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ABSTRACT 

Ocean surface vector wind (OVW) is an essential parameter for understanding the physics 

and dynamics of the ocean-atmosphere system, thereby improving weather forecasting and climate 

studies. Satellite scatterometers, synthetic aperture radars, and polarimetric microwave 

radiometers have provided almost global coverage of ocean surface vector wind for the last four 

decades. Nonetheless, a consistent and uninterrupted long-time data record with the capability of 

resolving sub-diurnal variability has remained a critical challenge over the years.  

The Global Precipitation Measurement Mission (GPM) is a satellite mission designed to 

provide space-based precipitation information on a global scale with complete diurnal sampling. 

This dissertation presents a combined active and passive retrieval algorithm to investigate the 

feasibility of ocean surface vector wind measurements from the GPM core satellite by utilizing its 

Ku- and Ka-band Dual-frequency Precipitation Radar (DPR) and the multi-frequency GPM 

Microwave Imager (GMI) observations.  

The unique GPM active and passive geophysical model functions were empirically 

developed by characterizing the anisotropic nature of ocean backscatter of normalized radar cross-

section (σ°) and brightness temperature (𝑇𝐵) at multiple bands. For passive GMF, the modified 2nd 

Stoke’s parameter (linear combination of V and H-pol 𝑇𝐵s) was used to mitigate the atmospheric 

contamination and to enhance the anisotropic wind direction signal superimposed on GMI 𝑇𝐵s.  

The GMFs were combined in a maximum likelihood estimation (MLE) algorithm to infer 

the OVW. Finally, the retrieval algorithm was validated by comparing OVW retrievals with 

collocated NASA Advanced Scatterometer (ASCAT) wind vectors. The wind speed and direction 

retrieval performance statistics are promising and comparable with those of conventional 
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scatterometer and polarimetric radiometer data products. The algorithm demonstrates the 

capability of the GPM to provide a long-term OVW data record for the entire GPM-TRMM era, 

which may include unique monthly diurnal OVW statistics. 
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CHAPTER 1: INTRODUCTION 

1.1: Background  

 Ocean surface vector wind (OVW) is a crucial parameter for an extensive range of 

operational and scientific applications, including numerical weather prediction (NWP) and climate 

studies [1]–[3]. OVW is one of the main drivers of ocean circulation, and it affects the transfer and 

distribution of heat and moisture fluxes, and thereby, it regulates the evaporation, convection, 

precipitation, and the overall hydrological cycle that shapes the large-scale atmospheric circulation 

and global climate [4], [5]. This is why the Global Climate Observing System (GCOS) science 

panels of the World Meteorological Organization (WMO) recognized OVW as one of the Essential 

Climate Variables (ECVs) [5], [6].  

 Satellite-based instruments have been providing OVW measurements on a global scale for 

the last four decades which has significantly improved our knowledge of the Earth’s climate and 

weather patterns. However, almost all the present and past satellite OVW sensors, except the 

RapidScat [7], have been in Sun-synchronous polar orbits. Their temporal resolution has therefore 

remained insufficient for many applications [2]. The Ocean Vector Wind Science Team 

(OVWST), which coordinates the international OVW community and relevant data products from 

Earth-observing satellite missions, recommends at least one scatterometer in a non-sun-

synchronous orbit with a  minimum of two others in sun-synchronous orbits with different crossing 

times of a day [1]. RapidScat was the first scatterometer in a non-sun-synchronous equatorial orbit, 

but it existed only for ~2 years [7].  

 Many studies have reported strong diurnal and semi-diurnal variability of tropical vector 

winds that may affect cloud formation and precipitation in the tropics [8]–[12]. The diurnal 
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variability of OVW affects the vertical mixing and exchange of heat and gases between the 

atmosphere and ocean [12]. These signals create a bias between scatterometer wind observations 

during ascending and descending passes, thus affecting the cross-calibration between satellite 

scatterometers with different local crossing times. Therefore, removing this bias is necessary to 

create a long-term climate-quality intercalibrated dataset [13]. Understanding the diurnal 

variability of ocean surface vector wind is essential for comprehending the fundamental 

mechanism of diurnal variability of precipitation and air-sea interaction in the tropics and other 

regional and global climate studies. However, accurate assessment of diurnal winds has been a 

long-standing challenge because all the present and past satellite scatterometers, except the 

RapidScat on the International Space Station, have been in sun-synchronous polar orbits, resulting 

in sampling a given geographical position twice daily (separated by 12 h), which is insufficient to 

determine tropical winds' diurnal and semi-diurnal cycles [12]. RapidScat was the first 

scatterometer in a non-sun-synchronous orbit that provided full diurnal sampling and demonstrated 

the importance of diurnal sampling [14]–[16]. However, this mission existed only for ~2 years 

(September 2014 to August 2016). GPM, being in a non-sun-synchronous orbit (65° inclination) 

[17], may fill this gap with a proper OVW retrieval algorithm besides precipitation measurements. 

 The Global Precipitation Mission (GPM) launched in February 2014 [18], [19], and the 

GPM Core Observatory has operated in a non-sun-synchronous orbit (407-km altitude and 65° 

inclination) as a follow-on mission to the Tropical Rainfall Measuring Mission (TRMM), which 

provided more than 17 years of valuable microwave observations before ending in April 2015, 

also from a similar non-sun-synchronous orbit (401-km altitude and 35° inclination) [20]. The 

GPM-CO has a very well calibrated passive multifrequency microwave imager (GMI) and an 
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active dual frequency (Ku and Ka-band) precipitation radars (DPR). The GMI is a conical scanning 

passive radiometer, while the DPR is an active radar cross-track scanner. Both were designed as 

complementary instruments to determine the 3D structure of global precipitation in ±65° latitudes 

[21]. Although neither of these instruments is optimum for OVW measurements, each has a robust 

vector wind (both wind speed and direction) sensitivity. This will be further discussed in Chapter 

3 and 4.  

 The ocean surface normalized radar backscatter, known as 𝜎0, is biharmonic with wind 

direction relative to the radar azimuth. This nature of radar return requires multiple azimuth views 

of the same wind vector cell (WVC) to obtain an unambiguous OVW solution in the inversion. 

For this, conventional scatterometers employ multi-look antenna system, either in fixed fan beam 

[22] or rotating pencil beam [23], or rotating fan beam [24] structure (see Chapter 2 for more 

details). But GPM DPR, both Ku- and Ka-band radar has only a single look, they scan cross track 

to the flight direction. So, an unambiguous OVW solution is not possible only from DPR. 

Moreover, the incidence angle range of DPR (-18 degree through 18 degree) while suitable for 

obtaining 3D rain profile, it is not optimum for OVW measurement. Some recent studies, 

nevertheless, showed the scaler wind measurement from GPM DPR [25], [26] is possible with 

reasonable accuracy (< 2 m/s). However, vector wind retrieval from GPM DPR has not been 

possible so far. Onboard GPM-CO, there is GMI which scan the same WVC conically with a 

different azimuth view. So, both can be combined to obtain an essential azimuth diversity to 

resolve the ambiguity problem. This is further illustrated in Chapter 2. 

 Linearly polarized microwave radiometers have also been limited to providing scaler winds 

only. Wentz [27] first demonstrated that linearly polarized brightness temperature (𝑇𝐵) 
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observations from the SSMI contain wind direction (WD) information. However, due to strong 

atmospheric interference, the use of both V- and H-pol 𝑇𝐵s for measuring wind direction has not 

been successful. Meissner and Wentz [28] showed that the polarization combination 2𝑇𝐵𝑉 – 𝑇𝐵𝐻 

is almost insensitive to atmospheric fluctuations. Soisuvarn et al. [29] used a more rigorous 

approach to show that the linear combination of 𝑇𝐵𝑉 and 𝑇𝐵𝐻, expressed as AVH = (A*𝑇𝐵𝑉 – 𝑇𝐵𝐻), 

where A was derived from the Advanced Microwave Scanning Radiometer (AMSR) 𝑇𝐵s using 

radiative transfer theory, results in an improved "ocean-signal" to "atmosphere-noise" ratio. This 

approach demonstrated the possibility of OVW measurement from linearly polarized 𝑇𝐵s using 

polarized combinations. However, the performance of OVW retrieval for wind speeds less than 10 

m/s was not satisfactory. Thus, several other studies have attempted to combine active and passive 

instruments to measure OVW [30]–[33]. 

 In this dissertation, we demonstrate GPM's vector wind measurement potential by 

combining its active and passive measurements, which offer the opportunity to create a long-term 

OVW data product. Flying in a low-earth, non-sun-synchronous orbit, GPM provides a full diurnal 

global ocean sampling in ±65° latitude in less than two months. Therefore, OVW measurements 

from GPM will significantly facilitate the in-depth analysis of regional and global diurnal 

variability of ocean winds. 

1.2: Aim and Overview of the Dissertation 

 Therefore, the objective of this dissertation are as follows: 

• To investigate the potential for obtaining operational OVW measurements from the GPM Core 

satellite, 
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• Perform statistical analysis of 6 years of observations of GPM active and passive instruments 

to characterize their OVW signature, 

• Develop active and passive ocean surface geophysical model functions (GMFs) for Dual-

frequency Precipitation Radar (DPR) backscatter and Multi-frequency GPM Microwave 

Imager (GMI) brightness temperature, 

• Develop a combined active and passive microwave OVW retrieval algorithm, and 

• Validation of OVW retrievals with ASCAT scatterometer and ERA-5 numerical weather 

model winds. 

1.3: Organization of the dissertation 

 Chapter 1 discusses the background and goals of this dissertation. In Chapter 2, the state-

of-the-art of active, passive, and combined active/passive ocean wind vector measurement 

instruments and techniques are discussed. The characteristics and scan geometries of the GPM 

sensors are also provided in the context. The development of active geophysical model functions 

(GMFs) at Ku- and Ka-band is described in Chapter 3. These GMFs characterize the wind speed 

dependence and azimuthal anisotropy of Ku- and Ka-band σ0over an EIA range of ±18˚. SST 

effects on the σ0 GMFs are evaluated. In Chapter 4, passive GMI geophysical model functions 

(GMFs) are described for 3 difference frequency bands. The passive GMFs use the modified 2nd 

Stoke’s parameter (a linear combination of V and H-pol 𝑇𝐵s) to mitigate the atmosphere and 

enhance the anisotropic WD signal superimposed on GMI 𝑇𝐵s. Chapter 5 describes the combined 

active and passive ocean vector wind (OVW) retrieval algorithm that uses DPR and GMI 

measurements and GMFs in a maximum likelihood estimation procedure to infer wind speed and 

wind direction. The OVW retrieval algorithm was validated in Chapter 6 by comparing retrievals 
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with collocated ERA5 reanalysis and Advanced Scatterometer (ASCAT) vector wind data 

products. The statistics of WS and WD retrieval accuracy performance are presented. Finally, 

Chapter 7 concludes the dissertation with a summary of the significance and possible applications 

of this dissertation. It also provides directions for potential future research.  

 

  



7 

 

CHAPTER 2: MICROWAVE REMOTE SENSING OF OCEAN 

VECTOR WINDS 

2.1: Introduction 

 The history of microwave remote sensing began with the emergence of microwave radar 

technology during World War II, where radar backscatter was observed to be correlated with wind 

speed, wave height, and radar azimuth [34], [35]. Prof. R. K. Moore was the first to envision the 

potential of this technology for ocean studies, and in the late 60s, he collaborated with notable 

oceanographer Prof. Willard J. Pierson on radar remote sensing of ocean waves [36]. In the early 

70s, research was carried out that built the foundation for space-based remote sensing. NASA's 

SeaSat-A, launched in July 1978, was the first satellite mission for oceanographic applications that 

carried a scatterometer, the SeaSat-A Satellite Scatterometer (SASS), for OVW measurement [37]. 

Since then, many satellite missions have flown that carry various active and passive instruments 

with diverse capabilities to provide a continuous OVW data record.  

 Active microwave instruments -- scatterometers, altimeters, synthetic aperture radars 

(SARs), etc., are radar-based devices that measure the ratio of the backscattered microwave signal 

to the transmitted signal. Passive microwave instruments -- radiometers, measure, on the other 

hand, the polarized absolute blackbody emission from the Earth’s surface and atmosphere. 

 Radar scatterometers have been the primary choice for vector wind measurement because 

of the sensitivity of their geophysical model function to the ocean vector wind parameter and the 

lack of sensitivity to other atmospheric and oceanic physical parameters [5].  Nevertheless, 

microwave radiometers have also been providing scalar winds since 1987, and since 2003, the first 

space-based polarimetric radiometer, WindSat, has provided comparable (to scatterometer) vector 
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wind measurements [38], [39]. Although the primary purpose of microwave altimeters is 

measuring sea-surface height, it has also contributed to the space-based monitoring of scaler winds. 

But they have a narrow swath near the nadir and offer minimal spatial coverage. SARs are high-

spatial resolution imaging radars, but the lack of repeating spatial coverage on a daily basis has 

limited their utility for operational measurements. Nevertheless, they have found limited 

applications for monitoring ocean winds with kilometer-scale spatial resolution, which are more 

suitable for some applications, like coastal remote sensing. Further, their vector wind capability is 

currently under research [40]. 

 In addition, there are different categories of instruments, like NASA’s Soil Moisture Active 

Passive (SMAP), that employ both active radars and passive radiometers to measure other 

geophysical parameters (soil moisture and ocean salinity); but they have demonstrated the 

capability of OVW measurements as secondary products [41]–[44]. The GPM is a similar mission 

that carries dual-frequency precipitation radars and a multi-frequency microwave radiometer for 

precipitation measurements, and this dissertation investigates developing GPM’s OVW 

measurement capability. This Chapter provides a quick review of the active and passive OVW 

technologies. In the following section, we will discuss the GPM instrument characteristics from 

the perspective of these. 

2.2: Active Measurement of Ocean Vector Wind 

 Active ocean vector wind measurement is based on the radar principle -- active instruments 

transmit microwave electromagnetic pulses and detect the reflected or the backscattered signal. 

The received power by a monostatic radar (using the same antenna for transmission and reception) 

receiver can be computed by the so-called radar equation, 
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𝑃𝑟 = {(
𝑃𝑡𝐺

4𝜋𝑅2
∗ σ) ∗

1

4𝜋𝑅2
} ∗  𝐴𝑒 = {(

𝑃𝑡𝐺

4𝜋𝑅2
∗ σ) ∗

1

4𝜋𝑅2
} ∗  

𝜆2𝐺

4𝜋
  =  [

𝑃𝑡𝐺
2𝜆2

(4𝜋)3𝑅2
] ∗ σ,     watts (2.1) 

where, 𝑃𝑡 is the transmitted power in watts, 𝐺 is the gain of the radar antenna, 𝐴𝑒 is the effective 

aperture area of the antenna (𝑚2), which in turn is determined by the antenna gain and wave length, 

𝜆 of the incident wave (m), 𝑅 is the distance between the radar and ocean surface (spacecraft 

altitude in meters), and σ is the radar cross section in square meters. The first term in Eq. 2.1 then 

represents the incident flux at the ocean surface. Incident flux times the effective target scattering 

area (σ) is the backscattered power by the ocean surface. Finally, the proportion of the 

backscattered flux intercepted by the radar antenna back is determined by the effective aperture 

area of the antenna. 

From Eq. 2.1, the definition of the radar cross section can be derived. 

σ = 
bacscattered power per unit solid angle

incident power density/4π
 ∝ 

|𝐸𝑏𝑎𝑐𝑘𝑠𝑐𝑎𝑡𝑡𝑒𝑟|2

|𝐸𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡|
2   (2.2) 

where 𝐸𝑏𝑎𝑐𝑘𝑠𝑐𝑎𝑡𝑡𝑒𝑟 and 𝐸𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 are the backscattered and incident electric field intensity 

respectively. 

Note, radar backscatter is a property scattering object alone, and it is a measure of the ratio 

of received power to the transmitted power. The normalized radar cross section (NRCS) is defined 

as the average radar cross-section over radar’s instantaneous field of view (IFOV), 

σ0 = 
σ

𝑃𝑢𝑙𝑠𝑒 𝐼𝐹𝑂𝑉
 (2.3) 

Now, for the pulse limited footprint (IFOV), the expression for can derived as:  

σ0 = [
(16𝜋)2 cos𝜃𝑖

𝐺2𝜆2𝛽2 ∗ 𝑅2 ∗  
𝑃𝑟

𝑃𝑡
 ] ∝  

𝑃𝑟

𝑃𝑡
 (2.3) 
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where 𝜃𝑖 is the incidence angle and β is the beamwidth of the pulse, and both are known from 

instrument geometry. So, measuring σ0 reduces to making a relative power measurement (i.e., 
𝑃𝑟

𝑃𝑡
 

in watts). σ0 depends on the physical and electrical properties of the target with respect to the radar 

sensor's frequency, polarizations, incidence, and azimuth angle.  

The actual ocean surface is not smooth; the surface (air drag) friction between winds and 

the ocean surface transfers atmospheric wind momentum that causes multi-scale roughness (small-

scale ocean waves). σ0 at microwave frequency is a strong function of small-scale (centimeter to 

decimeter) capillary waves that are superimposed on larger-scale gravity waves (on the order of 

meters) as illustrated in Figure 2.1a. These centimeter-scale capillary waves, which are periodic 

but asymmetric, interact with electromagnetic radiation of the wavelength of similar orders in a 

fashion that involves multiple mechanisms [45], [46]. As a result, the σ0 vary as a function of wind 

speed and wind direction such that higher wind speed causes higher roughness that results in larger 

σ0. 
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Figure 2.1: Basic principle of active remote sensing, (a) ocean surface backscattering, (b) wind retrieval algorithm 

 

 Depending on the angle of incidence, Bragg scattering is the most dominant mechanism 

for wind-induced ocean surface roughness for the microwave frequency of interest [47], [48]. 

Mathematically, the condition for Bragg resonance is given by, 

 2 𝜆𝑐 sin 𝜃𝑖 = 𝑛𝜆 (2.3) 

where 𝜆 and  𝜆𝑐 are the wavelength of incident radar signals and small-scale ocean surface capillary 

waves, 𝜃𝑖 is the incidence angle, and 𝑛 is a positive integer number (major radar backscatter comes 

from 𝑛 =1 [46]). As seen from Eq. 2.3, for a particular microwave frequency, the Bragg resonance 

is limited to a critical incidence angle, but there is a continuum of ocean wavelengths in the 

roughness spectrum that results in effective Bragg scattering over a wide range of incidence angles. 

For example, conventional Ku-band and C-band scatterometry generally uses the incidence angle 
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range between 20° ≤ 𝜃𝑖 ≤ 70°, where the upper bound is also determined by the requirement of 

a reliable signal-to-noise ratio (SNR). For a lower incidence angle (near nadir), the Bragg 

scattering becomes weak, and quasi-specular reflection becomes gradually dominant with a 

transition region in between [49]–[51]. 

2.2.1: Geophysical Model Function (GMF) 

The empirical relation between σ0 and wind speed and direction relative to the azimuth for 

a particular frequency, incidence angle, and polarization is conventionally called the Geophysical 

Model Function (GMF). Some other secondary factors, like sea surface temperature, wave heights, 

etc., do affect the GMF to limited extent, so they are also considered accordingly. Although some 

analytical relation for GMF exists, GMFs are usually developed empirically or semi-empirically 

(physics-based) for better reliability.  

σ0 = GMF(𝑈10𝑁, 𝜃, 𝜙, 𝑓, 𝑝) (2.4) 

where 𝑈10N is the equivalent neutral stability wind speed in m/s at 10-meter height [52], [53] (see 

APPENDIX A for more about neutral stability wind 𝑈10N), θ is Earth incidence angle (deg.), 𝜙 

relative wind direction (deg), f is the signal frequency (GHz), and p is the polarization of the signal. 

2.2.2: Scatterometer Characteristics 

 There have been many scatterometer missions since the launch of the SeaSat SASS in 1978. 

Some of the major instruments and their major characteristics are summarized in Table 2.1 below. 

In terms of frequency bands, there have been two major complementary bands used in all the 

instruments so far – the Ku-band (~14 GHz) and the C-band (~5 GHz) scatterometers. The 

National Aeronautics and Space Administration (NASA) scatterometers have historically been 

using the Ku-band (from SeaSat to RapidScat). In contrast, the European Space Agency (ESA) has 
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predominantly used the C-band scatterometers (AMIs on ERS-1 and -2, ASCATs onboard MetOp-

A, -B, and-C satellites). Both bands have their relative merits and shortcomings [35], [54]. Ku-

band scatterometers have higher wind sensitivity. However, they are more sensitive and affected 

by rain and other atmospheric contaminations. 

 

Table 2.1: Scatterometer Missions and their Instrument Characteristics 

 

 

 On the other hand, C-band scatterometers are less impacted by rain. But they have less 

wind sensitivity for lower and higher wind conditions. Another significant difference arises from 

the scan geometries of the instruments. All initial Ku-band scatterometers and all C-band 

scatterometers have used fixed fan-beam configuration that uses static antennas at multiple 

azimuth directions on each side of the swath to resolve directional ambiguities [55]. Fan-beam 

antennas use single or dual polarizations and variable incidence angles, avoiding near nadir range 
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that leaves a nadir gap at the middle of the swath. Although fan-beam instruments provide a 

homogenous quality wind over the entire swath, the nadir gap poses a problem in daily coverage. 

With the launch of the SeaWinds scatterometer aboard the QuikSCAT satellite, NASA set up a 

new design, a conically scanning pencil-beam antenna configuration [56], that filled the nadir gap 

and resulted in a very wide swath that provided almost a global coverage in a single day. But the 

quality of the winds depends on the position of the swath, with better quality in the “sweet swath” 

in the middle and poor quality over the nadir and far swath where azimuth diversity is poor. Later, 

scatterometers by NASA (RapidScat [7], [57]) and other agencies (HSCAT on HY-2 satellite 

series by the China National Space Administration (CNSA) [58], [59], OSCAT series by Indian 

Space Research Organization (ISRO)) followed a similar configuration to continue the legacy [54], 

[60], [61]. Recently, unlike either fixed fan-beam or rotating pencil-beam configuration, a new 

design called the rotating fan-beam structure has been employed in China-France Oceanography 

Satellite (CFOSAT) scatterometer (CSCAT) [24], [62], [63]. It is expected to provide better-

quality winds by taking advantage of both the rotating pencil-beam and fixed-fan beam 

scatterometers [24]. 

2.2.3: OVW Retrieval Algorithm 

 The ocean vector wind retrieval procedure, as shown in Fig. 2.1b, usually starts with 

preprocessing of σ0 measurements include calibration, gridding, and filtering for non-wind 

conditions such as ice, land, etc., followed by the inversion, where the measurement is compared 

with trial wind speed and direction with the help of a pre-tuned GMF. This inversion is usually 

non-linear, and thus non-linear optimization technique such as the maximum likelihood estimation 

(MLE) is used [64]. Due to the biharmonic nature of σ0 with wind direction, multiple ambiguous 
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vector wind solutions result from the inversion. Then an appropriate ambiguity removal (AR) 

algorithm, which is initialized with an analytic wind field from the numerical weather prediction 

(NWP) model (called ‘nudging’), to select the best OVW solution, ensuring the spatial and 

metallurgic consistency [65], [66]. 

2.3: Passive Measurement of Ocean Scaler and Vector Wind 

 Passive remote sensing of ocean surface winds relies on the principle of microwave 

radiometry. A part of the total energy received by the Earth’s atmosphere from the sun and cosmic 

background in the form of electromagnetic radiation is scattered and absorbed by it. The rest is 

transmitted toward the Earth's surface, where it is further scattered and absorbed. According to the 

thermodynamic principle, the absorption of electromagnetic energy is followed by the rise in 

temperature, and under thermal equilibrium, the absorption rate equals the emission rate. The 

spectral brightness intensity, 𝐼𝑓 , due to the emission by the Earth's surface is determined by 

Planck’s quantum theory of blackbody radiation [47], 

𝐼𝑓 = 
2ℎ𝑓3

𝑐2
 (

1

𝑒ℎ𝑓/𝑘𝑇 − 1
) (2.5) 

 

where h is Planck’s constant (joules), k is Boltzmann’s constant (joules/K), f is the frequency (Hz), 

c is the speed of light in vacuum (m/s), and T is the absolute physical temperature (K). The unit of 

is given in W𝑚−2𝑠𝑟−1𝐻𝑧−1. 

 For the microwave region of the electromagnetic spectrum, where ℎ𝑓/𝑘𝑇 << 1, Eq. (2.5) 

can be well approximated by Rayleigh-Jean’s law, which simplifies Planck’s law as follows: 
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𝐼𝑓 ≈  
2𝑘𝑇

𝜆2
  (2.6) 

 

 Now, if a polarized antenna with an effective receiving aperture area 𝐴𝑟 and radiation 

pattern 𝐹(𝜃, 𝜙), surrounded by a blackbody with brightness intensity given by Eq. (2.6), the total 

power received by the antenna can be provided by, 

𝑃 =  
1

2
 𝐴𝑟 ∫ ∬

2𝑘𝑇

𝜆2
 

4𝜋

𝑓2

𝑓1

 𝐹(𝜃, 𝜙) 𝑑𝛺 𝑑𝑓 (2.7) 

 If the receiver is bandlimited by a narrow bandwidth B, and is approximately constant over 

the bandwidth, Eq. (2.7) simplifies to, 

𝑃 =  
𝑘𝑇𝐵𝐴𝑟

𝜆2  ∬  
4𝜋

𝐹(𝜃, 𝜙) 𝑑𝛺 = 𝑘𝑇𝐵(𝜃, 𝜙)𝐵 (2.8) 

where ∬  
4𝜋

𝐹(𝜃, 𝜙) 𝑑𝛺 = 
𝜆2

𝐴𝑟
 is the solid angle subtended by the antenna pattern, and 𝑇𝐵(𝜃, 𝜙) is 

the blackbody equivalent radiometric brightness temperature or the material's brightness 

temperature. The brightness temperature, 𝑇𝐵(𝜃, 𝜙), is related to the physical temperature 𝑇 of the 

material by its emissivity such that [47], [67]: 

𝑇𝐵(𝜃, 𝜙) =  𝐸(𝜃, 𝜙) 𝑇 (2.9) 

where the 𝑇 is the physical temperature of the material for the ocean surface; it is the sea surface 

temperature (SST, 𝑇𝑆). The 𝜃 and 𝜙 within the parenthesis indicate the brightness temperature, 𝑇𝐵, 

is a function of incidence and azimuth angle. It is also a function of the frequency and polarization 

of the signal used. For simplicity, we will use, 𝑇𝐵, to represent the brightness temperature, and 𝐸 

to indicate the surface emissivity. 
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 Figure 2.2 illustrates the radiative transfer process and passive microwave remote sensing 

of ocean surface winds. Since the microwave reflectivity R is a function of wind-induced ocean 

surface roughness, the emissivity, E, is also the function of the same, according to Kirchhoff’s law: 

 𝐸 + 𝑅 = 1  (2.10) 

 Brightness temperature (𝑇𝐵) from multifrequency icrowave radiometers are inverted to 

retrieve different environmental parameters including ocean winds [38]. Spectral combinations of  

𝑇𝐵 measurement is usually utilized.  

 

Figure 2.2: Basic principle of passive remote sensing, (a) ocean surface scattering, (b) wind retrieval algorithm 

 

 Microwave radiometers began measuring ocean surface scalar wind at the same time as 

microwave scatterometers with the launch of the Scanning Multichannel Microwave Radiometer 

(SMMR) on board the SeaSat satellite in 1978. When SeaSat failed, the second SMMR instrument 

on the Nimbus-7 spacecraft, launched at the same time, continued the wind speed measurements. 

Atmosphere

P       
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The operational measurement of ocean surface scalar winds began in 1987 with the launch of the 

Special Sensor Microwave/Imager (SSMI) series by the US Department of Defense (DoD) and the 

National Oceanic and Atmospheric Administration (NOAA) as part of the Defense Meteorological 

Satellite Program (DMSP) [13]. The DMSP SSMI (later the SSMIS, the Special Sensor Microwave 

Imager/Sounder) series has continued the legacy to date, launching 10 more follow-up sensors. 

Other agencies, including NASA and the Japan Aerospace Exploration Agency, have also 

launched microwave radiometers that have provided long-term ocean scalar data records. 

 However, the majority of radiometers launched so far (with the exception of WindSat and 

the recently launched Compact Ocean Wind Vector Radiometer, or COWVR [68], aboard the 

International Space Station) have been designed as total power radiometers, which measure only 

the magnitude of the electromagnetic radiation in a specific polarization direction, usually the 

vertical (V) or horizontal (H) polarization. This design allows for high accuracy and precision with 

a simpler design, but it is limited in its ability to provide a complete characterization of the 

polarization states. Consequently, retrieval of wind direction information has not been possible 

from these radiometers. 

 On the other hand, a fully polarimetric radiometer is capable of measuring all four 

components of the polarization state of the incoming radiation: the horizontal and vertical 

components, as well as the two circular components (left-handed and right-handed). These four 

components are collectively known as the Stokes vector and are given by [69]: 

𝐼𝑠 = [

𝐼
𝑄
𝑈
𝑉

] =  [

𝑇𝑉

𝑇𝐻

𝑇45 − 𝑇−45

𝑇𝐿𝐶 − 𝑇−𝑅𝐶

] = [〈𝐸𝑉𝐸𝑉
∗〉] 

[
 
 
 

〈𝐸𝑉𝐸𝑉
∗〉

〈𝐸𝐻𝐸𝐻
∗〉

2𝑅𝑒〈𝐸𝑉𝐸𝐻
∗〉

2𝐼𝑚〈𝐸𝑉𝐸𝐻
∗〉]

 
 
 

 (2.11) 
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 Stoke’s vectors facilitate the complete characterization of the polarization states of 

radiation and enable vector wind measurement. In the 1990s, numerous research efforts were 

focused on passive polarimetric remote sensing [69]–[72], laying the foundation for the first space-

borne fully-polarimetric microwave radiometer, WindSat, which was developed by the U.S. Navy 

and the National Polar-orbiting Operational Environmental Satellite System Integrated Program 

Office (NPOESS IPO) and launched aboard the US DoD satellite Coriolis in 2003 [38], [39]. 

WindSat not only demonstrated the proof-of-concept of space-based passive fully-polarimetric 

remote sensing of ocean vector winds, but it also provided an uninterrupted operational and 

scientific data record through 2020. Although it has its own relative advantages and limitations 

compared to scatterometer wind products, the accuracy of the latest version of its vector wind data 

product is very close to that of the QuikSCAT vector wind data product for winds greater than 6 

m/s [1], [73], [74]. WindSat also provided other environmental parameters, including sea surface 

temperature (SST), rain rate (RR), water vapor (WV), cloud liquid water (CLW), and more [75]. 

Despite the success of the WindSat mission, there have been no similar fully-polarimetric 

microwave radiometers in the last two decades.  

 Recently, NASA's Jet Propulsion Laboratory launched an upgraded version of WindSat, 

called the Compact Ocean Wind Vector Radiometer (COWVR), aboard the ISS as a technology 

demonstration of the next generation instrument. The COWVR reduced the size and cost by 

simplifying the design [68]. Although the mission is currently operational, as of the writing of this 

dissertation, the dataset has not been publicly available. 
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2.4: Combined Active and Passive Measurement of Ocean Vector Wind 

 In addition to the specialized OVW measurement missions, there have been missions that 

measured other land and ocean parameters such as soil moisture (SMAP) and ocean surface 

salinity (Aquarius). These missions carried complementary radar instruments with radiometers 

onboard the same spacecraft. For example, NASA launched the Aquarius mission to measure 

ocean surface salinity, which carried an L-band radar scatterometer and an L-band radiometer [76]. 

The purpose of the scatterometer was to correct wind-induced roughness effects on salinity 

measurements by the radiometer. In [76]–[78], Yueh et. al. showed that the L-band radar and 

radiometer measurements could potentially be combined to derive combined OVW and salinity 

products. Following this, Fore et al. [42] at JPL retrieved combined active/passive (CAP) OVW 

and salinity products from the SMAP mission, which carried similar L-band active and passive 

instruments to measure primarily soil moisture. Although the individual L-band sensors are not as 

effective as Ku or C-band sensors for lower wind speed regimes, the SMAP CAP OVW retrieval 

performance is comparable to QuickScat/RapidScat for lower wind speeds, and even better for 

higher wind speeds (>12.5 m/s) [42]. It is important to note that the radar instrument onboard 

SMAP was a conical scanning scatterometer with forward and aft azimuth looks, and the 

radiometers were capable of measuring the third and fourth Stoke's parameters. 

2.5: Global Precipitation Measurement Mission 

 The GPM Core Observatory (shown in Fig. 2.3) was launched in February 2014 by NASA 

and JAXA and is in a 407-km circular non-sun-synchronous orbit with a 65° inclination around 

the Earth. It was designed as an upgraded follow-up mission of the Tropical Rainfall Measuring 

Mission (TRMM) primarily for measuring precipitation [79]. In addition to precipitation, other 
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environmental products such as sea surface temperature (SST), columnar water vapor (WV), and 

columnar cloud liquid water (CLW) have also been available from the GPM observatory [80]. 

 

Figure 2.3: GPM core observatory and its sensors (Credits: NASA Global Precipitation Measurement Mission) 

 

2.5.1: GPM Instruments 

2.5.1.1: GPM Dual-Frequency Precipitation Radar (DPR) 

 The GPM DPR is equipped with two precipitation radars (PR) operating at Ku-band (13.6 

GHz) and Ka-band (35.5 GHz), both utilizing horizontal-polarized signals. Cross-track 

measurements are performed using separate phased array antennas, resulting in 49 contiguous and 

coincident narrow instantaneous field of view (IFOV) beam positions covering an Earth incidence 

angle (EIA) range of ±18°. These beams are separated by approximately 0.75° in EIA, producing 

a spatial footprint of around 5 km in diameter that generates a common 245 km swath at the center 

of the GMI swath, as depicted in Fig. 2.3. However, initially, the Ka-band swath was limited to 
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120 km because the outer 24 beams (12 on each side) were interleaved with the central 25 

coincident beams until being reconfigured for full 49-beam coincident measurements over the 

entire 245 km swath on May 21, 2018 [81]. The detail instrument characteristics of GPM DPR are 

given in Table 2.2. 

 

Table 2.2: GPM DPR Instrument Characteristics 

Instruments KuPR KaPR 

Frequency (GHz) 13.6 35.5 

Antenna type Active phased array (128) Active phased array (128) 

Swath width (Km) 245 245 (125 before May 2018) 

Horizontal Res at nadir (Km) 5.2 5.2 

No of cross track beams 49 49 

EIA (deg) 0 ± 18 0 ± 18 

Range resolution (m) 250 250/500 

Transmitter pulse width (µs) 1.6 1.6/3.2 

PRF (kHz) 4.2 ± 0.1 4.2 ± 0.1 

Measurement Accuracy (dBZ) < ±1 < ±1 

   

 

2.5.1.2: GPM Microwave Imager (GMI) 

 The GMI is a well-designed and well-calibrated total power microwave radiometer that 

utilizes 13 radio frequency channels (10V/H, 19V/H, 23V, 37V/H, 89V/H, 166V/H, 183+/-3V, 

183+/-8V) to measure  𝑇𝐵 over a 931 km swath [82]–[85]. All channels share a common rotating 

antenna with conical scanning to provide 𝑇𝐵 measurements, as illustrated in Fig. 2.3. The higher 

frequency channels (>90 GHz) are primarily used for atmospheric sounding and are less sensitive 
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to surface parameters, including winds, which is why they were excluded. The 89 GHz and 23V 

channels were also not used due to their sensitivity to atmospheric water, liquid water, and water 

vapor. Hence, only the 10, 19, and 37 GHz channels were utilized in this dissertation due to their 

ability to capture wind vector signatures. The electrical and physical properties, spatial resolution, 

measurement precision of GMI channels is summarized in Table 2.3. 

 

Table 2.3: GMI Instrument and Performance Characteristics 

Ch Center 

Freq 

(GHz) 

Pol Bandwid

th 

(MHz) 

Sample 

Time 

(msec) 

EIA 

(deg) 

Beam 

Width 

(deg) 

EFOV 

(Km) 

Mean 

Spatial 

Res 

(Km) 

On-

orbit 

NEDT 

(K) 

1 10.65 V 96.5 3.6 52.74 1.72 20x32 25 0.77 

2 10.65 H 94.7 3.6 52.73 1.72 20x32 25 0.78 

3 18.7 V 193 3.6 52.76 0.98 12x18 15 0.63 

4 18,7 H 194 3.6 52.76 0.98 12x18 15 0.60 

5 23.8 V 367 3.6 52.76 0.85 10x16 13 0.51 

6 36.64 V 697 3.6 52.79 0.82 10x15 12 0.41 

7 36.64 H 707 3.6 52.79 0.82 10x15 12 0.42 

8 89 V 2x2735 3.6 52.78 0.38 6x7 7 0.32 

9 89 H 2x2758 3.6 52.78 0.38 6x7 7 0.31 

10 166 V 2x1569 3.6 49.11 0.38 6x6 6 0.70 

11 166 H 2x1601 3.6 49.11 0.37 6x6 6 0.65 

12 183.31 ± 3 V 2x1482 3.6 49.11 0.37 6x5 6 0.56 

13 183.31 ±7 V 2x1874 3.6 49.11 0.37 6x5 6 0.47 
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2.5.2: Technical Challenges 

 The GPM instruments, the GMI and DPR, were not specifically designed for measuring 

vector winds. Therefore, OVW measurement by these instruments pose some technical challenges. 

Retrieval of ocean vector winds (OVW) requires observations of the same wind vector cell (WVC) 

from multiple azimuth directions. As the PRs perform observations with a single look (i.e., cross-

track), they alone cannot provide unambiguous OVW retrieval. However, the GMI observes the 

same WVC with a different azimuth angle, approximately ~75° off the PR view angle, as shown 

in Fig. 2.4, depending on the latitude. This facilitates the essential azimuth diversity required for 

removing wind vector ambiguity. Moreover, the nature of the AV-H GMF is different from 

conventional scatterometer GMF, as it is predominated by the first harmonic, which also helps to 

reduce the ambiguity problem [86], [87]. Another limitation of the DPR is its incidence angle, 

which is not optimal for OVW sensing. The inclusion of the Ka-band, which demonstrates higher 

sensitivity to winds, alleviates this to a great extent [88]. The use of modified second Stokes 

parameters for passive linearly polarized 𝑇𝐵s (i.e., A*𝑇𝐵𝑉 – 𝑇𝐵𝐻) helps to mitigate atmospheric 

noise and enhance the WD signal [89]–[91].  
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Figure 2.4: GMI and DPR azimuth diversity 

 

 In next two chapters, we present a comprehensive statistical analysis of GPM DPR 

backscatter and multi-frequency GMI brightness temperature (𝑇𝐵) observations, respectively, and 

characterize their OVW signature as a function of relevant geophysical parameters to derive the 

corresponding active and passive ocean surface geophysical model functions (GMFs). 
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CHAPTER 3: ACTIVE GEOPHYSICAL MODEL FUNCTION 

The contents of this chapter have been published in the following article: Hossan A, Jones WL. 

Ku- and Ka-Band Ocean Surface Radar Backscatter Model Functions at Low-Incidence Angles 

Using Full-Swath GPM DPR Data. Remote Sensing. 2021; 13(8):1569. 

https://doi.org/10.3390/rs13081569 [92]. 

3.1: Introduction 

 A robust geophysical model function (GMF), relating the ocean surface normalized radar 

cross section (known as σ0) and the ocean wind speed and direction, and other possible secondary 

parameters, like, sea surface temperature, is essential for the development of an accurate ocean 

vector wind (OVW) retrieval algorithm. The σ0 GMF is also crucial for on-orbit radar calibrating 

active remote sensors and correcting atmospheric path attenuation in satellite cloud and rain 

profiling radars [93]. While the literature for ocean σ0 is extensive, most studies concern Ku- and 

C-band frequencies for either radar scatterometers at moderate earth incidence angles (EIA) or 

nadir-viewing radar altimeters.  

 On the other hand, the satellite Ku-band Precipitation Radars (PR) onboard the Tropical 

Rainfall Measuring Mission (TRMM) [94] and the Ku/Ka-band Dual-frequency Precipitation 

Radar (DPR) on the follow-on Global Precipitation Mission (GPM) [17], [79], also measure ocean 

backscatter from space. These radars view the surface at near-nadir EIA, with cross-track scans 

within nadir to ±18°; this scenario offers a unique scientific opportunity to investigate air-sea 

interaction processes as a function of wind and wave parameters from non-sun synchronous, low-

earth orbiting satellites. Notable among near-nadir ocean backscatter studies were: Freilich and 

Vanhoff [49], who established an empirical relation between ocean surface σ0 and wind speed for 
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EIA 0°–18° using TRMM Ku PR measurements; Jones et al. [95], and Souisvarn et al. [96], who 

was the first to characterize the TRMM Ku PR σ0 wind direction anisotropy for EIA 12°–18° over 

wind speeds of 3–9 m/s; Li et al. [97], who first demonstrated the wind speed (WS) retrieval from 

TRMM PR; and finally, Tran and Chapron [98], who first reported the directional anisotropy and 

sea state dependency of nadir σ0 measurements by Ku- and C-band satellite altimeters and also 

near-nadir measurements from TRMM PR [10]. More recently, an investigation by Chu et al. [99] 

provided a comprehensive analysis of near nadir σ0 as a function of combined wind vector and 

wave parameters (including wave height and steepness) by using a large set of collocated TRMM 

PR and in situ data. Additionally, Chu et al. [100] discussed the unique behavior the Ku-band σ0 

at low incidence angles by analyzing its upwind–downwind asymmetry and upwind–crosswind 

directional modulations. 

 Before 2014, the ocean σ0 at Ka-band was based on airborne experiments. Although these 

radar backscatter measurements provided valuable insights that indicated a similar behavior of Ka-

band σ0 to that at Ku-band, the results of various studies were inconsistent with each other [101]. 

In February 2014, the GPM satellite was launched, with the dual-frequency precipitation radar that 

provided the first space-based measurements of global ocean radar backscatter at low incidence 

angles at both Ku- and Ka-bands [19]. Recent studies analyzed these simultaneous GPM DPR σ0 

measurements [102], [103]; however, results for Ka-band were limited to EIA of ± 9° 

(corresponding to ~125 km at the center of collocated Ku swath). Fortunately, on May 21, 2018, 

the Ka-band was reconfigured to provide fully collocated measurements with Ku PR over the 

entire ~250 km swath corresponding to EIA range of ± 18° [81].  
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 In addition, Wang et al. [104] performed a comprehensive investigation of sea surface 

temperature (SST) effects on ocean surface σ0 at the corresponding EIAs and polarizations for C- 

and Ku-band scatterometers. Although negligible at C band, they concluded that SST effects were 

significant for Ku band and should be included in the ocean surface σ0 geophysical model function 

(GMF). Based on their findings, we performed a similar analysis of GPM DPR backscatter 

measurements at low incidence angles. Results are given herein that document the effects of SST 

on both Ku- and Ka-band Ocean radar backscatter. To account for the SST effects properly, the 

SST was included as an independent dimension of the GMF. 

 Therefore, this chapter presents the comparative results from the full-swath, collocated, 

GPM DPR measurements, and separate (Ku- and Ka-band) GMFs are described for horizontal-

polarization, which characterize the clear-sky, ocean surface σ0 as a function of EIA and 

environmental parameters—namely, ocean surface wind speed (WS), wind direction (WD), and 

SST. However, it should be noted that the smooth surface Fresnel reflection coefficient is the same 

for both H-pol and V-pol at low incidence angles below ~ 20°. As a result, this dissertation should 

apply to both linear polarizations.  

 The chapter is organized as follows: instruments and data are described in section 3.2. In 

section 3.3, the WS, relative wind direction (RWD), SST dependency of σ0, and model description 

are provided. Comparative results at Ku and Ka bands are also given in the same section, which is 

followed by the discussion in section 3.4.  

3.2: Methods 

 The Global Precipitation Mission satellite was launched on 27 February 2014 into a 65° 

inclination, 407 km altitude, non-sun-synchronous orbit. This is a joint Earth Observation Science 
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mission by the National Aeronautics and Space Administration (NASA) and the Japan Aerospace 

Exploration Agency (JAXA), which extends the TRMM time series [94], [89], and enhances the 

measurement of global precipitation [17], [19], [85]. The satellite carries two microwave remote 

sensors: a passive GPM microwave imager (GMI) and a dual-frequency precipitation radar (DPR). 

3.2.1: GPM Dual-Frequency Precipitation Radar (DPR) 

 As mentioned in Section 2.5, a Ku-band (13.6 GHz, H pol) precipitation radar (KuPR) and 

a new Ka-band (35.5 GHz, H pol) precipitation radar (KaPR) form the dual-frequency precipitation 

radar (DPR) onboard the GPM core observatory. The GPM KuPR uses an electronically scanned 

phased array to scan the surface perpendicularly to the flight direction at 49 beam positions over 

an EIA ±18°. Contiguous beams are separated by about 0.75° in earth incidence angle, resulting 

in a spatial footprint of about 5 km in diameter that produces a continuous 245 km measurement 

swath. The Ka PR also has 49 cross-track beams with the same beam width as Ku PR after May 

21, 2018. Initially, only 25 of the Ka-band beams with the same range resolution as the KuPR (250 

m) were overlapped with the central 25 beams of KuPR, resulting in a common swath of 125 km, 

as shown in Figure 3.1a. These 25 Ka-band beams are called “matched scan (KaMS)”, and the 

other 24 beams which have a different range resolution (500 m) and are called “high sensitivity 

scan (KaHS)” because of their superior noise performance, were interleaved with the KaMS beams 

as shown in Figure 3.1a. On 21 May 2018, the Ka-band radar was reconfigured, as shown in Figure 

3.2b, to provide coincident measurements with KuPR over a 245 km common swath [81]. This 

new configuration allows a comparison of radar backscatter characteristics at both frequencies for 

a common EIA range (nadir to ± 18°).  
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Figure 3.1: Scan pattern of GPM DPR: (a) before May 21, 2018, and (b) after May 21, 2018. Blue circles indicate KuPR footprints, 

while yellow and pink circles represent matched (KaMS), and high sensitive (KaHS) swath of Ka [81]. 

 

3.2.2: Collocation and Quality Control 

 Two years (2019-2020) of Ku and Ka PR level 2 standard (L2A GPM V07) products from 

the NASA GPM research data archive (https://arthurhou.pps.eosdis.nasa.gov) were used to 

develop the GMFs, and another independent year (2021) was prepared for the validation. In 

addition to atmospheric attenuation corrected ocean surface σ0, the DPR product also contains 

navigation, sensor geometry, geolocation, and quality flags. PR rain, surface type, and data quality 

flags were used to filter the radar backscatter to ensure rain-free ocean σ0 measurements, which 

were then smoothed (using a triangular moving average filter) to remove quantization noise caused 

by analog to digital conversion. Finally, the filtered ocean σ0 measurements were collocated with 

pertinent environmental parameters from two sources to provide a “match-up” dataset.  

 The first source of environmental parameters (WS and SST) were geophysical retrievals 

from coincident passive microwave GMI brightness temperatures (𝑇𝐵s). These data were provided 

by the Remote Sensing Systems (RSS) archive (http://www.remss.com/missions/gmi/) [105] in 

the form of daily 0.25° earth-gridded maps that were separated into ascending and descending orbit 
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segments. For the 10-m wind speed, we used the wind speed that was derived from low-frequency 

channels (10.7, 18.7, 23.8, and 36.5 GHz). The second source of environmental parameters was 

the European Centre for Medium-Range Weather Forecasts (ECMWF) global atmospheric 

reanalysis (ERA-5) [106]. Hourly 10-meter neutral wind vector and SST products with 31 km grid 

spacing are available in ERA-5, which were re-gridded in 0.25° to match GMI products. 

 Finally, the match-up dataset was completed by gridding the GPM DPR data (Ku and Ka) 

into 0.5° × 0.5° (and 0.25° × 0.25°, for performance comparison) boxes, with associated GMI-

derived WS and SST and ERA-5 WD. All σ0 measurements in a box were averaged (in linear 

units), boxes with a high standard deviation were discarded, and RSS data quality flags were also 

used to exclude any rain, sea-ice, and land-contaminated data from the match-up dataset. Since 

DPR and GMI obtain near-simultaneous observations over a common ocean surface sub-swath, 

the two-year time series resulted in millions of co-located, clear-sky global ocean measurements 

over a wide variety of environmental conditions. This provides a unique Ku/Ka σ0 match-up 

dataset that is reported for the first time in this chapter. In addition, results were produced using 

two environmental suits, one using GMI WS and SST with ERA-5 WD and the other using all 

ERA-5 products (WS, WD, and SST). The differences were insignificant, except for some mean 

biases (DC-offsets) between the two results. Therefore, the results of the later combination were 

used in the final GMF to make it consistent throughout. 

3.3: Geophysical Model Function for the Ocean Ku and Ka-Band PR Backscatter 

 The microwave ocean surface radar backscatter (σ0) at the GPM DPR incidence angle 

range (0° to 18°) is dominated by a quasi-specular scattering process, but towards the outer swath, 

the resonant (Bragg) scattering process becomes significant [49]. For both regimes, the σ0 is 
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directly related to the ocean surface wind vector (OVW), SST, and integral wave parameters [98]–

[100], [102], [107]–[109]. The backscatter can be empirically modeled as a second-order Fourier 

series (higher-order terms are negligible), 

𝜎°𝑑𝐵(𝑓, 𝑝) = 𝐴0 + 𝐴1 cos(𝜒) + 𝐴2 𝑐𝑜𝑠(2𝜒) + 𝐵1 sin (𝜒) + 𝐵2 𝑠𝑖𝑛 (2𝜒)        (3.1) 

where 𝜎°𝑑𝐵(𝑓, 𝑝)  is the sea surface normalized radar cross section at a frequency (f) and 

polarization (p) in dB unit. The model coefficients 𝐴0, 𝐴1, 𝐴2, 𝐵1, and 𝐵2 are wind speed, EIA and 

sea-state dependent, and χ denotes the wind direction relative to the radar azimuth look defined as, 

χ   𝜑𝑤𝑖𝑛𝑑 - 𝜑𝑟𝑎𝑑𝑎𝑟 (3.2) 

where 𝜑𝑤𝑖𝑛𝑑 is the meteorological wind direction (the direction where the wind is coming from), 

and 𝜑𝑟𝑎𝑑𝑎𝑟 is radar azimuth look. Since the primary purpose of DPR is not OVW measurement, 

the azimuth look is not provided with the DPR standard data suite.  For DPR, the cross-track 

azimuth look can be calculated as, 

𝜑𝐷𝑃𝑅 = 𝜑flight  ± 90°        (3.3) 

where 𝜑flight is the spacecraft's flight direction, and 𝜑𝐷𝑃𝑅 is the DPR azimuth look, both referring 

to the North. We calculated the spacecraft flight direction using the longitude and latitudes of the 

spacecraft subsatellite points according to [110]. This is illustrated in Fig. 3.2. Blue solid circles 

in the figure represent DPR footprints. The cross-track scanning direction reverse for yaw 0 and 

180 orientations. 

 Accordingly, following Eq. 3.2, χ   0 thus denotes the upwind specifying that the wind is 

blowing toward the radar look direction. Similarly, χ   180 specifies the downwind, and χ   90 

and 270 indicate the crosswind directions. These particular directions have distinct backscatter 

characteristics, thus will be referenced repeatedly in the following sections.  Since both Ku and Ka 
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PR onboard GPM operate at only horizontal polarization, all references to polarization are omitted 

hereafter.  

Figure 3.2: Spacecraft heading and DPR azimuth viewing angle. 

 Historically, the radar ocean backscatter GMF has been modeled as a truncated even 

Fourier series [25,26], but our initial analysis used both sine and cosine terms in Eq. 3.1 to examine 

if the symmetry property changes for lower EIA. However, after a comprehensive investigation, it 

was found that the sine terms were not statistically significant, and as a result, they were neglected. 

The 𝜎0 azimuth anisotropy can be well approximated by even terms. 

𝜎°𝑑𝐵(𝑓, 𝑝) =  𝐴0 + 𝐴1 cos(𝜒) + 𝐴2 𝑐𝑜𝑠(2𝜒) (3.4) 
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 It should be noted that Eq. 3.4 is the same expression used to model the ocean backscatter 

at moderate EIAs (20°–70°). However, a significant difference is that the 𝐴1 term is negative for 

EIA < 20°, which results in a reversal of upwind and downwind asymmetry, i.e., higher downwind 

backscatter than the upwind backscatter.  

 We described the derivation of Fourier coefficients 𝐴0, 𝐴1 and 𝐴2, and analyzed their 

properties for each angular beam (EIA) position in [92]. Here, to make the retrieval faster, we 

chose to make the GMF in tabular forms instead of using analytical functions. In this section, we 

describe the derivation of tabular GMFs for Ku- and Ka-band and analyze their dependence and 

sensitivity on incidence angle (EIA), wind speed (WS), azimuth or relative wind direction (WD), 

and sea surface temperature (SST).  

3.3.1: Binning 

 The binning procedure to derive σ0 GMF is illustrated in Fig. 3.3 below. For each beam 

position, the total set of yearly matchup datasets is divided into 7 SST ranges with a sliding window 

of ±5𝐶. Then for each of the SST ranges, the data were sorted in ±0.5 ms−1 wind speed bins. 

Finally, the data were sorted into ±5° relative wind direction bins for each WS bin, and 

corresponding bin averages and standard deviations were recorded. A conservative 3σ filter was 

applied to each bin to remove outliers (the mean, STD, and 3σ values were calculated in linear, 

not dB, units), and any bin with less than 300 boxes was not included in the analysis. The σ0 bin 

averages and STDs were computed on a yearly basis, and the final bin average and STD were 

calculated by averaging over two years (2019 and 2020). To have the working GMFs for retrieval, 

the bin averages were further resampled into 0.1 ms-1 WS and 1° RWD steps (no resampling was 
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applied for SST and EIA beam positions). The same approach for preprocessing, binning, and 

resampling was used to derive Ku- and Ka-band GMFs. 

 

Figure 3.3: Binnig procedure for 𝜎0 geophysical model function 

 

3.3.2: Wind Speed and Incidence Angle Dependence of 𝜎0 

 The mean σ0 at a particular azimuth is mainly a function of wind speed (WS) and earth 

incidence angle (EIA) and, to some extent, of sea surface temperature (SST). The WS dependence 

of mean σ0 is illustrated in Figure 3.4 using a log-log plot for six PR beams and three relative 

azimuth positions at an averaged SST. At the higher EIA beam positions, σ0 monotonically 

increases with wind speed, whereas it monotonically decreases for lower EIAs near the nadir. For 

the middle EIA beam positions, the σ0 dependence is not monotonic because two different 

scattering mechanisms are involved. Namely, the near nadir backscatter is dominated by quasi-

specular scattering that decreases σ0 with increased ocean roughness, but as EIA increases, Bragg 

scattering gradually becomes significant that increases σ0 with WS. The Ku-band results are 
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consistent with [32], [49], [95], [97]–[100], [102], except for a slight calibration bias between 

TRMM PR and GPM KuPR. 

 

Figure 3.4: Mean value of binned KuPR (top panel) and KaPR (bottom panel) σ0 as a function of wind speed for different earth 

incidence angle θ for upwind (left), downwind (middle), and crosswind (right) relative wind directions. 

 

 The mean values of binned average σ0 for Ku and Ka bands are shown in Figure 3.5 as a 

function of EIA for different wind speeds. The σ0 monotonically decreases with increasing 

incidence angle from nadir to 18.2°. Additionally, the σ0 decreases monotonically with wind speed 

at EIAs near the nadir, but σ0 increases monotonically with wind speed near EIA 18.2°, with a 

transition in the middle where σ0 becomes relatively insensitive to WS. For KuPR, this transition 

occurs over EIA 9°–10°, whereas, for KaPR, it occurs over EIA 10°–11°. Additionally, these 

transition regions vary with the relative azimuth look for upwind/downwind/crosswind directions, 

as shown for KuPR in Figure 3.5. This EIA range of reduced σ0 variability is useful for the radar 

inter-calibration between these kinds of instruments.  
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Figure 3.5: Mean value of binned KaPR (top) and KuPR (middle) σ0 as a function of earth incidence angle θ, for different wind 

speeds 

 

 While these results (presented in Fig. 3.4 and 3.5) are qualitatively similar for Ka PR, there 

are small differences between Ku and Ka bands, and these differences are also a function of wind 

speed and incidence angle and can be 0.25 to 2.25 dB depending on the EIA and WS (not shown).  

Besides this, the WS sensitivity or σ0 gradient, defined as (𝜕𝜎0

𝜕𝑊𝑆⁄ ), declines with WS at both 

bands. An important implication is the variation of the dynamic range of wind-roughened σ0 with 

EIA. This is shown in Figure 3.6, which compares the maximum wind-dependent variation 

(variation of σ0 for WS change of 1 m/s to 20 m/s) of the Ku band mean σ0 with that at Ka-band. 
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Although both have similar dynamic ranges for EIA ~> 9°, Ka-band mean σ0 has a higher overall 

dynamic range for EIA < 9°. 

 Therefore, based on these results, we conclude that the two GMFs are similar and are 

applicable for a WS range of 3–20 ms−1 and all EIA beam positions. 

 

Figure 3.6: Wind speed sensitivity of Ka-band vs. Ku-band 𝜎0 with EIA: the left-side Fig. compares the maximum variation of 

𝜎0 for WS change 1 m/s to 20 m/s at Ku-band (blue) with Ka-band (red) at averaged relative wind direction; the right-side Fig. 

plots the same, but for upwind (solid line), downwind (dashed-dot line), and crosswind (dashed line) directions. 

 

3.3.3: Azimuthal Anisotropy of 𝜎0 

 When mean, < 𝜎0 >, over all relative wind direction, are subtracted from each bin, the σ0 

directional anisotropy is found, which is a function of WS, relative wind direction for a given EIA 

(beam position). Mathematically, it can be expressed as follows, 

𝜎0 −  < 𝜎0 >= 𝜎0
(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙) = 𝐴1 cos (𝜒) + 𝐴2 𝑐𝑜𝑠 (2𝜒) (3.5) 

where the 𝐴1 and 𝐴2 coefficients measure upwind-downwind, and upwind–crosswind asymmetry, 

respectively. 
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 Figure 3.7 shows the σ0 residual (anomaly) of the KuPR (top panel) and KaPR (bottom 

panel) as a function of relative wind direction for three different EIAs (18°, 16°, and 14°) and WS 

(6, 10, and 14 m/s). The symbols are the residual of the measured bin average, and the solid lines 

are the corresponding Fourier fit (Eq. 3.5, shown just for comparison). The bi-harmonic directional 

signal increases with both WS and EIA, and the Ka-band anomaly is higher than Ku-band for the 

same EIA and WS. Generally, the Fourier model is in excellent agreement with the empirical 

measurements for both the band, except for the lower EIAs (EIA < 6.8°), where the quality of the 

model fit is somewhat lacking (not shown).  

 

Figure 3.7: KuPR (top panel) and KaPR σ0 (bottom panel) directional anisotropy (in dB) as a function of relative wind direction 

(χ) for three different WS values: 6 m/s (blue), 10 m/s (red), and 14 m/s (black) at different earth incidence angles (indicated at 

the top of each figure). The symbols are bin average, while the solid lines represent their second-order Fourier fits. 
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3.3.3.1: Upwind and Downwind Asymmetry of σ0 

 One of the distinct features of the σ0 WD anisotropy at low EIA is that it has an opposite 

upwind/downwind asymmetry compared to the conventional scatterometers that operate at 

moderate incidence angles (30°–70°). As shown in Fig. 3.8, DPR measures a higher σ0 from the 

downwind direction than that from the upwind direction, and 2𝐴1 is the measure of the peak-to-

peak upwind/downwind asymmetry. The differences between downwind and upwind σ0 

measurements, separately for both KuPR and KaPR as a function of WS: 3–20 m/s, are shown in 

Fig. 3.8 for six different EIAs: 3°–18°, and it is noted that for all EIAs, the measured σ0 asymmetry 

increases with WS of 6–16 m/s. Chu et al. [111] also presented similar results for TRMM KuPR, 

and Mouche et al. [112] reported the same trends of asymmetries for a C band radar at low 

incidence angles. Yurovsky et al. [113] showed that, at Ka-band, the upwind-downwind 

asymmetry disappears at an incidence angle of 32°, becomes positive above it, and the σ0 becomes 

unimodal with relative wind direction for a high incidence angle (> 70°) when the downwind σ0 

becomes even lower than the crosswind σ0. Here, for incidence angle <= 18°, we confirm that both 

Ku- and Ka-band has negative upwind-downwind asymmetry and additionally report the new 

information that Ka-band has a significantly higher downwind-upwind asymmetry than the Ku 

band. For example, at EIA ~ 12°, the Ku band asymmetry is about 0.7 dB for a WS of 15 m/s, 

while it is ~ 1 dB for Ka-band for the same EIA and WS.  
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Figure 3.8: Peak-to-peak KuPR (left) and KaPR (right) σ0 downwind/upwind asymmetry (in dB) as a function of WS at different 

EIAs. 

3.3.3.2: Downwind and Crosswind Anisotropy of σ0 

 For scatterometers operating at moderate EIAs, the 𝐴2 the coefficient in Eq. 3.2 and 3.5, 

usually defines the peak-to-peak (upwind to crosswind) anisotropy of σ0. However, for this low 

EIA range, since 𝐴1 is negative and not negligible, backscatter response at the downwind direction 

is the sum of 𝐴1 and 𝐴2. Therefore, the peak-to-peak anisotropy for this EIA range is defined 

downwind to crosswind, which is > 2𝐴2. Figure 3.9 shows the peak-to-peak σ0 anisotropy for Ku 

and Ka bands as a function of WS for different EIAs. 

 As shown, the downwind to crosswind asymmetry of σ0, which defines the overall 

directional sensitivity of radar backscatter, increases with wind speed for WS > 6 m/s at all 

incidence angles and monotonically increases with incidence angles. Again, the Ka-band 

downwind to crosswind anisotropy was also found to be larger than the corresponding Ku-band 

directional anisotropy for  
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Figure 3.9: Peak-to-peak KuPR(left) and KaPR (right) downwind/crosswind σ0 anisotropy (in dB) as a function of WS at different 

EIAs. 

 

low to moderate WS range. Conversely, the saturation of directional anisotropy at the Ka-band 

occurs at relatively lower WS. This is perhaps due to the larger impacts of wave breaking and sea 

foams on the Ka-band σ0 for relatively lower wind speeds, as reported in recent literature [20], 

[21-22]. 

 Figure 3.10 presents the DPR wind speed, directional sensitivity, and corresponding 

uncertainty as a function of the beam positions over the 245 km swath covering an EIA range of -

18° to +18° through the nadir. As shown, although nadir and near beam positions have significantly 

higher wind speed sensitivity than the outer swath (as shown in Fig. 3.10a), the directional 

sensitivity decreases (shown in Fig. 3.10b), and the measurement uncertainty increases (see Fig. 
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3.10c) as incidence angle decreases towards the nadir. Therefore, wind direction retrieval 

performance degrades near and over nadir beam positions. In addition, the transition region near 

EIA ~ 10 (beam positions ~ 7-12) also provides poor WS retrieval. Besides the azimuth diversity, 

these constraints also make the complementary passive counterparts essential for OVW retrieval. 

 

 

Figure 3.10: PR sweet swath for OVW retrieval 

 

3.3.4: Sea Surface Temperature Dependence of σ0 

 At low microwave frequencies (1–8 GHz), sea surface temperature affects the dielectric 

constant of sea water and the resulting Fresnel reflection coefficient; however, this effect is weak 

at Ku and Ka bands [114]. On the other hand, SST also affects the surface tension and viscosity of 

the sea water, both of which control the amplitude of the capillary wave spectral region of the sea 

surface roughness. Surface tension dominates the capillary wave spectrum for the low wind speed 

regime (~WS < 6 m/s). In contrast, wave breaking occurs for higher WS, and viscosity plays a 

significant role in controlling the roughness. Thus, surface tension and viscosity, which tend to 

reduce surface roughness, decrease with increasing SST. As a result, ocean σ0 increases with SST. 

                

         



44 

 

V-polarized signals exhibit more significant dependencies on SST than H-pol signals [115]. Since 

GPM DPR measurements are both H pol, this paper presents only SST impacts on H pol at low 

incidence angles; however, for these low EIA's, the polarization effect is not expected to be 

significant.  

 In previous research [115], it was concluded that the SST has a small but significant effect 

on the observed ocean σ0 at the Ku band; therefore, the SST effects were explicitly included in the 

development of the four-dimensional (4D) Ku- and Ka-band GMF = f(WS, WD, EIA, SST). A 

qualitative assessment of the impact of SST on the GMFs is presented below.  

 The dependence of σ0 on SST was empirically characterized for both Ku- and Ka-bands as 

a function of EIA and WS using the following statistical procedure. First, the σ0 values, in linear 

power ratio units, were bin averaged (over all WS and WD) in 1 C steps of SST 0–30 C. Next, the 

binned averages were normalized to the corresponding σ0 values at 15 C, and the results are 

presented in Fig. 3.11.  Figure 3.11 shows an approximately linear dependence of the relative σ0 

on SST for all EIA beam positions under consideration at both frequencies. However, the Ka band's 

SST dependency is significantly stronger (> 2 x slopes). For example, for an EIA = 9°, the overall 

variation of mean σ0 with SST over the range 0–30 C is < ± 5% at Ku, whereas it is > ± 10% for 

Ka. This is expected because the Ka-band backscatter is more sensitive to the density of the small-

scale spectrum of the capillary waves and the impact of the wave breaking. 

 Next, these SST impacts are presented for WS values of 4, 8, and 12 m/s in Figure 3.12 for 

an EIA of 9.8°. Here, the results are like Figure 3.11 (averaged over all WS); however, there is 

also a slight WS dependence, as noted by the separation of the curves. This is especially notable 

at the higher and lower EIA. 
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Figure 3.11: SST dependence of KuPR and KaPR σ0 at different EIA. Relative σ0 here indicates σ0/ σ0(@15C) ratio. 

 

Figure 3.12: SST dependence of KuPR and KaPR σ0 at different EIA. Relative σ0 here indicates σ0/ σ0(@15C) ratio. 
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3.4: Discussion 

 The dual-frequency precipitation radar (DPR) onboard the GPM core satellite provides 

coincident Ku and Ka-band σ0 measurements over a wide near-nadir EIA range. This study 

leveraged the unique opportunity to investigate near-nadir ocean surface backscatter 

characteristics using measurements from two Ku and Ka-band radars on the same satellite that 

provided an excellent dataset to derive the corresponding backscatter GMFs. This is 

unprecedented, and the results are significant because the data used was reliably large, and all the 

measurements were precisely collocated in space and time. More importantly, the same surface 

truth data (WS, WD, and SST) and the same data analysis procedure were applied to characterize 

the wind vector and SST dependency of Ku- and Ka-band radar backscatter for a full EIA range 

of ±18°. Although the Ku-band results are consistent with the previous studies, the comparison 

with Ka-band is somewhat unique. Both GMFs were thoroughly explored, and results were 

presented in parallel so one can easily compare critical characteristics at both bands for utilization 

in scatterometry and other ocean science applications from space. 

 The trends of WS-only dependency of Ku- and Ka-band radar backscatter at the EIA ranges 

under consideration were shown to be similar in the way that ocean surface radar backscatter 

increases (for higher EIA) and decreases (for lower EIA) monotonically with WS, but the slope of 

increase flattens as the WS increases. The difference of mean σ0 between the Ku- and Ka-band 

depends on both WS and EIA, and within around 2 dB for WS 1–20 m/s and EIA 3–18°. The 

difference is reduced with increasing EIA, and with WS, it is lower at moderate WS but increases 

at both higher and lower WS. However, the Ka-band ocean radar backscatter's directional 

sensitivity was higher than Ku-band directional sensitivity for low to moderate WS regimes. This 
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is particularly significant in path attenuation correction, radar calibration, and in considering future 

missions for ocean wind vector remote sensing at Ka-band. However, it was also shown that the 

saturation of directional anisotropy at the Ka-band occurs at relatively lower WS, which might 

limit the use of the Ka-band for remote sensing of higher WS. 

 Moreover, the SST effects were shown to be substantially higher at Ka-band than that at 

Ku-band. In recent years, the SST impact on Ku-band GMFs and subsequent wind retrieval have 

raised a concern. As a result, different ways of correcting existing GMFs and developing fully 

SST-dependent GMFs have been undertaken. The SST dependency presented here for Ku-band 

GMFs is consistent with the developing literature, and the results presented for Ka-band are also 

consistent with theories.  

 The Fourier cosine series model used to develop conventional scatterometer GMFs was 

also shown to apply to radar backscatter models at low EIA. However, the distinct upwind and 

downwind asymmetry was also made clear for both bands. Therefore, this chapter provides the 

basis of the active part of the combined active and passive ocean wind vector retrieval, as will be 

discussed in Chapters 4 and 5. 
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CHAPTER 4: PASSIVE GEOPHYSICAL MODEL FUNCTION 

4.1: Introduction 

 In this chapter, we describe the procedure for developing a passive geophysical model 

function (GMF) which is a physics-based empirical relation between a linear combination of 

brightness temperatures (𝑇𝐵s) and ocean surface wind speed (WS), relative wind direction (𝜒), and 

sea surface temperature (SST). 

4.2: Radiative Transfer 

 The radiative transfer theory (RTM) provides an estimate of the total top of the atmosphere 

apparent brightness temperature (𝑇𝐵) as a function of geophysical parameters at the input of the 

radiometer receiver. From RTM, the 𝑇𝐵, measured with signal frequency (𝑓), polarization (𝑝), 

earth incidence angle (𝜃), and azimuth look angle (𝛷), can be expressed as [116], [117], 

𝑇𝐵(𝑝, 𝑓, 𝜃, 𝛷,… ) =  𝜏𝐸𝑇𝑆 + 𝑇𝐵𝑈 + 𝜏𝑅𝑇𝐵𝐷 + 𝜏2𝑅𝑇𝐵𝐶 + 𝛺𝑂𝑉𝑊(𝜏𝑅𝑇𝐵𝐷 + 𝜏2𝑅𝑇𝐵𝐶) (4.1) 

where𝑇𝐵𝑈 and 𝑇𝐵𝐷 are upwelling and downwelling atmospheric brightness temperatures, 

respectively, and given by, 

𝑇𝐵𝑈 = ∫ 𝜏(𝑧, 𝑆)𝛼(𝑧)𝑇(𝑧)𝑑𝑧
∞

0

 (4.2a) 

𝑇𝐵𝐷 = ∫ 𝜏(0, 𝑧)𝛼(𝑧)𝑇(𝑧)𝑑𝑧
∞

0

 (4.2b) 

where 𝑇(𝑧) and 𝛼(𝑧) are the atmospheric temperature and absorption profile along the viewing 

path 𝑧. 𝜏(𝑧1, 𝑧2) is the atmospheric transmittance between the two locations 𝑧1, 𝑧2, and related to 

the atmospheric absorption coefficient 𝛼(𝑧) by, 
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𝜏(𝑧1, 𝑧2) =  𝑒
−(∫ 𝛼(𝑧)𝑑𝑧

𝑧2
𝑧1

)
 

(4.3) 

The transmissivity 𝜏 in Eq. 4.3 is given as the total atmospheric transmittance between the ocean 

surface and the satellite altitude S [𝑖. 𝑒. , 𝜏 ≡  𝜏(0, 𝑆)]. 𝑇𝑆 in Eq. 4.1 represents sea surface 

temperature (SST) in Kelvin. The E and R indicate the ocean surface emissivity and reflectivity, 

respectively, and are related to each other by Kirchhoff’s law, 

𝐸 + 𝑅 = 1 (4.4) 

 Therefore, the first term in Eq. 4.1 represents the ocean surface emission at surface 

temperature 𝑇𝑆, that is transmitted thorough the Earth’s total atmosphere and collected by the 

radiometer antenna. In the second term, 𝑇𝐵𝑈, represents the part of the atmospheric brightness 

temperature that travels upward from location 𝑧 to radiometer altitude 𝑆. The other part of the 

atmospheric emissions, 𝑇𝐵𝐷, travels downwards through the atmosphere and gets reflected by the 

ocean surface. 𝑇𝐵𝐶  in the third term of Eq. 4.1 is cosmic background temperature from deep space, 

which passes through the whole atmosphere before getting reflected by the ocean surface. It is 

constant and equal to 2.7 K for the frequency channels under consideration [118]. Thus, the third 

and fourth terms represent the total reflection by specular (smooth) ocean surface. However, the 

ocean surface in reality is not fully specular -- winds roughen it, and the roughness increases 

reflection. Here comes the ocean vector wind (OVW) modification factor 𝛺𝑂𝑉𝑊, which takes 

account of this additional diffuse reflection due to wind-roughened surface scattering [117].  

 Ocean surface local winds generate small-scale gravity-capillary waves over large-scale 

gravity waves, which cause Bragg scattering (diffraction) of the downwelling atmospheric and 

cosmic radiation. According to Kirchhoff’s rule (Eq. 4.4), it also changes the ocean surface 

emissivity, 𝐸, and these effects are anisotropic with wind direction relative to the sensor azimuth 
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look Φ𝑙𝑜𝑜𝑘, called relative wind direction (𝜒). The relative wind direction is defined as the ocean 

surface wind direction relative to the sensor (GMI in this case) azimuth look (Φ𝑙𝑜𝑜𝑘). 

𝜒 =  Φ𝑤𝑚 − Φ𝑙𝑜𝑜𝑘 (4.5) 

where the wind direction (Φ𝑤) is inferred in the meteorologic convention. In meteorologic 

convention, the wind direction Φ𝑤𝑚 is defined clockwise from north to the direction from which 

it is blowing. The reflection symmetry property of Maxwell’s Equation yields that ocean surface 

emissions of both vertical and horizontal polarization signals are an even and periodic function of 

𝜒. Thus, it can be expanded using even harmonic series of the following form (the higher order 

terms are negligible) [117], 

𝐸(𝑝, 𝑓, 𝜃, 𝛷,… ) =  𝐸0(𝑊𝑆, 𝑆𝑆𝑇, 𝑆𝑎𝑙) +  𝐸1(𝑊𝑆) cos(𝜒) + 𝐸2(𝑊𝑆) cos(2𝜒)  (4.6) 

Similarly, the corresponding brightness temperature, 𝑇𝐵, from Eq. 4.1, for a given frequency 

channel, and a certain earth incidence angle, 𝜃, can be represented as [119], 

𝑇𝐵𝑝 = 𝐶𝑝0(𝜏,𝑊𝑆, 𝑆𝑆𝑇, 𝑆𝑎𝑙) +  𝐶𝑝1(𝜏,𝑊𝑆) cos(𝜒) + 𝐶𝑝2(𝜏,𝑊𝑆) cos(2𝜒) (4.7) 

where the DC coefficient, 𝐶𝑝0, is the isotropic brightness temperature (azimuth independent) that 

depends on wind speed, sea surface temperature, sea surface salinity, and atmospheric 

transmissivity for a given earth incidence angle at a certain frequency for rain and ice-free ocean 

surface. The first and second harmonic coefficients 𝐶𝑝1 and 𝐶𝑝1 representing the upwind-

downwind and upwind-crosswind asymmetry, the brightness temperature, respectively depend on 

wind speed and atmospheric transmissivity.  
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4.3: Methodology 

4.3.1: Matchup Dataset, Pre-processing, and Binning 

 The GMI Level 1 BASE (L1BASE) brightness temperature (𝑇𝐵) data products from GPM 

V07 data suite in NASA GPM Precipitation Processing System (PPS) research data archive were 

used to develop a passive geophysical model function (GMF). For GMI, these are the same as the 

1B 𝑇𝐵 data product and are provided in multi-swath structures. These data are calibrated and 

geolocated and come with scan status, observation geometry, navigation data, and other quality 

flags. These quality flags were applied as the first screening over measurements. Then the 

measurements swaths were converted into regular latitude × longitude grids of various resolutions, 

in particular, of 0.25˚ × 0.25˚ and 0.5˚ × 0.5˚ spatial grids (equivalent to 25 km × 25 km and 50 

km × 50 km resolutions at the equator) for performance comparisons. The measurements inside 

each grid box were averaged, and corresponding means (μ), standard deviations (STD), and the 

number of observations (N) inside each grid box were saved for the following processing stage. 

The same gridding averaging method was applied to the other associated variables, including time, 

incidence angle, satellite azimuth angle, etc. As mentioned in Chapter 1, only 10, 19, and 37 GHz 

dual-polarized channels were used, in different spectral combinations, because their robust wind 

vector signature. 

 Besides the 𝑇𝐵 data, other collocated ancillary data, like wind speed (WS) and directions 

(WD), sea surface temperature (SST) were used for tuning the GMFs. In addition, other physical 

parameters such as cloud liquid water (CLW), water vapor (WV), rain, etc., were used for 

screening and quality control. For these, the European Centre for Medium-Range Weather 

Forecasts (ECWMF) 5th generation reanalysis (ERA-5) ancillary dataset was used, which provides 
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hourly estimates of the surface as mentioned above parameters on a 30 km over the Earth. In 

addition, it also provides the vertical profiles of atmospheric variables at 137 pressure levels from 

the surface up to a height of 80km. All ERA5 data were spatially interpolated into 0.25˚ × 0.25˚ 

and 0.5˚ × 0.5˚ grids to match the GMI grids for collocation purposes. 

 For rain information, GPM provides high-quality and high-resolution level 3 (L3) rain 

measurements, called the Integrated Multi-satellitE Retrievals for GPM (IMERG) [120]. It 

combines precipitation estimates from a constellation of microwave (MW) and microwave-

calibrated infrared (IR) satellites and surface rain gauges to provide a global rain map every 30 

minutes at 0.1˚ (~10 km) spatial resolution. We preferred to use IMERG rain information for rain 

flagging because of its superior reliability over IMERG data were also interpolated into 0.25˚ 

× 0.25˚ and 0.5˚ × 0.5˚ Earth grids to collocate with the corresponding GMI 𝑇𝐵s and ERA5 

variables. 

 ERA5 rain and cloud liquid water (CLW) data products are also less reliable. Therefore, 

an alternative CLW data product was used, from the Remote Sensing System (RSS) [105]. The 

RSS data archive provides a daily map of oceanic parameters in regular 0.25˚ × 0.25˚ spatial grids 

(equivalent to 25 km × 25 km). It uses GMI brightness temperature and radiative transfer model 

(RTM) to derive the data suite of oceanic parameters, including wind speed (WS), sea surface 

temperature (SST), water vapor (WV), rain rate (RR), and cloud liquid water (CLW). Besides 

CLW, we included all other variables as redundant for cross-checking purposes. All WS products 

used in this dissertation are neutral stability 10-m neutral equivalent winds. Therefore, WS will 

indicate 10-m winds if not otherwise explicitly mentioned. 
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 All these variables were finally collocated within a temporal window of ± 1 hour. A 

conservative land mask was applied to remove the land and coastal area measurements. Rain, 

CLW, SST information were used at this stage to retain rain-, cloud-, and ice-free ocean data. In 

addition, 𝑇𝐵 collocate box with high variances (>2 K for V-pol and >3 K for H-pol 10.65, 18.7, 

and 36 GHz channels) were discarded to ensure a homogenous ocean scene. 

The ERA5 10-m wind direction used in this study holds oceanographic convention where the wind 

direction Φ𝑤𝑜 is specified as the opposite, i.e., the direction towards which it is moving. Fig.4.1a 

illustrates this.  

𝐸𝑅𝐴5 𝑊𝐷 = Φ𝑤𝑜 = Φ𝑤𝑚 + 180˚  (4.8) 

 The sensor azimuth look is usually provided with a level 1 data product for wind measuring 

instruments. Since the primary purpose of GMI was not vector wind measurement, the look 

azimuth is not supplied with the 1BASE data. Although it is readily calculated from the known 

spacecraft sub-satellite points for each scan position (flight direction), we adopted the following 

simple way to compute it [121]. The satellite azimuth angle, defined as the clockwise looking 

down between the local pixel geodetic north and the direction of the satellite, is available in 

L1BASE data. Therefore, it can be related to the sensor azimuth view, as illustrated in Fig. 4.1b.  

Φ𝑙𝑜𝑜𝑘 = Φ𝑠𝑎𝑡 + 180 (4.9) 

where Φ𝑠𝑎𝑡 is the satellite azimuth angle, which ranges from 0 to 360 degrees.  

Using Eq. 4.5, 4.8, and 4.9, the relative wind direction can be calculated as, 

𝜒 =  Φ𝑤𝑜 − Φ𝑠𝑎𝑡 (4.10) 
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Therefore, the relative wind direction for GMI was calculated as the ERA5 10-m wind direction 

relative to the GMI satellite azimuth look. The relative wind direction ranges from 0 to 360 

degrees. Therefore, Eq. 4.10 holds the same for both yaw orientations of GMI (forward and apt). 

 

Figure 4.1: Illustration of (a) wind direction in oceanographic and meteorological convention and (b) relative wind direction. A 

thick black arrow indicates the wind vector, and the square box at the center of the Cartesian coordinate system represents a typical 

wind vector cell (WVC). Angles are depicted, and their interrelation is given in the caption on the top right. 

 

 The brightness temperature from the lower nine channels of GMI was first binned into 40 

SST bins with SST ranges from -3 C to 36 C, and for each container, a sliding window of ±2 C 

was used. However, due to sparse populations at significantly higher temperatures and to avoid 

possible ice contaminations, SST bins corresponding to <0 C and >33 C were not included in the 

analysis. Then within each SST bin, the 𝑇𝐵s were subdivided into wind-speed compartments from 

0.5 to 20.5 m/s with a ±0.5 m/s sliding window. Finally, the WS bins were further sorted into 73 

relative wind direction bins corresponding to relative wind direction 5 to 355 degrees in ±5˚ step. 

Relative wind direction bins for 0 and 360 degrees were extrapolated using a 2nd order fit. The 

binning scheme is illustrated in Fig. 4.2. 
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Figure 4.2: Binnig procedure for 𝑇𝐵 and AV-H geophysical model function 

 

4.4: Brightness Temperature Signal  

 Sea surface temperature (SST) is the key element that comprises the most significant part 

of the 𝑇𝐵 received by radiometers. Therefore, 𝑇𝐵s are strong function of SST and its variation. 

Figure 4.3 below shows the 𝑇𝐵s at nine frequency channels as a function of SST for three different 

WS, namely, 6, 20, and 14 m/s. The brightness temperature increases monotonically with SST for 

all WS at all nine frequencies. The SST signals are generally higher at H-pol channels (except for 

10H) and increase with frequency for both polarizations. This is depicted in Fig. 4.4, which plots 

the same as Fig.4.3, with the mean removed.  
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Figure 4.3: Sea surface temperature signature (SST) of GMI brightness temperature at nine lower frequency channels for wind 

speeds 6, 10, and 14 ms-1.  

 

Figure 4.4: Sea surface temperature (SST) signal (with mean removed) of GMI brightness temperature at nine lower frequency 

channels for wind speeds 6, 10, and 14 ms-1. 
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 Figure 4.5 below shows the brightness temperatures at nine frequency channels as a 

function of WS for four different SST, namely, 4, 12, 20, and 28C. As shown, 𝑇𝐵s also have a 

robust WS signature, especially in lower-frequency channels. H-pol channels have higher 

sensitivity than their V-pol counterparts. This is depicted in Fig. 4.6, which plots the same as 

Fig.4.5, with the mean removed. Figure 4.7 shows the brightness temperatures as a function of 

both WS and SST. 

 

Figure 4.5: Wind speed (WS) signature of GMI brightness temperature at nine lower frequency channels for sea surface 

temperatures of 4, 12, 20, and 28 ˚C. 
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Figure 4.6: Wind speed (WS) signal (with mean removed) of GMI brightness temperature at nine lower frequency channels for sea 

surface temperatures of 4, 12, 20, and 28 ˚C. 

 

Figure 4.7: Wind speed (WS) signal and sea surface temperature (SST) dependence of GMI brightness temperature at nine lower 

frequency channels. 
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 As described by [27], linearly polarized 𝑇𝐵s also have small but significant wind direction 

signals. Here, we present it for GMI channel frequencies in Fig. 4.8. Fig. 4.9 shows the directorial 

signals by removing the mean. As shown, the WD signals at V-pol channels are mainly dominated 

by first harmonics, while at H-pol channels, it is primarily by second harmonics. The directional 

signals are within the order of only a few K in all the channels. 

 

 

Figure 4.8: Wind direction (WD) signature of GMI brightness temperature at nine lower frequency channels for wind speed 6, 10, 

and 14 ms-1 at sea surface temperature of 20 ˚C. 
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Figure 4.9: Wind direction (WD) signal (with DC terms removed) of GMI brightness temperature at nine lower frequency channels 

for wind speeds 6, 10, and 14 ms-1 at sea surface temperature of 20 ˚C. 

 Figure 4.10 below presents the corresponding standard deviations of the binned average 

𝑇𝐵s illustrated in Fig. 4.8. As shown, the statistical uncertainty is greater than the WD signals for 

all the channels, and the higher the frequency, the larger the effects. This is because atmospheric 

contaminations due to water vapor (WV) and cloud liquid (CLW) obscure these weak WD signals.  

Because of these contaminations and inherent measurement noise of the current radiometric 

systems (of the order of 1K), the WD retrieval from linearly polarized 𝑇𝐵s has not been possible. 

Polarimetric 𝑇𝐵s (3rd and 4th Stokes parameters), which are the differences in polarization ratios, 

are usually used for wind direction measurement in radiometer systems specialized for OVW 

purposes, like WindSat [122]. However, a linear weighted sum of horizontal and vertical pol 𝑇𝐵s 

expressed as AVH = (A*TBV – TBH), where “A” is an empirically derived coefficient, has been 

proved to provide an improved “ocean-signal” to “atmosphere-noise” ratio by mitigating the 
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overlying atmospheric influence [117], [123], [124]. This approach, called atmospheric clearing, 

forms the basis of our passive GMF. This is described in the next section. 

 

Figure 4.10: Standard deviations of GMI brightness temperature bins at nine lower frequency channels for wind speeds 6, 10, and 

14 ms-1 at sea surface temperature of 20 ˚C. 

 

4.5: Atmospheric Clearing  

 To mitigate the effects of atmospheric water vapor (WV) and cloud liquid water (CLW) on 

atmospheric transmittance, we used the linear combination of the linear polarized brightness 

temperatures (i.e., the modified 2nd Stokes parameters), A ∗ 𝑇𝐵𝑉 − 𝑇𝐵𝐻 (to be called AV-H 

hereafter). Under clear sky conditions, the atmosphere can be assumed to be a single homogenous 

layer such that the atmospheric absorption α(z) coefficient is a constant. The same assumption also 

results in a constant effective air temperature 𝑇𝑒𝑓𝑓 along the vertical profile, which is close to the 

surface temperature of the ocean, 𝑇𝑠, and remains constant along the vertical profile [29], [123].  
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𝑇𝑒𝑓𝑓 ≈ 𝑇(𝑧) ≅  𝑇𝑠 

𝑎(𝑧) ≈ 𝑐𝑜𝑛𝑠𝑡 =  𝑎 

(4.11) 

Thereby, Eqs. 4.2a and 4.2b simplify to 

𝑇𝐵𝑈 = 𝑇𝐵𝐷 =  𝛼𝑇𝑒𝑓𝑓 ∫ 𝑒−(𝛼.𝑧)𝑑𝑧
𝑆

0

= (1 − 𝑒−(𝛼.𝑆))𝑇𝑒𝑓𝑓 = (1 −  𝜏)𝑇𝑒𝑓𝑓 (4.12) 

Substituting Eq. 4.12 into Eq. 4.1 results 

𝑇𝐵 = 𝑇𝑒𝑓𝑓 − 𝜏2𝑅𝑇𝑒𝑓𝑓 + 𝜏𝑅𝛺𝑂𝑉𝑊[(1 −  𝜏)𝑇𝑒𝑓𝑓 +  𝜏𝑇𝐵𝐶] (4.13) 

 Now, since the cold deep space brightness temperature, 𝑇𝐵𝐶, (1 −  𝜏), roughness 

modification factor, are all very small numbers each; the combined effects of the third term in Eq. 

4.13 is negligible and can thus be ignored. This results in a good approximation of 𝑇𝐵 

𝑇𝐵 ≈ 𝑇𝑒𝑓𝑓 − 𝜏2𝑅𝑇𝑒𝑓𝑓 (4.14) 

For V- and H-polarized 𝑇𝐵𝑠,  

𝑇𝐵𝑉 ≈  𝑇𝑒𝑓𝑓 − 𝜏2𝑅𝑉𝑇𝑒𝑓𝑓 (4.15a) 

𝑇𝐵𝐻 ≈ 𝑇𝑒𝑓𝑓 − 𝜏2𝑅𝐻𝑇𝑒𝑓𝑓 (4.15b) 

We can derive a polarimetric reflectivity ratio ‘A’ such as: 

𝐴 =  
𝑅𝐻

𝑅𝑉
  =  

𝑇𝐵𝐻− 𝑇𝑒𝑓𝑓 

𝑇𝐵𝑉− 𝑇𝑒𝑓𝑓 
 ≈ 

𝑇𝐵𝐻− 𝑇𝑆 

𝑇𝐵𝑉− 𝑇𝑆 
 (4.16) 

Eq. 4.16 then provides a linear combination of 𝑇𝐵𝑠 such that: 

𝐴𝑇𝐵𝑉 −  𝑇𝐵𝐻 = (A − 1)𝑇𝑒𝑓𝑓 ≈ (A − 1) 𝑇𝑆    (4.17) 

The partial derivative of this combination with respect to the atmospheric transmittance turns out 

to be 0.  



63 

 

𝜕(𝐴𝑇𝐵𝑉−  𝑇𝐵𝐻)

𝜕𝜏
  ≈  0 (4.18) 

Therefore, the linear combination V- and H-pol brightness temperature, 𝐴𝑉 − 𝐻, is found to be 

independent of changes in atmospheric transmissivity mainly caused by variations in atmospheric 

WV and CLW under rain free conditions. This is the basis of the passive GMF of this dissertation, 

which is much less impacted by atmospheric contamination, unlike 𝑇𝐵 of the individual channel. 

Figure 4.11 below shows the A parameters for 10, 19, 37, and 89 GHz channels as function of SST 

and WS. The A value for 10 GHz channel ranges between 1.5 to 1.7, and it increases with 

increasing frequency of the channels. 

 

Figure 4.11: Atmospheric clearing factor (A) for 10, 19, 37, and 89 GHz GMI channels as a function of wind speeds and sea surface 

temperature. 

4.6: AV-H Geophysical Model Function 

AV-H can be empirically modeled as, 

AVH = 𝐴 ∗ 𝑇𝐵𝑉 − 𝑇𝐵𝐻  

          = 𝐶𝑜(𝑊𝑆, 𝑆𝑆𝑇) + 𝐶1(𝑊𝑆, 𝑆𝑆𝑇) ∗ 𝑐𝑜𝑠(𝜒) +  𝐶2(𝑊𝑆,  𝑆𝑆𝑇) ∗ 𝑐𝑜𝑠(2𝜒) 

(4.19) 

where Co(𝑊𝑆, 𝑆𝑆𝑇) is the DC offset (to be called AVH DC here after) that depends on WS and 

SST for a particular frequency channel.  When the DC offset is removed from AV-H in Eq. 4.19 
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with a priori WS (to be retrieved from GMI TBs by regression analysis that is described in the next 

section) and SST, the   𝐴𝑉𝐻𝑎𝑛𝑜𝑚𝑎𝑙𝑦, defines the AVH GMF as follows,  

 𝐴𝑉𝐻 𝐺𝑀𝐹 =   𝐴𝑉𝐻𝑎𝑛𝑜𝑚𝑎𝑙𝑦 = (𝐴 ∗ 𝑇𝐵𝑉 − 𝑇𝐵𝐻) - Co(𝑊𝑆, 𝑆𝑆𝑇) (4.20) 

𝐴𝑉𝐻 𝐺𝑀𝐹 = 𝐶1(𝑊𝑆, 𝑆𝑆𝑇) ∗ 𝑐𝑜𝑠(𝜒) +  𝐶2(𝑊𝑆,  𝑆𝑆𝑇) ∗ 𝑐𝑜𝑠(2𝜒) (4.21) 

where 𝐶1 and 𝐶2 are generally WS-dependent coefficients; however, as will be shown later in this 

section, they depend on SST at higher and lower SST. 

 To derive AVH GMFs, we used a similar binning procedure for the 𝑇𝐵s in the previous 

section, except that we binned weighted combinations of 𝑇𝐵s (i.e., AV-H) instead of 𝑇𝐵s 

(individual 𝑇𝐵 for V and H pol.). Then the mean, over the relative wind direction, was subtracted 

to find GMF (anomalies) in tabular forms. Finally, for computational efficiency of retrieval, the 

GMF comprised 3D matrixes, as a function of WS, RWD, and SST, for each frequency channel.  

 Figure 4.12 shows the AVH (top panels) for WS 6, 10, and 14 m/s for 10, 19, 37, and 89 

GHz channels and their corresponding anomalies (bottom panels) as a function of relative wind 

direction. As shown, the anomalies are a monotonic function of WS and biharmonic with relative 

wind direction, as in the case of conventional scatterometer GMF. However, unlike scatterometer 

GMF, AVH GMFs are led mainly by first harmonics, which reduces the ambiguity problems as in 

the case of biharmonic scatterometer GMFs. 
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Figure 4.12: Wind direction (WD) signals of AV-H combinations at wind speeds 6, 10, and 14 ms-1 and sea surface temperature of 

20 ˚C for 10, 19, 37, and 89 GHz GMI channels as a function of relative wind direction. 

 Figure 4.13 shows the DC offset of the AVH channels as a function of both SST and WS. 

For all channels, except 10 GHz, the DC offset decreases with SST, while for 10 GHz channels, it 

decreases with SST for the lower SST but increases with higher SST. The mean values decrease 

almost linearly with WS for all frequency channels at all SST. These results are shown as a function 

of SST and WS individually in the top and bottom panels of Fig. 4.14, respectively. It should be 

noted that the DC offset is robust, but because it is a very large number (of order 100 - 200 K) with 

a large dynamic variability (between 50 K and 100 K) with SST and WS. This is a major concern 

for the development of a robust OVW retrieval algorithm that will be discussed further in future 

sections. 
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Figure 4.13: AV-H offset for 10, 19, 37, and 89 GHz GMI channels as a function of wind speeds and sea surface temperature. 

 

Figure 4.14: Sea surface temperature (SST) and wind speed (WS) dependence of AV-H offset for 10, 19, 37, and 89 GHz GMI 

channels. Mean AV-H are plotted as a function of SST (top) and WS (bottoms). 

 Now, Figure 4.15 depicts the STD of the AVH bins, corresponding to Fig. 4.12, as a 

function of relative wind direction for three different WS of 6, 10, and 14 m/s, at an SST of 20 C. 

As shown, the STDs are a small function of relative wind direction, WS and SST, and the mean 

STD increases with the frequency of the channels. It should be noted that STDs are too high for 
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the 89 GHz channel to be considered for WD retrieval purposes. However, the STDs are reasonable 

for other lower frequency channels considering their more robust WD signals, as shown in Fig. 

4.12. This is illustrated in another way in Fig. 4.16 where the AV-H peak-to-peak directional signal 

and their uncertainty (mean STD) is presented as a function of WS. There are a few implications 

to notice. First, AV-H Peak-to-peak directional signal supersedes the uncertainty for moderate to 

higher WS regime for frequency channels other than 89 GHz. Therefore, WD retrieval from GMI 

channels 10, 19, and 37 GHz channels should be possible. For the 89 GHz channel, because the 

uncertainty >> the WD signals, it is not included in our algorithm.  Except for the high WS, the 

anomaly is not a function of SST; it is the only function of wind speed and direction. 

 

 

Figure 4.15: Standard deviations of AV-H bins at wind speeds 6, 10, and 14 ms-1 and sea surface temperature of 20 ˚C for 10, 19, 

37, and 89 GHz GMI channels as a function of relative wind direction. 
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Figure 4.16: Peak-to-peak directional anisotropy and corresponding standard deviations of AV-H residuals at sea surface 

temperatures of 4, 12, 20, and 28 ˚C for 10, 19, 37, and 89 GHz GMI channels as a function of wind speed. 

 

4.7: Wind Speed Retrieval Algorithm  

4.7.1: Statistical Regression 

 A priori WS is required to determine the DC offset of AV-H. To obtain WS, we used a 

similar D-matrix algorithm by Connor and Chang [125] and Meissner and Wentz [126], [127] to 

retrieve WS from a linear combination of measured 𝑇𝐵s, but under rain-free condition. The 

algorithm is given by,  

𝑊𝑆 = 𝐶𝑜 + 𝐶1 ∗ 𝑇𝐵1 +  𝐶2 ∗ 𝑇𝐵2 + . . .  + 𝐶𝑛 ∗ 𝑇𝐵𝑛 (4.22) 

where 𝑇𝐵𝑛 is the brightness temperature from nth channel, and the  𝐶𝑛 coefficients are determined 

from regression analysis. 

 We evaluated different combinations of channels of GMI. The combination of all nine 

channels provided the best results for rain-free measurements. Therefore, our wind speed retrieval 

regression algorithm takes the following form. 
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𝑊𝑆 = 𝐶𝑜 + 𝐶1 ∗ 𝑇𝐵10𝑉 +  𝐶2 ∗ 𝑇𝐵10𝐻  +  𝐶3 ∗ 𝑇𝐵19𝑉 +  𝐶4 ∗ 𝑇𝐵19𝐻  + 𝐶5 ∗ 𝑇𝐵22𝑉  

+  𝐶6 ∗ 𝑇𝐵37𝑉  +  𝐶7 ∗ 𝑇𝐵37𝐻  +  𝐶8 ∗ 𝑇𝐵89𝑉  +  𝐶9 ∗ 𝑇𝐵89𝐻  

(4.23) 

 The coefficients were found by fitting the 𝑇𝐵 dataset to a linear model. 6 years (2015 to 

2020) of 𝑇𝐵 measurements were used, and the coefficients were determined in yearly basis, and 

the mean coefficients over the year was computed. The mean values of the coefficients are 

provided in Table 4.1 below.  

Table 4.1: The Spectral Coefficients of GMI Wind Speed Retrieval Algorithm 

Channels Coefficients Value 

Const. 𝐶𝑜 88.1816 

10V 𝐶1 -0.9906 

10H 𝐶2 1.2877 

19V 𝐶3 1.2899 

19H 𝐶4 -0.6525 

23V 𝐶5 -0.0395 

37V 𝐶6 -1.2328 

37H 𝐶7 0.4376 

89V 𝐶8 -0.0158 

89H 𝐶9 0.0501 
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CHAPTER 5: COMBINED ACTIVE AND PASSIVE OVW RETRIEVAL 

ALGORITHM 

5.1: Introduction 

 Given set of observations within a wind vector cell (WVC), the purpose of the OVW 

retrieval algorithm is to obtain the best estimate of the ocean vector wind, using a previously 

derived or trained forward model function 𝑓.  

𝑦 = 𝑓(𝑥) (5.1) 

where 𝑦 is the mean of the top-of-the atmosphere (TOA) observations over a WVC and 𝑥 is the 

state variables (e.g., the vector wind at 10-m neutral height, 𝑈10, and other geophysical variables, 

𝑄). The forward model 𝑓 is called the geophysical model function (GMF). 

 Therefore, for a given set of observations, 𝑦, and a well-tuned GMF, the problem in Eq. 

5.1 is an inverse optimization problem. There are many well-known techniques for inversion, 

including analytical, statistical (such as Bayes' theory based), and least square approaches [45], 

[46], [64], [76]. However, the inversion procedure for OVW is highly non-linear [46], [61], [73], 

[128]–[130]. Consequently, the Bayesian non-linear optimization technique, mainly the 

maximum-likelihood estimation (MLE) technique, is usually used by the OVW community [65], 

[66]. This chapter discusses the MLE technique and the MLE-based combined active and passive 

(CAP) algorithm used for OVW retrieval. 

5.2: Maximum Likelihood Estimation 

 The MLE is a Bayesian optimization technique that maximizes the likelihood of the “true” 

wind by minimizing a cost function. Generally, Bayes’ theory relates the posterior probability of 

occurrence of a true state, 𝑥𝑡, for a given set of observations, 𝑦𝑜 , as a function of the prior 
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probability of occurrence of the true state 𝑥𝑡, and the probability of the observation, 𝑦𝑜, for a known 

state, 𝑥𝑡 , by Eq. 5.2. 

𝑃(𝑥𝑡|𝑦𝑜)  =  
𝑃(𝑦𝑜|𝑥𝑡) ∗ 𝑃(𝑥𝑡) 

𝑃(𝑦𝑜)  
 (5.2) 

where, 

𝑃(𝑥𝑡|𝑦𝑜)   the probability of occurrence of true state, 𝑥𝑡 , given that the observation, 𝑦𝑜, has been 

recorded 

𝑃(𝑥𝑡)   the prior probability of an event 𝑥𝑡 

𝑃(𝑦𝑜)    the probability of an event 𝑦𝑜, and 

𝑃(𝑦𝑜|𝑥𝑡)   the probability of occurring the observation, 𝑦𝑜 , for a given true state, 𝑥𝑡 

 The probabilities 𝑃(𝑥𝑡), 𝑃(𝑦𝑜)  are independent of each other and are set to constant for 

OVW retrieval from a particular instrument. Hence, the posterior probability, 𝑃(𝑦𝑜|𝑥𝑡), can be 

fully characterized in terms of 𝑃(𝑦𝑜|𝑥𝑡). However, it depends on the uncertainty associated with 

the observation itself and the uncertainty in the forward modeling (through GMF). It results, 

𝑃(𝑥𝑡|𝑦𝑜)  ∝ 𝑃(𝑦𝑜|𝑥𝑡) =  ∫ 𝑃𝑜(𝑦𝑡 − 𝑦𝑜). 𝑃𝑓(𝑦𝑡 − 𝑓(𝑥)) 𝑑𝑦𝑡   𝑃𝑜𝑓(𝑦𝑜 − 𝑓(𝑥)) (5.3) 

where 𝑦𝑡 is the true observation, 𝑃𝑜 and 𝑃𝑓 are the random errors associated with the observation 

and GMF respectively. For ocean surface, the central limit theorem, these random errors are 

Gaussian in nature [46], [131], [132], and therefore, Eq. 5.3 can be approximated as 

𝑃(𝑥𝑡|𝑦𝑜)  ∝ 𝑒𝑥𝑝[−
1

2
 {𝑦𝑜 − 𝑓(𝑥)}𝑇(𝑂 + 𝐹)−1{𝑦𝑜 − 𝑓(𝑥)}] (5.4) 

Here 𝑂 and 𝐹 are the covariant matrixes of 𝑃𝑜 and 𝑃𝑓, respectively. Now, since maximizing 

𝑃(𝑥𝑡|𝑦𝑜)  is equivalent to minimizing −ln ([𝑃(𝑥𝑡|𝑦𝑜)]), the maximum likelihood estimator (MLE) 

can be written as: 
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𝑀𝐿𝐸 =  {𝑦𝑜 − 𝑓(𝑥)}𝑇(𝑂 + 𝐹)−1{𝑦𝑜 − 𝑓(𝑥)}  (5.5) 

𝑦𝑜 in Eq. 5.5 represents the measurements, and the forward model, 𝑓(𝑥), represents the GMF. 

 The GMF is generally assumed to be perfect (say 𝐹 ≈ 0), and measurements are assumed 

uncorrelated (𝑂 is thus a diagonal matrix). With these assumptions, the MLE for OVW is thus 

defined as, 

𝑀𝐿𝐸(𝑂𝑉𝑊) =
1

𝑁
∑

[𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 − 𝑀𝑜𝑑𝑒𝑙)]2

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑁

𝑖 =1

 (5.6) 

 

where 𝑁 is the number of available measurements in a WVC.  

5.3: Retrieval Algorithm 

The procedure for the combined active-passive (CAP) OVW retrieval is outlined in Fig. 5.1. The 

basis of this algorithm is the MLE inversion, which is defined as, 

𝑀𝐿𝐸(𝑂𝑉𝑊) = [∑(
1

𝑁
∑

[𝜎𝑚𝑒𝑎𝑠,𝑖𝑗
0 − 𝐺𝑀𝐹𝜎𝑖𝑗

0 (𝐸𝐼𝐴, 𝑆𝑆𝑇)]2

𝑣𝑎𝑟𝜎𝑚𝑒𝑎𝑠,𝑖𝑗
0

𝑁𝐵

𝑗=1

)

𝑛

𝑀

𝑖=1

]

𝑛

+ [∑ (
[(𝐴𝑉 − 𝐻)𝑚𝑒𝑎𝑠,𝑘 − 𝐺𝑀𝐹𝐴𝑉𝐻,𝑘(𝑆𝑆𝑇)]2

𝑁𝐸𝐷𝑇𝑘
)

𝑛

𝐿

𝑘=1

]

𝑛

 

(5.7) 

The first term in Eq. 5.7 is the active part of the MLE, which consists of GPM Ku- and Ka-band 

GMFs and measurements. M represents the number of bands, and NB indicates the number of 

beams for each band used in the algorithm. M=2 for DPR, and there are 49 beam positions with 

corresponding Earth incidence angles (EIA) for each band. We evaluated the performance of all 

the beams, but considering directional sensitivity, we selected 18 outer beam positions from each 
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side of the swath for our wind direction retrieval algorithm. So, NB = 36. Two versions of GMFs 

were used for DPR for performance evaluations; one used the SST information as a priory, called 

the SST dependent DPR GMF, and the other was SST independent (tuned and used in retrieval 

without giving SST information, can be termed as SST averaged). Since the absolute values of 

𝜎0 at both bands are different due to a spectral difference, the MLE at each band is first normalized 

to its 2D global maximum. Then the normalized MLE is added for both bands and normalized in 

a similar way before adding it to its passive counterpart resulting from the second term. The 

subscript 𝒏 signifies this normalization process. The passive equivalent MLE in the second term 

follows a similar procedure. For every frequency channel, the distance between the AV-H 

measurements (linear combination of V- and H-pol 𝑇𝐵s as defined in Chapter 4) and its GMF is 

normalized by the on-orbit noise equivalent delta temperature (NEDT) of the individual channel. 

Because the spectral response of different frequency channels is significantly different, the MLE 

of each channel is normalized to its maximum value before summing up. Various combinations of 

3 lower frequency channels (10, 19, and 37 GHz) were used, and the retrieval performance of each 

combination was evaluated. Therefore, the values of L range between 1 and 3. Finally, since the 

𝜎0 and the 𝑇𝐵s are different quantities, normalized values of active and passive MLEs were added 

to find the combined MLE. The combined MLE was transformed in dB space to obtain the cost 

function described as follows. 
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Figure 5.1: Combined active and passive OVW retrieval algorithm. 

 

 The MLE surfaces for a typical WVC are shown in Fig. 5.2 for KuPR (top left panel), 

KaPR (top right panel), -and 3 AVH channels (bottom panels). For each panel, the color scale 

represents the cost function normalized residuals in dB, and the x- and y-axes are the relative WD 

(0° ≤ χ ≤ 360°) and WS (1≤ WS ≤ 20 m/s), respectively. Note, the top panels plot the MLE residual 

as a function of wind direction relative to PR azimuth look (same for both PR), while at the bottom 

panels, it is relative to GMI azimuth look, which is around ~75° off for the same WVC. The DPR 

MLE comprises σ0 measurements from multiple PR beams present for that particular WVC. As 

shown, the minima (blue) show the loci of possible solutions, which are unrealistically extended 

in both directions, for both DPR and AVH combinations. Therefore, when used individually, an 

unambiguous vector wind is not possible from either of these. However, the complementary active 

and passive combinations reduce this ambiguity significantly when added together. This is 

illustrated for the same WVC in Fig. 5.3. The AVH MLE surfaces were translated circularly to 
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match the relative wind direction with DPR and then added together, which forms the combined 

MLE surfaces presented in the bottom panels for different spectral combinations.  

 

Figure 5.2: Example MLE surfaces -- active (top) and passive (bottom) 

 

 The left-most Fig. 5.3 in the bottom panels represents the MLE of spectral combinations 

of 10 GHz AVH and KuPR 𝜎0 measurements. The next one adds 19 GHz AVH to this. The third 

on the bottom panel presents the combined MLE from Ku- and Ka-PR, 10 and 19 GHz AVH 𝑇𝐵s. 

The fourth one (the rightmost in the bottom panel) adds the 37 GHz AVH 𝑇𝐵s to the previous 

combination. The two dark blue contours are the MLE residual minima corresponding to the two 
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most probable solutions (aliases). Because of the biharmonic nature of the GMFs, ambiguities are 

inherent in GMF inversion. Typically, two to four aliases occur within the range of 360°. Thus, 

for a given WVC, the OVW retrieval results in up to four-possible wind vectors, of which one is 

the correct choice. This wind vector ambiguity structure is very similar to that produced by multi-

azimuth wind-measuring satellite scatterometers,  

Figure 5.3: Example MLE surfaces -- active (top row) and passive, which are circularly shifted to match the azimuth with active 

counterpart (middle row), and different combination of active and passive MLE (bottom row); the leftmost is the combination of 

Ku-band PR and 10 GHz AV-H, the next is the same except it adds the 19 GHz AV-H MLE. The following one (3rd row, 3rd 

column) adds Ka-band MLE with the previous one, and finally, the rightmost on the bottom panel shows the combination of 

MLEs from Ku- and Ka-band, and 10,19, and 37 GHz AV-H MLEs. 

 

 Next, the cost function for each of the above-mentioned combinations was evaluated using 

the similar algorithm used by NASA JPL for QuickScat and RapidScat wind processing [65], 

[133], [134]. In that algorithm, the minimum along WS for each wind direction is located, which 
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gives a 1D cost function as a function of relative wind direction. Then the likelihood of each 

possible WD solution was computed by converting the objective function to pseudoprobability 

function as. 

𝑃(𝑈, 𝜒 ) =
1

𝑘
exp[−𝐹𝑜𝑏𝑗(𝑈, 𝜒)] (5.8) 

where 𝑃(𝑈, 𝜒 ) represents pseudoprobabilities of a finite set of relative wind directions, 𝜒, for an 

averaged WS 𝑈, and 𝐹𝑜𝑏𝑗(𝑈, 𝜒) is their objective function, and k is a constant that depends on the 

instruments. 

 Figure 5.4 illustrates the procedure for the same WVC presented earlier. Panel (a) 

represents one of the combined MLE surfaces from Fig 5.3. The solid blue line in Fig. 5.4b 

represents the cost function found along the loci of WS minima. The corresponding WS is depicted 

in the same Fig. by black dots (right side y-axis), and the average of these WS is recorded as the 

average WS found from MLE, as represented by a straight yellow line parallel to the x-axis. The 

subpanel (c) in the same Fig. presents the relative prominences of the ambiguities as found from 

the objective function and the peaks of its probability density function as determined from Eq. 5.8. 

Black vertical lines present the relative probabilities of relative wind direction, 𝜒, for an averaged 

WS 𝑈. The highest relative likelihood is associated with the first-rank solution (deepest minima), 

which would be the ideal instrument's true solution. However, in reality, the deepest minima, or 

the 1st rank solutions, are not always the true solutions, depending on instrument skill, which is 

defined as the percentage of the times the 1st rank solution is the true solution in a large number of 

retrievals. Therefore, a threshold in relative probability is usually set (1% for our case) to remove 

the directional noise that results in one to four most probable solutions, which are then subject to 

an ambiguity removal algorithm for determining the correct solution. 
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Figure 5.4: MLE cost function and probable solutions 

 

5.3.1: Ambiguity Removal 

 The ambiguity removal algorithm aims to select the best candidate solution from a set of 

ambiguous or probable solutions based on spatial consistency constraints. Two main approaches 

that the OVW community mostly follow -- median filtering based AR techniques [65], [66], [134], 

[135], and two-dimensional variational ambiguity removal technique (2DVAR) [61], [129], [136]–

[139].  

In median filtering-based techniques, weighted cost function residual is nudged with 

Numerical Weather Prediction (NWP) model wind fields to select the most probable WD. The 

process is initiated with the ambiguity value closest to NWP wind vector field and then the 

selection is iteratively adjusted for each WVC to match the direction closest to the median WD of 

the surrounding WVCs. The process continues until the selections converge, resulting in the final 

WD solution. 
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In 2DVAR AR technique, the observations and NWP background information are merged 

through a two-dimensional variational technique, like those employed in meteorological data 

assimilation, to produce an ‘analysis’ wind field. Then, for every WVC, the closest ambiguity to 

the ‘analysis’ field is chosen as the final WD candidate. So, 2DVAR accounts for background 

error. 

However, in this dissertation, the closest solution to the surface truth reference (ERA5 NWP 

and ASCAT wind filed) was selected to evaluate the performance of the CAP retrieval algorithm. 

This is illustrated in Fig. 5.1. 
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CHAPTER 6: RESULTS AND DISCUSSION 

6.1: Introduction 

 In this chapter, we compare the wind speed and direction retrieval results with ERA5 and 

ASCAT-B winds. ASCAT-B is a C- band scatterometer that flies onboard the European 

Organization for the Exploitation of Meteorological Satellites (EUMETSAT) MetOp-B satellite; 

and provides wind vector measurements over the ocean [140]. ASCAT is on a polar non-sun 

synchronous orbit and, thus, provides regular collocations with GPM. 

6.2: Validation 

6.2.1: Validation Matchup Dataset 

 The match-up dataset consisted of 1-year (2021) of independent (not used in GMF 

development) DPR and GMI datasets, which were spatially and temporally collocated with 

independent “surface truth" OVW observations. These independent OVW's were from near 

concurrent (within ±30 min) ocean winds from the ERA5 reanalysis NWP and from ASCAT 

scatterometer retrievals onboard MetOp-B satellite. The ASCAT Version 2.1 daily gridded wind 

product (on a 0.25° longitude x 0.25° latitude grid) from the Remote Sensing System (RSS) [141] 

were used. The corresponding ERA5 products were resampled to the same grid resolution, and the 

GMI and DPR data gridding and retrieval were also performed with the same spatial resolution 

(25 km). The temporal collocation window was set to ±30 min, and all regular quality flags 

(including land, ice, and rain), similar to the ones used for GMF development in Chapters 2 and 3, 

were used. Since the GPM is in a non-sun synchronous inclined orbit (65° inclination), and MetOp-

B is in a sun-synchronous polar orbit (98.7° inclination), GPM crosses MetOp-B in every orbit, 

which facilitates frequent collocation. 
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 Retrieval and validation were performed for collocated DPR and GMI swath (~245 km 

central swath of GMI). One year of such GPM-ASCAT collocations resulted in about 0.87 million 

of 25 km boxes that covers the full dynamic range of possible oceanic states. Figure 6.1 shows the 

geographical distributions of the validation dataset with associated longitude and latitudinal 

histograms.  

 

Figure 6.1: Distribution of validation dataset 

6.2.2: Wind Speed Validation 

 The wind speed for the collocated data set was computed from the regression analysis of a 

linear combination of GMI 𝑇𝐵s from 9 lower frequency channels. Figure 6.2 compares the 

retrieved WS with the collocated WS from ERA5 (top panels) and ASCAT-B (bottom panels), 

where a 2σ filter was used to remove the outliers. From the leftmost panels, it is seen that there is 

a very high correlation between the retrieved winds, as evidenced by the high correlation ratio 
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(>0.96). The color in the scatter plot shows the density of the WS in the validation dataset, and the 

black dashed dot line is a 45-degree reference line for visual convenience. The differences between 

the retrieved WS and the ERA5 and ASCAT WS are shown as the histogram of the differences at 

the middle top and bottom panels, respectively. As shown, the difference with ERA5 is almost 0 

mean Gaussian distribution with an STD less than 1 m/s. On the other hand, the STD of differences 

with ASCAT winds is somewhat superior. However, there is a slight mean bias of ~0.25 m/s 

between ASCAT WS and retrieved WS. ERA5 WS (separate and independent dataset) was used 

for tunning the algorithm, and this might have favored not having a systematic bias. However, the 

uncertainty is in better agreement with ASCAT. The rightmost panels in the same Fig. present the 

root mean square error (RMSE) as a function of ERA5 (top panel) and ASCAT (bottom panel) 

WS. As observed, RMSE increases with WS for WS > 6 m/s. This WS was used to find the AVH 

DC offset as required by the MLE algorithm described in Chapter 5.  

 

Figure 6.2: GMI wind speed retrieval performance 
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 Figure 6.3 presents the same results as Fig. 6.2; except now, the WS was found by 

averaging the MLE cost function. As shown, the MLE WS results are much inferior to the WS 

found from GMI regression analysis. There is a significant systematic bias (order of ~ 0.5 m/s) and 

significantly higher uncertainty. This is mainly due to the DPR transition region in the middle of 

the swath locations, where 𝜎0becomes insensitive to WS. That affects the accuracy of the overall 

combined (CAP) algorithm. However, the results are within the science requirements (STD < 2 

m/s) for WS measurements. Nevertheless, since the GMI retrieved WS is superior to the CAP WS, 

we recommend considering the GMI WS as the magnitude of the retrieved OVW.  

 

Figure 6.3: MLE wind speed retrieval performance 

6.2.3: Wind Direction Validation 

 The wind direction validation results are presented in Fig. 6.4 similar to the previous 

section. The left column shows the scatter diagrams between the retrieved WD solution closest to 

the surface truth reference – ERA5 for the top panel and ASCAT for the bottom panel. As 
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indicated, the correlation coefficient with both references is > 0.7. The color on the scatter plots 

represents the density of WD in the validation dataset, where we see the domination of trade winds 

(easterly) around the tropical area and the westerlies in extra-tropics (around the latitude 60˚S/N). 

The histogram in the middle panel indicates the differences between the retrieved WD closest to 

the surface truth and the surface truth WD. As shown, the WD errors are also Gaussian with a 

small mean (less than 1 degree) and STD ~ 30 degrees. This is somewhat higher than the science 

requirement of the standard scatterometer missions (< 20 degrees) [54]. However, the error 

statistics follow a similar trend with WS in that the mean RMS error decreases as increasing WS, 

as shown in the leftmost panels of the figure. For WS < 4 m/s, the error is constantly highest (~35 

degrees). This is true and the results are similar for all standard scatterometers and polarimetric 

radiometers for the low WS range. Then the error rapidly reduces with increasing WS, and it 

reduces to < 25 degrees for WS > 10 m/s, then it slowly reduces with WS for higher WS. However, 

for WS > 15 m/s, the number of points reduces significantly, and the numerical weather model 

underestimates the WS for that range. This poses challenges in both for developing GMFs and for 

validation, as evidenced by the rightmost top panel, where it is seen that the WD RMS error 

(RMSE) increases for WS > 17 m/s, while it is still either decreasing or constant in comparison 

with ASCAT as shown in the bottom panel of the same Fig.  
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Figure 6.4: Wind direction retrieval performance 

 Now, Fig. 6.5 compares the WD retrieval performance of different spectral combinations, 

namely, the Ku-band PR and 10 GHz AV-H (1st column); the Ku-band PR and 10 GHz and 19 

GHz AV-H (2nd column), the Ku- and Ka-band PR and 10 GHz and 19 GHz AV-H (3rd column), 

and the Ku- and Ka-band PR and 10 GHz, 19 GHz and 37 GHz AV-H (4th column). The results 

are presented in the same way as the previous Figures, but top-to-bottom, such that the top panels 

show the scatter diagram between the closest retrieved WD and ASCAT WD, the middle panels 

(row 2) present the histogram of the differences, and the bottom panels present the RMSE as a 

function of ASCAT WS. As shown, all the active and passive spectral combinations provide 

almost similar results, with the 3rd combination, which combines the Ku- and Ka-band PR and 10 

GHz and 19 GHz AV-H, giving the best results. The benefit of including the Ka-band is apparent, 

especially, it improves the retrieval performance for low to mid WS range. However, there seems 

to be no additional benefit in adding the 37 GHz channel for WD retrieval. 
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Figure 6.5: Wind direction retrieval performance comparison: (1st column) the left most is the combination of Ku-band PR and 10 

GHz AV-H, (2nd column) the next is the same except it adds the 19 GHz AV-H; (3rd column)  the following one adds Ka-band 

with the previous one, and finally, (4th column)  the rightmost on the bottom panel, shows the combination of MLEs from Ku- 

and Ka-band, and 10,19, and 37 GHz AV-H. 

 

 Figure 6.6 compares the wind direction retrieval performance with SST-dependent DPR 

GMFs to the SST-independent counterparts. As expected, the consideration of SST as a separate 

GMF parameter provides superior results. 
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Figure 6.6: SST impact on OVW retrieval. 

6.2.4: Retrieval Skill 

 Finally, the retrieval skill, which is a measure of instrument noise, and is defined as[73], 

Skill   
No of first ranked solutions are true solutions 

Total no of retrievals
 (6.1) 

For this study, the skills were calculated for the closest solutions.  Figure 6.7 presents the ambiguity 

distributions and their percentage of being the closest solution (skills) in the order of their ranks. 

The top panel of Fig. 6.7 shows the number of ambiguities (probable solutions) in each retrieval 

in a set of around 0.87 million retrievals for the validation (2021 data set with 25 km resolutions 

after all filtering and quality control). As shown, 96% of WVCs in the validation dataset have two 
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solutions, 70% have three solutions, and 25% have four solutions. The maximum number of 

solutions was set to 4, although a small percentage of WVCs had more than four solutions with 

low probability. The bottom panel of the same figure shows the percentage of times the ambiguities 

were the closest solution. The 1st rank solutions were the closest solution for 45% of total retrievals. 

Therefore, the skill of the algorithm is 45%. The 2nd rank solutions were the closest solutions for 

30% of the times, the 3rd rank was 21% times, and the 4th rank was only 5% times. Therefore, the 

ambiguities beyond the 4th rank were not significant. The threshold number of ambiguities thus 

misses only around 4% of true solutions.  

 

Figure 6.7: Retrieval skill and ambiguities 
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 As expected, the skill also is a function of wind speed. This is depicted in Fig. 6.8. For a 

WS > 10 m/s, the skill is greater than 50%, increasing with WS following the WD retrieval 

performance. 

 

Figure 6.8: Retrieval skill vs wind speed 

 

6.3: Discussion 

 The DPR/AVH OVW retrieval results were evaluated using 1 year of independent 

collocated OVW NWP and remotely sensed data. It is important to note that these independent 

OVW "surface truth" results were not used to tune the DPR nor GMI GMF's. A statistical analysis 

of the match-up dataset showed that the wind speed retrieval uncertainty is around 1 m/s with a 
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very small bias on the order of 0.2 m/s. For the wind direction, the Ku and Ka PR plus 10 and 19 

GHz AV-H provides the best results with the overall mean RMSE ~27 degrees with either of 

ASCAT and ERA5, again with near 0 mean Gaussian error. Inclusion of 36 GHz AV-H did not 

apparently provide any additional benefit. Although, the WS retrieval performance satisfactorily 

meets the science requirements, the WD retrieval error is somewhat higher than the science 

requirements of WD retrieval (< 20 degrees) for a standard scatterometer instrument. However, 

the trends of RMSE with WS are very similar to the standard scatterometers and polarimetric 

radiometer wind retrievals. Considering the diurnal capability and possibility of uninterrupted 

long-term data, these results are promising. Moreover, there are still rooms for improvement in the 

retrieval algorithm, which will be discussed in Chapter 7. 
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CHAPTER 7: CONCLUSION AND FUTURE WORK 

 This chapter provides a summary of the dissertation, discuss the significance and 

limitations of the work, and suggest potential areas for future research and improvement. 

7.1: Summary 

In this dissertation, we investigated the feasibility of ocean vector wind (OVW) measurement 

from the GPM core observatory using a combined active and passive algorithm. For this, we first 

broadly analyzed the ocean surface backscatter characteristics of GPM DPR as function of WS, 

RWD, SST, and EIA over the range of nadir through ±18°. This range of incidence angles has not 

been used for OVW purpose for any radar bands as it has not been considered optimal.  But we 

demonstrated that both Ku- and Ka-band radars have a statistically significant OVW signature 

across most of the swath over the EIA range. This analysis resulted the active geophysical model 

functions at Ku- and Ka-band. To the best of our knowledge, it is the first-time use of a space-

borne Ka-band radar for OVW measurement (scatterometry) purpose. As demonstrated, the trends 

of anisotropic roughness response of the Ka-band radar are similar to Ku-band, but it has some 

distinct characteristics, such as higher directional sensitivity for low to medium WS range. The 

Ka-band is also more sensitive to the impacts of wave breaking and change of surface tension and 

viscosity due to change of surface temperature. Besides OVW measurement, these results have 

important implications for other oceanographic applications including precipitation measurement, 

surface topography applications. 

Then we characterized the vector wind characteristics of linearly polarized (V and H pol) 

passive microwave brightness temperature (𝑇𝐵) from three lower frequency channels (10, 19, and 

37 GHz) of GMI. Although, the 𝑇𝐵s have non-negligible WD dependency, the WD retrieval from 
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passive linearly polarized 𝑇𝐵s has not been possible. Because the WD signals are weak and easily 

obscured by atmospheric WV and CLW. So, we leveraged an atmospheric clearing algorithm that 

uses a linear combination of 𝑇𝐵s to suppress the atmospheric signal and enhance the WD signals. 

The WD signature then becomes statistically substantial and robust for vector wind retrieval. We 

utilized different spectral combination to find the optimum active and passive spectral combination 

for the best OVW retrieval. 

A MLE based combined active, and passive (CAP) OVW retrieval algorithm was 

developed that minimizes the distance between the GMF and observations and normalizes by the 

known variance. The active and passive cost functions are further normalized by their maximum 

to make it uniform for active and passive. The minimum for each WS forms the 1D cost function 

for WD retrieval. The relative prominences of the cost function provided the possible WD 

solutions. There have been one to four solutions for 96% of WVCs in the validation dataset. The 

other had more than four solutions. The nature of the ambiguities was assessed in detail. Although 

the DPR and GMI jointly have two azimuths looks for any WVC in the retrieval, the structure and 

distribution of ambiguities are very similar to that of the conventional scatterometers. This is one 

of the very important leads of the proposed algorithm. 

For the validation, one year of collocated near-simultaneous winds from ASCAT-B and 

ERA5 reanalysis were used as surface truth reference. The closest solution to the reference was 

compared for the performance evaluation. The GMI derived WS error showed a near-zero mean 

Gaussian distribution with an STD of <1 m/s. The CAP derived WS error were also Gaussian but 

pointed higher STD (~ 1.5 m/s). This is because GPM DPR operates across and critical transition 

EIA range at the middle that provides poor WS sensitivity. The WD retrieval error are also near 
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zero-mean Gaussian with mean RMSE of around 27° with both ASCAT and ERA5 WD. The 

RMSE for lower WS range is higher, but it reduces with increasing WS. For example, it becomes 

≤ 22° for WS ≥ 10 m/s. The science requirements for specialized OVW instruments are WS STD 

< 2 m/s and WD RMSE < 20°. So, although the WS retrieval results meet the requirements well, 

the current WD retrieval error is higher than the requirement.   

The performance of different spectral combinations of active and passive frequency 

channels were evaluated. The spectral combinations of active Ku and Ka-band with passive 

frequency channels of 10 and 19 GHz provided the best results. The inclusion of Ka-band improves 

the retrieval performance for lower to middle WS range. However, the passive 37 GHz frequency 

channel was not found to provide any additional benefit. The impact of SST on retrieval was 

assessed. For this, two versions of GMF were derived – one with SST as independent dimension, 

and the other by averaging over SST. The former provided the better results. The retrieval skill of 

the algorithm was found to be ~ 45%. However, it also increases with WS and becomes ≥  50% 

for WS ≥ 10 m/s. 

Although, there are room for improvements (some of which are indicated below), the 

results are promising, and the scientific value of the results are high. This offers the potential to 

provide a long-term OVW data, which will include a unique monthly diurnal OVW s statistic. The 

scientific significance of this accomplishment lies in the fact that the non-sun-synchronous orbit 

of GPM allows the diurnal pattern of OVWs to be measured, which rarely occurs in satellite remote 

sensing of ocean surface winds. Furthermore, this ocean wind measurement capability can the 

extended be to the TRMM to create a multidecadal climate data record for Earth science research. 
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TRMM achieved a lifetime of >17 years, which makes it a valuable dataset for studying climate 

change in the tropics.  

7.2: Significance of the Study 

Satellite missions are complex and expensive undertakings that require significant planning, 

preparation, and huge investment. The process of planning to having an operational satellite takes 

years that involve many different stakeholders. GPM mission has been one of the greatest 

endeavors in remote sensing history, and it successfully demonstrated its significance for 

precipitation measurement. We attempted to extend this effort to estimate another important 

climate variable, the vector winds, as a byproduct, utilizing the same measurements without any 

technical modification, or any extra cost.  The algorithm and the model functions developed in this 

dissertation are readily applicable to the entire GPM-TRMM, and other similar instruments in 

future, with minor calibration modification, to produce an uninterrupted multidecade OVW data 

products (1997 to ongoing) for weather and climate studies, to assess the climate change impacts. 

Furthermore, due to the unique benefit of GPM (and TRMM) non-Sun synchronous orbit, a full 

diurnal sampling of the ocean surface is possible within a 2-month period, which will allow 

resolving the diurnal and semidiurnal variabilities of ocean surface vector winds in the tropical 

ocean. In addition, both the active and passive GMFs developed in this dissertation might be a 

great reference for characterizing surface response for pre- and post-launch instrument 

performance assessment and error characterization, etc. 
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7.3: Directions for Future Work 

7.3.1: More Appropriate Noise Model 

An accurate knowledge of inherent measurement uncertainties of instruments is essential for 

OVW measurement and quality control [142]. Thus, for every scatterometer, relevant noise model 

was developed [56], [131]. Unfortunately, the DPR instruments do not have any known noise 

model so far that could be applied to normalize the uncertainty. Although we have knowledge 

about the NEDT of individual GMI channel, the effective noise mode for A is yet to be developed. 

This poses a significant problem in current CAP retrieval algorithm, because without an accurate 

estimate of instrument noise, the cost function cannot be properly normalized. As a result, it was 

seen that sometimes either active or the passive part of the algorithm dominated each other in the 

CAP algorithm. This decreased the retrieval skill and accuracy. So, a proper instrument as well as 

geophysical noise model for DPR and AVH channels might improve the retrieval skill and 

performance. 

7.3.2: An Objective Ambiguity Removal 

The results presented represent the performance of the closest solution to reference 

(ERA5/ASCAT) wind direction, which is a measure of the actual performance. However, to 

develop the actual OVW data product, a more objective AR method needs to be used. Considering 

the nature of the MLE cost function and ambiguity structure, we recommend 2DVAR AR 

technique, as described in Section 5.3, would be appropriate for this. 

7.3.3: Secondary Effects 

Besides the primary factors, i.e., WS, WD, EIA, and SST, that formed the GMFs, there are 

some key secondary factors that impact the 𝜎0 and 𝑇𝐵 vector wind signals and, thereby, the 
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retrieval accuracy (see [35]). These include factors such as significant ocean wave height (SWH), 

sea surface currents, confused sea-states, atmospheric stability, surface film, and rain etc. Although 

a proper geophysical noise model may take some of these into account, some key factors may still 

need to be considered explicitly. Larger waves have a significant impact in near nadir backscatter. 

So, as reported by some studies [98]–[100], one concern is the effect of SWH and ocean swell, 

which could be significant at this near nadir EIA range. Dual-frequency observations and 

collocated ocean wave numerical model forecasts should allow correction for these long ocean 

wave contributions [143]. Therefore, a future extension of this study to include ocean sea state, 

particularly the SWH effects on ocean normalized cross section at both Ku- and Ka-bands for 

lower EIAs.  

7.3.4: Other Potential Improvements 

Following could be possible direction of future research to extend and enhance the studies of 

this dissertation. 

7.3.4.1: Higher Spatial Resolution 

The results we presented in this dissertation was produced for a horizontal resolution of 25 

km (0.25°). High resolution data products are critical user demand for various applications, such 

as coastal remote sensing where various commercial including rescue operation takes place. The 

DPR original horizontal resolution is around 5 km. So, an attempt might be taken to retrieve OVW 

with DPR original footprint resolution. 

7.3.4.2: Ocean vector wind retrieval under rain 

This dissertation focused OVW retrieval under clear sky condition. With increasing rain-rate 

the underlying assumption for A parameter will not hold well, so the performance might degrade. 
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Some recent studies [126], [127] developed all-weather wind speed only retrieval algorithm using 

spectral combination of passive brightness temperature. Similar approach might be followed to 

extend the algorithm to make it applicable for all-weather conditions. Rain correction might be 

applied using DPR differential absorption characteristics. 
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APPENDIX A: NEUTRAL STABILITY WINDS 
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Since the wind forcing, which creates the capillary waves superimposed on the large gravity 

waves, occurs at the ocean surface, the wind friction velocity (U*) is more appropriate metric to 

compare with the radar backscatter. However, in the natural ocean environment, this wind friction 

velocity measurement is not feasible. Therefore, the usual practice is to use a wind meter 

(anemometer) located on a buoy or boat at some height above the surface. Simultaneously sea 

surface temperature and the air temperature are measured to determine the atmospheric stability. 

The atmospheric profile of surface winds (wind speed versus height) can be reliably calculated by 

fluid mechanics and used to extrapolate anemometer measurement to the surface to derive U*.  

 For a given air friction velocity at surface there can be many profiles of wind speed versus. 

height, depending upon atmospheric stability (air/sea temperature gradient). The anemometer 

measurement at 20 m height is equivalent to 12.2 m/s for a stable atmosphere, for an example, as 

shown in Fig. A.1. This measurement is translated to the surface to produce a U* = 5.4 m/s. Next, 

if this U* is moved to a reference height = 10 m along the neutral profile, the neutral stability wind 

speed becomes 10.1 m/s as depicted in the Fig.  

 Thus, the neutral stability winds at 10 m height have become the standard “surface truth” 

for comparison with remote sensing of ocean wind measurements. Under neutral stability 

conditions and a given U* value, it is the wind speed that would have been measured by an 

anemometer. Thus, this normalization procedure effectively produces the corresponding U*, 

which is instantaneously in equilibrium with the ocean capillary waves that produce the radar 

backscatter. In other words, the ocean so is highly correlated to U* and the neutral stability wind 

speed. 
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Figure A.1: Neutral stability wind profiles [Courtesy: Dr. W. Linwood Jones] 
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