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Abstract 
 

In 2015, 1,507 runway incursions capable of inducing collisions occurred at 
airports in the United States, so it is obviously very important to identify significant 
factors underlying such incursions, to predict potential runway incursion occurrences, 
and to prepare systematic programs for reducing the number of incursions and 
prevent runway collisions. Presence of a large volume of data, multiple variables, and 
complex interactions among them pose a significant challenge to resolving this 
problem. To tackle this challenge, we developed a data-driven prediction model using 
a component of advanced statistical theory, i.e., a generalized additive model (GAM). 
GAM can account for flexible modeling of multiple variables over a broad range of 
modeling distributions. We obtained, parsed, and transformed various predictor 
variables from many heterogeneous databases to create interpretable datasets for 
statistical modeling. We demonstrated promising performance of GAM while making 
systematic investigations into prediction accuracy of runway incursion at United 
States airports (including all types of commercial, military, and other general data). 
Results show that GAM can identify critical factors (airport complexity, number of 
operations, and visibility) in predicting a number of the runway incursions. 
Performance comparison of two popular GAM smoothers (i.e., cubic regression 
splines and thin plate regression splines) has demonstrated promising accuracy of 
both methods. These results imply that statistical predictions developed using GAM 
will help in better prediction of runway incursion when more data become available 
in the future. 
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INTRODUCTION 
 

In 2015, 1,507 runway incursions (RIs) occurred at airports in the United 
States (FAA, 2016), and such events can lead to runway collisions., There have been 
practical efforts to address this problem and solve the RI issue, e.g., Direct alerting to 
the cockpit (DAC) (Ludwig, 2007), airport movement area safety system (AMASS) 
(Watnick and Ianniello, 1992), RI alert system (Jones et al., 2001), and RI prevention 
system (Schönefeld and Möller, 2012). Despite these efforts, the occurrence of 
runway incursion is reported to have increased in almost every year (FAA, 2015). In 
view of significant role of airport in US industries, development of reliable methods 
for prediction of RIs and solutions is imperative.  

While some factors identified by previous research studies and Federal 
Aviation Administration (FAA, 2008) are: poor weather, low visibility, time of day, 
miscommunication with air traffic control (ATC), etc., it is difficult to elucidate the 
quantitative relevance and relative importance of such factors to RI. Prediction of 
future RI occurrence is more difficult because of many complex interrelations among 
contributing factors. Simple statistical methods could present a straightforward 
solution, but typical linear or nonlinear regression methods appear to have been 
unsuccessful, probably because of complex nonlinearity of factors (Figure 1). On the 
other hand, while machine learning-based approaches could be a successful remedy 
(Karlaftis and Vlahogianni, 2011), the small database of RI and lack of causal 
pathways among factors pose challenges to direct adoption of machine learning. To 
overcome the so-called “curse of dimensionality” the present study lacks a sufficient 
dataset, i.e., for some machine learning algorithms the current dataset is still 
insufficient for training, validation, and testing (Baesens, 2014), so to establish a 
foundation for data-driven solutions to the RI problem, this study focuses on 
advanced statistical learning and prediction with emphasis on comprehensibility of 
the RI database.    

(a)                                  (b) 
Figure 1. Scatter plot of variables: (a) runway incursion versus general aviation 
operation; (b) runway incursion versus general aviation operation and high visibility. 
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We adopted one of the most advanced and flexible statistical methods, the 
generalized additive model (GAM). GAM is a non-parametric statistical model 
developed by Hastie and Tibshirani (1990); it is highly flexible, being capable of 
embracing a large number of variables with substantial nonlinearity. GAM can cover 
a wide range of statistical distributions, and these favorable attributes of GAM are 
expected to enable us to learn and predict the future RI database and to make RI data 
more comprehendable. The detailed theory and advantages of GAM will be described 
in a later section. 

A key challenge is the dispersed location of the RI database, i.e., key data 
pertaining to primary factors of RI are not located in a single location. We collected 
data from different databases, developed programs to extract required information 
from raw data, and transformed it into a suitable form for inclusion in the dataset. 
Another issue is computational cost that can be attributed to a number of factor 
variables. To determine key factors contributing to RI, multiple loop simulation is 
necessary, and this represents a very heavy computational load. We used a parallel 
strategy to solve this issue, and this will be described in a later section. The overall 
workflow is shown in Figure 2. 
The outline of the paper is as follows: we address data structures used for building the 
RI dataset and GAM-based predictions. The central algorithms regarding how to 
collect, extract, and transform the raw data required for GAM modeling are then 
presented, followed by remarks related to a parallel strategy for finding the best 
combination of predictor variables.  

 

 

Figure 2. Workflow of runway incursion prediction using GAM: raw data is collected 
from various databases and transformed into suitable dataset form of for GAM 
modeling. Thereafter, the GAM is run on the dataset using a high-performance 
computing (HPC) system. Finally, runway incursion occurrence is predicted.  
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DATA STRUCTURES 
 

To facilitate prediction of RIs, the primary data are classified into three 
categories: (1) geometric information, (2) operational data, and (3) visibility data. An 
airport runway is a long stretch of pavement at an airport from which an aircraft can 
take off and land. The aviation safety information analysis and sharing (ASIAS) 
system developed by the FAA provides a wide range of data regarding safety. In this 
study, spatial and geometric information from 36 airports was obtained from the 
ASIAS system. Using both spatial and geometric data, numbers of runways, 
intersections between runways, and intersections between runways and taxiways were 
obtained by parsing XML data. Operational data related to aircraft in an airport are 
also important, and to collect and extract such data, we leveraged the air traffic 
activity system (ATADS). ATADS provides all activity information related to air 
traffic, including airport operation, tower operation, terminal operation, and so on. 
The data obtained includes airport name and operational history of air carriers, air 
taxis, general aviation, and military aviation over the past 15 years (from 2001 to 
2015) from the major 36 airports. Visibility data was obtained from an automated 
surface-observing system (ASOS) developed as a joint work by the National Weather 
Service (NWS) that is a component of the National Oceanic and Atmospheric 
Administration (NOAA), the FAA, and the Department of Defense (DoD). The 
NOAA is a government agency that provides extensive information about weather, 
climate, and the ocean. ASOS provides meteorological and climatological observation 
measures from more than 900 ASOS sites, covering all major airports in the United 
States. Data can be obtained in the form of 1- , 5-minute, or 1-hour intervals. 
Visibility is described through three potential impact factors (i.e., slight, moderate, 
and high). The hours describing such factors were counted for 15 years. 
Finally, the RI data are obtained from ASIAS, providing comprehensive information 
about RI from most airports. Three different types of runway incursion are considered: 
(1) pilot deviation (PD), (2) operational incident (OI), and (3) vehicle (driver) 
deviation (VD). A PD is defined as an incursion committed by a pilot of aircraft (e.g., 
by landing or taking off without clearance from ATC); An OI is associated with an 
ATC error (e.g., clearance of an aircraft onto a runway while another aircraft is on the 
runway); A VD is associated with passing a runway holding mark without ATC 
clearance (FAA, 2008). A summary of this data is given in Table 1. Here, “predictor” 
is defined as the factor used for GAM-based predictions of RI occurrence.  
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Table 1. Summary of predictors for GAM model 

Data Predictors Types Sources 

Geometric 
information 

Runway, intersection between runways, 
intersection between runway and taxiway 

Count (integer) ASIAS 

Operation data 
Air carrier, air taxi, general aviation, military 

aviation, total aviation 
Count (integer) ATADS 

Visibility High impact, moderate impact, slight impact Hour (integer) ASOS 

 

DATA EXTRACTION AND TRANSFORMATION 
 

Because of the dispersed nature of database locations, this study first 
investigated multiple heterogeneous databases to obtain the data that required in 
building a GAM model. We collected raw data from different databases, extracting 
only the required parts, and transformed them into a form suitable for the GAM. 
First, the geometric data was obtained in the form of an XML file from AVIAS. An 
XML file contains polygon information related to runway, taxiway, and other 
structures in an airport, and the file contains coordinates of points (i.e., x and y 
coordinates) e connected to on another, making polygonal lines. We counted the 
number of runways, intersections between runways, and intersections between 
runways and taxiways based on the number of a keyword in a tag. For example, a tag 
with <Runway name="35L" id="8"> in the XML file means the polygon information 
about a new runway would be within the tag. We searched for the keyword “Runway” 
and counted it as the runway number whenever our program found it. Second, the 
operational information was downloaded from the ATADS in spreadsheet formt. We 
directly downloaded operational information from 36 airports over a 15-year interval 
and, thanks to various available download options of ATADS, further parsing process 
was not necessary. 
Third, visibility information was the most difficult to obtain because it required 
multiple processing steps. A number of raw data files were downloaded from the 
NOAA file transfer protocol (FTP) sever (FAA) and they were then transformed into 
more interpretable form by using the JAVA program provided by NOAA. It should be 
noted that the time frame of weather data from NOAA is also used to describe each 
incursion incident (the generated dataset is available upon request). The transformed 
data includes United States Air Force (UASF) codes so the airports can be identified 
using these codes. The data contains information at one-hour intervals, including 
visibility, presented in mile units. The program counts hours of slight, moderate, and 
high visibility of 36 airports for the 15 years based on the meteorological terminal 
aviation routine weather report (METAR)] board FAA, (Table 2). 
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Table 2. Visibility criteria based on METAR board 
Potential impact (mile) 

Threat None Slight Moderate High 
Visibility ≥ 5.1 5.1 > ܺ ≥ 3 3 > ܺ ≥ 1 < 1 

 
SUMMARY OF GAM 
 
The generalized additive model (GAM) is a generalized linear model with substantial 
flexibility and general applicability. Rather than using pre-defined distributions or 
parameters, GAM is composed of multiple unspecified smoothing functions. Because 
of the nature of these unspecified smoothing functions, covariates do not need to have 
a set of parameters. For predicting RI occurrence of ith airport (denoted by ௜ܻ ∈ ℝ) 
with n predictors (denoted by ࢞௜ ∈ ℝ௡), the general form of GAM can be represented 
as: 

(௜ߤ)݃                = ଵ݂(ݔଵ௜) + ଶ݂(ݔଶ௜) + ଷ݂(ݔଷ௜) + ⋯,              

where ݃ is a smooth link function; the expectation ߤ௜ ≡ ॱ( ௜ܻ|࢞௜); ௜ܻ 	is from some 
exponential family of distribution (e.g., normal, binomial, or gamma distribution); ௝݂ 
are smooth functions of covariates ݔ௝௜ (Wood, 2006). In particular, ௜ܻ would be the 

number of RI at the ith airport and ࢞௜ represents of the numbers of runways, visibility, 
etc. In essence, GAM has a non-specified smoothing function per each predictor, and 
this fact imparts substantial flexibility to GAM. For brevity of explanation, the 
following description involves only a single covariate and normal distribution, but 
generalization to multiple variables is straightforward. Let the GAM be ॱ(Y|ݔ)  :then the smoothing function ݂ can be represented as	,(ݔ)݂=

(ݔ)݂                        = ∑ ௝ܾ(ݔ)ߚ௝௤௝ୀଵ ,                

where ௝ܾ(ݔ) is the jth basis function and ߚ௝ is an unknown parameter. Model fitting 

can be done by maximizing the corresponding likelihood with a penalty term given as: 

ߣ                          ,ݔሿଶ݀(ݔ)ሾ݂ᇱᇱ׬

where ߣ is a smoothing parameter. ߣ is internally optimized by GAM to balance 
smoothness of regression and accuracy of prediction. The optimized ߣ value can be 
chosen in such a way to make the model fit accurate by minimizing generalized cross 
validation (GCV) scores (Golub et al., 1979).  

There are two popular types of basis functions: (a) thin-plate regression 
splines (TPRS) (Wood, 2003) and (b) cubic regression spline (CRS) (Wood, 2006). A 
cubic spline is a curve formed by connecting a number of cubic polynomial sections 
(Gu, 2013). CRS is one of the smoothest interpolators but it requires “knot” location 
selection to connect disjoint cubic splines. In contrast, TPRS can be used for any 
number of covariates and is “knot-free”, requiring no knot location selection 
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(Duchon, 1977). In general, the computational cost of TPRS is more expensive than 
that if CRS. It is instructive to note how the TPRS spans multi-dimensional variable 
space. In the TPRS, the f  is determined by minimizing 

࢟‖                         − ଶ‖ࢌ +       ௠ௗ(f)                     (1)ܬߣ	

where ࢟ is the vector of ݕ௜ data and ࢌ = ሾ݂(ݔଵ), ⋯,(ଶݔ)݂ ,  ௠ௗ(f) is aܬ .ሿ୘(௡ݔ)݂
penalty functional measuring the ‘wiggliness’ of ࢌ, and controlled by a tradeoff 
between data-fitting accuracy and smoothness. One example of a thin-plate spline 
basis function with 2 covariates is shown in Figure 3, showing that TPRS can span 
multi-dimensional variable space with a smooth “thin” plate, thereby offering great 
flexibility.  

 

Figure 3. Example of thin-plate spline basis function using 2 covariates (cited from 
Wood, 2006). 
 

METHOD AND METRICS FOR PREDICTION ACCURACY 
 

In this study, three metrics were used to compare the GAM-based prediction 
performance: (1) CVEb/CVE = the ratio between base cross-validation error (CVEb) 
and cross-validation error (CVE); (2) the Pearson correlation, (3) ;ߩ the coefficient of 
determination, ܴଶ. CVE and CVEb are defined as CVE = ଵே∑ ൫ݕ௘௫௜ − ௣௥௜ݕ ൯ଶே௜ୀଵ ; CVE௕ = ଵே∑ ൫ݕ௘௫௜ − ௠௘௔௡,௣௥൯ଶே௜ୀଵݕ  

where N is number of data points, ݕ௘௫௜  is the ith real-world measured response, ݕ௣௥௜  

is the ith predicted response in the cross-validation procedure, and ݕ௠௘௔௡,௣௥ is the 

mean of predicted values. ߩ and ܴଶ are defined as ߩ = ஼ை௏൫௬೛ೝ,	௬೐ೣ൯ఙ೤೛ೝ	×	ఙ೤೐ೣ ;  ܴଶ = 1 − ∑ ൫௬೐ೣ೔ ି௬೛ೝ೔ ൯మ೔ಿసభ∑ ൫௬೐ೣ೔ ି௬೘೐ೌ೙,೛ೝ൯మ೔ಿసభ  

This choice has been made following a comparable study on machine-learning 
comparisons of Kamdar et al. (2016); In essence, the higher the metrics, the more 
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accurate the predictions. Throughout this study, we seek to achieve the GAM model 
that exhibits the highest scores of these metrics.  

 
SELECTION OF BEST GAM MODEL USING PARALLEL COMPUTING 
 

GAM can be built upon arbitrary combinations of many predictors. A prudent 
choice of predictors is critical for accurate GAM modeling. To avoid artificial bias in 
the selection of predictors, this study objectively refers to the aforementioned three 
metrics of prediction performance (CVEb/CVE, ߩ and ܴଶ), and seeks to find the 
best combination of predictors. We depart from all possible combinations of 
predictors. In total, 14 variables are taken from raw data without any prejudice related 
to relations or a priori knowledge with respect to the relative significance of 
predictors. The 14 variables are: number of runways, number of intersections of 
runways, number of intersections of runway and taxiway, air carrier operation, air 
taxi operation, general aviation operation, military operation, total operation, average 
visibility, low-visibility hours, moderate-visibility hours, high-visibility hours, sum of 
high and moderate visibility hours, and sum of all visibility hours. The prediction 
target response is the number of RI occurrence. 

The proposed approach for searching for the best predictor combination is 
straightforward, yet computationally expensive, viz., it involves the total number of 

combinations of 7 variables selected from 14 total variables = 
ଵସ!଻!(ଵସି଻)! = 3,432. To 

reduce the computation time we developed an algorithm-oriented parallel computing 
algorithm using Rmpi Lu et al., 2013. It should be noted that, while feature-space 
reduction algorithms such as Principal Component Analysis (PCA) (Jolliffe, 2002) 
might also be an efficient remedy, this would necessitate additional tasks such as axis 
rotation of multivariate space and selection process, and such extensions will thus be 
considered in a future research study. The Rmpi is controlled by only one master, but 
a number of slaves can be spawned. Since the computation load decreases as the size 
of interwoven loops decreases, so-called “cyclic allocation” of tasks is used to ensure 
load balance on the slave processors. With cyclic allocation, a successful 
parallelization can be achieved by cyclically allocating jobs to available slaves. It has 
been shown that, as the problem size increases, the cyclic allocation approaches the 
optimal parallel load balancing (Kam et al., 2011). Finally, we performed tests on our 
parallel algorithm, producing the results summarized in Figure 4. The best speedup 
was achieved with 56 slaves. 
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Figure 4. Parallel computing performance of R & Rmpi code for finding the 7-
variable combination out of 3,432 total combinations. 
 

By leveraging the harmonious use of parallel computing and an advanced 
statistical program, this study obtained the best combination consisting of five 
predictors: (1) number of taxi operations, (2) number of general operations, (3) hours 
of high impact visibility, (4) hours of slight impact visibility, and (5) sum of hours of 
high, moderate, and slight impact visibility. Table 3 summarizes the obtained metrics 
of the best combination of predictors and Figure 5 shows the performance comparison 
between CRS and TPRS on this study. CRS appears to perform better than TPRS 
based on the metrics values   
 

Table 3. Metrics used for the best combination of predictor variables (GAM-CRS)  

Number of 
variables 

CVEb/CVE 
Correlation of 
determination 

Coefficient of determination 

2 1.2 0.512 0.1667 

3 1.302 0.529 0.232 

4 1.952 0.701 0.488 

5 3.115 0.835 0.679 

6 1.995 0.719 0.499 

7 1.818 0.729 0.45 
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(a)                        (b)                        (c) 

Figure 5. Comparison of performance between CRS and TPRS on this study: (a) ratio 
of CVEb/CVE; (b) Pearson correlation; (c) coefficient of determination. 
 
PREDICTION RESULTS 
 

Per the least requirements of GAM, we chose a logarithmic link function that 
can easily incorporate the multiplicative relations of the engineering variables. Since 
all the quantified predictors and responses are positive and represented as counts (i.e., 
integer), a Poisson distribution is assumed. As recommended by Wood (2006), the 
parameter k (i.e. the number of basis dimensions in smooth functions) is set to 6; the 

smoothing parameter λ is readily optimized by the library of R that utilizes GCV. 
To systematically evaluate the prediction capability, cross validations were 

applied. The prediction process mainly followed three steps: (1) exclusion of an 
airport, (2) construction of a GAM by learning the remaining airport data, and (3) 
prediction of runway incursion at the omitted airport. To construct the GAM, one 
airport is excluded while learning samples (i.e., other airport data) are used during 
cross validation. Thereafter, a series of runway incursions at the excluded airport is 
predicted using the GAM. These steps are repeated throughout all airport data. The 
difference between the predicted number of runway incursions from GAM and the 
original actual value for the excluded airport directly represents how precisely the 
constructed GAM can predict the target response. 

To demonstrate the prediction results, so-called Q-Q plots were drawn to 
correlate the scaled response of real measured and predicted values (Figure 6a; a 
straight line corresponds to accurate prediction). Note that all statistical predictions in 
Figure 6 are drawn for the best GAM model that only uses 5 predictors. Remarkably, 
the predicted responses show good correlation with real-world measured data even 
though there was no prejudice with respect to the statistical models. Figure 6b shows 
that residuals are scattered evenly and the proposed model fitting thus appears to be 
acceptable.  
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                   (a)                                  (b) 

Figure 6. (a) Q-Q plot of real-world measured data and predicted data; (b) Residuals 

plot showing that residuals are evenly scattered. 

 

CONCLUSION 

 

In this study, we applied a generalized additive model (GAM) that can 

facilitate solely data-driven studies to predict a valuable target value in the aviation 

field. The datasets were retrieved from databases containing various factors that 

appear to be closely tied to runway incursion. All the processed data of the 36 target 

airports will be made available upon request. The proposed evaluation process of the 

prediction models using GAM shows promising applicability of such advanced 

statistical approaches to aviation data. Notably, accurate predictions were made 

without any prejudices with respect to relationships or a priori knowledge of the raw 

data. Our method and results suggest that all variables were not always necessary for 

making the best prediction, implying that there exist significant relationships among a 

few manageable factors that appear to govern RIs. In future extensions, with increases 

in accessibility and in the number of aviation databases (e.g., national transportation 

safety board, aviation safety reporting system, etc.), another validation, using 

additional airports’ data and variables such as angle and number of taxiways merging 

to an interaction and visibility of markings, can be addressed in addition to a cross 

validation procedure. Such future extensions with new data and independent 

validations should be straightforward since the proposed framework establishes 

comprehensive procedures from data gathering, processing, learning, prediction, and 

validation. The proposed statistical learning and prediction approaches will thus 

complement new data-driven discoveries in the aviation field and also facilitate 

machine learning-based approaches. 
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