from 14 wild natural beds were collected across theaforementioned two regions in the period 2017-2020 and stored in 100% ethanol foranalyses (Table 1). Additionally, 231 cockles from eight beds previously analysed(Vera et al. 2022: identified as IDA_18, IDC_18, WDE_17, WBY_17, FBS_17,FAR_17, SNO_17 and SLO_17, where 17 and 18 in the codes represent 2017 and2018, respectively) were included in the analysis to achieve a comprehensive picture ofthe areas studied, thus providing an overall total of 605 cockles. To avoid generation
173 174 175 176 177 178 179 180 181	Sample collectionA total of 374 cockles from 14 wild natural beds were collected across theaforementioned two regions in the period 2017-2020 and stored in 100% ethanol foranalyses (Table 1). Additionally, 231 cockles from eight beds previously analysed(Vera et al. 2022: identified as IDA_18, IDC_18, WDE_17, WBY_17, FBS_17,FAR_17, SNO_17 and SLO_17, where 17 and 18 in the codes represent 2017 and2018, respectively) were included in the analysis to achieve a comprehensive picture ofthe areas studied, thus providing an overall total of 605 cockles. To avoid generationoverlapping, all samples belonged to the 0+ year age class of their sampling year. No
173 174 175 176 177 178 179 180 181 182	Sample collectionA total of 374 cockles from 14 wild natural beds were collected across theaforementioned two regions in the period 2017-2020 and stored in 100% ethanol foranalyses (Table 1). Additionally, 231 cockles from eight beds previously analysed(Vera et al. 2022: identified as IDA_18, IDC_18, WDE_17, WBY_17, FBS_17,FAR_17, SNO_17 and SLO_17, where 17 and 18 in the codes represent 2017 and2018, respectively) were included in the analysis to achieve a comprehensive picture ofthe areas studied, thus providing an overall total of 605 cockles. To avoid generationoverlapping, all samples belonged to the 0+ year age class of their sampling year. Notemporal replicates were included considering the temporal genetic stability previously
173 174 175 176 177 178 179 180 181 182 183	Sample collection A total of 374 cockles from 14 wild natural beds were collected across the aforementioned two regions in the period 2017-2020 and stored in 100% ethanol for analyses (Table 1). Additionally, 231 cockles from eight beds previously analysed (Vera et al. 2022: identified as IDA_18, IDC_18, WDE_17, WBY_17, FBS_17, FAR_17, SNO_17 and SLO_17, where 17 and 18 in the codes represent 2017 and 2018, respectively) were included in the analysis to achieve a comprehensive picture of the areas studied, thus providing an overall total of 605 cockles. To avoid generation overlapping, all samples belonged to the 0+ year age class of their sampling year. No temporal replicates were included considering the temporal genetic stability previously reported by Vera et al. (2022).

185 Single Nucleotide Polymorphism (SNP) genotyping

186	Total DNA was extracted from gills using the E.Z.N.A. E-96 mollusc DNA kit
187	(OMEGA Bio-tek), following manufacturer recommendations. 2b-RAD libraries (~ 90
188	cockles per run) were constructed using the AlfI IIb restriction enzyme and sequenced
189	in an Illumina NextSeq 500 platform following Maroso et al. (2018; 2019). Bowtie
190	1.1.2 (Langmead et al. 2009) was used to align reads to the cockle's genome (Bruzos et
191	al. 2022) allowing a maximum of three mismatches and a unique valid alignment (-v 3 -
192	m 1). The reference-based mode with default parameters in the gstacks module of
193	STACKS 2.0 (Catchen et al. 2013) was used for SNP calling. For genotyping, SNPs
194	were filtered following Vera et al. (2022): <i>i</i>) SNPs genotyped in $> 60\%$ individuals; <i>ii</i>)
195	MAC (minimum allele count) \geq 3; iii) conformance to Hardy-Weinberg expectations
196	(i.e. SNPs with significant F_{1S} values (P < 0.05) in at least 25% of the populations were
197	removed); and <i>iv</i>) the most polymorphic SNP within each RAD-tag was retained.
198	Individuals with less than 250,000 reads were discarded.

Genetic diversity and population structure 200

Estimates of genetic diversity (i.e. mean number of alleles per locus (Na), observed 201

202 (Ho) and expected (He) heterozygosity, proportion of polymorphic loci), departure

- from Hardy–Weinberg equilibrium (HWE) and inbreeding coefficients (FIS) were 203
- estimated using GENEPOP v4.0 (Rousset 2008) and ARLEQUIN v3.5 (Excoffier and 204
- 205 Lischer 2010). Because a minimum allele frequency (MAF) filtering was not applied,
- 206 ARLEQUIN was also used to estimate Ho, He and F_{IS} exclusively with polymorphic
- 207 loci (Minimum Allele Frequency (MAF) > 0.017 according to sample size) for
- comparison with previous studies. 208
- Global and pairwise coefficients of population differentiation (FsT) between cockle 209
- beds were calculated with ARLEQUIN v3.5 using 10,000 permutations to test for 210

211	significance. The variational Bayesian clustering method implemented in the package
212	fastSTRUCTURE v2.3.4 (Raj et al. 2014) was used to estimate the number of genetic
213	population units (K) in the whole studied area and in each region testing from $K = 1$ to
214	K = number of beds + 1, with an admixture ancestry model, convergence criterion of 1
215	x 10^{-8} , five cross-validated sets and the simple prior (flat-beta prior). The most likely
216	number of K was estimated using the "chooseK.py" program included in the
217	fastSTRUCTURE which gives the best K value and the K corresponding with weak
218	population structure in the data using heuristic scores. Summarised outputs were carried
219	out using the software POPHELPER (Francis 2017). Discriminant analyses of principal
220	components (DAPC) were run in ADEGENET package (Jombart et al. 2010; Jombart
221	and Ahmed 2011) for the R platform (R Development Core Team, 2014; <u>http://www.r-</u>
222	project.org) with the whole dataset and for each region. Data were transformed using
223	PCA (Principal Component Analysis) and the optimal number of principal components
224	(PC) was calculated using the optim.a.score() command (see Miller et al. 2020).
225	Isolation by distance (IBD) was checked by the correlation between geographical
226	(measured as the shortest oceanic distance between two beds in Km) and genetic
227	distance (measured as $F_{ST}/1$ - F_{ST} ; Rousset 1997) matrices using a Mantel test with
228	10,000 permutations using NTSYS v.2.1 (Rohlf 1993).
229	

230 *Outlier tests*

231 The Bayesian F_{ST} –based method implemented in BAYESCAN v2.1 (Foll and

232 Gaggiotti 2008) was used to identify outlier loci subjected to selection. BAYESCAN

- was run using default parameters (i.e. 20 pilot runs; prior odds value of 10; 100,000
- iterations; burn-in of 50,000 iterations and a sample size of 5,000, hereafter "BY10"),
- but we also explored increasing prior odds value to 1000 (hereafter "BY1000"). Despite

236	high prior odds tend to remove false positives, they also reduce the power for detection
237	loci under selection (Foll 2012). Loci with a False Discovery Rate (FDR, q-value) <
238	0.05 were considered as outliers. Moreover, the principal components-based method
239	implemented in R package PCADAPT v4.0 (Luu et al. 2017; Prive et al. 2020) was also
240	applied. This method renders low false-positive rates and uses individual information,
241	not requiring a priori population assignment. For the analysis, the number of principal
242	components (PC) retained was performed with the "chooseK" option. The outlier
243	identification was carried out with an FDR < 0.05 . We considered as outliers those loci
244	identified by any of the two approaches, but additionally those shared between all
245	approaches as the most confident ones.
246	
247	Seascape analyses
248	Effects of spatial (latitude and longitude) and relevant abiotic factors in coastal and
249	marine environments (sea surface temperature (SST, °C); sea bottom temperature (SBT,
250	°C); sea surface salinity (SSS, psu); sea bottom salinity (SBS, psu); bottom shear stress
251	(BSS, N·m ⁻²); net primary productivity (NPP, mg·m ⁻³ ·day ⁻¹); see Coscia et al. 2020 and
252	Vera et al. 2022) shaping genetic differentiation across beds in the studied areas were
253	assessed using a canonical redundancy analysis (RDA) implemented in the VEGAN
254	software (Oksanen 2015) in R. This abiotic information was retrieved as monthly
255	averages from the IBI_REANALYSIS_PHYS_005_002 ocean reanalysis model
256	(https://resources.marine.copernicus.eu/?option=com_csw&task=results?option=com_c
257	sw&view=details&product_id=IBI_REANALYSIS_PHYS_005_002") and
258	IBI_REANALYSIS_BIO_005_003 model
259	(https://resources.marine.copernicus.eu/?option=com_csw&task=results?option=com_c
260	sw&view=details&product_id=IBI_REANALYSIS_BIO_005_003) for the period

2014-2018 (Supplementary Table 1), respectively. The nearest model cell classified as 261 ocean was selected to extract the data (average distance between the sampling location 262 263 and centre of the nearest model grid cell edge = 11.6 km). Then, averages for the spawning season (i.e., from April to September, see Malham et al. 2012; Mahony et al. 264 2020), winter (i.e., from January to March) and summer (i.e., from July to September), 265 were calculated for each bed. Allele frequencies were calculated for each bed with 266 ADEGENET package using the "makefreq" option. Loci with missing values were 267 removed from the analysis. The significance of the variance associated to the different 268 269 variables was tested with 1,000 random permutations. Variance inflation factor (VIF) 270 was estimated to explore collinearity (correlation) between seascape variables in the 271 dataset, with VIF values > 10 suggesting important collinearity problems (Marquardt, 1970). The selection model was performed using automatic stepwise model building 272 algorithm based on permutation p-values tests. This procedure was performed with the 273 274 ordistep function included in VEGAN. The reduced panel of explanatory variables was 275 used to recalculate the total proportion of genetic variation in the variance partitioning. The weight of the different loci on the significant environmental vectors was calculated 276 277 using VEGAN. All these analyses were performed separately for the whole, neutral and divergent outlier SNP datasets in the regions studied. 278 279 Potential correlations between allele frequencies and seascape variables were investigated with BAYENV2 (Coop et al. 2010; Gunther and Coop 2013) and results 280 281 were compared with the mentioned RDA analyses. The method implemented in this 282 software allows controlling the neutral genetic structure, because the fit improvement 283 for a given genetic variant between a model including the environmental factor and a 284 model including only neutral genetic structure is tested (Rellstab et al. 2015). BAYENV2 was carried out using the whole SNP datasets from SW British Isles and 285

Galicia, respectively. First, analyses were performed with 100,000 iterations across five 286 independent runs to obtain the average covariance matrix for each subset. Secondly, the 287 288 correlation between each SNP and the different variables was calculated using 100,000 iterations to obtain Bayes factors (BF). As in the previous step, five independent runs 289 were used. Only SNPs with a BF > 10 and Spearman's coefficient (rho, ρ) thresholds > 290 1% for any variable in all runs were considered as a well-supported environment-291 292 associated SNPs. Finally, significantly correlated SNPs were compared with the outliers 293 identified in the BAYESCAN and PCADAPT analyses.

294

295 Gene mining and functional enrichment

RAD-tags including divergent outlier SNPs were mapped in the C. edule genome (Bruzos 296 297 et al. 2022) and their position compared with the consistent genomic windows under divergent selection previously reported by Vera et al. (2022) in the Northeast Atlantic 298 Ocean. The very low genetic differentiation with neutral markers in the studied areas 299 precluded the detection of consistent genomic regions under stabilizing selection. Thus, 300 301 we could verify in more restricted geographical scenarios (SW British Isles and Galicia) the consistency of the genomic regions under divergent selection previously detected. 302 303 Additionally, we looked for new regions under selection considering the singularity of 304 the new sample collections of this study following a similar methodology to that proposed 305 by Vera et al. (2022). Briefly, we defined a consistent window when ≥ 2 consecutive 306 outliers were detected; then, we expanded the region ± 250 kb from the external outliers of the seed to define a genomic window for mining. Genes included in those genomic 307 308 windows were identified using the cockle's transcriptome assembled and annotated by Pardo et al. (2022), which was used as reference to detect Gene Ontology (GO) functional 309 enrichment of the genomic regions under selection (FDR 5%) using GOfuncR (Grote 310

311	2022). Furthermore, we also analysed genomic windows around the SNPs correlated with
312	environmental variables for mining; since we could not identify consecutive SNPs as with
313	outliers, we were more conservative and defined smaller windows around each SNP (\pm
314	100 kb).

316	Results
317	Genetic diversity and differentiation: whole sample and SNP dataset
318	A total of 599 cockles were analysed, since six specimens that exhibited a low number
319	of reads (< 250.000 reads) from WDE_17 (two individuals), SAN_17 (one individual),
320	SVI_17 (two individuals) and SMO_17 (one individual), were removed. After quality
321	filtering, the number of SNPs retained in the whole dataset was 9,250. This number was
322	slightly lower than the number used in the macrogeographical study carried out by Vera
323	et al. (2022) (9,309 markers), because 59 of these markers were monomorphic in the
324	studied regions. All the 9,250 markers were included in the "9,309 markers" dataset
325	and their genomic information is available at
326	https://onlinelibrary.wiley.com/doi/10.1111/eva.13340, where the SNP code from Vera
327	et al. (2022) has been maintained for comparison between studies.
328	Observed (Ho) and expected (He) heterozygosities ranged respectively from 0.070
329	(SMO_17, Spain) to 0.080 (IWC_20, IGC_20 and IKF_20, Ireland; mean \pm SD = 0.075
330	\pm 0.003) and from 0.076 (WDE_17, Wales) to 0.087 (SNO_17, Spain and IKF_20,
331	Ireland; mean \pm SD = 0.082 \pm 0.003) (Table 1). All F1s values per locus and bed were
332	positive, suggesting heterozygote deficit, but low (always < 0.115) and not
333	significant; and all beds met to HW expectations (P < 0.0022 ; $0.05/22$ populations), an
334	expected outcome considering the HW filtering applied to retain SNPs. The percentage
335	of polymorphic loci ranged from 25.5 % in SMO_17 (Spain) to 52.8 % in SNO_17

336	(Spain) (mean \pm SD = 41.3 \pm 7.2%). When only polymorphic loci within each bed were
337	considered, Ho ranged from 0.137 in SLO_17 (Spain) to 0.181 in SMO_17 (Spain)
338	(mean \pm SD = 0.155 \pm 0.014), showing these two beds also the lowest (0.156) and
339	highest (0.200) He (mean \pm SD = 0.171 \pm 0.012). No differences in genetic diversity
340	were found between the SW British Isles and Galician regions (Mann-Whitney U tests
341	P > 0.250 for Ho, He with all loci and with polymorphic loci). Genetic diversity was in
342	the range of previous values reported by Vera et al. (2022) for the whole Atlantic area
343	using the same methodology.
344	Global F _{ST} for all beds was 0.02118 (P < 0.001), pairwise F _{ST} ranged from 0 (non-
345	significant \neq 0) for many bed pairs up to a maximum of 0.05040 (P < 0.001) between
346	IDC_18 and SVI_17 (Supplementary Table 2). Most pairwise comparisons were
347	significant excluding those from Galicia. Average pairwise F_{ST} between the SW British
348	Isles and Galicia was 0.03400 (P < 0.001), while 0.01374 (P < 0.001) within the SW
349	British Isles and -0.00529 ($P = 1.000$) within Galicia. The two beds from the Cotentin
350	Peninsula (FBV_19 and FGO_19, SW British Isles region), separated by 190
351	kilometres, showed significant genetic differentiation ($F_{ST} = 0.01207$, $P < 0.001$). The
352	most likely K values inferred by fastSTRUCTURE were 1 and 3. When $K = 3$ was
353	plotted, two main groups were identified differentiating the SW British Isles (IGC_20,
354	IKF_20, IWC_20, IDA_18, IDC_18, WDE_17, WBY_17, ECE_20, FBS_17, FBV_19
355	and FGO_19) from Galicia (plus Arcachon) (FAR_17, SBA_17, SMI_17, SAN_17,
356	SNO_17, SLO_17, SSA_17, SVI_17, SCA_17, SMO_17, SBI_18) (Fig. 2A). FGO_19
357	(France, Cotentin Peninsula) showed a high component of the southern group, also
358	detectable in all samples from the English Channel (ECE_20, FBS_17 and FBV_18),
359	suggesting some introgression between the two groups. The DAPC representation on
360	the SW British Isles also suggested differentiation of the English Channel samples from

the northernmost populations across the second component, while the first one,

indicated a remarkable divergence of the IKF 20 sample from the remaining ones (Fig.

363 3A). The DAPC from Galicia showed most of the samples grouped excluding SNO 17,

in the middle of the distribution, below Cape Finisterre, and SBI_18, the southernmost

365

one (Fig. 4A).

367 *Genetic structure within regions: demographic and selective factors*

To understand the factors underlying genetic differentiation within the SW British Isles 368 369 and Galician regions, we first identified those loci under selection using three different 370 statistical approaches. BY10, BY1000 and PCADAPT detected 159, 47 and 84 outliers 371 in the SW British Isles, respectively, all of them under divergent selection and representing a total of 186 different outliers (Supplementary Table 3). Thirty-five 372 markers were shared between the three methods. The number of outliers in Galicia was 373 374 much lower (BY10 = 15, BY1000 = 2, PCADAPT = 39), two of them shared between the three methods and representing a total of 51 outliers, all of them putatively under 375 divergent selection. Among the whole outlier dataset, 15 were shared between SW 376 377 British Isles and Galicia. Then, by discounting the total number of outliers to the whole dataset in each region, a total of 9,064 neutral markers were identified in the SW British 378 Isles and 9,199 in Galicia, representing the neutral datasets for each region. 379 Small but significant genetic differentiation was detected among the SW British Isles 380 381 beds using neutral markers ($F_{ST} = 0.00778$, P < 0.001), suggesting limitations to larval 382 dispersion in this area by biogeographical barriers. As expected, the 186 total outliers 383 rendered a much higher global F_{ST} (0.10959, P < 0.001), being more accentuated when using the shared set of outliers between methods ($F_{ST} = 0.17411$, P < 0.001), which 384 suggests selective factors increasing structuring. Pairwise F_{ST} ranged from -0.03095 385

³⁶⁶

386	(IKF_20 – WDE_17) to 0.02366 (IGC_20 – FGO_19 pair) for neutral markers; from
387	0.00061 (IDA_18 – IDC_18 pair) to 0.17142 (IDA_18 – FGO_19 pair) for the 186 total
388	outliers; and from -0.00345 (IDA_18 - IDC_18 pair) to 0.27313 (IKF_20 - FBS_17
389	pair) for the 35 shared outliers (Supplementary Table 4). IBD was significant with the
390	shared and total outlier datasets (r = 0.63169 and 0.55136 , respectively; P < 0.001), but
391	not with the neutral dataset (r = 0.08578 , P = 0.330). These results suggest that
392	correlations could be a by-product of the unequal spatial distribution of the
393	environmental factors responsible of selective forces shaping the cockle's genome,
394	since IBD patterns should be reflected by the balance between drift and migration on
395	neutral markers. The fastSTRUCTURE analyses identified $K = 1$, $K = 2$ and $K = 3$ as
396	the most likely values for the neutral, 35 shared outlier and 186 total outlier datasets,
397	respectively (Fig. 2B), which consistently differentiated the Celtic Sea and the North-
398	west Irish cluster (IGC_20, IKF_20 and IWC_20), not studied to date, and the English
399	Channel cluster (ECE_20, FBS_17, FBV_19, FGO_19). In contrast, the Irish Sea
400	appeared as a rather differentiated group with the 186 outliers, which was split into two
401	clusters, the Irish side (IDA_18 and IDC_18) most closely associated with the Celtic
402	and Atlantic Ocean cluster, and the Welsh side (WDE_17 and WBY_17), most closely
403	linked with the English Channel cluster, when using the 35 outlier loci. The
404	differentiation of the Irish Sea from the other samples, and the contrast between the
405	Welsh and Irish (east and west, respectively) samples of the Irish Sea, was shown when
406	exploring a scenario with a larger K value, with both datasets displaying a very similar
407	structure with $K = 4$ (Supplementary Figures 2 and 3). The DAPC analysis with neutral
408	markers showed a very similar picture to that described with the whole SNP dataset
409	(Fig. 3B), however, the 186 and 35 outlier datasets displayed a very distinct picture,
410	both separating the English Channel (ECE_20, FGO_19, FBV_19 and FBS_17) from

411	the Welsh populations, but also from the Irish populations, which were further divided
412	into two groups, the westernmost Northeast Atlantic Ocean group (IWC_20, ICG_20
413	and IKF_20) and the Irish/Celtic Seas group (IDC_18 and IDA_18) (Figs. 3C and 3D).
414	In contrast to the SW British Isles, no population differentiation was found in Galicia
415	with the neutral dataset ($F_{ST} = 0.00552$, $P = 1.000$), also supported by the
416	fastSTRUCTURE (K =1) and DAPC, as previously outlined with whole dataset (Figs.
417	4A and B). However, low but significant differentiation was detected with the 51
418	outliers ($F_{ST} = 0.00870$, P < 0.001), the pairwise F_{ST} supporting a significant
419	differentiation of the two northernmost samples (SMI_17 and especially SBA_17;
420	Supplementary Table 5) from the rest. This differentiation was not disclosed with
421	fastSTRUCTURE (K = 1; see Supplementary Fig. 4) and only suggested with DAPC
422	(Fig. 4C).

424 *Seascape analysis*

RDA analyses in SW British Isles region suggested longitude as the main driver for the 425 observed differentiation with all datasets and seasons (Table 2). Latitude was also 426 427 supported as driver for many models, especially for those related to the 186 total outliers. Sea bottom salinity (SBS) was suggested for all seasons with the 186 outlier 428 dataset, while bottom shear stress (BSS) was for reproductive and summer seasons 429 using the whole and neutral datasets (Table 2). When longitude and latitude were 430 431 removed, sea surface temperature (SST) was suggested for all the datasets in the 432 summer season, and in the reproductive and winter seasons only with the whole and 433 186 outlier datasets, respectively. Sea bottom temperature (SBT) was suggested for the reproductive and summer season with the 186 outlier dataset. SBS and sea surface 434 salinity (SSS) were suggested with the 186 outlier dataset for the summer and winter 435

seasons, respectively. Net primary production (NPP) was suggested for all datasets in 436 the winter season and for the 186 outlier dataset for the reproductive season. Finally, 437 438 BSS was suggested in all seasons for the neutral dataset and in the reproductive and summer seasons for the complete dataset. In Galician region, no associations were 439 found, except for latitude in all periods analysed using the 51 outliers, and for BSS 440 during winter when latitude and longitude were removed (Table 2). However, VIF 441 values were usually high (> 10), suggesting that results should be taken with caution 442 due to the high collinearity among the variables in many cases. 443 444 While no correlations were identified in Galicia with BAYENV2, a total of 54 markers 445 were correlated with different environmental variables in the SW British Isles 446 (Supplementary Table 6). Thirty of these markers (55.6%) were previously identified as outliers by the different methodologies applied. Markers were mainly correlated with 447 448 latitude, longitude, temperature and salinity. The main variable correlated with genetic 449 markers in the reproductive season and summer scenarios was SBT, while SSS and NPP were in the winter scenario. 450 451

452 *Gene mining around outliers and environmental correlated markers*

453 Genetic markers associated with divergent selection or correlated with environmental

variables were mapped in the common cockle genome to look for functional

455 interpretation (Supplementary Tables 3 and 6). Outliers identified in the SW British

456 Isles area were scattered across all chromosomes, between one in C18 and 22 in C3,

457 while five chromosomes (C8, C11, C13, C14, C17) did not bear any outlier in Galicia,

- 458 the maximum being detected in C1 (11 outliers) (Table 3). The 51 outliers detected in
- 459 Galicia only identified a single consistent genomic region (window) under selection
- 460 according to our criteria and other five outliers were distributed across four confident

461	genomic windows previously reported by Vera et al. (2022) (Supplementary Tables 7
462	and 8). However, among the 186 outliers detected in the SW British Isles, 14 defined
463	five new consistent genomic windows under divergent selection and other 45 mapped
464	on genomic windows previously reported by Vera et al. (2022) (Supplementary Tables
465	7 and 8). Most outliers detected in Galicia were specific to this region, while an
466	important number of outliers from the SW British Isles were shared with the Northern
467	region previously analysed by Vera et al. (2022) (Supplementary Fig. 5). Still, a notable
468	proportion of outliers in the North were specific of each study (North-Vera et al.
469	(2022): 137 vs SW British Isles: 101) suggesting specific evolutionary factors related to
470	each scenario. Among the genes annotated in the five new windows, several related to
471	oxidative stress, hypoxia and immunity were identified in a 200 kb region in C2 and in
472	a 340 kb region in C3 (Supplementary Table 9) (Gerdol and Venier 2015; Grandi et al.
473	2016; Sokolov et al. 2019). Also, in a 480 kb region in C5, some genes involved in
474	signalling and detoxification (Wang et al. 2018; Kron 2022; Thoma et al. 2022) were
475	identified. Finally, a gene associated with ocean acidification (Lim et al. 2021) was
476	identified in C19. Despite the low number of genes handled, a significantly enriched
477	GO Molecular Function was detected (protein serine/threonine phosphatase activity;
478	GO:0004722) taking as background the common cockle transcriptome reported by
479	Pardo et al. (2022).
480	Markers correlated with environmental variables were scattered across most
481	chromosomes, excluding C7, C14 and C18, and the higher number (seven markers)
482	were detected in two big chromosomes (C2 and C4) (Table 3). An important number of
483	correlated markers were also identified as outliers for divergent selection (55.6 %),
484	some of them associated with consistent genomic windows (Supplementary Table 8).
485	Of note, the three markers detected in one of the most consistent genomic windows in

486	C4. We also mined the cockle genome around the correlated marker dataset
487	(Supplementary Table 10) and detected several genes related to nervous system
488	development and physiology. These genes were mostly clustered at C1 around
489	142462_31 (correlated with SBT) and C2 around 210318_7 (correlated with SST),
490	respectively. Furthermore, some of these genes were previously associated with
491	temperature stress and oxygen depletion stress or differentially expressed under specific
492	experimental conditions in other mollusc species (Woo et al. 2011; Chen et al. 2022).
493	Another important group of genes scattered around different markers in the cockle
494	genome were related to immunity and defence and had been previously reported in
495	other mollusc species in response to viruses and bacteria (Barbosa et al. 2022; Saco et
496	al. 2023) (Supplementary Table 9).
497	Discussion
498	Assessment of the distribution of genetic variability across populations, incorporating
499	historical processes and local adaptation framed within the dispersal range of the focal
500	organism (Richardson et al. 2014), is essential to develop management actions to
501	preserve exploited species (Bernatchez et al. 2017). In the present study, two different
502	patterns of genetic structure at microgeographic scale were identified in two regions
503	within the natural distribution of C. edule, highlighting the need to perform analyses at
504	multiple spatial scales (Hoffman et al. 2012), to provide information supporting the
505	management of this valuable resource.
506	Heterogeneous pattern of microgeographic structure in the common cockle
507	The two geographic areas studied, the SW British Isles region and Galicia, were
508	selected by their different habitat fragmentation patterns. Both areas were slightly
509	differentiated ($F_{ST} = 0.03400$), in accordance with their location in the major northern
510	and southern regions of the species' range separated around French Brittany (Vera et al.

2022), but did not show differences in genetic diversity, unlike Vera et al. (2022), who 511 reported a slight, but significant higher diversity in the southern region. 512 513 The extensive analysis performed in Galicia (10 natural beds) suggested the presence of a single panmictic unit in this area, as previously reported for other molluscs, with 514 similar pelagic larval periods (Donax trunculus, Nantón et al. 2017; Ensis siliqua, 515 Arias-Pérez et al. 2012; Mitilus galloprovincialis, Diz and Presa 2009; Ostrea. edulis, 516 517 Vera et al. 2016; Polititapes rhomboides, Chacón et al. 2021), and for other marine species (Hippocampus guttulatus; Lopez et al. 2015; Pollicipes pollicipes, Parrondo et 518 519 al. 2022). Our data does not support Cape Finisterre as a biogeographical barrier for the 520 species as previously suggested (Lopez-Jamar et al. 1992; Piñeira et al. 2008; Martinez 521 et al. 2013; Cruz et al. 2020), since no differentiation was detected between beds at both sides of the Cape with the whole and neutral datasets. However, when using outlier 522 523 loci, the two northernmost Galician beds showed significant differentiation with the 524 remaining ones, especially the bed closest to the Cantabrian Sea (SBA 17) (average Fst = 0.03145), which could be related to the higher temperature regime in the Cantabrian 525 Sea (Marquina et al. 2015), but a more detailed study in the Cantabrian Sea would be 526 527 necessary to confirm this observation. Oceanographic dynamics in the Galician coast indicate that the cold-upwelled water usually penetrates estuaries on the west, while it 528 only occurs during very intense events on the north (Alvarez et al. 2010). Thus, water 529 temperature decreases from north to west, with an SST average value of 19.5 °C in the 530 531 Cantabrian coast compared with the 18.5 °C measured in the west coast for the 1985-532 2005 period (Gomez-Gesteira et al. 2008). Larval dispersal modelling carried out in 533 Vera et al. (2022) (see their Fig. 7) confirmed that cockle beds are well connected with each other by larval transport in Galicia, but the connection between the Rias and the 534 sites to the northeast of Cape Finisterre was weaker, though present. Furthermore, 535

536	whilst the beds along the northwest coast of the Iberian Peninsula are affected by very
537	similar oceanographic conditions, during the late spring and late summer, temperatures
538	at the most north-easterly site can differ markedly from those at the other beds due to
539	its location at the edge of the upwelling system and at the inception point of the
540	Portugal Coastal Current (STT two degrees higher in the northern beds (mean = 18.51
541	°C) than in the southern ones (mean = 16.47 °C) during the summer; see Supplementary
542	Table 1). Despite the genotype-environment associations methods did not identify sea
543	temperature as driver, latitude, which is highly correlated with temperature, was
544	suggested by the RDA analysis as potential driver in the region.
545	Previous data from the SW British Isles suggested significant structure in C. edule
546	related both to current dynamics as well as to abiotic factors, such as salinity and
547	temperature (Coscia et al. 2020; Vera et al. 2022), as reported in other shellfish species
548	such as the horse mussel Modiolus modiolus (Gormley et al. 2015) and the great scallop
549	Pecten maximus (Vendrami et al. 2019; Hold et al. 2021). However, some regions in
550	this area are still poorly sampled in the common cockle (English Channel) or without
551	information (West Irish coast, North-east Atlantic). Outlier markers showed a moderate
552	pairwise genetic differentiation between beds ($F_{ST} = 0.10959$ and 0.17411 with the 186
553	and 35 outlier datasets, respectively), higher than that observed with neutral markers
554	($F_{ST} = 0.00778$), as expected, suggesting selective factors shaping specific genomic
555	regions in a small geographic area. An important proportion of divergent outliers (68
556	markers) were shared with those reported by Vera et al. (2022) for the northern group
557	(210 outliers), which gives robustness to our observations; however, data also suggests
558	specific selective factors shaping the cockle's genome associated with the new
559	sampling in the SW British Isles (117 new outlier loci; 31 within consistent genomic
560	windows). In fact, five new confident genomic windows were identified including

561	relevant genes related to oxidative stress and immunity that would deserve further
562	studies as candidates to explain the association observed with environmental factors.
563	Despite biotic factors, such as pathogens, could not be contemplated in our study, their
564	diversity and distribution (influenced by abiotic factors) are important drivers shaping
565	the genome and distribution of species (Theodosopoulos et al. 2019) and specifically in
566	cockles (Vera et al. 2022; Pampín et al. 2023). Furthermore, we also deepened into the
567	correlation of specific SNPs with environmental factors and could identify, by mining
568	in the cockle genome several genes related to nervous transmission and immunity,
569	arranged in clusters or scattered in different chromosomes, that had been previously
570	reported in other mollusc associated with temperature or oxidative stress (Woo et al.
571	2011; Barbosa et al. 2022; Chen et al. 2022).
572	The population structure observed in the SW British Isles region may be in part
573	explained by the residual ocean currents and ocean fronts that characterise this area, but
574	also by selective factors such as salinity gradients, variable bottom shear stress (due to
575	large tidal variability) and sea temperature gradients (driven by ocean currents,
576	stratification and mixing, and latitudinal gradients); however, spatial seascape results
577	should be taken with caution due to the collinearity detected among variables. Both
578	outlier datasets could identify four genetic clusters following two main west-east and
579	north-south axes, which could explain the correlation observed between genetic and
580	geographic distances for outlier loci, but also the identification of longitude and latitude
581	as two main drivers in the seascape analysis. According to the outlier information, the
582	new sampled beds from Western Ireland (IGC_20, IKF_20 and IWC_20) (Northeast
583	Atlantic) would constitute a new cluster. These sites are connected by the Irish coastal
584	current (Brown et al. 2003; Fernand et al. 2006) and larval dispersal modelling (see Fig.
585	7 Vera et al. 2022) showed that the beds along the southwest coast of Ireland are well

586	interconnected. The Irish Sea can be split into two different clusters associated with the
587	Irish and Welsh sides, as previously suggested by Coscia et al. (2020). Sites along the
588	southeast coast of the Irish Sea are generally connected by northward currents and sites
589	along the north coast of Wales by eastward currents. In contrast, the two sites on the
590	west coast of the Irish Sea (IDC_18 and IDA_18), appear genetically separated from
591	the remainder of the Irish Sea; This may be driven by the Irish Sea Front acting as a
592	barrier which also drives warmer temperatures in the northwest Irish Sea than in the
593	well-mixed northeast Irish Sea. Finally, the English Channel forms a fourth cluster
594	including the ECE_20 bed from Cornwall with the southern beds limited by the Ushant
595	front. Interestingly, the Cotentin Peninsula, previously identified as a physical barrier to
596	dispersal in other molluscs, such as the slipper limpet Crepidula fomicata (Dupont et al.
597	2007) and P. maximus (Nicolle et al. 2016; Handal et al. 2020), showed a significant
598	differentiation between samples on its west and east sides (FGO_19 and FBV_19) with
599	neutral markers ($F_{ST} = 0.01045$, $P < 0.001$) and higher with outlier loci (F_{ST} 35 outliers
600	= 0.06654, P < 0.001; Fst 186 outliers = 0.05876, P < 0.001), suggesting additional
601	selective factors differentiating both sides. Oceanic distance between the two Cotentin
602	beds (~ 190 km) is shorter than the longest distance between Galician beds (~ 300 km),
603	where no genetic differentiation was detected with neutral markers. Of note, FGO_19
604	showed an important genomic component of the South group, suggesting introgression
605	from the south especially in the west coast of the Cotentin Peninsula.

607 *Management implications*

The present study represents a refined analysis of the population structure of *C. edule* in two geographic areas of small-medium size representing differentiated models that could aid to obtain a more comprehensive picture for improving the management and

conservation of this valuable commercial and ecological resource. Galician beds were 611 suggested to constitute a panmictic population and this region could be managed as a 612 613 single genetic unit. The fisheries in this region are exclusively commercial and their exploitation management can be through territorial concessions leased by shellfisher 614 guilds or directly by Galician regional government (i.e. free access shellfish areas). This 615 genetic information should be included in the Galician legislation, thus allowing 616 617 translocations from high production areas (Ría de Noia) to depleted ones by different factors, such as the parasite *M. cochillia* (Ría de Arousa; Villalba et al. 2014). However, 618 619 caution should be taken considering biotic factors not evaluated in our study, such as 620 emergent pathologies (e.g. marteiliosis), which will require specific recommendations 621 within the general framework depicted in our study. A sharp fragmentation was displayed by the SW British Isles region, especially with divergent outliers, mostly representing 622 623 adaptive management units (AMU, Bernatchez et al. 2017). Thus, Western (Northeast Atlantic) Irish beds would represent a differentiated group from those previously 624 described, while subtle genetic sub-structuring was identified along the English Channel, 625 with a significant effect at the Cotentin Peninsula representing as a biogeographic barrier. 626 627 Furthermore, the Irish Sea, a narrow water body mass between Wales and Ireland, appears to represent differentiated units at both sides of the Irish Sea according to our information. 628 All these population units should be individually managed, avoiding translocations 629 between them. Finally, our results could help to improve cockles' production by founding 630 631 appropriate broodstock to enhance depleted populations and by tracing samples to check 632 undesirable transferences among regions.

633 Acknowledgements

634 Authors wish to thank L. Insua, S. Sánchez-Darriba and S. Gómez from the ACUIGEN

635 group (USC) for their technical support. Supercomputing Center of Galicia

636	(http://www.cesga.es) provided computing facilities for genotyping. A. Casanova
637	(ACC) was funded by a Xunta de Galicia-Campus Terra postdoctoral fellow.
638	
639	Author Contributions
640	MV, AV and PM designed and supervised the study. DI, AC, KM, FO, SKM, SL
641	performed field collections. PM, SCC, SL, PER, SKM and FO provided funding. FM,
642	MH and AB analysed bioinformatically genomic sequences and created genotyping
643	files. SBW and PER provided information about oceanography, environmental
644	variables and developed geographic maps included in the figures. MV, CB, ACC, AB
645	and PM performed the genetic analyses. MV and PM wrote the manuscript with
646	contributions from all authors. All of them read the manuscript and gave their approval.
647	
648	Funding
649	This study has been supported by the COCKLES project (grant number:
650	EAPA_458/2016) of the INTERREG EUROPEAN PROGRAMME and the NERC-
651	SHEAR project (NE/W001217/1).
652	
653	Conflict of interest
654	The authors declare no conflict of interest.
655	
656	Data archiving
657	Data for this study are available at Dryad Digital Repository (http://to be completed after
658	manuscript is accepted for publication) and Supplementary material.
650	Deferment
659	Kelerences

660	Abaunza P, Murta AG, Campbell N, Cimmaruta R, Comesana AS, Dahle G, Santamaria
661	MTG, Gordo LS, Iversen SA, MacKenzie K, Magoulas A, Mattiucci S, Molloy
662	J, Nascetti G, Pinto AL, Quinta R, Rarnos P, Sanjuan A, Santos AT, Stransky C,
663	Zimmermann C (2008) Stock identity of horse mackerel (Trachurus trachurus)
664	in the Northeast Atlantic and Mediterranean Sea: Integrating the results from
665	different stock identification approaches. Fish. Res. 89:196-209
666	Alvarez I, Gomez-Gesteira M, DeCastro M, Gomez-Gesteira JL, Dias JM (2010)
667	Summer upwelling frequency along the western Cantabrian coast from 1967 to
668	2007. J. Mar. Syst. 79:218-226
669	Alvarez I, Gomez-Gesteira M, deCastro M, Lorenzo MN, Crespo AJC, Dias JM (2011)
670	Comparative analysis of upwelling influence between the western and northern
671	coast of the Iberian Peninsula. Cont. Shelf Res. 31:388-399
672	Arias-Perez A, Fernandez-Tajes J, Gaspar MB, Mendez J (2012) Isolation of
673	microsatellite markers and analysis of genetic diversity among East Atlantic
674	populations of the sword razor shell Ensis siliqua: a tool for population
675	management. Biochem. Genet. 50: 397-415
676	Barbosa M, Schwaner C, Pales Espinosa E, Allam B (2022) A Transcriptomic analysis
677	of phenotypic plasticity in Crassostrea virginica larvae under experimental
678	acidification. Genes 13: 1529
679	Beaumont AR, Day TR, Gade G (1980) Genetic variation at the octopine
680	dehydrogenase locus in the adductor muscle of Cerastoderma edule (L) and 6
681	other bivalve species. Mar.Biol. Letters 1: 137-148
682	Bernatchez L, Wellenreuther M, Araneda C, Ashton DT, Barth JMI, Beacham TD,
683	Maes GE, Martinsohn JT, Miller KM, Naish KA, Ovenden JR, Primmer CR,

684	Suk HY, Therkildsen NO, Withler RE (2017) Harnessing the Power of
685	Genomics to Secure the Future of Seafood. Trends Ecol. Evol. 32:665-680
686	Brown J, Carrillo L, Fernand L, Horsburgh KJ, Hill AE, Young EF, Medler KJ (2003)
687	Observations of the physical structure and seasonal jet-like circulation of the
688	Celtic Sea and St. George's Channel of the Irish Sea. Cont. Shelf Res. 23:533-
689	561
690	Bruzos AL, Santamarina M, Garcia-Souto D, Diaz S, Rocha S, Zamora J, Lee Y, Viña-
691	Feas A, Quail MA, Otero I, Pequeño-Valtierra A, Temes J, Rodriguez-Castro J,
692	Villanueva A, Costas D, Rodriguez R, Prieto T, Tomas L, Alvariño P, Alonso J,
693	Cao A, Iglesias D, Carballal MJ, Amaral AM, Balseiro P, Calado R, El Khalfi B,
694	Izagirre U, de Montaudouin X, Pade NG, Probert I, Ricardo F, Ruiz P, Skazina
695	M, Smolarz K, Pasantes JJ, Villalba A, Ning Z, Ju YS, Posada D,
696	Demeulemeester J, Baez-Ortega A, Tubio JMC (2022) The evolution of two
697	transmissible leukaemias colonizing the coasts of Europe. Biorxiv
698	doi10.1101/2022.08.06.503021
699	Carss DN, Brito AC, Chainho P, Ciutat A, de Montaudouin X, Fernandez Otero RM,
700	Incera Filgueira M, Garbutt A, Goedknegt MA, Lynch SA, Mahony KE, Maire
701	O, Malham SK, Orvain F, Olivier AvdS, Jones L (2020) Ecosystem services
702	provided by a non-cultured shellfish species: The common cockle Cerastoderma
703	edule. Mar. Environ. Res. 158:104931
704	Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an
705	analysis tool set for population genomics. Mol. Ecol. 22:3124-3140
706	Chacon GM, Arias-Perez A, Freire R, Martinez L, Ojea J, Insua A (2021) Genetic
707	characterization of wild, broodstock and seed samples of Polititapes rhomboides

708	(Bivalvia: Veneridae): Implications for hatchery seed production. Aquacult.
709	Rep. 20:100658
710	Chen J, Leng T, Jiang YM, Chen XB, Liu ZM (2022) RNA-seq analysis of the
711	differential response to low-temperature stress in two morphs of mud crabs
712	(Scylla paramamosain). Comp. Biochem. Physiol. Part D Genomics Proteomics
713	43:101010
714	Coop G, Witonsky D, Di Rienzo A, Pritchard JK (2010) Using environmental
715	correlations to identify loci underlying local adaptation. Genetics 185:1411-1423
716	Coscia I, Wilmes SB, Ironside JE, Goward-Brown A, O'Dea E, Malham SK, McDevitt
717	AD, Robins PE (2020) Fine-scale seascape genomics of an exploited marine
718	species, the common cockle Cerastoderma edule, using a multimodelling
719	approach. Evol. Appl. 13:1854-1867
720	Cruz A, da Costa F, Fernandez-Perez J, Nanton A, Fernandez-Boo S, Insua A, Mendez
721	J (2020) Genetic variability in Ruditapes decussatus clam combined with
722	Perkinsus infection level to support founder population selection for a breeding
723	program. PeerJ 8:e9728
724	Dare PJ, Bell MC, Walker P, Bannister RCA (2004) Historical and current status of
725	cockle and mussel stocks in The Wash. CEFAS.
726	de Montaudouin X, Bachelet G, Sauriau PG (2003) Secondary settlement of cockles
727	Cerastoderma edule as a function of current velocity and substratum: a flume
728	study with benthic juveniles. Hydrobiologia 503:103-116
729	Diz AP, Presa P (2009) The genetic diversity pattern of Mytilus galloprovincialis in
730	Galician Rias (NW Iberian estuaries). Aquaculture 287:278-285

731	do Prado FD, Vera M, Hermida M, Bouza C, Pardo BG, Vilas R, Blanco A, Fernandez
732	C, Maroso F, Maes GE, Turan C, Volckaert FAM, Taggart JB, Carr A, Ogden
733	R, Nielsen EE, Martinez P, Aquatrace C (2018) Parallel evolution and
734	adaptation to environmental factors in a marine flatfish: Implications for
735	fisheries and aquaculture management of the turbot (Scophthalmus maximus).
736	Evol. Appl. 11:1322-1341
737	Dupont L, Ellien C, Viard F (2007) Limits to gene flow in the slipper limpet Crepidula
738	fornicata as revealed by microsatellite data and a larval dispersal model. Mar.
739	Ecol. Prog. Ser. 349:125-138.
740	Eldon B, Riquet F, Yearsley J, Jollivet D, Broquet T (2016) Current hypotheses to
741	explain genetic chaos under the sea. Curr. Zool. 62:551-566
742	Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to
743	perform population genetics analyses under Linux and Windows. Mol. Ecol.
744	Resour. 10:564-567
745	Fernand L, Nolan GD, Raine R, Chambers CE, Dye SR, White M, Brown J (2006) The
746	Irish coastal current: A seasonal jet-like circulation. Cont. Shelf Res. 26:1775-
747	1793
748	Fisher MC, Helser TE, Kang S, Gwak W, Canino MF, Hauser L (2022) Genetic
749	structure and dispersal in peripheral populations of a marine fish (Pacific cod,
750	Gadus macrocephalus) and their importance for adaptation to climate change.
751	Ecol. Evol. 12:e8474
752	Flach EC, de Bruin W (1994) Does the activity of cockles, Cerastoderma edule (L.) and
753	lugworms, Arenicola marina L., make corophium-volutator pallas more

- vulnerable to epibenthic predators: a case of interaction modification. J. Exp.
- 755 Mar. Biol. Ecol. 182:265-285
- Foll M, Gaggiotti O (2008) A Genome-Scan Method to Identify Selected Loci
- 757 Appropriate for Both Dominant and Codominant Markers: A Bayesian
- 758 Perspective. Genetics 180:977-993
- Foll M (2012) BayeScan v2.1 User Manual. Available at:
- 760 http://cmpg.unibe.ch/software/BayeScan/files/BayeScan2.1_manual.pdf
- 761 Francis RM (2017) POPHELPER: an R package and web app to analyse and visualize
- population structure. Mol. Ecol. Resour. 17:27-32
- 763 Galarza JA, Carreras-Carbonell J, Macpherson E, Pascual M, Roques S, Turner GF,
- Rico C (2009) The influence of oceanographic fronts and early-life-history traits
- on connectivity among littoral fish species. Proc. Natl. Acad. Sci. U.S.A.
- 766 106:1473-1478
- Galparsoro I, Borja A, Uyarra MC (2014) Mapping ecosystem services provided by
- benthic habitats in the European North Atlantic Ocean. Front. Mar. Sci. 1:23
- Gerdol M, Venier P (2015) An updated molecular basis for mussel immunity. Fish
- 770Shellfish Immunol. 46:17-38
- 771 Gomez-Gesteira M, de Castro M, Alvaez I, Gomez-Gesteira JL (2008) Coastal sea
- surface temperature warming trend along the continental part of the Atlantic Arc
 (1985-2005). J. Geophys. Res. Oceans 113:C04010
- Gormley K, Mackenzie C, Robins P, Coscia I, Cassidy A, James J, Hull A, Piertney S,
- Sanderson W., Porter J (2015) Connectivity and Dispersal Patterns of Protected
- 776 Biogenic Reefs: Implications for the Conservation of *Modiolus modiolus* (L.) in
- the Irish Sea. PLOS One 10:e0143337

778	Grandi A, Santi A, Campagnoli S, Parri M, De Camilli E, Song C, Jin B, Lacombe A,
779	Castori-Eppenberger S, Sarmientos P, Grandi G, Viale G, Terracciano L,
780	Chiarugi P, Pileri P, Grifantini R (2016) ERMP1, a novel potential oncogene
781	involved in UPR and oxidative stress defense, is highly expressed in human
782	cancer. Oncotarget 7:63596-63610
783	Grote S (2022) GOfuncR: Gene ontology enrichment using FUNC. R package version
784	1.18.0
785	Group "Grepma" (1988) A physical, chemical and biological characterization of the
786	Ushant tidal front. Int. Rev. ges. Hydrobiol. Hydrogr. 73:511-536
787	Gunther T, Coop G (2013) Robust Identification of Local Adaptation from Allele
788	Frequencies. Genetics 195:205-220
789	Handal W, Szostek C, Hold N, Andrello M, Thiebaut E, Harney E, Lefebvre G, Borcier
790	E, Jolivet A, Nicolle A, Boye A, Foucher E, Boudry P, Charrier G (2020) New
791	insights on the population genetic structure of the great scallop (Pecten
792	maximus) in the English Channel, coupling microsatellite data and demogenetic
793	simulations. Aquat. Conserv. 30:1841-1853
794	Hayward PJ, Ryland JS (1995) Handbook of the marine fauna of north-west Europe.
795	Oxford University Press.
796	Hoffman JI, Clarke A, Clark MS, Fretwell P, Peck LS (2012) Unexpected fine-scale
797	population structure in a broadcast-spawning Antarctic marine mollusc. PLOS
798	One 7:e32415
799	Hold N, Robins P, Szostek CL, Lambert G, Lincoln H, Le Vay L et al (2021) Using
800	biophysical modelling and population genetics for conservation and

801 management of an exploited species, *Pecten maximus* L. Fish. Oceanogr.
802 30:740-756.

803	Honkoop PJC, van der Meer J (1998) Experimentally induced effects of water
804	temperature and immersion time on reproductive output of bivalves in the
805	Wadden Sea. Journal of Experimental Mar. Biol. Ecol. 220:227-246
806	Hummel H, Wolowicz M, Bogaards RH (1994) Genetic variability and relationships for
807	populations of Cerastoderma edule and of the C. glaucum complex. Netherlands
808	J. Sea Res. 33:81-89
809	Jackson-Bue M, Brito AC, Cabral S, Carss DN, Carvalho F, Chainho P, Ciutat A,
810	Sanchez EC, de Montaudouin X, Otero RMF, Filgueira MI, Fitch A, Garbutt A,
811	Goedknegt MA, Lynch SA, Mahony KE, Maire O, Malham SK, Orvain F,
812	Rocroy M, Olivier AvdS, Jones L (2022) Inter-country differences in the
813	cultural ecosystem services provided by cockles. People Nat. 4:71-87
814	Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide
815	SNP data. Bioinformatics 27:3070-3071
816	Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal
817	components: a new method for the analysis of genetically structured
818	populations. BMC Genetics 11:94
819	Kron NS (2022) In search of the Aplysia immunome: an in silico study. BMC Genomics
820	23:543
821	Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient
822	alignment of short DNA sequences to the human genome. Genome Biol. 10:R25
823	Larmuseau MHD, Van Houdt JKJ, Guelinckx J, Hellemans B, Volckaert FAM (2009)
824	Distributional and demographic consequences of Pleistocene climate

825	fluctuations for a marine demersal fish in the north-eastern Atlantic. J. Biogeogr.
826	36:1138-1151
827	Leary D, Vierros M, Hamon G, Arico S, Monagle C (2009) Marine genetic resources: A
828	review of scientific and commercial interest. Mar. Policy 33:183-194
829	Lim Y-K, Cheung K, Dang X, Roberts SB, Wang X, Thiyagarajan V (2021) DNA
830	methylation changes in response to ocean acidification at the time of larval
831	metamorphosis in the edible oyster, Crassostrea hongkongensis. Mar. Environ.
832	Res. 163:105214
833	Lopez A, Vera M, Planas M, Bouza C (2015) Conservation genetics of threatened
834	Hippocampus guttulatus in vulnerable habitats in NW Spain: Temporal and
835	spatial stability of wild populations with flexible polygamous mating system in
836	captivity. PLOS One 10:0117538
837	Lopez-jamar E, Cal RM, Gonzalez G, Hanson RB, Rey J, Santiago G, Tenore KR
838	(1992) Upwelling and outwelling effects on the benthic regime of the
839	continental-shelf off Galicia, NW Spain. J. Mar. Res. 50:465-488
840	Luu K, Bazin E, Blum MGB (2017) Pcadapt: an R package to perform genome scans
841	for selection based on principal component analysis. Mol. Ecol. Resour. 17:67-
842	77
843	Mahony KE, Lynch SA, Egerton S, Cabral S, de Montaudouin X, Fitch A, Magalhaes
844	L, Rocroy M, Culloty SC (2020) Mobilisation of data to stakeholder
845	communities. Bridging the research-practice gap using a commercial shellfish
846	species model. PLOS One 15:0238446

847	Mahony KE, Lynch SA, Egerton S, Laffan RE, Correia S, de Montaudouin X, Mesmer-
848	Dudons N, Freitas R, Culloty SC (2021) Latitudinal influence on gametogenesis
849	and host-parasite ecology in a marine bivalve model. Ecol. Evol. 11:7029-7041
850	Malham SK, Hutchinson TH, Longshaw M (2012) A review of the biology of European
851	cockles (Cerastoderma spp.). J. Mar. Biol. Assoc. U. K. 92:1563-1577
852	Maroso F, Casanova A, do Prado FD, Bouza C, Pardo BG, Blanco A, Hermida M,
853	Fernandez C, Vera M, Martinez P (2018) Species identification of two closely
854	exploited flatfish, turbot (Scophthalmus maximus) and brill (Scophthalmus
855	rhombus), using a ddRADseq genomic approach. Aquat. Conserv. 28:1253-1260
856	Maroso F, Perez de Gracia C, Iglesias D, Cao A, Diaz S, Villalba A, Vera M, Martinez
857	P (2019) A useful SNP panel to distinguish two cockle species, Cerastoderma
858	edule and C. glaucum, co-occurring in some European beds, and their putative
859	hybrids. Genes 10:760
860	Marquardt DW (1970).Generalized inverses, ridge regression, biased linear estimation
861	and nonlinear estimation. Technometrics 12:59.
862	Marquina D, Angel Fernandez-Alvarez F, Norena C (2015) Five new records and one
863	new species of Polycladida (Platyhelminthes) for the Cantabrian coast (North
864	Atlantic) of the Iberian Peninsula. J. Mar. Biol. Assoc. U. K. 95:311-322
865	Martinez L, Mendez J, Insua A, Arias-Perez A, Freire R (2013) Genetic diversity and
866	population differentiation in the cockle Cerastoderma edule estimated by
867	microsatellite markers. Helgol. Mar. Res. 67: 179-189
868	Martinez L, Freire R, Arias-Perez A, Mendez J, Insua A (2015) Patterns of genetic
869	variation across the distribution range of the cockle Cerastoderma edule inferred
870	from microsatellites and mitochondrial DNA. Mar. Biol. 162:1393-1406

871	Miller JM, Cullingham CI, Peery RM (2020) The influence of a priori grouping on
872	inference of genetic clusters: simulation study and literature review of the DAPC
873	method. Heredity 125:269-280
874	Nanton A, Arias-Perez A, Freire R, Fernandez-Perez J, Novoa S, Mendez J (2017)
875	Microsatellite variation in Donax trunculus from the Iberian Peninsula, with
876	particular attention to Galician estuaries (NW Spain). Estuar. Coast. Shelf Sci.
877	197:27-34
878	Nicolle A, Moitie R, Ogor J, Dumas F, Foveau A, Foucher E, Thiebaut E (2016)
879	Modelling larval dispersal of Pecten maximus in the English Channel: A tool for
880	the spatial management of the stocks. ICES J. Mar. Sci. 74:1812–1825.
881	Norris K, Bannister RCA, Walker PW (1998) Changes in the number of oystercatchers
882	Haematopus ostralegus wintering in the Burry Inlet in relation to the biomass of
883	cockles Cerastoderma edule and its commercial exploitation. J. Appl. Ecol.
884	35:75-85
885	Oksanen J. (2015) Multivariate analysis of ecological communities in R: vegan tutorial.
886	http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf
887	Pampin M, Casanova A, Fernandez C, Blanco A, Hermida M, Vera M, Pardo BG,
888	Coimbra RM, Cao A, Iglesias D, Carballal MJ, Villalba A, Martinez P (2023)
889	Genetic markers associated with divergent selection against the parasite
890	Marteilia cochillia in common cockle (Cerastoderma edule) using
891	transcriptomics and population genomics data. Front. Mar. Sci. 10:1057206
892	Pardo BG, Fernandez C, Pampin M, Blanco A, Iglesias D, Cao A, Carballal MJ,
893	Villalba A, Martinez P (2022) Transcriptome characterization of the common

894	cockle (Cerastoderma edule) after exposure to a Marteilia cochillia outbreak.
895	Biorxiv doi10.1101/2022.10.18.512677
896	Parrondo M, Moran P, Ballenghien M, Acuna JL, Aguion A, Arrontes J, Chiss J, Cruz
897	T, Fernandes JN, Garcia-Florez L, Garcia-Vazquez E, Geiger KJ, Macho G,
898	Thiebaut E, Weidberg N, Jollivet D, Borrell YJ (2022) Chaotic genetic
899	patchiness in the highly valued atlantic stalked barnacle Pollicipes pollicipes
900	from the iberian peninsula: implications for fisheries management. Front. Mar.
901	Sci. 9:801780
902	Piñeira J, Quesada H, Rolan-Alvarez E, Caballero A (2008) Genetic discontinuity
903	associated with an environmentally induced barrier to gene exchange in the
904	marine snail Littorina saxatilis. Mar. Ecol. Prog. Ser. 357:175-184
905	Prive F, Luu K, Vilhjalmsson BJ, Blum MGB (2020) Performing highly efficient
906	genome scans for local adaptation with R Package pcadapt Version 4. Mol. Biol.
907	Evol. 37:2153-2154
908	Raj A, Stephens M, Pritchard JK (2014) fastSTRUCTURE: Variational inference of
909	population structure in large SNP data sets. Genetics 197:573-U207
910	Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R (2015) A practical guide
911	to environmental association analysis in landscape genomics. Mol. Ecol.
912	24:4348-4370
913	Richardson JL, Urban MC, Bolnick DI, Skelly DK (2014) Microgeographic adaptation
914	and the spatial scale of evolution. Trends Ecol. Evol. 29:165-176
915	Rohlf F (1993) NTSYS-pc. Numerical taxonomy and multivariate analysis system,
916	Version 2.1. Setauket, New York.

917	Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics
918	under isolation by distance. Genetics 145:1219-1228
919	Rousset F (2008) GENEPOP ' 007: a complete re-implementation of the GENEPOP
920	software for Windows and Linux. Mol. Ecol. Resour. 8:103-106
921	Saco A, Suárez H, Novoa B, Figueras A (2023) A genomic and transcriptomic analysis
922	of the C-type lectin gene family reveals highly expanded and diversified
923	repertoires in bivalves. Mar. Drugs 21:254
924	Sa-Pinto A, Branco MS, Alexandrino PB, Fontaine MC, Baird SJE (2012) Barriers to
925	gene flow in the marine environment: insights from two common intertidal
926	limpet species of the Atlantic and Mediterranean. PLOS One 7:0050330
927	Sharples J, Simpson JH (2019) Shelf sea and shelf slope fronts. In: Reference Module in
928	Earth Systems and Environmental Sciences. Vol. 1, pp 24-34. Elsevier.
929	Simpson JH, Pingree RD (1978). Shallow Sea Fronts Produced by Tidal Stirring. In:
930	Bowman, M.J., Esaias, W.E. (eds) Oceanic Fronts in Coastal Processes.
931	Springer, Berlin, Heidelberg.
932	Sokolov EP, Markert S, Hinzke T, Hirschfeld C, Becher D, Ponsuksili S, Sokolova IM
933	(2019) Effects of hypoxia-reoxygenation stress on mitochondrial proteome and
934	bioenergetics of the hypoxia-tolerant marine bivalve Crassostrea gigas. J.
935	Proteomics 194:99-111
936	Suberg LA, Miller PI, Wynn RB (2019) On the use of satellite-derived frontal metrics
937	in time series analyses of shelf-sea fronts, a study of the Celtic Sea. Deep Sea
938	Res. Part I Oceanogr. Res. Pap. 149:103033
939	Theodosopoulos AN, Hund AK, Taylor SA (2019) Parasites and host species barriers in
940	animal hybrid zones. Trends Ecol. Evol. 34:19-30

941	Thoma J, Stenitzer D, Grabherr R, Staudacher E (2022) Identification, characterization,
942	and expression of a beta-Galactosidase from Arion species (Mollusca).
943	Biomolecules 12:1578
944	Vendrami DLJ, De Noia M, Telesca L, Handal W, Charrier G, Boudry P, Eberhart-
945	Phillips L, Hoffman JI (2019) RAD sequencing sheds new light on the genetic
946	structure and local adaptation of European scallops and resolves their
947	demographic histories. Sci. Rep. 9:7455
948	Vera M, Carlsson J, El Carlsson J, Cross T, Lynch S, Kamermans P, Villalba A, Culloty
949	S, Martinez P (2016) Current genetic status, temporal stability and structure of
950	the remnant wild European flat oyster populations: conservation and restoring
951	implications. Mar. Biol. 163:239
952	Vera M, Maroso F, Wilmes SB, Hermida M, Blanco A, Fernandez C, Groves E,
953	Malham SK, Bouza C, Robins PE, Martinez P, Cockles C (2022) Genomic
954	survey of edible cockle (Cerastoderma edule) in the Northeast Atlantic: A
955	baseline for sustainable management of its wild resources. Evol. Appl. 15:262-
956	285
957	Vera M, Pardo BG, Cao A, Vilas R, Fernandez C, Blanco A, Gutierrez AP, Bean TP,
958	Houston RD, Villalba A, Martinez P (2019) Signatures of selection for
959	bonamiosis resistance in European flat oyster (Ostrea edulis): New genomic
960	tools for breeding programs and management of natural resources. Evol. Appl.
961	12:1781-1796
962	Vilas R, Vandamme SG, Vera M, Souza C, Maes GE, Volckaert FAM, Martinez P
963	(2015) A genome scan for candidate genes involved in the adaptation of turbot
964	(Scophthalmus maximus). Mar. Genom. 23: 77-86

965	Villalba A, Iglesias D, Ramilo A, Darriba S, Parada JM, No E, Abollo E, Molares J,
966	Carballal MJ (2014) Cockle Cerastoderma edule fishery collapse in the Ria de
967	Arousa (Galicia, NW Spain) associated with the protistan parasite Marteilia
968	cochillia. Dis. Aquat. Org. 109:55-80.
969	Wang M, Wang L, Ni D, Yi Q, Wang X, Jia Z, Song L (2018) The mRNA expression
970	profiles demonstrating versatile roles of glutathione S-transferase genes in the
971	mollusk Chlamys farreri. Invertebr. Surviv. J. 15:302-315
972	Waples RS (1998) Separating the wheat from the chaff: Patterns of genetic
973	differentiation in high gene flow species. J. Hered. 89:438-450
974	Woo S, Jeon HY, Kim SR, Yum S (2011) Differentially displayed genes with oxygen
975	depletion stress and transcriptional responses in the marine mussel, Mytilus
976	galloprovincialis. Comp. Biochem. Physiol. Part D Genomics Proteomics 6:
977	348-356

979 Figure legends:

980 Figure 1. Geographical distribution of the *Cerastoderma edule* beds analysed in the

- 981 present study. Ocean bathymetry is shaded in blue. Summer sea surface ocean currents
- 982 are schematically depicted with magenta coloured arrows. Tidal mixing fronts are
- 983 indicated with purple dashed lines. 'UF' stands for Ushant Front, 'CSF' for Celtic Sea
- 984 Front, and 'ISF' for Irish Sea Front. Location codes are shown in Table 1. Beds
- previously analysed by Vera et al. (2022) are marked with asterisks.
- 986 Figure 2. Population structure of *Cerastoderma edule* at different geographical scales
- 987 using fastSTRUCTURE. Each vertical bar represents one individual, and the colour
- 988 proportion of each bar represents the posterior probability of assignment of each
- 989 individual to the different clusters (K) inferred by the program. The most likely K = 3
- using the whole dataset (A), and K = 2 using the 57 shared divergent outliers between
- 991 methodologies and K = 3 using the total 186 divergent outliers (B) for the SW British
- 992 Isles are represented. Codes are shown on Table 1. Plots for all the K values tested for
- 993 the different datasets are shown in Supplementary Figures.
- 994 Figure 3. Discriminant Analysis of Principal Components (DAPC) plots of
- 995 Cerastoderma edule beds belonging to the SW British Isles. The weight of retained
- 996 discriminant analysis (DA) and principal components selected are shown on left bottom
- box and right bottom box, respectively. Results using the complete whole dataset (A),
- 998 the neutral dataset (B), the 35 shared divergent outliers between methodologies (C) and
- 999 the 186 divergent outliers (D) are represented. Codes are shown on Table 1.
- 1000 Figure 4. Discriminant Analysis of Principal Components (DAPC) plots of
- 1001 Cerastoderma edule beds belonging to Galicia. The weight of retained discriminant
- analysis (DA) and principal components selected are shown on left bottom box and

- 1003 right bottom box, respectively. Results using the complete dataset (A), neutral dataset
- 1004 (B) and 51 divergent outliers (C) are represented. Codes are shown on Table 1.

Table 1. *Cerastoderma edule* beds analysed in the present study. Location, sampling year, geographical coordinates, code, country, number of
 individuals collected (N initial) and analysed after quality filtering (N), observed heterozygosity (Ho), expected heterozygosity (He), inbreeding
 coefficient (Fis) for all dataset and for polymorphic loci are shown. Locations in italics were previously analysed by Vera et al. (2022).

								All dataset		et	Pol	lymorphic loci (MAF >	0.017)		
Location	Year	Lat (deg N)	Lon (deg E)	Code	Country	N initial	Ν	Но	He	Fis	Polymorphic loci	% Polymorphic loci	Но	He	Fis
Galway Connemara	2020	53.306	-9.846	IGC_20	Ireland	27	27	0.080	0.085	0.067	4205	45.5	0.166	0.179	0.074
Kerry- Feale	2020	52.488	-9.652	IKF_20	Ireland	30	30	0.080	0.087	0.080	4362	47.2	0.161	0.176	0.088
West Cork-Cockle Beach	2020	51.463	-9.744	IWC_20	Ireland	30	30	0.080	0.085	0.064	4294	46.4	0.163	0.175	0.070
Dundalk Bay-Annagassan	2018	53.884	-6.341	IDA_18	Ireland	29	29	0.074	0.080	0.082	2993	32.4	0.161	0.177	0.090
Dundalk Bay-Cooley	2018	53.996	-6.287	IDC_18	Ireland	22	22	0.077	0.083	0.081	3493	37.8	0.173	0.190	0.087
Dee Estuary	2017	53.343	-3.174	WDE_17	Wales	30	28	0.071	0.076	0.074	2561	27.7	0.167	0.182	0.084
Burry	2017	51.643	-4.166	WBY_17	Wales	30	30	0.073	0.080	0.091	3529	38.2	0.148	0.165	0.101
Camel Estuary (Cornwall)	2020	50.531	-4.930	ECE_20	England	24	24	0.073	0.081	0.105	3667	39.6	0.159	0.180	0.114
Somme Bay	2017	50.201	1.627	FBS_17	France	30	30	0.071	0.080	0.111	3438	37.2	0.147	0.167	0.119
Baie des Veys (Brévands)	2019	49.365	-1.150	FBV_19	France	26	26	0.079	0.081	0.022	3579	38.7	0.169	0.174	0.030
Gouville sur mer	2019	49.105	-1.612	FGO_19	France	23	23	0.077	0.082	0.059	4055	43.8	0.163	0.174	0.063
Arcachon Bay	2017	44.580	-1.238	FAR_17	France	30	30	0.074	0.083	0.111	4335	46.9	0.140	0.159	0.120
O Barqueiro	2017	43.722	-7.701	SBA_17	Spain	30	30	0.076	0.085	0.107	4595	49.7	0.140	0.158	0.115
Miño	2017	43.361	-8.206	SMI_17	Spain	30	30	0.073	0.081	0.102	4159	45.0	0.140	0.157	0.110
Anllóns	2017	43.220	-8.943	SAN_17	Spain	30	29	0.073	0.081	0.101	3526	38.1	0.143	0.161	0.110
Ría de Noia	2017	42.790	-8.923	SNO_17	Spain	30	30	0.078	0.087	0.099	4885	52.8	0.139	0.156	0.107
Lombos do Ulla	2017	42.629	-8.775	SLO_17	Spain	30	30	0.075	0.085	0.113	4602	49.8	0.137	0.156	0.120
Sarrido	2017	42.507	-8.826	SSA_17	Spain	30	30	0.074	0.083	0.103	4317	46.7	0.140	0.158	0.112
Vilanova	2017	42.561	-8.831	SVI_17	Spain	27	25	0.072	0.081	0.112	3175	34.3	0.153	0.173	0.118
Campelo	2017	42.421	-8.685	SCA_17	Spain	30	30	0.073	0.082	0.115	4287	46.3	0.140	0.159	0.121
Moaña	2017	42.286	-8.730	SMO_17	Spain	20	19	0.070	0.077	0.088	2361	25.5	0.181	0.200	0.093
Baiona	2018	42.117	-8.822	SBI_18	Spain	17	17	0.075	0.082	0.092	3609	39.0	0.174	0.192	0.097

Table 2. Results of the redundancy analysis (RDA) on the SW British Isles region of *Cerastoderma edule*. Only variables included by the
 forward selection model are shown.

SW British Isles			Complete dataset		Neu	tral dataset	186 total outlier dataset		
Model	Season	Variable	P-value	Adjusted R ²	P-value	Adjusted R ²	P-value	Adjusted R ²	
		Latitude	-		-		0.005		
	Reproductive period	Longitude	0.001	0.102	0.001	0.098	0.001	0.414	
		SBS	-		_		0.051		
		BSS	0.004		0.001		-		
		Latitude	0.001		0.001		0.009		
All seascape variables	Winter	Longitude	0.016	0.087	0.015	0.080	0.001	0.423	
		SBS	-		-		0.030		
	Summer	Latitude	-		-	0.098	0.012		
		Longitude	0.002	0 102	0.003		0.001	0.410	
		SBS	-	0.102	-		0.055	0.410	
		BSS	0.001		0.001		-		
		SST	-		-		0.013		
	Reproductive period	SBT	-	0.052	-	0.052	0.001	0.210	
		BSS	0.002	0.053	0.002	0.053	-	0.319	
Only abiotic variables		NPP	-		-		0.027		
		SST	0.003		-		-		
	Winter	SSS	-	0.067	-	0.069	0.041	0.202	
		BSS	-		0.010		-		

		NPP	0.017		0.008		0.019	1012	
		SST	0.011		0.014		0.001		
	G	SBT	-	0.086	-	0.082	0.009	0.255	
	Summer	SBS	-	0.080	-	0.085	0.083	0.355	
		BSS	0.001		0.001		-		
~					Neutral dataset		51 total outlier dataset		
Galicia			Con	nplete dataset	Neut	ral dataset	51 to	tal outlier dataset	
Galicia Model	Season	Variable	Con P-value	nplete dataset Adjusted R ²	Neut P-value	ral dataset Adjusted R ²	51 to P-value	tal outlier dataset Adjusted R ²	
Galicia Model	Season Reproductive period	Variable Latitude	P-value	nplete dataset Adjusted R ² -	Neut P-value -	ral dataset Adjusted R ²	51 to P-value 0.012	tal outlier dataset Adjusted R ² 0.124	
Galicia Model All seascape variables	Season Reproductive period Winter	Variable Latitude Latitude	Con P-value - -	nplete dataset Adjusted R ²	Neut P-value	ral dataset Adjusted R ²	51 to P-value 0.012 0.011	Adjusted R ² 0.124 0.124	
Galicia Model All seascape variables	Season Reproductive period Winter Summer	Variable Latitude Latitude Latitude	- Con P-value -	nplete dataset Adjusted R ²	Neut P-value - - -	ral dataset Adjusted R ²	51 to P-value 0.012 0.011 0.008	Adjusted R ² 0.124 0.124 0.124	
Galicia Model All seascape variables	Season Reproductive period Winter Summer Reproductive period	Variable Latitude Latitude Latitude		nplete dataset Adjusted R ²	<u>P-value</u> - - - -	ral dataset Adjusted R ²	51 to P-value 0.012 0.011 0.008	Adjusted R ² 0.124 0.124 0.124 0.124 -	

Adjusted R² and P-value associated to each variable of its selection stage. SST: Sea Surface Temperature; SBT: Sea Bottom Temperature; SSS: Sea Surface Salinity; SBS:
 Sea Bottom Salinity; BSS: Bottom Shear Stress; NPP: Net Primary Production.

-

-

-

-

1016

Summer

-

-

1017 Table 3. Distribution of divergent outliers and markers correlated with environmental

1018 variables in the SW British Isles and Galicia across the *Cerastoderma edule* genome

1019 (version 4.0).

	_	Outlier lo			
Mega-scaffold (chromosome)	Chromosome length (bp)	British Isles	Galicia	Shared	Markers correlated envionmental variables*
C1	64,609,245	21	11	3	5 (3)
C2	56,319,168	14	2		7 (3)
C3	55,987,847	22	3	1	6 (5)
C4	52,087,795	18	5	2	7 (6)
C5	50,828,891	11	1	1	3 (2)
C6	40,237,005	13	3	2	4 (1)
C7	39,934,596	2	1		
C8	39,684,391	9			2 (1)
C9	39,070,162	11	3		2 (1)
C10	38,264,924	14	8	2	1
C11	38,197,540	2			1
C12	36,327,582	6	1		1 (1)
C13	35,955,507	10			5 (2)
C14	33,816,358	5			
C15	31,726,440	3	1	1	3 (1)
C16	31,510,408	10	8	1	2 (2)
C17	26,587,828	4			2(1)
C18	22,603,465	1	1	1	
C19	21,711,631	4	1	1	1
Other scaffolds		6	2		2 (1)
Total		186	51	15	54 (30)

1020

1021 * Only detected in SW British Isles; in parentheses those markers also identified as

1022 outliers for divergent selection

1023

1024

