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Introduction

Damage to a turtle’s shell may preserve a record of 
events that occur during its life. Scars or damage to 

the shell can serve as evidence of attempted predation 
(Aresco and Dobie, 2000; Heithaus et al., 2002; Parren, 
2013; de Valais et al., 2020), a collision with a boat, 
automobile, or agricultural machinery (Ashley and 
Robinson, 1996; Saumure et al., 2007; Heinrich et al., 
2012; Hollender et al., 2018). Shells can also display 
pitting, lesions, or discolouration due to infection or 
disease (Hernandez-Divers et al., 2009; Woodburn et al., 
2019), and can document agonistic human interactions 
(Moll and Moll, 2004). The ability of the turtle shell 
to preserve evidence of physical trauma has long been 
known to researchers who file or drill holes into the 
marginal scutes and peripheral bones of the carapace 
to individually identify turtles as part of capture-mark-
recapture studies (Cagle, 1939; Plummer, 1979). Damage 
can also chronicle intraspecific aggression (Jackson, 
1969) or coercive mating strategies (Moldowan et al., 
2020).

The Loggerhead Musk Turtle (Sternotherus minor) is 
a small freshwater turtle endemic to the south-eastern 
United States where it inhabits rivers, spring runs, 
ponds, and lake margins (Ernst and Lovich, 2009; Scott 
et al., 2018). The range of the turtle is from the Altamaha 
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Abstract. Damage to a turtle’s shell can provide evidence of past events such as vehicle collisions, disease, predator encounters, 
or even a behavioural interaction between members of the same species. Documenting shell damage as part of long-term mark 
and recapture studies enables researchers to determine population trends, intraspecific interactions and identify potential issues 
within turtle populations. This paper analyses shell damage in populations of the Loggerhead Musk Turtle (Sternotherus minor) 
(Agassiz, 1857). We examined carapace shell damage frequency and severity in 2701 individual S. minor (1468 males and 1233 
females) captured in spring-fed habitats in one state preserve and five state parks in central and northern Florida. We quantified 
frequency as percent of individuals with at least some damage, and we created a carapace mutilation index (CMI) to quantify 
the severity of damage. The frequency and severity of carapace damage varied among sites. Males were more frequently 
damaged than females at all study sites, and had more severe damage, but only significantly at three sites. There was a positive 
relationship between CMI and body size (plastron length) for males and for females, suggesting that adults accumulate damage 
as they age. Damage may vary among sites due to habitat size, quality, or abundance of large adult male turtles. Future research 
should look at movement patterns, site fidelity, social interactions, and how these are impacted by habitat size, quality, and 
density, to determine what, if any, these factors have on population stability and fecundity.
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drainage of south-eastern Georgia to the Apalachicola 
drainage down to central Florida across the aquifer 
systems (Zappalorti and Iverson, 2006; Ernst and 
Lovich, 2009; Krysko et al., 2011; Scott et al., 2018). 
This turtle has well-developed, strong jaw musculature 
for crushing mollusc and arthropod prey (Zappalorti 
and Iverson, 2006; Ernst and Lovich, 2009). 

Shell damage has been documented in S. minor 
for more than half a century with the first report of 
carapace damage in the species mentioned as “old, 
eroded individuals” in Carr and Goin’s (1955) species 
description. A decade later, Jackson (1965) reported 
carapace erosion or damage in 40.4 % of juveniles, 
61.4% of smaller adults, and 100% of large adults from 
a pooled sample of 108 individuals. Jackson (1965) 
hypothesised that intraspecific behavioural interactions 
caused this damage. Jackson (1969) subsequently 
provided evidence that intrasexual aggression between 
males including biting the marginal scutes caused some 
of the damage he observed. Later observations by Bels 
and Caram (1994) document males biting females 
during courtship, an action that may cause the observed 
shell damage. 

The Turtle Survival Alliance’s North American 
Freshwater Turtle Research Group has been surveying 
the turtles of various Florida spring-fed habits since 
1999 and the Santa Fe River Turtle Project has similarly 
been sampling freshwater springs in the Santa Fe River 
basin since 2006. Both groups have been conducting 
long-term ecological studies of the turtle assemblages 
in these ecosystems (e.g., Adler et al., 2018; Johnston 
et al., 2016, 2020; Munscher et al., 2013, 2015a, 2020). 
Previous reports of shell damage in S. minor have been 
anecdotal and have not included robust data sets or data 
from multiple sites, which may inform causation, as 
well as document the extent of the damage. 

In this paper, we present data that expands on Jackson’s 
(1965; 1969) observations. Specifically, we examine 
how the occurrence and severity of carapace damage 
vary among six S. minor populations from spring-
fed habitats in central and northern Florida. Within 
each population, we evaluate the relationship between 
carapace damage and body size (plastron length) in each 
sex.

Materials and Methods

Field-Site Description.—The six Florida study sites 
for this analysis include: Wekiwa Springs State Park 
(WS), Orange County (2.67 ha); Volusia Blue Springs 
State Park (VBS), Volusia County (1.9 ha); Manatee 

Springs State Park (MS), Levy County (1.53 ha); 
Fanning Springs State Park (FS), Levy County (0.7 
ha); Rock Springs Run State Preserve (RSR), Seminole 
County (1.41 ha); and Ichetucknee Spring State Park 
(IS), Columbia and Suwannee Counties (10.99 ha; Fig. 
1). These study sites are described more thoroughly by 
Johnston et al. (2020), Munscher et al. (2015a, b, 2017, 
2020), Riedle et al. (2016) and Walde et al. (2016). All 
study sites are entirely fed by first or second magnitude 
freshwater springs with clear flowing water. 

Data Collection.—Researchers conducted multi-day 
annual or semi-annual snorkel surveys between 2000 
and 2019. For each sampling period, a variable number 
of snorkelers hand-captured turtles from ca. 0800 – 
1600/1900 h, depending on the time of year and weather 
conditions. We placed turtles in labelled bins within 
canoes that indicate the capture area and then brought 
them to a central location for data processing. 

We recorded maximum straight-line measurements 
of carapace length (CL), plastron length (PL), carapace 
width (CW), and shell height (SH) to the nearest 
millimetre. We sexed turtles based on secondary sexual 

Figure 1. Map depicting the six turtle study sites in Florida, 
USA.
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Figure 2. Carapace damage on Sternotherus minor observed at the various study sites in Florida, USA. (A) depicts a turtle with 
a score of 1. (B) depicts a turtle with a score of 4. (C) depicts a turtle with a score of 6. (D) depicts a turtle with a score of 3. 
Photographs by Jessica Weber.



characteristics, notably by visual inspection of tail length 
and girth as described in Ernst and Lovich (2009) (Fig. 
2). Females are sexually mature and distinguishable at 80 
mm (Iverson, 1978), while males have been documented 
at maturing at 60 mm (Etchberger and Stovall, 1990), 
however this is likely ecosystem specific. We noted 
all unique physical features such as damage, scars, or 
coloration of each turtle to aid in confirming individual 
identity. We weighed turtles to the nearest gram (g) 
using Ohaus top loading digital scales (Ohaus Corp., 
New Jersey, USA). We individually marked turtles by 
notching the marginal scutes and peripheral bones of 
the carapace (Cagle, 1939) and we also notched the 
plastron when necessary. The notches (created by a 
saw or Dremel) do not resemble the damage created 
naturally by the turtles biting each other. Beginning in 
2009, we used passive integrated transponder (PIT) tags 
as a secondary identification method for turtles with 
CL greater than 70 mm. We injected PIT tags under 
the turtle’s right bridge (Buhlmann and Tuberville, 
1998; Runyan and Meylan, 2005). Once we completed 
processing the turtles, we released them back into the 
spring run at their approximate capture locations.

When we examined turtles for physical anomalies, we 
noticed most of the shell damage was located along the 
posterior marginal scutes, L9, 10, 11 and R9, 10 and 
11, the same location where Carr (1952) had observed 
erosion and Jackson found most of the damage he 
reported in 1964, presumably because damage occurs 
when males are in active pursuit of each other. We 
assigned carapace mutilation index (CMI) scores 
to each turtle based on a direct count of the number 
of these scutes that had damage (Fig. 2 and Fig. 3). 
Damage was categorised by chipped, broken, missing, 
or eroded scutes. We did not include irregular scutation 
as potential damage. We assigned a score of 0 if none of 
these six scutes were damaged, and a score of 6 indicated 
that all six of these scutes were damaged (Fig. 3). Other 
researchers use similar scoring systems or “carapace 
mutilation indexes” (Saumure et al., 2007), but due 
to the nature of our damage predominantly occurring 
within the aforementioned rear marginals, we modified 
this system to better quantify the damage observed. 

Statistical analysis.—We used nonparametric tests 
for PL and CMI scores because these datasets were 
not normally distributed. An alpha of 0.05 was set for 
all comparisons. Within sites we used Wilcoxon Rank 
Sum tests to evaluate CMI scores between sexes. Within 
sites we compared numbers of turtles with and without 
damage between sexes using a one-tailed Fisher’s 

Exact Test to test the hypothesis that more males were 
damaged than females. Among study sites we compared 
the number of damaged and undamaged turtles by sex 
with a Pearson’s Chi-square test. We then searched for 
differences between sites with Pearson’s Chi-square 
tests and adjusted the alphas with a Benjamini-Hochberg 
correction. We also compared CMI scores by sex 
across sites with a Kruskal-Wallis tests and used Steel-
Dwass post hoc tests to determine pairwise significant 
differences. Finally, we used Pearson’s Correlation 
Coefficients (r) to evaluate the relationship CMI and 
PL for each sex at each site and used binary logistic 
regression analyses to test for the influence of plastron 
length (continuous predictor) on the presence or absence 
of damage (dichotomous dependent variable).

Results

We evaluated 1468 male and 1233 female S. minor 
across six study sites (Table 1). The number of damaged 

Figure 3. Depiction of Carapace Mutilation Index for 
Sternotherus species with overlapping vertebral scutes.
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versus undamaged individuals varied among sites for 
both males (χ2 = 150.95, df = 5, P < 0.0001) and females 
(χ2 = 48.71, df = 5, P < 0.0001). We found significant 
differences in damage frequencies for males between: 
IS and each of the other sites, VBS and FS, VBS and 
RSR, VBS and WS, FS and MS, MS and RSR, and MS 
and WS. For females, we found significant differences 
in damage frequencies between: VBS and FS, VBS and 
IS, VBS and RSR, VBS and WS, IS and MS, IS and 
WS, MS and RSR, and MS and WS (Table 2). CMI 
scores also differed among sites for males (χ2 = 148.94, 
df = 5, P < 0.0001) and females (χ2 = 49.05, df = 5, 
P < 0.0001). We found significant differences in males 
between: IS and each of the other sites, MS and FS, 
and MS and RSR. We found significant differences for 
females between: IS and VBS, IS and MS, IS and WS, 
VBS and RSR, VBS and WS, MS and RSR, and MS 

and WS (Table 3). Damage occurred more frequently 
in males than females at all six sites. CMI was higher in 
males than in females at all sites, but only significantly 
at three sites (Table 4).

Among males, damaged individuals were significantly 
larger (PL) than undamaged individuals at five of the 
six sites (Table 5). We found significant relationships 
between CMI and PL for males at VBS (r = 0.17, df = 
182, P = 0.021), FS (r = 0.422, df = 49, P = 0.002), IS (r 
= 0.175, df = 318, P = 0.002), MS (r = 0.31, df = 206, P 
< 0.0001), and WS (r = 0.254, df = 619, P < 0.0001). We 
found no significant relationship between CMI and PL 
for males at RSR (r = 0.105, df = 82, P = 0.341). Among 
females, damaged individuals were significantly larger 
(PL) than undamaged individuals at two sites (Table 6). 
Damaged and undamaged females were similar in size 
at four sites. We found significant relationships between 

Table 1. 

 

Table 2. 

Site VBS FS IS MS RSR WS 

Volusia Blue Spring (VBS) - * * ns * * 

Fanning Springs (FS) * - * * ns ns 

Ichetucknee (IS) * ns - * * * 

Manatee Springs (MS) ns ns * - * * 

Rock Springs (RSR) * ns ns * - ns 

Wekiwa Springs (WS) * ns * * ns - 

 

Table 3. 

Site VBS FS IS MS RSR WS 

Volusia Blue Spring (VBS) - ns * ns ns ns 

Fanning Springs (FS) ns - * * ns ns 

Ichetucknee (IS) * ns - * * * 

Manatee Springs (MS) ns ns * - * ns 

Rock Springs (RSR) * ns ns * - ns 

Wekiwa Springs (WS) * ns * * ns - 

 

 

   Carapace Mutilation Index Score 

Site Sex N 0 1 2 3 4 5 6 

Volusia Blue Spring F 126 78 (62%) 21 (17%) 17 (13%) 5 (4%) 4 (3%) 0 1 (1%) 

 M 184 76 (41%) 31 (17%) 51 (28%) 21 (11%) 4 (2%) 1 (1%) 0 

Fanning Springs F 38 31 (82%) 3 (8%) 3 (8%) 1 (3%) 0 0 0 

 M 51 32 (63%) 2 (4%) 10 (20%) 4 (8%) 3 (6%) 0 0 

Ichetucknee Springs F 167 149 (89%) 5 (3%) 9 (5%) 3 (2%) 1 (1%) 0 0 

 M 320 266 (83%) 16 (5%) 21 (7%) 12 (4%) 2 (1%) 1 (0%) 2 (1%) 

Manatee Springs F 156 99 (63%) 25 (16%) 25 (16%) 2 (1%) 4 (3%) 0 1 (1%) 

 M 208 74 (36%) 30 (14%) 57 (27%) 22 (11%) 18 (9%) 5 (2%) 2 (1%) 

Rock Springs F 71 58 (82%) 8 (11%) 5 (7%) 0 0 0 0 

 M 84 56 (67%) 9 (11%) 15 (18%) 1 (1%) 3 (4%) 0 0 

Wekiwa Springs F 675 532 (79%) 72 (11%) 56 (8%) 9 (1%) 3 (0%) 3 (0%) 0 

 M 621 371 (60%) 76 (12%) 115 (19%) 36 (6%) 17 (3%) 4 (1%) 2 (0%) 

Table 1. Number of individual Sternotherus minor by Carapace Mutilation Index score (% of occurrence) from Florida springs 
study sites in the USA.
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   Carapace Mutilation Index Score 

Site Sex N 0 1 2 3 4 5 6 

Volusia Blue Spring F 126 78 (62%) 21 (17%) 17 (13%) 5 (4%) 4 (3%) 0 1 (1%) 

 M 184 76 (41%) 31 (17%) 51 (28%) 21 (11%) 4 (2%) 1 (1%) 0 

Fanning Springs F 38 31 (82%) 3 (8%) 3 (8%) 1 (3%) 0 0 0 

 M 51 32 (63%) 2 (4%) 10 (20%) 4 (8%) 3 (6%) 0 0 

Ichetucknee Springs F 167 149 (89%) 5 (3%) 9 (5%) 3 (2%) 1 (1%) 0 0 

 M 320 266 (83%) 16 (5%) 21 (7%) 12 (4%) 2 (1%) 1 (0%) 2 (1%) 

Manatee Springs F 156 99 (63%) 25 (16%) 25 (16%) 2 (1%) 4 (3%) 0 1 (1%) 

 M 208 74 (36%) 30 (14%) 57 (27%) 22 (11%) 18 (9%) 5 (2%) 2 (1%) 

Rock Springs F 71 58 (82%) 8 (11%) 5 (7%) 0 0 0 0 

 M 84 56 (67%) 9 (11%) 15 (18%) 1 (1%) 3 (4%) 0 0 

Wekiwa Springs F 675 532 (79%) 72 (11%) 56 (8%) 9 (1%) 3 (0%) 3 (0%) 0 

 M 621 371 (60%) 76 (12%) 115 (19%) 36 (6%) 17 (3%) 4 (1%) 2 (0%) Table 2. Among site comparisons of the number of Sternotherus minor with damage and without damage from Florida Springs 
study sites in the USA. Male comparisons are above the diagonal and female comparisons are below the diagonal. * indicates 
statistical significance (P < 0.05). ns indicates no statistical significance. Top axis acronyms only.
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CMI and PL for females at VBS (r = 0.244, df = 124,       
P = 0.006), MS (r = 0.236, df = 154, P = 0.003), and WS 
(r = 0.078, df = 673, P = 0.042). We found no significant 
relationships between CMI and PL for females at FS (r 
= -0.155, df = 36, P = 0.352), IS (r = -0.004, df = 165, P 
= 0.959), and RSR (r = -0.027, df = 69, P = 0.824). 

The binary logistic regression analysis showed that 
shell damage was significantly related to plastron 
length in females from three sites and males from four 
sites (Table 7). Shell damage was nearly significantly 
related to plastron length (P = 0.0515) in males from 
Ichetucknee Springs.

Discussion

Damage to the posterior marginal scutes was 
ubiquitous across all sites. At most sites, the severity 
and percentage of turtles with damage differed between 
the sexes, with males being more frequently damaged 
and having more severe damage based on the CMI. The 
Wilcoxon Rank Sum tests found that males showed a 
significantly higher percentages of shell injury than 
females, and larger males exhibited significantly more 
damage at five of the six sites and the binary logistic 
regression analysis showed shell damage in males 
was significant at four sites and nearly significant at 
Ichetucknee Springs, while being significant in three 
sites in female tests. This suggests that damage is non-

Table 3. Among site comparisons of Sternotherus minor CMI scores from Florida Springs study sites in the USA. Male comparisons 
are above the diagonal and female comparisons are below the diagonal. * indicates statistical significance (P < 0.05). ns indicates 
no statistical significance. Top axis acronyms only.
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Table 4.  

 

Table 5.  

 

    Male vs Female 
damage frequency 

 Male vs Female 
damage severity 

Site Sex N % Damage P Damage score 
mean (± SD) 

P 

Volusia Blue Spring F 126 38.1 
0.0003* 

0.7 ± 1.2 
0.0021* 

(VBS) M 184 58.7 1.2 ± 1.2 

Fanning Springs F 38 18.4 
0.0434* 

0.3 ± 0.7 
0.134 

(FS) M 51 37.3 0.9 ± 1.3 

Ichetucknee Springs F 167 10.8 
0.0459* 

0.2 ± 0.7 
0.5862 

(IS) M 320 16.9 0.3 ± 1.0 

Manatee Springs F 156 36.5 
<0.0001* 

0.7 ± 1.1 
<0.0001* 

(MS) M 208 64.4 1.5 ± 1.5 

Rock Springs F 71 18.3 
0.026* 

0.3 ± 0.6 
0.0894 

(RSR) M 84 33.3 0.6 ± 1.0 

Wekiwa Springs F 675 21.2 
<0.0001* 

0.4 ± 0.8 
<0.0001* 

(WS) M 621 40.3 0.8 ± 1.2 

Site N Damage PL (mm) P 

Volusia Blue Springs 76 N 62.0 ± 14.4 0.0177* 

(VBS) 108 Y 67.3 ± 10.6  

Fanning Springs 32 N 54.9 ± 11.3 0.0055* 

(FS) 19 Y 66.3 ± 14.6  

Ichetucknee Springs 266 N 59.6 ± 13.1 0.0382* 

(IS) 54 Y 63.4 ± 13.0  

Manatee Springs 74 N 61.6 ± 15.6 <0.0001* 

(MS) 134 Y 69.8 ± 13.7  

Rock Springs 56 N 54.5 ± 12.1 0.3567 

(RSR) 28 Y 56.2 ± 10.9  

Wekiwa Springs 371 N 56.9 ± 11.7 <0.0001* 

(WS) 250 Y 62.4 ± 11.3  

Table 4. Within site comparisons between sexes of Sternotherus minor in Florida Springs study sites in the USA. % Damage = 
Percent of turtles with any damage; Male vs Female damage = probability that males are more likely to have any damage; Damage 
Score = probability that damage scores differ between sexes. * indicates statistical significance (P < 0.05).
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random, accumulated over time, and is related to male 
behaviour.

Males show a higher CMI as turtle size increases 
while damaged females at two or three sites were larger 
than undamaged females and similar in size at the 
other sites. This suggests that male turtles accumulated 
damage over their lifetime, and not as the result of a 
singular event. The fact that most of the sites did not 
show increased female CMI as size increased suggests 
that larger females may not accumulate damage at 
the same rate as smaller ones and may stop accruing 
damage when they rival or exceed the size of the males. 
This may be because female damage is accumulated 

during mating events. Males of this species use 
combative mating tactics (Bels and Crama, 1994) and 
may therefore prefer smaller adult females that are 
easier to coerce. We have observed this accumulation 
of damage over time first hand. Over the near 20-year 
study many of the hard marks that have been used to 
identify individuals have been damaged and or broken 
off entirely, making identification of the individual 
problematic if not for the use of PIT tags as a secondary 
marking method. PIT tagging our individual turtles has 
proven to be a necessary while studying this species, and 
we recommend anyone conducting long term research 
on turtle species that may engage in potentially shell 

Table 4.  
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P 

Volusia Blue Spring F 126 38.1 
0.0003* 

0.7 ± 1.2 
0.0021* 

(VBS) M 184 58.7 1.2 ± 1.2 

Fanning Springs F 38 18.4 
0.0434* 

0.3 ± 0.7 
0.134 

(FS) M 51 37.3 0.9 ± 1.3 

Ichetucknee Springs F 167 10.8 
0.0459* 

0.2 ± 0.7 
0.5862 

(IS) M 320 16.9 0.3 ± 1.0 

Manatee Springs F 156 36.5 
<0.0001* 

0.7 ± 1.1 
<0.0001* 

(MS) M 208 64.4 1.5 ± 1.5 

Rock Springs F 71 18.3 
0.026* 

0.3 ± 0.6 
0.0894 

(RSR) M 84 33.3 0.6 ± 1.0 

Wekiwa Springs F 675 21.2 
<0.0001* 

0.4 ± 0.8 
<0.0001* 

(WS) M 621 40.3 0.8 ± 1.2 

Site N Damage PL (mm) P 

Volusia Blue Springs 76 N 62.0 ± 14.4 0.0177* 

(VBS) 108 Y 67.3 ± 10.6  

Fanning Springs 32 N 54.9 ± 11.3 0.0055* 

(FS) 19 Y 66.3 ± 14.6  

Ichetucknee Springs 266 N 59.6 ± 13.1 0.0382* 

(IS) 54 Y 63.4 ± 13.0  

Manatee Springs 74 N 61.6 ± 15.6 <0.0001* 

(MS) 134 Y 69.8 ± 13.7  

Rock Springs 56 N 54.5 ± 12.1 0.3567 

(RSR) 28 Y 56.2 ± 10.9  

Wekiwa Springs 371 N 56.9 ± 11.7 <0.0001* 

(WS) 250 Y 62.4 ± 11.3  

Table 5. Within site comparisons of mean (± SD) plastron lengths (PL) between damaged (Y) and undamaged (N) male 
Sternotherus minor in Florida springs Study Sites in the USA. * indicates statistical significance (P < 0.05).

Table 6. 

 

Site N Damage PL (mm) P 

Volusia Blue Springs 78 N 66.2 ± 14.7 0.0506 

(VBS) 48 Y 71.5 ± 10.2  

Fanning Springs 31 N 59.9 ± 17.0 0.3557 

(FS) 7 Y 52.4 ± 18.6  

Ichetucknee Springs 149 N 74.0 ± 10.7 0.5287 

(IS) 18 Y 71.7 ± 12.4  

Manatee Springs 99 N 68.1 ± 17.3 0.0022* 

(MS) 57 Y 76.2 ± 12.7  

Rock Springs 58 N 58.2 ± 15.5 0.5718 

(RSR) 13 Y 56.5 ± 19.2  

Wekiwa Springs 532 N 60.2 ± 13.1 0.0376* 

(WS) 143 Y 62.7 ± 11.9  

Table 6. Within site comparisons of mean (± SD) plastron lengths (PL) between damaged (Y) and undamaged (N) female 
Sternotherus minor in Florida springs study sites in the USA.*indicates statistical significance (P <0.05).
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damaging activities, employee a secondary marking 
technique in order to assure individual recognition. 

The difference in the frequency of damage between 
males and females suggests that male damage is non-
random and likely due to competition. Female turtles 
do not have as strong a correlation between size and 
damage accumulation. Female turtles may be less 
aggressive and more likely to flee or hide than males if 
found in potentially agnostic confrontations. Therefore, 
the driving factor in female damage accumulation could 
be sexual activity and not resource based competition. 
Furthermore, the cohesive mating strategies of this 
species are not completely understood, as not all 
reproduction is combative. It is possible that the damage 
accumulated by female turtles is a result of aggressive 
mating strategies with males invading new territory, and 
not caused by the resident males.

The frequency and severity of damage differed among 
our study sites. This could be due to habitat variability 
among sites, as these variables are known to impact turtle 

populations (Sirois et al., 2014). Constructed swimming 
areas, boat launches, and the removal of debris and fallen 
limbs at all the sites has been documented as potentially 
impacting the S. minor populations (Riedle et al., 2016; 
Johnston et al., 2020; Munscher et al., 2020). It is 
possible that these augmentations eliminate or lessen 
microhabitats used for refuge, and therefore result in 
increased interactions and competition. Additionally, 
there are large differences in the size of these spring 
systems and the available floodplain habitat. Looking 
across all these factors; size of spring, anthropogenic 
impacts, and density, none of them clearly explain the 
differences in amount of damage we observed at each of 
the springs but could all result in increased adversarial 
interactions. Human actions and interactions can have 
direct negative effects on turtle populations like the 
alteration and destruction of habitat, including nesting 
areas (Garber and Burger, 1995; Moore and Seigel, 
2006; Selman et al., 2013) and the increase of hazards 
including chemical pollutants, litter, fishing gear; 

Table 7. Summary of logistic regression analyses of the influence of plastron length on the presence of damage in Sternotherus 
minor from Florida Springs Study sites in the USA. * indicates statistical significance (P < 0.05).Table 7. 

  

Site Sex Coefficient SE Wald’s X2 P Odds ratio 95% CI 

Volusia Blue Spring F 0.031 0.015 4.46 0.0346* 1.03 1.00 – 1.06 

(VBS) M 0.035 0.012 7.83 0.0051* 1.04 1.01 – 1.06 

Fanning Springs F -0.027 0.026 1.06 0.3030 0.97 0.92 -1.02 

(FS) M 0.069 0.025 7.34 0.0067* 1.07 1.01 – 1.13 

Ichetucknee Springs F -0.020 0.023 0.75 0.3879 0.98 0.94 – 1.03 

(IS) M 0.022 0.011 3.79 0.0516 1.02 1.00 – 1.04 

Manatee Springs F 0.034 0.012 8.60 0.0034* 1.03 1.01 – 1.06 

(MS) M 0.040 0.011 13.83 0.0002* 1.04 1.02 – 1.06 

Rock Springs F -0.006 0.019 0.11 0.7419 0.99 0.96 – 1.03 

(RSR) M 0.013 0.020 0.40 0.5254 1.01 0.97 – 1.05 

Wekiwa Springs F 0.015 0.007 4.16 0.0413* 1.02 1.00 – 1.03 

(WS) M 0.041 0.007 31.44 <0.0001* 1.04 1.03 – 1.06 

Table 8. 

Site Study Site Size (ha) Density (Turtle/ha) 

Volusia Blue Spring (VBS) 1.9 132/ha 

Fanning Springs (FS) 0.7 848/ha 

Ichetucknee Springs (IS) 10.99 199/ha 

Manatee Springs (MS) 1.53 807/ha 

Rock Springs (RSR) 1.41 N/A 

Wekiwa Springs (WS) 2.67 1279/ha (Munscher et al., 2020) 

   

Table 8. Sternotherus minor Population Density from Florida Springs study sites in the USA.
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disturbance, collection, and predator attraction (Burger 
and Garber, 1995). Human interactions can result in 
unforeseen impacts like the alteration of food sources 
(Morrison et al., 2019), increased predation (Munscher 
et al., 2012), or population crashes from low impact 
passive recreation and indiscriminate collection (Garber 
and Burger, 1995; Godwin et al., 2021). 

The variation of habitat types and uses makes it 
impossible to definitively identify the causation in the 
inconsistent damage. At IS, larger males have a higher 
percentage of damage. Interestingly, this is the largest 
site surveyed (199/ha) and damaged turtles were found 
in the lowest overall percentages despite this site having 
the third highest population density (Table 8) (Johnston 
et al., 2020). VBS has the second highest percentage of 
damaged turtles, and unlike the other sites, is home to 
a large manatee population which defoliates the spring 
regularly – potentially decreasing suitable refugia and 
food resources, while increasing turtle visibility, leading 
to a heightened potential for intraspecific sightings 
and aggression (Riedle et al., 2016). The site with 
the highest percent damage observed, MS, is one of 
the least impacted anthropogenically, suggesting that 
habitat augmentation is not the only variable impacting 
turtle shell damage. The individuals from this site are 
the largest S. minor sampled across all six sites, further 
supporting our hypothesis that size of the individual 
is an underlying link to the level of damage observed. 
This data prompts further investigation into whether 
aggression is driven by population density resulting in 
competition for resources, space, and mates within their 
environments, all factors that favour larger individuals 
(Berry and Shine, 1980).

The S. minor within our study sites are engaging in 
intraspecies, intrasexual aggression. This species is 
known to attain very high densities in spring systems, 
and their potential competitive interactions have long 
interested turtle biologists. In Carr’s Handbook of 
Turtles (1952), he references Marchland (1942) who 
commented on a robust population of S. minor from IS 
Springs, where 500 or more S. minor could be seen on 
a given day, and both authors question how these large 
populations find sustenance. Akin to male-male combat 
in large mammals, we speculate that the aggression 
between males is likely tied to competition for resources 
and specifically females. We observed this aggressive 
behaviour in both human altered and unaltered spring 
habitats alike, and our results suggest that both individual 
and habitat size are the drivers of this aggression. Our 
observations support Jackson’s earlier hypothesis that the 

damage identified in S. minor is the result of intraspecies 
aggression. Additional research should focus on habitat 
variables, such as subaquatic vegetation density, as we 
suggest habitat alterations or denudation of vegetation 
increases aggressive interactions in this species, which 
may warrant management of these springhead habitats 
in Florida. If these alterations have not historically 
influenced aggressive interactions, as they have been 
cited since the mention of “old, eroded individuals” in 
Carr and Goin’s (1955), then this study is the first to 
quantitatively document these intrasexual intraspecific 
competitive interactions in Sternotherus minor. Future 
research should look at movement patterns, site fidelity, 
social interactions, and how these are impacted by 
habitat size, quality, and density, to determine what, 
if any, these factors have on population stability and 
fecundity.
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