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ABSTRACT

The placenta is a transient organ that is crucial during pregnancy. It has multiple functions to

ensure optimal fetal growth, including nutrient transport, oxygen exchange and immune

protection. The placenta develops in a stage-wise manner and requires precise regulation of gene

expression. Abnormalities in placental gene regulation can lead to pregnancy disorders such as

preeclampsia, placenta accreta and placental abruption, which can be detrimental to the short

and long-term health of both the mother and the fetus. However, the regulatory mechanisms

governing placental development, especially with respect to gene regulatory networks, are poorly

understood.

In this dissertation, we aimed to identify regulatory networks associated with placental

development by developing computational methods, and by analyzing and integrating various

sequencing data at both the bulk and single-cell level. First, we generated and analyzed

transcriptomic data from mouse fetal placenta tissues at embryonic day (e) 7.5, e8.5 and e9.5 to

identify groups of genes that regulate placenta-specific developmental processes using cluster

analysis, differential expression analysis, and network analysis. Second, we developed a deep

learning framework to identify genome-wide chromatin accessibility regions. This framework is

applicable for not only for placenta-derived data but also data generated in other tissues. Third,

we integrated single-cell transcriptome and single-nucleus chromatin accessibility data generated

from the rat uterine-placental interface to identify conserved gene regulatory networks governing

rat and human placenta development.

The completion of these studies has led to a better understanding of the gene – gene, gene –

transcription factor, and transcription factor – cis-regulatory element interactions regulating

placental development. Furthermore, the pipelines and tools developed, including the novel deep



xi

learning framework for chromatin accessibility analysis, are not limited to rodent and human

placenta, but can be used to analyze data generated in any tissue or organism.
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CHAPTER 1. GENERAL INTRODUCTION

The placenta is a transient organ established during pregnancy that is a crucial point of

contact between the mother and the fetus. The placenta is required for fetal development and

maintenance of pregnancy, as it carries out multiple functions including immune protection,

nutrient transport and oxygen exchange, each described in more detail below.

During pregnancy, the placenta acts as an immune barrier to protect the fetus from harmful

pathogens such as bacteria and viruses (Hoo et al., 2020). For example, it has been found that

the outer cell layer of the placenta is resistant to Listeria monocytogenes due to its elasticity

property, which helps reduce infection susceptibility (Zeldovich et al., 2013). Moreover, the

placenta recognizes and sends signals to the fetus to regulate its immune responses (Ding et al.,

2022). Failures in placental immune protection can lead to serious infections, which have been

associated with preterm birth (Kiefer et al., 2009; Peltier et al., 2012).

Nutrient transport is one of the well appreciated roles of the placenta. Molecules and

substrates are transported within the blood across the placenta, under the influence of several

factors such as the maternal-fetal circulation (Jensen and Chernyavsky, 2019), placental

metabolism, and transporter proteins in the placental barrier (Lager and Powell, 2012). For

example, reduced activities of amino acid transporters in the placenta are observed in pregnancies

with intrauterine growth restriction (IUGR), a condition where the fetus has abnormally low

birth weight (Jansson and Powell, 2007; Gaccioli and Lager, 2016). On the other hand, increased

placental nutrient transports in pregnancies with gestational diabetes are reported to be

associated with fetal overgrowth (Gaccioli et al., 2013; Hulme et al., 2019).

Oxygen exchange between the mother and the fetus depends on the blood flow through the

dense network of vasculature within the placenta. This exchange process includes the following

steps: i) oxygen is carried through the maternal uterine arteries; ii) oxygen is transferred across
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the placental membrane with umbilical veins; iii) the fetus uses the oxygen; and iv) deoxygenated

blood returns to the maternal side via the umbilical arteries (Saini et al., 2020). Abnormalities in

oxygen exchange processes such as increased fetal oxygen demands through the placenta are

associated with pregnancy disorders such as IUGR and chronic fetal hypoxaemia (Saini et al.,

2020).

Despite being short-lived by design, defects in placental development can lead to long-term

impacts on the health of both the mother and fetus. Pregnancy complications potentially caused

by placental disorders, some mentioned above, such as preeclampsia and fetal growth restriction

affect 5 − 10% of pregnancies (Rana et al., 2019; Bamfo and Odibo, 2011). Children exposed to

preeclampsia run higher risk of developing cardiovascular, metabolic, and neurological diseases

(Lu et al., 2019). Currently, the diagnosis and treatment of placental diseases are limited because

understanding of early placental development is lacking. Therefore, it is urgently needed to

understand various aspects of placentogenesis in order to detect and prevent these disorders.

1.1 Human placental development

The first steps of the human placenta formation can be divided into three phases: pre-lacunar,

lacunar and primary villous stage, starting from ∼5 to ∼18 days post fertilization (dpf) (Turco

and Moffett, 2019). During the pre-lacular stage (∼5 to ∼7 dpf), the trophectoderm (TE), the

outer layer of a blastocyst, attaches to the endometrium, and the blastocyst implants into the

uterus. In the lacunar stage (∼14 dpf), fluid-filled spaces (lacunae) are formed to serve as a direct

connection to the maternal blood. This direct contact between placental tissues and the maternal

blood defines the human placentation to be hemochorial (Soares et al., 2018). Next, during the

primary villous stage, the trophoblast cells underlying the syncytium (cytoptrophoblast, CTB)

experience rapid proliferation to form a primary villous structure where CTB is in the core and

syncytiotrophoblast (STB) is in the outer layer. From 18 dpf, CTB, STB and extraembryonic

mesoderm also together invade the maternal tissues, expand and form branching villi to establish

the placenta (Turco and Moffett, 2019).
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During the first trimester, further proliferation and branching of primary villi then form the

villous trees, and the lacunae become the intervillous space (Turco and Moffett, 2019). The

intervillous space has a dense network of villi, each of which can be divided into three sub-layers:

fetal blood capillaries at the core, a layer of CTB cells and an outer layer of STB cells (Hemberger

et al., 2020). First, fetal blood capillaries at the core have complex structures with multiple cell

types such as mesenchymal cells, mesenchymal derived macrophages (Hofbauer cells), fetal

vascular smooth muscle cells and endothelial cells (Wang and Zhao, 2010). These fetal capillaries

connect to the umbilical arteries and veins, establishing the circulation necessary for nutrient and

waste exchange. Second, the layer of CTB cells, also known as villous cytotrophoblast (VCT), are

highly proliferative and give rise to multiple trophoblast subtypes such as extravillous trophoblast

cells (EVT) and STB. Throughout the first trimester, EVT actively invade into maternal tissues

in a process called trophoblast invasion, which is crucial to establish the maternal-fetal

circulation. The EVT migrate into the decidua then remodel the maternal spiral arteries by

incorporating themselves into the blood vessel walls. This transformation turns maternal spiral

arteries into highly flexible, pliable, and thin-walled vessels, enabling a continuous and sufficient

blood supply to the placenta (Silva and Serakides, 2016). Last, the outer STB layer plays crucial

roles in nutrient transport and immune protection for the fetus as it covers the entire surface of

villous trees and are directly connected with maternal blood (Turco and Moffett, 2019).

By the end of the first trimester (∼week 20), the placenta is considered definitive with two

additional layers to the intervillous space, namely chorionic plate and basal plate (Jansen et al.,

2020). The chorionic plate is lined with an amniotic layer consisting of an ectodermal epithelium

layer completely surrounding the embryo. Last, basal plate is the direct interface between the

maternal and fetal tissues. It consists of multiple cell types such as fibroblasts, natural killer cells

and EVT migrating from the chorion (Hoo et al., 2020). By this time, the placenta is established

enough to take over crucial functions such as nutrient transport; however, it continues to grow

throughout pregnancy, and is considered fully mature by week 34.
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1.2 Using mouse and rat models to study human placental development

There are a limited number of mechanistic studies on human placenta due to ethical concerns.

Because of this, rodent models have proven to be useful to shed light on different stages of

placental development.

The mouse and rat placenta start developing upon implantation when the blastocyst attaches

to the uterine wall and the trophectoderm proliferates to form the extra-embryonic ectoderm

(ExE) and the ectoplacental cone (EPC) (Hemberger et al., 2020; Soares et al., 2012). In both

species, the activation of the extra-embryonic mesoderm lineage is responsible for the formation of

the allantois and the extra-embryonic mesodermal layers of the amnion and chorion (Hemberger

et al., 2020; Woods et al., 2018). At ∼e8.5 in mouse (gestational day 10 to 11 in rat), the amnion

and chorion fuse together in a process called chorioallantoic attachment, which enables the

extra-embryonic mesoderm-derived blood vessels to invaginate into the chorionic trophoblast layer

(Hemberger et al., 2020; Cross et al., 2003b; Furukawa et al., 2019). Fetal blood vessels and

trophoblast-lined maternal blood sinuses together are the main components of the labyrinth layer

in the mouse and rat placenta (Hemberger et al., 2020; Soares et al., 2012), which is a crucial site

for blood circulation between the mother and the fetus.

Placental development in the mouse and rat share several similarities to that in human. First,

they are all hemochorial (Hemberger et al., 2020), unlike other models such as horses and sheep

that have an epitheliochorial placenta and carnivores that have an endotheliochorial placenta

(Furukawa et al., 2011). Second, they have overall similar placental structures with three main

layers, although each layer may have different characteristics specific to the species (Furukawa

et al., 2019; Cross et al., 2003a). For example, the labyrinth zone in mouse and rat placenta is

analogous to human villous tree and plays a role in gas exchange, nutrient transport for the fetus

and removing waste products (Furukawa et al., 2019; Soares et al., 2012; Rossant, 2001). Third,

placental development in the three organisms is regulated by several common signaling pathways,

including those involving the transcription factors HIF-1α and ASCL2 (Rossant, 2001; Robb

et al., 2017). Last, trophoblast subtypes in the three species share functional and structural
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commonalities. For example, the trophoblast giant cells in mouse and the interstitial invasive

trophoblast cells in rat are considered analogous to human EVT because of their invasive

characteristics, although the degrees of invasiveness vary between species (Soncin et al., 2015;

Soares et al., 2012).

It is important to note differences in placental development among species, in order to choose

a suitable model for the research question of interest. For example, structurally, rodent (mouse

and rat) placenta is trichorial, meaning that maternal and fetal blood flow are separated by three

layers of trophoblast, while human placenta is monochorial (having one trophoblast layer as

separation) (Marinello and Patisaul, 2021; Schmidt et al., 2018). Further, the mouse uses the

visceral yolk sac to maintain early pregnancy before the placenta is formed, which is completely

absent in humans (Schmidt et al., 2018). Finally, the depth of trophoblast invasion in the three

species is not identical. In human, trophoblast cells invade deeply into the inner third of the

myometrium, while in mice, trophoblast invasion is restricted to the decidua (Schmidt et al.,

2018). The rat, however, has deeper invasion than the mouse, where the interstitial trophoblast

invade beyond the decidua into the mesometrial triangle (Carter et al., 2006). Given these

differences, it is important to integrate insights from mouse and rat models with those from

human to identify conserved elements, such as genes, regulatory elements, cell lineages, and

signaling pathways, and to validate findings from animal models in human cell lines (Grigsby,

2016; Schmidt et al., 2018), in order to better understand human placental development.

1.3 Regulation of gene expression

Gene expression is tightly controlled so that the right genes are expressed at the appropriate

time and at a proper level to maintain normal cellular function. Gene regulation involves multiple

mechanisms, such as transcriptional and epigenetic regulation, post-transcriptional regulation,

translational and post-translational regulation.

Transcriptional regulation describes the regulation of the rate of synthesizing RNA from DNA

(transcription). Transcriptional activation or repression relies on several factors such as activities
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and functions of transcription factors (TFs), and the accessibility of regulatory elements. TFs are

proteins that bind to specific DNA sequences in the regulatory elements of genes and can either

activate or repress transcription. The specific DNA sequences that TFs bind to are known as

motifs. In order for TFs to recognize and bind to motifs, the nucleosomal structures around the

regulatory region must be loosened and become accessible. There are multiple mechanisms

governing the opening or closeness of nucleosomal structures, one of which is histone modification

(Annunziato, 2008). Histone modification refers to a process where proteins and complexes with

specific enzymatic activities such as the acetyl, methyl, or phosphate groups are recruited and

added to the histones (Bannister and Kouzarides, 2011; Fischle et al., 2003). The addition of

these groups can directly perturb chromatin structure (Bannister and Kouzarides, 2011) and is

often associated to different nucleosomal states. For example, histone acetylation such as H3K27

acetylation are often found at active enhancer elements, allowing for chromatin accessibility and

protein binding (Shlyueva et al., 2014). On the other hand, histone methylation such as

H3K9me3 are often associated with closed chromatin and repression of gene expression (Bannister

and Kouzarides, 2011; Shlyueva et al., 2014).

Regulatory regions such as enhancers and repressive elements can be located far away from

gene promoters (Lin et al., 2022; Courey and Jia, 2001; Li and Arnosti, 2011). These distal

regions can interact with promoter regions through chromatin looping mechanisms (Whalen et al.,

2016; Sanborn et al., 2015; Kadauke and Blobel, 2009; Fulco et al., 2019; Courey and Jia, 2001),

and can thereby contribute to the formation of protein complexes between TFs binding at distal

regions and those at promoter regions to activate or repress genes. Moreover, regardless of

chromatin looping events, multiple TFs localized to one regulatory region can work in a

combinatorial manner, or they can act individually (Allan and Thor, 2015; Spitz and Furlong,

2012). Given the complex nature of gene regulation, to study the regulatory mechanisms

effectively, it is important to identify regulatory elements, the TFs binding to these locations, and

how they interact with their target genes.
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After DNA is transcribed into RNA and before RNA is translated into a protein,

post-transcriptional regulation occurs. Post-transcriptional regulation includes alternative

splicing, RNA editing, and RNA degradation, all of which can affect the quantity or quality of the

final protein product. Next, proteins are synthesized from messenger RNA (mRNA), then they

experience post-translational regulation, which can involve different modifications such as

phosphorylation, acetylation, and glycosylation, which can affect the function, stability, or

localization of the protein.

In this dissertation, we focus on studying transcriptional regulation and the identification of

the accessible regions of the genome.

1.3.1 Using next generation sequencing (NGS) experiments to investigate

transcriptional regulation and the chromatin lansdscape

RNA sequencing (RNA-seq) can be used to determine gene expression levels in different

tissues or stages of development. The assay can be carried out using whole tissue (bulk RNA-seq)

or at the single cell (sc)/single nucleus (sn) level. A standard protocol for RNA-seq experiments

involves RNA isolation, complementary DNA (cDNA) conversion, sequencing library preparation,

and sequencing using an NGS platform (Kukurba and Montgomery, 2015). Each of these steps

requires several considerations and method selection depending on the research question. For

example, if sequencing mRNA is the research focus, the sequencing library can be prepared with

poly-A selection. If one would like to sequence mRNA, pre-mRNA and noncoding RNA, the

library can be designed with ribo-depletion to remove ribosomal RNA (Kukurba and

Montgomery, 2015). On the sc/sn level, snRNA-seq is more suitable for cells that are difficult to

isolate such as brain, skeletal muscle and adipose (Ding et al., 2020).

For bulk RNA-seq, gene expression levels are generally considered averaged from a population

of cells (Hegenbarth et al., 2022); therefore, it is suitable to detect global changes between

conditions of interest. However, single cell resolution is not achieved with bulk RNA-seq. For

sc/snRNA-seq, the expression is measured in each individual cell/nucleus, and this data type is
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particularly useful to characterize expression profiles of individual cell populations, especially rare

cell types. However, sc/snRNA-seq data suffers from various technical challenges such as sparsity,

the amount of starting materials, cell size, or cell death (Lähnemann et al., 2020). Therefore, the

combination of bulk and sc/snRNA-seq is beneficial for the study of biological processes that

involve multiple cell types.

In the context of placental studies, several bulk and sc/sn RNA-seq data have been generated

and used to investigate specific characteristics of placental tissues and cell populations under

different conditions and time points in multiple experimental models. For example, RNA-seq

analyses were carried out using data generated from endothelial cells isolated from e16.0 labyrinth

zone of Igf2 mouse mutants, revealing the direct roles of Igf2 in placental development (Sandovici

et al., 2022). Comparison amongst RNA-seq data from trophoblast cells differentiated in cell

culture using different in vitro protocols has been done to provide justification for choosing a

suitable experimental model (Seetharam et al., 2022). Additionally, scRNA-seq in the rat and

human uterine-placental interface, as well as snRNA-seq data from mouse labyrinth zone, have

been generated, providing valuable resources to study expression profiles of complex cell

populations in the placenta (Vento-Tormo et al., 2018; Marsh and Blelloch, 2020; Marsh et al.,

2022; Scott et al., 2022).

To study genome-wide chromatin accessibility (also called openness), several NGS assays can

be used, such as MNase-seq, DNase-seq, and ATAC-seq (MNase: micrococcal nuclease; DNase I:

deoxyribonuclease I; ATAC: assay for transposase-accessible chromatin). These three assays

involve using different DNA cleavage agents such as the endo-exonuclease MNase (Johnson et al.,

2006), non-specific double-strand endonuclease DNase I (Song and Crawford, 2010) and Tn5

transposase (Buenrostro et al., 2015), respectively, to detect and digest open chromatin regions.

Consequently, the accessible regions can be subjected to PCR amplification and sequencing. Out

of the three assays mentioned here, ATAC-seq has quickly become one of the more popular

methods as it requires low starting cell numbers and has a simple and fast protocol (Tsompana

and Buck, 2014). Similar to RNA-seq, ATAC-seq can be carried out on whole tissue or at the
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sc/sn level to provide information about chromatin accessibility landscapes in multiple tissues or

developmental stages. Moreover, utilization of chromatin accessibility sequencing assays like

ATAC-seq enables inferences of nucleosome spacing, positioning and occupancy, and TF binding

footprints, which are crucial in the study of chromatin architectures. ATAC-seq has proven to be

useful to study the development of the placenta, such as to identify repressed gene networks in

e9.5 mouse placenta (Starks et al., 2019) and to characterize the chromatin accessibility

underlying trophoblast cell development (Nelson et al., 2017; Dong et al., 2020; Arutyunyan et al.,

2023).

Chromatin immunoprecipitation followed by high-through put sequencing (ChIP-seq) can also

provide information about chromatin accessibility, but can also be used to annotate specific kinds

of regulatory regions. For example, mono-methylation of lysine 4 on histone H3 (H3K4me1)

marks enhancers (O’Geen et al., 2011; Kimura, 2013), which are regulatory DNA sequences that

can enhance associated genes’ transcription. Trimethylation of lysine 4 on histone H3

(H3K4me3), on the other hand, marks gene promoters (Kimura, 2013). Trimethylation of lysines

9 and 27 on histone H3 (H3K9me3 and H3K27me3, respectively) mark compacted chromatin

regions, associated with gene repression (Kimura, 2013). Assaying multiple histone modification

via ChIP-seq, and including ATAC-seq data, can deepen our understanding of gene regulation.

For example, in combining H3K27me3, H3K4me1 and H3K4me3, Starks et al. determined sets of

regulatory regions associated with house-keeping genes or actively repressed genes with neural

functions, and active enhancers associated to placental-specific genes (Starks et al., 2021). Upon

integrating the region sets with ATAC-seq data, Starks et al. also observed a significant ratio of

openness in house-keeping genes’ regulatory regions, which agreed with the biological mechanisms

of genes essential for basic cellular functions. In human EVT, it was found that H3K27ac marks

had a high overlap with ATAC-Seq regions more accessible in the EVT cell state compared to

trophoblast stem cells (Varberg et al., 2022).

An important aspect of studying chromatin is determining the 3-D organization of the

genome, including the long-range interactions between regulatory elements and genes. After the
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development of Chromosome Conformation Capture (3C) technique in 2002 (Dekker et al., 2002)

which aims to detect the interaction frequency between two genomic loci, multiple assays with

similar purposes have developed such as 4C (Simonis et al., 2006), 5C (Dostie et al., 2006), and

Hi-C (Lieberman-Aiden et al., 2009). Out of these assays, Hi-C is one of the most popular as it

utilizes NGS techniques such as high-throughput and parallel sequencing, which allow for

interaction profiling between fragments within a chromosome or between different chromosomes

(Oluwadare et al., 2019). In the absence of data from 3C-based assays, computational methods

can be used to infer the interactions between regulatory elements and genes. These computational

strategies will be discussed in the next section.

1.3.2 Computational methods for next generation sequencing methods

While specific analysis workflows of several next-generation sequencing (NGS) may vary

depending on the experimental design and data type, they often have a similar general processing

pipeline, involving basic steps such as quality control, read alignment, read quantification, and

downstream analyses. This general pipeline is summarized below.

1.3.2.1 Pre-processing steps

Pre-processing steps are necessary to exclude low quality data and help to produce reliable

and high-quality downstream results, as well as to save computational time. After sequencing files

are obtained, the first step is to assess the quality of the raw sequencing data, also known as

“reads”, using various quality control (QC) metrics. These metrics include but are not limited to

per base quality scores, distribution of read lengths, sequence duplication levels and

over-represented sequences (which signal adapter contamination or sequencing artifacts). The

most common program for this purpose is FastQC (Andrews, 2010), which is a Java toolkit. Since

the development of FastQC, several versions of FastQC in other programming languages such as

R (fastqcr (Kassambara, 2023)) and Python (Falco (de Sena Brandine and Smith, 2019)) have

been implemented, allowing for faster run time and flexibility in pipeline development. To
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compile many QC reports for different samples into one report, researchers can use MultiQC

(Ewels et al., 2016).

Next, the raw sequencing reads are preprocessed to remove low-quality bases, trim adapters,

and filter out reads that do not meet certain quality criteria. Popular tools for read preprocessing

are Trimmomatic (Bolger et al., 2014), bbduk (Bushnell, 2023), Cutadapt (Martin, 2011), and

Trim Galore! (Krueger, 2015). No matter which tool is used, trimming adapters and low-quality

base pairs, as well as eliminating low-quality reads, in general improve the quality of downstream

analyses (Del Fabbro et al., 2013). After the read pre-processing step, the remaining high-quality

reads are then aligned or mapped to a reference genome. Depending on the type of NGS data,

researchers can choose appropriate aligners. To illustrate, for RNA-seq data, it is advisable to

employ aligners that can account for gene splicing events and align reads to the genome despite

intron gaps. For instance, HISAT2 (Kim et al., 2015) and STAR (Dobin et al., 2013) are

splice-aware aligners that are well-suited for this purpose. For ATAC-seq, ChIP-seq and Hi-C

data, popular alignment software are BWA (Li, 2013) and Bowtie 2 (Langmead and Salzberg,

2012) which utilize the Burrows-Wheeler Transform (BWT) algorithm (Burrows, 1994) for

efficient data compression and fast pattern matching.

Following sequence alignment is read quantification. For RNA-seq data, popular

quantification tools are HTSeq (Anders et al., 2015), featureCounts (Liao et al., 2014) and RSEM

(Li and Dewey, 2011). Recently, several algorithms capable of simultaneous pseudo-alignment and

quantification have been developed such as Kallisto (Bray et al., 2016) and Salmon (Patro et al.,

2017) which help speed up the analysis run time considerably. For ATAC-seq and ChIP-seq, read

counting is followed by statistical testing of the read pile-ups in a process often referred to as

“peak calling”, which aims to determine the significance of regions of interest. There are many

software to call peaks for ATAC-seq and ChIP-seq; they can be classified into two groups of

methods: traditional statistical modeling (e.g., MACS2 (Zhang et al., 2008), ZINBA (Rashid

et al., 2011), and HMMRATAC (Tarbell and Liu, 2019)), and supervised machine learning

methods (e.g., CNN-peaks (Oh et al., 2020) and LanceOtron (Hentges et al., 2021)) (Yan et al.,
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2020). Depending on the experiments, peak widths and shapes can vary greatly (Barth and

Imhof, 2010), requiring researchers to choose the suitable statistical models for calling peaks

(Thomas et al., 2017). With Hi-C data, the quantification step is different from that of RNA-seq,

ATAC-seq or ChIP-seq. Briefly, after genome alignment and before interaction counting,

sequencing reads are further filtered to obtain true pairs of reads which indicate valid interactions,

then interactions are quantified and normalized for several factors such as mappability, GC

content and fragment length (Lajoie et al., 2015). The quantification step are included in popular

processing tools for Hi-C such as HiC-Pro (Servant et al., 2015) and HiCUP (Wingett et al., 2015).

1.3.2.2 Downstream analyses

Upon obtaining quantified features (expression level for RNA-seq, peaks for ATAC-seq and

ChIP-seq, interaction counts for Hi-C), there are several downstream analyses one can do

depending on their research questions. For example, a common analysis is identifying

differentially expressed genes (RNA-seq), differentially bound regions (transcription factor

ChIP-seq), regions with differential activity level (histone modification ChIP-seq), or differentially

accessible regions (ATAC-seq). These types of tests often rely on popular algorithms such as

EdgeR (Robinson et al., 2009) and DESeq2 (Love et al., 2014) which model feature counts with

negative binomial distribution, built for RNA-seq data. When applying EdgeR or DESeq2 models

to ChIP-seq and ATAC-seq data, normalization requires special attention (Wu et al., 2015; Reske

et al., 2020) since: i) ChIP-seq/ATAC-seq peaks can be present at more varied locations in the

genome than RNA-seq, which is generally limited to exons, ii) ChIP-seq and ATAC-seq have

different technical variability from RNA-seq, and iii) ChIP-seq/ATAC-seq read counts in peaks

may not follow the assumptions underlying normalizing methods for RNA-seq data. If analyses

are carried out specifically with RNA-seq data that has been quantified using Kallisto (Bray

et al., 2016), one can also use Sleuth (Yi et al., 2018) which can model the differences in both

gene and transcript-level counts. Once obtaining a gene list or region list of interest, researchers

can carry out motif enrichment analysis to predict transcription factor binding within regulatory
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elements, gene ontology enrichment analysis to predict biological functions of genes, or infer

interaction networks amongst genes and between transcription factors and genes. Popular

network inference methods using gene expression level includes WGCNA (Weighted Gene

Co-expression Network Analysis) (Langfelder and Horvath, 2008) and GENIE3 (GEne Network

Inference with Ensemble of trees) (Huynh-Thu et al., 2010).

Inferring interactions between regulatory elements such as distal enhancers and genes is an

on-going challenge, especially when Hi-C or other data measuring locus interactions are not

readily available. Several computational methods have been developed, such as EpiTensor (Zhu

et al., 2016), which uses high-order tensor decomposition to predict the interaction space between

regulatory elements, IM-PET (Integrated Method for Predicting Enhancer Targets) (He et al.,

2014), which relies on the correlation between activities at distal enhancers and gene promoters,

and GREAT (Genomic Regions Enrichment of Annotations Tool) (McLean et al., 2010), which

associates enhancers to genes based on genomic distances. On sc/sn level, Cicero (Pliner et al.,

2018) is a useful method which predicts co-accessibility networks based on the covariance between

regulatory elements using graphical LASSO (Friedman et al., 2008). Among the computational

approaches for bulk data that do not involve locus contact information, genomic distances seem

to perform relatively well (Fulco et al., 2019), and can be of great use in associating regulatory

regions to genes.

1.4 Dissertation Organization

Chapter 1 serves as a general introduction to placental biology and computational techniques

related to the work in this dissertation. It includes an introduction to placental development in

human, mouse and rat models, the mechanisms of gene regulation, some relevant next generation

sequencing assays and general approaches for the analyses of each data type.

Chapter 2 consists of a published manuscript titled “Identifying novel regulators of placental

development using time-series transcriptome data” published in Life Science Alliance (Vu et al.,

2023a). In this report, we generated RNA-seq data from mouse fetal placental tissues at e7.5, e8.5
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and e9.5, and used clustering and network analyses to predict regulators of placenta-specific

processes. First, with clustering analysis, we identified gene groups with timepoint-specific

patterns of expression. Next, with network and deconvolution analysis, we determined gene

network modules in mouse tissues that have similar expression profiles to different cell types in

the human placenta. This is a crucial analysis to identify cell type-specific markers with bulk data

because it helps to overcome confounding factors when averaging expression from multiple cell

types. Last, we validated the biological roles of our predicted regulators in vitro with a human

cell line, HTR8-SVneo cells, providing evidence for a potential role for the identified candidates

across species (Fig 1.1).

Chapter 3 consists of a published manuscript titled “Unsupervised Contrastive Peak Caller for

ATAC-seq” published in Genome Research (Vu et al., 2023b). In this work, we developed a novel

deep learning framework to identify chromatin accessible regions, also known as “calling peaks”,

with ATAC-seq data. Our tool, named RCL (Replicated Contrastive Learning), is the first-ever

framework developed to specifically integrate shared signals across biological replicates to identify

high confident open genomic regions. We demonstrated that RCL performed superior to multiple

existing tools in not only mouse placenta tissue data but also several human cell lines (Fig 1.2).

Chapter 4 consists of a manuscript named “Core conserved transcriptional regulatory

networks define the invasive trophoblast cell lineage” published in Development (Vu et al., 2023c).

In this report, we integrated single-cell (sc) RNA-seq and single-nucleus (sn) ATAC-seq data

generated from the rat uterine-placental interface at gestational day 15.5 and 19.5, and bulk

ATAC-seq data from human EVT cells. As a result, we identified invasive trophoblast-specific

chromatin accessible regions in rat, and conserved regions between rat and human. Using motif

enrichment and network analysis, we also determined a network of transcription factors and genes

that likely play functional roles in the trophoblast lineage in both the rat and human

uterine-placental interface (Fig 1.3).

Chapter 5 consists of the conclusions of the thesis and discusses the future directions of the

work.
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1.5 Main figures
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Figure 1.1: RNA-seq data from embryonic day (e)7.5, e8.5 and e9.5 mouse placenta was analyzed

to identify novel biomarkers of placenta developmental processes. Selected markers were validated

in the human cell line HTR-8/SVneo to show their potential roles in cell migration regulation.
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Figure 1.2: Overview of RCL (Replicated Contrastive Learning) framework where shared signals

from biological replicates in ATAC-seq experiments are used to identify chromatin accessible regions.

The framework involves two main steps: candidate region selection based on whole genome coverage

data, and unsupervised contrastive learning to classify candidate regions into peak and non-peak

classes.
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Figure 1.3: Single nucleus ATAC-seq data from rat uterine-placental interface on gestational day

15.5 and 19.5 were generated and integrated with single cell RNA-seq data with matching condi-

tions.
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Figure 1.3: (Continued)

High confident conserved chromatin accessible regions in the invasive trophoblast cell (iTB)

populations were then identified, and used for transcription factor (TF) - gene network inference.

Network analysis identified combinations of TFs that regulate iTB. Panel 1 (“Data generation”)

was adapted from Scott et al. (Scott et al., 2022). Abbreviations: UPI, uterine-placental

interface; JZ, junctional zone; LZ: labyrinth zone; GD, gestational day; sc, single cell; sn, single

nucleus; TF, transcription factor.
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Ewels, P., Magnusson, M., Lundin, S., and Käller, M. (2016). Multiqc: summarize analysis results
for multiple tools and samples in a single report. Bioinformatics, 32(19):3047–3048.

Fischle, W., Wang, Y., and Allis, C. D. (2003). Histone and chromatin cross-talk. Current
opinion in cell biology, 15(2):172–183.

Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9(3):432–441.

Fulco, C. P., Nasser, J., Jones, T. R., Munson, G., Bergman, D. T., Subramanian, V., Grossman,
S. R., Anyoha, R., Doughty, B. R., Patwardhan, T. A., Nguyen, T. H., Kane, M., Perez, E. M.,
Durand, N. C., Lareau, C. A., Stamenova, E. K., Aiden, E. L., Lander, E. S., and Engreitz,
J. M. (2019). Activity-by-contact model of enhancer–promoter regulation from thousands of
CRISPR perturbations. Nature Genetics 2019 51:12, 51(12):1664–1669.

Furukawa, S., Hayashi, S., Usuda, K., Abe, M., Hagio, S., and Ogawa, I. (2011). Toxicological
pathology in the rat placenta. Journal of Toxicologic Pathology, 24(2):95–111.

Furukawa, S., Tsuji, N., and Sugiyama, A. (2019). Morphology and physiology of rat placenta for
toxicological evaluation. Journal of Toxicologic Pathology, 32(1):1–17.

Gaccioli, F. and Lager, S. (2016). Placental Nutrient Transport and Intrauterine Growth
Restriction. Frontiers in Physiology, 7:40.

Gaccioli, F., Lager, S., Powell, T., and Jansson, T. (2013). Placental transport in response to
altered maternal nutrition. Journal of developmental origins of health and disease, 4(2):101–115.



21

Grigsby, P. L. (2016). Animal models to study placental development and function throughout
normal and dysfunctional human pregnancy. In Seminars in reproductive medicine, volume 34,
pages 011–016. Thieme Medical Publishers.

He, B., Chen, C., Teng, L., and Tan, K. (2014). Global view of enhancer–promoter interactome in
human cells. Proceedings of the National Academy of Sciences, 111(21):E2191–E2199.

Hegenbarth, J.-C., Lezzoche, G., De Windt, L. J., and Stoll, M. (2022). Perspectives on
Bulk-Tissue RNA Sequencing and Single-Cell RNA Sequencing for Cardiac Transcriptomics.
Frontiers in Molecular Medicine, 2:2.

Hemberger, M., Hanna, C. W., and Dean, W. (2020). Mechanisms of early placental development
in mouse and humans. Nature Reviews Genetics, 21(1):27–43.

Hentges, L. D., Sergeant, M. J., Downes, D. J., Hughes, J. R., and Taylor, S. (2021). LanceOtron:
A deep learning peak caller for ATAC-Seq, ChIP-Seq, and DNase-Seq. Bioinformatics,
38(18):4255–4263.

Hoo, R., Nakimuli, A., and Vento-Tormo, R. (2020). Innate Immune Mechanisms to Protect
Against Infection at the Human Decidual-Placental Interface. Frontiers in Immunology,
11:2070.

Hulme, C. H., Nicolaou, A., Murphy, S. A., Heazell, A. E., Myers, J. E., and Westwood, M.
(2019). The effect of high glucose on lipid metabolism in the human placenta. Scientific
reports, 9(1):1–9.

Huynh-Thu, V. A., Irrthum, A., Wehenkel, L., and Geurts, P. (2010). Inferring regulatory
networks from expression data using tree-based methods. PLoS ONE, 5(9).

Jansen, C. H., Kastelein, A. W., Kleinrouweler, C. E., Van Leeuwen, E., De Jong, K. H., Pajkrt,
E., and Van Noorden, C. J. (2020). Development of placental abnormalities in location and
anatomy. Acta Obstetricia et Gynecologica Scandinavica, 99(8):983–993.

Jansson, T. and Powell, T. L. (2007). Role of the placenta in fetal programming: underlying
mechanisms and potential interventional approaches. Clinical science, 113(1):1–13.

Jensen, O. E. and Chernyavsky, I. L. (2019). Blood flow and transport in the human placenta.
Annual Review of Fluid Mechanics, 51:25–47.

Johnson, S. M., Tan, F. J., McCullough, H. L., Riordan, D. P., and Fire, A. Z. (2006). Flexibility
and constraint in the nucleosome core landscape of Caenorhabditis elegans chromatin. Genome
Research, 16(12):1505.

Kadauke, S. and Blobel, G. A. (2009). Chromatin loops in gene regulation. Biochimica et
biophysica acta, 1789(1):17.



22

Kassambara, A. (2023). fastqcr: Quality Control of Sequencing Data. R package version 0.1.3.

Kiefer, D. G., Keeler, S. M., Rust, O. A., Wayock, C. P., Vintzileos, A. M., and Hanna, N. (2009).
Is midtrimester short cervix a sign of intraamniotic inflammation? American Journal of
Obstetrics and Gynecology, 200(4):374.e1–374.e5.

Kim, D., Langmead, B., and Salzberg, S. L. (2015). Hisat: a fast spliced aligner with low memory
requirements. Nature methods, 12(4):357–360.

Kimura, H. (2013). Histone modifications for human epigenome analysis. Journal of human
genetics, 58(7):439–445.

Krueger, F. (2015). Trim galore!: A wrapper around cutadapt and fastqc to consistently apply
adapter and quality trimming to fastq files, with extra functionality for rrbs data. Babraham
Institute.

Kukurba, K. R. and Montgomery, S. B. (2015). RNA Sequencing and Analysis. Cold Spring
Harbor protocols, 2015(11):951.

Lager, S. and Powell, T. L. (2012). Regulation of Nutrient Transport across the Placenta. Journal
of Pregnancy, 2012:14.
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ontology-based method for assessing batch effect adjustment approaches in heterogeneous
datasets. Bioinformatics, 34(17):i908–i916.

Scott, R. L., Vu, H. T., Jain, A., Iqbal, K., Tuteja, G., and Soares, M. J. (2022). Conservation at
the uterine-placental interface. Proceedings of the National Academy of Sciences of the United
States of America, 119(41):e2210633119.

Seetharam, A. S., Vu, H. T. H., Choi, S., Khan, T., Sheridan, M. A., Ezashi, T., Roberts, R. M.,
and Tuteja, G. (2022). The product of BMP-directed differentiation protocols for human
primed pluripotent stem cells is placental trophoblast and not amnion. Stem Cell Reports.

Servant, N., Varoquaux, N., Lajoie, B. R., Viara, E., Chen, C.-J., Vert, J.-P., Heard, E., Dekker,
J., and Barillot, E. (2015). Hic-pro: an optimized and flexible pipeline for hi-c data processing.
Genome biology, 16(1):1–11.

Shlyueva, D., Stampfel, G., and Stark, A. (2014). Transcriptional enhancers: from properties to
genome-wide predictions. Nature Reviews Genetics 2014 15:4, 15(4):272–286.

Silva, J. F. and Serakides, R. (2016). Intrauterine trophoblast migration: A comparative view of
humans and rodents. Cell Adhesion and Migration, 10(1-2):88–110.

Simonis, M., Klous, P., Splinter, E., Moshkin, Y., Willemsen, R., De Wit, E., Van Steensel, B.,
and De Laat, W. (2006). Nuclear organization of active and inactive chromatin domains
uncovered by chromosome conformation capture–on-chip (4c). Nature genetics,
38(11):1348–1354.

Soares, M. J., Chakraborty, D., Karim Rumi, M. A., Konno, T., and Renaud, S. J. (2012). Rat
placentation: An experimental model for investigating the hemochorial maternal-fetal interface.
Placenta, 33(4):233.

Soares, M. J., Varberg, K. M., and Iqbal, K. (2018). Hemochorial placentation: development,
function, and adaptations. Biology of Reproduction, 99(1):196–211.



26

Soncin, F., Natale, D., and Parast, M. M. (2015). Signaling pathways in mouse and human
trophoblast differentiation: A comparative review. Cellular and Molecular Life Sciences,
72(7):1291–1302.

Song, L. and Crawford, G. E. (2010). DNase-seq: a high-resolution technique for mapping active
gene regulatory elements across the genome from mammalian cells. Cold Spring Harbor
protocols, 2010(2):pdb.prot5384.

Spitz, F. and Furlong, E. E. (2012). Transcription factors: from enhancer binding to
developmental control. Nature Reviews Genetics 2012 13:9, 13(9):613–626.

Starks, R. R., Biswas, A., Jain, A., and Tuteja, G. (2019). Combined analysis of dissimilar
promoter accessibility and gene expression profiles identifies tissue-specific genes and actively
repressed networks. Epigenetics and Chromatin, 12(1):1–16.

Starks, R. R., Kaur, H., and Tuteja, G. (2021). Mapping cis-regulatory elements in the
midgestation mouse placenta. Scientific Reports 2021 11:1, 11(1):1–13.

Tarbell, E. D. and Liu, T. (2019). HMMRATAC: a Hidden Markov ModeleR for ATAC-seq.
Nucleic Acids Research.

Thomas, R., Thomas, S., Holloway, A. K., and Pollard, K. S. (2017). Features that define the
best chip-seq peak calling algorithms. Briefings in bioinformatics, 18(3):441–450.

Tsompana, M. and Buck, M. J. (2014). Chromatin accessibility: A window into the genome.

Turco, M. Y. and Moffett, A. (2019). Development of the human placenta. Development
(Cambridge), 146(22).

Varberg, K. M., Dominguez, E. M., Koseva, B., McNally, R. P., Moreno-Irusta, A., Wesley, E. R.,
Iqbal, K., Cheung, W. A., Okae, H., Arima, T., Lydic, M., Holoch, K., Marsh, C., Soares,
M. J., Grundberg, E., and Varberg or Michael J Soares, K. M. (2022). Active remodeling of the
chromatin landscape directs extravillous trophoblast cell lineage development. medRxiv, page
2022.05.25.22275520.

Vento-Tormo, R., Efremova, M., Botting, R. A., Turco, M. Y., Vento-Tormo, M., Meyer, K. B.,
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2.1 Abstract

The placenta serves as a connection between the mother and the fetus during pregnancy, and

provides the fetus with oxygen, nutrients, and growth hormones. However, the regulatory

mechanisms and dynamic gene interaction networks underlying early placental development are

understudied. Here, we generated RNA sequencing (RNA-seq) data from mouse fetal placenta

tissues at embryonic day (e) 7.5, e8.5 and e9.5 to identify genes with timepoint-specific expression,

then inferred gene interaction networks to analyze highly connected network modules. We

determined that timepoint-specific gene network modules associated with distinct developmental

processes, and with similar expression profiles to specific human placental cell populations. From

each module, we obtained hub genes and their direct neighboring genes, which were predicted to

govern placental functions. We confirmed that four novel candidate regulators identified through

our analyses regulate cell migration in the HTR-8/SVneo cell line. Upon conclusion of this study,

we were able to predict several novel regulators of placental development using network analysis

of bulk RNA-seq data. Our findings and analysis approaches will be valuable for future studies

investigating the transcriptional landscape of early placental development.
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2.2 Introduction

The placenta is a transient organ that has critical roles during pregnancy, such as the

transportation of oxygen and nutrients to the fetus, waste elimination, and the secretion of

growth hormones. Placental defects are associated with devastating complications including

preeclampsia and fetal growth restriction, which can lead to maternal or fetal mortality (Bamfo

and Odibo, 2011; Rana et al., 2019). Therefore, it is fundamental to understand the mechanisms

of placental development.

Due to ethical considerations as well as the opportunity for genetic manipulation, mouse

models are frequently used when investigating early placental development. Like humans, mice

have a hemochorial placenta (Hemberger et al., 2020), meaning that maternal blood directly

comes in contact with the chorion. Although there are certain differences between the mouse and

human placenta (Hemberger et al., 2020; Soncin et al., 2015), they do express common genes

during gestation, including common regulators and signaling pathways involved in placental

development (Cox et al., 2009; Soncin et al., 2018; Watson and Cross, 2005). For example,

Ascl2/ASCL2 and Tfap2c/TFAP2C are required for the trophoblast (TB) cell lineage in both

mouse and human models (Guillemot et al., 1994; Kuckenberg et al., 2012; Varberg et al., 2021).

Another example is the HIF signaling pathway, which regulates TB differentiation in both mouse

and human placenta (Soncin et al., 2015).

Mouse placental development begins around embryonic day (e) 3.5 when the trophectoderm

(TE) layer forms (Watson and Cross, 2005). The TE differentiates into different TB populations

at e4.5, which eventually leads to the formation of the ectoplacental cone (EPC) (Bevilacqua

et al., 2014). Between e7.5 and e9.5, the establishment of blood flow to the fetus begins, and

highly dynamic changes in placental cell composition occur. At e7.5, the EPC is comprised of TB

cells (Hemberger et al., 2020), organized into the inner and peripheral populations, with the inner

cells actively proliferating and differentiating, while the outer cells can be invasive and interact

with the decidua (Bevilacqua et al., 2014). Around e8.5, chorioallantoic attachment occurs,

during which the chorion layer joins with the allantois (Cross et al., 2003). As a result, the e8.5
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mouse fetal placenta includes cells from the EPC, chorion, and allantois (Cross et al., 2006). From

e9.5 onwards, the mouse fetal placenta is composed of distinct layers, the trophoblast giant cell

(TGC) layer, the junctional zone (spongiotrophoblast and glycogen TB cells), and the labyrinth

zone (chorion TB cells, syncytiotrophoblast I and II cells, fetal endothelium, and spiral artery

TGCs) (Simmons, 2014; Walentin et al., 2016). Within the labyrinth layer, there is a dense

network of vasculature where nutrients and oxygen are transported and exchanged. Although the

structure of the placenta is not identical between mouse and human, certain mouse placental cell

types are thought to be equivalent to human placental cell types (Soncin et al., 2015). For

example, parietal TGCs and glycogen TBs have been described as equivalent to human

extravillous trophoblasts (EVTs) (Soncin et al., 2015). Mouse TGCs are not as invasive as human

EVTs (Soncin et al., 2015), and they have different levels of polyploidy and copy number

variation (Morey et al., 2021); however, both EVTs and TGCs are able to degrade extracellular

matrix to enable TB migration into the decidua (Silva and Serakides, 2016).

Several individual regulators of the processes active between e7.5 and e9.5 have been

identified, as reviewed in (Cross, 2005; Hemberger and Cross, 2001; Hu and Cross, 2010; Rossant,

2001; Watson and Cross, 2005). In addition, it is important to determine how these regulators

potentially interact with other genes as networks. To identify novel regulators or infer gene

interactions underlying developmental processes, unbiased whole genome transcriptomic data can

be used. Previous studies that utilized transcriptomics in the developing mouse placenta were

either focused on analysis of one timepoint, or focused on analysis of multiple -omics data

(Abdulghani et al., 2019; Starks et al., 2020, 2019; Tuteja et al., 2016). Other studies of gene

expression in human placenta across trimesters did not infer full gene interaction networks and

instead focused on transcription factors (Morey et al., 2021; Prater et al., 2021). Single-cell

analysis has been used to investigate cell-type specific gene expression in the placenta; however,

these studies do not predict regulators underlying specific placental development processes

(Marsh and Blelloch, 2020; Vento-Tormo et al., 2018).
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Here, we generated RNA sequencing (RNA-seq) data from mouse fetal placental tissues at

e7.5, e8.5, and e9.5. We then carried out clustering, differential expression, and network analyses

to infer gene interactions and predict novel regulators of placental development. We further

demonstrated that our network constructions could be used to infer cell populations in the mouse

placenta at the three timepoints. Finally, we conducted in vitro validation experiments and

confirmed that several genes we identified have a role in regulating TB cell migration.

2.3 Results

2.3.1 Genes associated with distinct placental processes show timepoint-specific

expression

We generated and analyzed transcriptomic data from fetal placental tissues at e7.5, e8.5 and

e9.5 to identify genes regulating distinct processes during placental development. Based on the

stages of placental development and the cell types present at each stage, we predicted that genes

with highest expression at e7.5 would be involved in TB proliferation or differentiation; genes

with highest expression at e8.5 would have a role in chorioallantoic attachment; and genes with

highest expression at e9.5 would have a role in the establishment of nutrient transport. Indeed,

we observed that previously identified regulators of TB proliferation and differentiation (e.g.,

Ascl2 (Guillemot et al., 1994; Tanaka et al., 1997), Gjb5 (Kibschull et al., 2014)), chorioallantoic

attachment (e.g., Ccnf (Tetzlaff et al., 2004), Itga4 (Yang et al., 1995)), and nutrient transport

(e.g., Gjb2 (Gabriel et al., 1998), Igf2 (Sferruzzi-Perri et al., 2011)) showed timepoint-specific

patterns that matched with our predictions (Fig 2.1A). Next, we performed hierarchical clustering

to determine if protein-coding transcripts would cluster into groups that displayed

timepoint-specific expression. From this analysis, we obtained three groups of transcripts in which

the median expression was highest at e7.5 (8242 transcripts, equivalent to 5566 genes), e8.5 (8091

transcripts, equivalent to 5536 genes) and e9.5 (7238 transcripts, equivalent to 5347 genes) (Fig

2.1B, Supplementary Table S1). Hereafter, these groups are referred to as hierarchical clusters.
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To evaluate the computational robustness and biological significance of the hierarchical

clusters, we carried out additional analyses. First, we used three different algorithms, K-means

clustering, self-organizing maps, and spectral clustering, to validate the trends of the expression

levels in hierarchical groups, as well as the number of transcript groups (k = 3, 4 and 5). Only

with k = 3 did we obtain groups with median expression level trends consistent in all four

algorithms (Fig S1). Moreover, with k = 3, the maximum percent of agreement (see Materials

and methods) between hierarchical clusters and clusters obtained using each of the different

algorithms was 70.34-87.26% (Fig S1), while the maximum percent of agreement between

hierarchical clusters and clusters obtained from other algorithms decreases to between 55.67 -

65.72% with k = 4, and 54.81 - 59.19% with k = 5. Second, we compared our hierarchical groups

with previously published mouse and human placental microarray time course data from Soncin

et al., 2018 (Soncin et al., 2018). Despite the technical differences between the datasets, we

observed a consensus that our e7.5 hierarchical cluster had the highest percent of overlap with

Soncin et al. gene groups that are downregulated over time, and our e9.5 hierarchical cluster had

the highest percent of overlap with Soncin et al. gene groups that either have highest expression

at e9.5 - e12.5 or genes that are upregulated over time (Supplementary Table S1).

Lastly, we determined how the genes in each cluster relate to processes of placental

development. From previously published review articles (Cross, 2005; Hemberger and Cross, 2001;

Hu and Cross, 2010; Rossant, 2001; Watson and Cross, 2005), we acquired gene sets associated

with distinct processes, namely ectoplacental cone and/or spongiotrophoblast maintenance

(expected to be most active at e7.5, when the EPC is still in a highly proliferative state

(Bevilacqua et al., 2014)), trophoblast giant cell differentiation (expected to be more active at

e7.5 because the mouse placenta at e8.5 and e9.5 includes more differentiated TB subtypes (Cross

et al., 2006; Hemberger et al., 2020; Simmons, 2014; Walentin et al., 2016)), chorioallantoic

attachment (expected to be most active at e8.5 (Cross et al., 2003)), and labyrinth branching,

vascularization and syncytiotrophoblast differentiation (expected to be most active at e9.5, after

these processes have initiated (Rossant, 2001)) (Supplementary Table S1). Indeed, we observed
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that the e7.5 hierarchical cluster captured the most genes in the ectoplacental cone and

spongiotrophoblast maintenance and trophoblast giant cell differentiation group; the e8.5

hierarchical cluster included the most genes in the chorioallantoic attachment group; and the e9.5

hierarchical cluster included the most genes in the labyrinth branching, vascularization and

syncytiotrophoblast differentiation group (Fig 2.1C, Supplementary Table S1). Together, these

data demonstrate that hierarchical clustering can be used to obtain transcript groups that are

associated with relevant biological processes at each timepoint, but is not sufficient to fully

distinguish processes that may have varied activity levels throughout time.

To this end, and because hierarchical clustering is sensitive to small perturbations in the

datasets (Jiang et al., 2004), we carried out differential expression analysis (DEA) and identified

transcripts and genes with the strongest changes over time (Fig S2, Supplementary Table S2).

After combining results from hierarchical clustering and DEA, we defined timepoint-specific gene

groups (see Materials and methods for gene group definitions, Fig S2) and obtained 922

e7.5-specific genes, 915 e8.5-specific genes, and 1952 e9.5-specific genes (Supplementary Table S3).

Gene ontology (GO) analyses showed that the timepoint-specific gene groups were enriched for

highly relevant biological processes such as “trophoblast giant cell differentiation” (e7.5-specific

genes), “labyrinthine layer development” (e8.5- and e9.5-specific genes), ”blood vessel

development” (e7.5- and e9.5-specific genes) and “response to nutrient” (e9.5-specific genes)

(Supplementary Table S3).

It is possible that timepoint-specific groups share genes that have timepoint-specific

transcripts. Indeed, we identified 37 genes shared between e7.5 and e8.5, 5 genes shared between

e7.5 and e9.5, and 109 genes shared between e8.5 and e9.5 (Supplementary Table S3). We found

that genes only present at one timepoint (timepoint-unique genes) were generally enriched for

similar terms as the full group of timepoint-specific genes (Supplementary Table S3). However,

terms related to the development of labyrinth layer like “labyrinthine layer morphogenesis” and

“labyrinthine layer blood vessel development” were only enriched when using all e8.5-specific

genes but not when using e8.5 timepoint-unique genes. Moreover, we found that, unlike genes
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shared between e9.5 and e7.5, genes shared between e9.5 and e8.5 were enriched for processes

such as “blood vessel development” and “insulin receptor signaling pathway”. This observation

may indicate that different transcripts of the same genes could be expressed at different

timepoints for the continuation of certain biological processes.

2.3.2 Network analysis reveals potential regulators of developmental processes in

the placenta

To predict interactions amongst timepoint-specific genes and subset timepoint-specific genes

into regulatory modules, we used the STRING database (Szklarczyk et al., 2019) and GENIE3

(Huynh-Thu et al., 2010) (see Materials and methods). With the two approaches of network

inference, we were able to predict networks of genes by means of previously published

experimental results and text-mining of available publications (STRING), as well as de novo

computational analysis with random forest-based methods (GENIE3). We then carried out

network sub-clustering with the GLay algorithm (Su et al., 2010) (see Materials and methods)

and identified four network modules at e7.5, six at e8.5, and eight at e9.5 (Supplementary Table

S4, Fig S3). To determine if the networks were associated with distinct processes of placental

development, we used GO enrichment analysis.

Compared to e8.5 and e9.5 networks, e7.5 networks had a higher rank or fold change and were

significantly enriched for the GO terms “inflammatory response” (e7.5 1 STRING:

− log10(q-value) = 22.82 and e7.5 2 GENIE3: − log10(q-value) = 3.95) and “female pregnancy”

(e7.5 2 GENIE3: − log10(q-value) = 4.1) (Fig 2.2A, Supplementary Table S5). The term

“morphogenesis of a branching structure”, which can be expected following chorioallantoic

attachment around e8.5, was not enriched at e7.5, but was enriched in multiple e8.5 and e9.5

networks (e8.5 1 STRING: − log10(q-value) = 1.73, e8.5 2 GENIE3: − log10(q-value) = 1.72,

e9.5 1 STRING: − log10(q-value) = 4.01, e9.5 1 GENIE3: − log10(q-value) = 1.54,

e9.5 2 STRING: − log10(q-value) = 14.33, and e9.5 2 GENIE3: − log10(q-value) = 2.2). After

chorioallantoic attachment is complete, nutrient transport is being established. Accordingly, we
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observed the following enrichments: “endothelial cell proliferation” (highest ranked in

e9.5 2 STRING: − log10(q-value) = 15.91), “lipid biosynthetic process” (only significant after

e7.5, highest ranked in e9.5 3 STRING: − log10(q-value) = 17.63), “cholesterol metabolic process”

(only significant after e7.5, highest ranked in e9.5 2 GENIE3: − log10(q-value) = 2.76 and

e9.5 3 STRING: − log10(q-value) = 7.79), and “response to insulin” (only significant after e7.5,

highest ranked in e9.5 1 GENIE3: − log10(q-value) = 1.67). “Placenta development”,

“vasculature development” and cell migration related terms (“positive regulation of cell

migration” and “epithelium migration”) are observed in networks at all timepoints, although

these terms are not consistently ranked in all networks. Using randomization tests, we observed

the majority of these GO terms (10 out of 11 terms) were significantly enriched when using the

network genes but not random gene sets (significance level of 0.05; the term “vasculature

development” having p-value = 0.0549 and 0.0575 with subnetwork e9.5 1 GENIE3 and

e9.5 3 GENIE3, respectively) (see Materials and methods, Fig S3). This analysis demonstrates

that the network genes were highly relevant to the biological functions of interest. Moreover, the

observed GO terms strongly aligned with the processes enriched when using the full lists of

timepoint-specific genes (Supplementary Table S3), indicating the representative characteristics of

the network genes. While the current analysis focuses on the biological processes related to

placental development, there are other terms significantly enriched, which can be found in

Supplementary Table S5. In summary, we identified 18 subnetworks across three timepoints for

downstream analyses, some of which were enriched, according to GO analysis and randomization

tests, for specific terms relating to placental development (Fig 2.2A).

We predicted that hub genes, defined to be nodes with high degree, closeness, and shortest

path betweenness centrality in the networks (see Materials and methods), could be potential

regulators of developmental processes in the placenta. We first determined if the hub genes from

each network with enriched GO terms described in the previous paragraph were directly

annotated or possibly related to placental functions using the Mouse Genome Informatics (MGI)

database (Smith and Eppig, 2009) (see Materials and methods, Table 2.1, Supplementary Table
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S6). Briefly, genes annotated under any GO or MGI phenotype terms related to placenta, TB

cells, TE and the chorion layer are considered as having a “known” role in the placenta. Genes

annotated under terms related to embryo are considered as having a “possible” role in the

placenta, because embryonic lethal mouse knockout lines frequently have placentation defects,

and because defects in placental development can be associated with the development of other

embryonic tissues (Brown and Hay, 2016; Perez-Garcia et al., 2018; Woods et al., 2018).

Hereafter, such genes are referred to as “known/possible genes”. In the e7.5 networks, there were

17 hub genes in which six genes were known/possible. The number of hub genes that are labelled

as known/possible is statistically significant when comparing to random gene sets selected from

the e7.5 timepoint-specific group (Fig S3). In the e8.5 and e9.5 networks, 17 out of 28 and 48 out

of 127 hub genes were known/possible, respectively. Similar to e7.5, the number of hub genes

labelled as known/possible in e8.5 networks and e9.5 networks were both statistically significant

when comparing to random gene sets selected from the corresponding timepoint-specific groups

(Fig S3). These results indicate that the gene sets we identified are significantly associated with

relevant phenotypes in the mouse.

In the network e7.5 1 STRING, we identified seven hub genes (Table 2.1), one of which

(Mmp9 ) was considered as possibly related to placenta development according to the MGI

database. Although Mmp9 was not annotated directly to placenta using our definition of a

placenta term on the MGI database, it has been shown to be required for proper implantation,

TB differentiation and invasion (Plaks et al., 2013). In the network e7.5 2 GENIE3 (Fig 2.2B),

ten hub genes were identified, five of which were annotated as regulating or having possible roles

in placental development in the MGI database. Four of the genes are required for TB

proliferation, differentiation, migration or invasion, namely Nr2f2 (Hubert et al., 2010), Prdm1

(Mould et al., 2012), Hmox1 (Zenclussen et al., 2014) and Ctbp2 (Hildebrand and Soriano, 2002)

(Table 2.1, Supplementary Table S6). Other hub genes could be novel regulators of placental

functions. One example is Frk, a hub gene of the e7.5 2 GENIE3 network, which has been

suggested to inhibit cell migration and invasion in human glioma (Shi et al., 2015) and retinal
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carcinoma cells (Yamada et al., 2020), but has not been studied in early placental development.

Although the networks inferred by the two methods did not share any hub genes, hub genes

identified with one method could be members of the other method’s networks. These hub genes

are Mmp9 (e7.5 1 STRING), Frk, Hmox1, and Nr2f2 (e7.5 2 GENIE3) (Table 2.1). This

observation strengthens the potential roles of Frk gene in placental development.

At e8.5, hub genes included both novel and known genes in placental development or

chorioallantoic attachment. For example, in the network e8.5 1 STRING, 11 hub genes were

identified, eight of which were known/possibly associated with placental development according to

the MGI database. For example, the genes Akt1, Mapk1, and Mapk14 have a role in placental

vascularization (Adams et al., 2000; Hatano et al., 2003; Yang et al., 2003) (Table 2.1,

Supplementary Table S6). For the network e8.5 2 GENIE3 (Fig 2.2B), there were 17 hub genes

identified (Table 2.1, Supplementary Table S6), with nine genes having known or possible

functions. E8.5 2 GENIE3 network’s hub genes include genes that are not known/possible, but

have been studied in the context of placental development such as Vgll1 (Soncin et al., 2018).

Hub genes identified with one method and present in the other method’s networks are Hsp90aa1,

Akt1, and Mapk14 (e8.5 1 STRING), Dvl3 and Msx2 (e8.5 2 GENIE3) (Table 2.1). An example

of a novel gene is Jade1 (hub node of e8.5 2 GENIE3), which has been found to have high

expression in extraembryonic ectoderm and TB cells and hence may play roles in placental

vascularization by interacting with VHL (Tzouanacou et al., 2003), but has not been tested

functionally in placental tissues.

From the e9.5 networks, we identified 127 hub genes of which 48 have known/possible

functions in placental development in the MGI database (Table 2.1, Supplementary Table S6).

For instance, in e9.5 1 GENIE3, e9.5 2 STRING, and e9.5 4 STRING, hub genes that regulate

labyrinth layer development include Egfr (Lee and Threadgill, 2009) and Rb1 (Sun et al., 2006),

and hub genes that regulate placental vasculature development include Fn1 (George et al., 1993)

and Vegfa (Li et al., 2014). Hub genes identified with one method and present in the other

method’s networks include important genes such as Rb1 (Sun et al., 2006), Yap1 (Meinhardt
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et al., 2020) (e9.5 1 GENIE3) and Vegfa (e9.5 2 STRING) (Table 2.1). Notably, Vegfa is the only

hub gene identified with both network inference methods. There are also hub genes known to be

important for placental nutrient transport such as Igf2 (Sferruzzi-Perri et al., 2011), and other

genes that could be novel regulators. For example, Lhx2 is part of the mTOR signaling pathway

in osteosarcoma (Song et al., 2019), but has yet to be studied in placenta although the mTOR

signaling pathway is known to be involved in nutrient transport in the placenta (Lager and

Powell, 2012).

In summary, we have identified hub genes in networks at each timepoint. Analyzing the

annotations of hub genes using the MGI database demonstrated that the hub genes are

biologically relevant to mouse development and will be strong candidates for future investigation.

2.3.3 Timepoint-specific genes can be associated with cell-specific expression

profiles of human placenta

To determine if timepoint-specific genes could capture different placental cell populations, we

carried out deconvolution analysis with LinSeed (Zaitsev et al., 2019) and inferred the cell type

profiles. Briefly, LinSeed takes advantage of the mutual linearity relationships between cell-specific

genes and their corresponding cells to infer the topological structures underlying cell populations

of tissues. This approach would enable us to use bulk RNA-seq data to predict proportions of cell

types in the mouse placenta without prior knowledge of cell type markers or matching single-cell

datasets. As input to LinSeed, we used the 5000 most highly expressed genes across all timepoints

(expression in TPM), from which 1413 genes were found to be statistically significant for the

inference models and thus used to conduct the deconvolution analysis (see Materials and

methods, Fig S4). As a result, we observed five cell groups which captured 99% of the variance in

the placenta tissue samples (Fig S4). Amongst these groups, e7.5 samples had the highest

proportion of cell group 3, e8.5 samples had highest proportion of cell group 2, and e9.5 samples

had highest proportion of cell group 5 (Fig 2.3A – left panel, Supplementary Table S7). Cell

group 1 and cell group 4 did not have consistent cell proportions across biological replicates of a
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single timepoint. The identification of these cell groups could have resulted from noise introduced

by both biological and technical variation, which is challenging to overcome when using a small

sample size or analyzing without prior knowledge in the deconvolution analysis. Therefore, we

focused on cell groups 3, 2 and 5. We identified 100 markers (see Materials and methods) for cell

group 3, 100 markers for cell group 2, and 41 markers for cell group 5. Interestingly, 95 of the 100

markers of cell group 3 are e7.5-specific genes, 45 out of 100 markers of cell group 2 are

e8.5-specific genes, and 40 in the 41 markers of cell group 5 are e9.5-specific genes (Fig 2.3A –

right panel, Supplementary Table S7). This indicates that the independent timepoint-specific

gene analysis we performed in Section 2 could represent gene profiles of distinct cell populations.

To this end, we used the PlacentaCellEnrich webtool to annotate timepoint-specific genes

with human placental cell types (Jain and Tuteja, 2021). At all timepoints, we observed

enrichment suggesting the presence of TB cells. Specifically, the e7.5-specific genes were most

significantly enriched for genes with EVT-specific expression (log2(fold) = 1.75,

− log10(adj. p-value)= 4.18), but also had enrichment for syncytiotrophoblast (SCT) (log2(fold)

= 1.1, − log10(adj. p-value)= 2.09); the e8.5-specific group was only enriched for genes that had

villous cytotrophoblast (VCT)-specific expression (log2(fold) = 1.51, − log10(adj. p-value)= 2.36),

and the e9.5-specific group had the highest enrichment for genes with fetal fibroblast-specific

expression (log2(fold) = 2.04, − log10(adj. p-value)= 22.04) (Fig 2.3B, Fig S5). We note that the

e9.5-specific group had enrichment for genes with cell-type specific expression in multiple cells,

including endothelial cells (log2(fold) = 2.02, − log10(adj. p-value)= 18.66), VCT (log2(fold) =

1.5, − log10(adj. p-value)= 7.38), SCT (log2(fold) = 1.23, − log10(adj. p-value)= 6.93), and EVT

(log2(fold) = 1.05, − log10(adj. p-value)= 3.05) (Fig 2.3B, Fig S5). Together, this demonstrates

that our analysis is picking up on the diverse cell populations present at e9.5 compared to e7.5.

Motivated by the fact that cell-specific expression profiles for multiple human placental cell

types are enriched at e7.5 and e9.5, we hypothesized that the gene network modules at each

timepoint could capture specific cell populations. Indeed, PlacentaCellEnrich analysis on

e7.5 2 GENIE3 network genes was significantly enriched for genes with EVT-specific expression
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(log2(fold) = 2.32, − log10(adj. p-value)= 1.67) (Fig 2.3C, Fig S5), but no longer with genes that

have SCT-specific expression. E8.5 1 STRING and e8.5 2 GENIE3 were both enriched for genes

with VCT-specific expression (log2(fold) = 2.35 and 3, − log10(adj. p-value)= 1.43 and 5.41,

respectively). In addition to VCT-specific expression, e8.5 2 GENIE3 had enrichment for genes

that had SCT-specific expression (log2(fold) = 2.19, − log10(adj. p-value)= 2.93) (Fig 2.3C, Fig

S5). At e9.5, genes in the networks e9.5 1 GENIE3 and e9.5 3 STRING showed strong

enrichment for TB-specific expression, such as in SCT and VCT. On the other hand,

e9.5 2 GENIE3, e9.5 2 STRING, e9.5 3 GENIE3 and e9.5 4 STRING had strong enrichment for

fetal fibroblast and endothelium expression profiles (Fig 2.3C, Fig S5). Importantly,

randomization tests showed that the enrichment of cell type-specific genes were only significant in

these subnetworks but not in random gene sets selected from corresponding timepoint hierarchical

groups (Fig S6), which highlights the biological relevance of the gene network modules.

For genes in networks e7.5 1 STRING, e9.5 1 STRING, and e9.5 3 GENIE3, we did not

observe any enrichment for fetal placental cells, possibly because not all genes in the networks are

annotated in the 1st trimester dataset (Vento-Tormo et al., 2018) used when calculating cell

enrichments in PlacentaCellEnrich. Therefore, we also used Placenta Ontology (Naismith and

Cox, 2021), which carries out enrichment tests based on different datasets than those used in

PlacentaCellEnrich. With e7.5 1 STRING, in agreement with previous analyses on e7.5-specific

genes or genes in e7.5 2 GENIE3 network, we observed annotations related to EVT cells being

enriched, such as “EVT > side population” (log2(fold) = 1.99 and false discovery rate (FDR) =

0.027), and “EVT > CT” (log2(fold) = 1.96, FDR = 0.028) (Supplementary Table S8). With

e9.5 1 STRING, the term “EGFR+ VCT > ITGA2+ TB niche” was enriched (log2(fold) = 1.89,

FDR = 0.023), meaning there are a significant number of genes in this network that were

upregulated in EGFR+ VCT compared to the ITGA2+ proliferative TB niche in 1st trimester

placenta. Similarly, with e9.5 3 GENIE3, we found the term “EGFR+ VCT > HLA-G+ EVCT”

enriched (log2(fold) = 1.5, FDR = 0.043), which means there is a significant number of genes in

this network that were upregulated in EGFR+ VCT compared to HGL-A+ proximal column
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extravillous cytotrophoblast in 1st trimester placenta. In the other networks, Placental Ontology

enrichment results generally agreed with PlacentaCellEnrich (Supplementary Table S8).

Together, the PlacentaCellEnrich and Placenta Ontology analyses provide evidence that network

analysis can be used to identify genes more likely associated with specific placental cell types.

In summary, we have demonstrated that the identification of timepoint-specific gene groups

and densely connected network modules can be used to infer the cellular composition of bulk

RNA-seq samples. We used independent human datasets from different sources to annotate the

cell types in each timepoint’s samples. As a result, from the bulk RNA-seq data we were able to

observe that at e7.5 and e8.5, there was a high proportion of different TB populations, whereas at

e9.5, the placental tissues consisted of multiple cell types such as TB, endothelial and fibroblast

cells.

2.3.4 Gene knockdown provides further evidence for a role of network genes in the

placenta

As described in Section 2, we identified hub nodes, and as a result also obtained genes directly

connected to the hub nodes (Supplementary Table S6). Many of the genes (23 genes at e7.5, 208

genes at e9.5) had drastic expression changes over time (having at least one transcript with fold

change ≥ 5 between e7.5 and e9.5) (Supplementary Table S9), which may be more likely to have

regulatory roles specific to processes or cell types associated to each timepoint. However, there

were several hub genes and genes directly connected to the hub nodes that were differentially

expressed but had lower fold changes and showed high expression across all timepoints. We

predict these highly expressed genes to be generally important for TB function and processes such

as cell migration, a term that was associated with multiple timepoint specific networks (Fig 2.2A).

To investigate this further, we performed gene knockdown and migration assays for four

candidate genes from four different networks in the HTR-8/SVneo cell line, an established model

for studying TB migration (Graham et al., 1993; Hirschberg et al., 2021; Wang et al., 2021). From

the lists of hub genes and their directly connected nodes (Supplementary Table S6), we obtained
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genes that met the following criteria: having expression levels > 5 TPM in the mouse placenta

transcriptome data we generated, having expression levels > 5 FPKM (fragments per kilobase of

transcript per million of mapped reads) in human TB cell lines (Okae et al., 2018) and having

expression levels > 20 TPM in HTR-8/SVneo cell line (Starks et al., 2020) (Supplementary Table

S6). From this list, we selected four genes: Mtdh and Siah2 (from the e7.5 1 STRING and

e7.5 2 GENIE3 network, respectively), Hnrnpk (from the e8.5 2 GENIE3), and Ncor2 (from the

e9.5 3 GENIE3), all of which were nodes in networks annotated as TB subtypes (see Section 3).

For each of the four genes we transfected two different siRNAs, and all eight siRNAs resulted

in high knockdown efficiencies (74 – 93%, Fig 2.4A). Each pair of siRNAs similarly reduced target

protein levels (Fig S7). Next, we performed cell migration assays and visually observed a

reduction in cell migration capacity for all four genes (Fig 2.4B, Fig S7). To determine if the

observed reduction in cell migration was statistically significant, we further quantified the

integrated cell densities (Fig 2.4C, Supplementary Table S10). For Siah2 and Hnrnpk, integrated

densities of cells were significantly decreased upon knockdown with both siRNAs using a p-value

≤ 0.05. Specifically, for Siah2, the densities reduced by 98.57% ± 0.42% (mean ± standard error)

and 83.87% ± 12.1% with siRNA #1 and siRNA #2, respectively. For Hnrnpk, the densities

reduced by 99.55% ± 0.09% with siRNA #1 and 98.68% ± 0.2% for siRNA #2. For Mtdh and

Ncor2, the reductions were significant for one siRNA (Mtdh, siRNA #2, 98.55% ± 0.86%; Ncor2,

siRNA #1, 98.11% ± 0.09%), and were fair for the other siRNA, possibly due to the variable

results between biological replicates (Mtdh, siRNA #1, 55.28% ± 17.22%; Ncor2, siRNA #2,

81.27% ± 14.04%). When comparing the number of cells 48 hours post-transfection for cells

treated with target gene siRNA to cells treated with negative control siRNA, we determined that

none of the target gene siRNA treatments resulted in significant changes in cell counts. We do

note that Siah2 siRNA #1 has some decrease in cell counts (p-value = 0.081), and Ncor2 siRNA

#1 and Ncor2 siRNA #2 have some increase in cell counts (p-value = 0.081 and p-value = 0.077)

compared to negative control treated samples (Fig S7). This provides evidence that, in general,

the reduction in cell migration capacity was likely not due to the target gene impacting the rate
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of cell death. Overall, these results confirm that network analysis and gene filtering based on

defined criteria can identify genes important for TB function.

2.4 Discussion

Placental development involves multiple processes that are active during different stages of

gestation. Using transcriptomic data generated from mouse placenta at e7.5, e8.5 and e9.5, we

identified timepoint-specific gene groups that can be used for gene network inferences and

analyses, as well as cell population annotations. Importantly, we were able to infer cell

populations at different timepoints without known marker genes or reference dataset from the

same species. The cell proportion inferences were necessary to bypass the confounding factors

from cell heterogeneity, and thus predict more accurate novel regulators of cell-specific processes

such as TB cell migration. This computational pipeline could be used to infer and analyze gene

networks governing the development of placenta at other timepoints or to study developmental

processes in other tissues.

Combining hierarchical clustering with differential expression analysis, we were able to

identify gene groups using an unsupervised approach. It has also been shown that for times-series

analyses with fewer than eight timepoints, pairwise differential expression analysis combined with

additional methods identifies a more robust set of genes (Spies et al., 2019). Alternatively,

model-based clustering using RNA-seq profiles (Si et al., 2014) could also be useful for gene group

identification. However, it is still important to evaluate the robustness and functional relevance of

the fitted models by carrying out additional downstream analyses.

We carried out DEA across the three timepoints on both the transcript and the gene level.

These analyses revealed that a gene may have transcripts that are differentially expressed at

different timepoints. For example, Igf2, a placental nutrient transport marker (Constância et al.,

2002), has different transcripts grouped to e8.5 and e9.5 (Supplementary Table S1). This

observation also aligned with a recent study which showed in 6–10 weeks’ and 11–23 weeks’

human placenta, differentially expressed genes, transcripts or differential transcript usage could
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all assist in the understanding of placental development (Alfaidy et al., 2022). Therefore, in

future studies, investigating roles of both genes and their transcripts could give a more complete

functional profile at each timepoint. Moreover, our results, together with previous studies in

human placenta (Alfaidy et al., 2022; Morey et al., 2021; Prater et al., 2021), suggest that time

series transcriptomic analyses could be a useful approach to identify genes governing the

development of the placenta. It will be beneficial to integrate these time series datasets to

determine species-specific biomarkers of placental development.

We identified hub genes and their immediate neighboring genes which could regulate placental

development and confirmed the roles of four novel genes (Mtdh, Siah2, Hnrnpk and Ncor2 ) in

regulating cell migration in the HTR-8/SVneo cell line. These genes were selected primarily based

on the network analyses, but also based on expression data from human cells to account for

possible differences between mouse and human placental gene expression. Previous studies

suggested these four candidates are functionally important in mouse. Mtdh has been suggested to

regulate cell proliferation in mouse fetal development (Jeon et al., 2010). The Siah gene family is

important for several functions (Qi et al., 2013). Of relevance to the placenta, Siah2 is an

important regulator of HIF1α during hypoxia both in vitro and in vivo (Qi et al., 2008).

Moreover, while Siah2 null mice exhibited normal phenotypes, combined knockouts of Siah2 and

Siah1a showed enhanced lethality rates, suggesting the two genes have overlapping modulating

roles (Frew et al., 2003). Hnrnpk−/− mice were embryonic lethal, and Hnrnpk+/− mice had

dysfunctions in neonatal survival and development (Gallardo et al., 2015) . Ncor2−/− mice were

embryonic lethal before e16.5 due to heart defects (Jepsen et al., 2007). According to the

International Mouse Phenotyping Consortium database (Dickinson et al., 2016), Ncor2 null mice

also showed abnormal placental morphology at e15.5. However, none of these genes have been

studied in the context of TB migration. We observed that while all siRNAs were able to decrease

cell migration capacity, there was variability in the amount of decrease, even when comparing two

siRNAs targeting the same gene. This observation did not seem to be associated with differences

in transcript or protein knockdown levels and could be due to different off-target effects for
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different siRNAs. Moreover, we observed that cell counts generally were not decreased upon

target gene knockdown compared to negative control knockdown. However, more detailed

analysis and process specific assays are needed. For example, future studies assessing each gene’s

role in cell adhesion, cell-cell fusion, cell proliferation and cell apoptosis can be done to better

understand their roles in placental development. We also acknowledge the HTR-8/SVneo cell line

bears certain differences to TB cells such as in their miRNA expression profiles (Donker et al.,

2012). Therefore, in order to determine the exact roles of these genes in the placenta, future

experiments in human TB stem cells derived with the Okae protocol (Okae et al., 2018) or gene

knockout experiments in vivo are necessary.

Interestingly, all four genes have been shown to have roles in cancer cells: Siah2 was shown to

promote cell invasiveness in human gastric cancer cells by interacting with ETS2 and TWIST1

(Das et al., 2016); Mtdh regulates proliferation and migration of esophageal squamous cell

carcinoma cells (Yang et al., 2017); absence of Hnrnpk reduces cell proliferation, migration and

invasion ability in human gastric cancer cells (Zhao Peng et al., 2019); and repression of NCOR2

and ZBTB7A increased cell migration in lung adenocarcinoma cells (Alam et al., 2018). This

result further supports previous studies that show the comparability between placental cell

migration and invasion, and tumor cell migration and invasion (Costanzo et al., 2018; Naismith

and Cox, 2021), although specific genes may have different impacts on migration/invasion

capacity such as with the Ncor2 gene.

In our analyses, we observed that timepoint-specific genes and their networks represented

expression profiles for specific placental cell populations at the three timepoints. In particular,

analysis of e7.5-specific and e8.5-specific genes and networks showed that placental tissues at e7.5

and e8.5 contain different populations of TB cells, while e9.5-specific genes and networks showed

multiple cell types including TB, endothelial and fibroblast cells. The significant overlap between

e7.5-specific genes and genes of EVT cells yielded an interesting suggestion that the TB cell

populations in e7.5 mouse placenta may share similarity in gene profiles to human EVT, although

mouse TB and human EVT have certain differences such as their invasiveness levels (Soncin
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et al., 2015) and levels of polyploidy and copy number variation (Morey et al., 2021). Examples of

EVT genes present in e7.5-specific gene group include FSTL3 (downregulation decreased TB

migration and invasion in JAR cell line (Xie et al., 2018)), ADM (increased TB migration and

invasion in JAR and HTR-8/SVneo cell line (Zhang et al., 2005)), and ASCL2 (regulates TB

differentiation (Guillemot et al., 1994)). Moreover, hub genes could be used to identify potential

novel markers for the cell types corresponding to their subnetworks. For example, hub genes of

subnetworks enriched for SCT-specific genes such as Dvl3 (e8.5 2 GENIE3) and Olr1

(e9.5 3 STRING) are not established SCT marker genes, but are in fact differentially expressed in

SCT compared to human trophoblast stem cells, EVT (Sheridan et al., 2021) or endovascular TB

(Gormley et al., 2021). In general, combining network analysis with existing gene expression data

from single cell or pure cell populations will allow identification of novel cell-specific marker genes

to help future studies focused on different TB populations.

While it is true that data at single-cell (sc) resolution is necessary to gain more insight into

cell populations in heterogeneous tissues, these results showed strong evidence that bulk RNA-seq

data could be used to infer the cell type composition. In addition, scRNA-seq assays could be

noisier than bulk RNA-seq due to various technical aspects such as the amount of starting

materials, cell size, cell cycle, and batch effects (Chen et al., 2019; Wang et al., 2018), which are

difficult to correct (Andrews and Hemberg, 2018). Therefore, bulk RNA-seq, ideally in

conjunction with scRNA-seq, is beneficial for the study of biological processes that involve

multiple cell types. Nevertheless, we acknowledge that our deconvolution analysis and cell type

annotations were limited due to the absence of matching scRNA-seq data, data from pure cell

populations, or extensive cell marker lists. As these types of information become more available,

deconvolution analysis can be used to identify species-specific cell types or correcting for

confounding effects prior to DEA (Sutton et al., 2022).

In our network analysis, we observed that the GO term “inflammatory response” was enriched

in e7.5 1 STRING (q-value = 1.52E-23), e7.5 2 GENIE3 (q-value = 0.00012) and e9.5 2 STRING

(q-value = 4.17E-10) (Supplementary Table S5). The inflammatory process could be happening
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in the placenta during e7.5 to e9.5 when TB cells actively invade the decidua (Woods et al., 2018)

and create a pro-inflammatory environment (Mor et al., 2011). Another possibility is

contamination from decidual cells, which could be detected when combining bulk and scRNA-seq

(Suryawanshi et al., 2022). This further demonstrates the benefits of bulk and scRNA-seq data

integration.

Upon conclusion of this study, we have shown that in the mouse placenta at e7.5, e8.5 and

e9.5, genes with timepoint-specific expression patterns can be associated with distinct processes

and cell types. The genes identified by timepoint-specific gene-network analysis could be

interesting candidates for future studies focused on the understanding of placental development

and placenta associated pregnancy disorders.

2.5 Materials and methods

2.5.1 RNA-seq library preparation and sequencing

Placenta tissue was collected from timed-pregnant CD-1 mice (Charles Rivers Labs) following

the guidelines and protocol approved by Iowa State University Institutional Animal Care and Use

Committee (IACUC), protocol number 18–350. Placenta samples were collected as previously

described (Starks et al., 2021; Tuteja et al., 2016) at e7.5, e8.5, and e9.5 and the age of the

embryo was determined by following the embryonic development guidelines (Theiler, 1989).

Briefly, tissues from the ectoplacental cone (EPC) and chorion were separated from the decidua,

yolk sac, umbilical cord, and embryo, and then collected. For e7.5, 12 EPCs were collected and

pooled into one replicate, as described in (Starks et al., 2019). For e8.5, five placentas were

collected per replicate, and for e9.5, one placenta was collected per replicate. Each timepoint had

a total of 6 biological replicates.

Tissues were processed for RNA isolation immediately after collection using the Purelink RNA

micro scale kit (Thermofisher, 12183016). RNA concentration and RIN values were measured

using the RNA 6000 Nano assay kit on the Agilent 2100 Bioanalyzer (GTF facility, ISU), and all

samples had a RIN score ≥ 7.7 (Supplementary Table S11). Further processing of the samples,
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library preparation and sequencing was performed by the DNA facility at Iowa State University.

Libraries were sequenced using the Illumina HiSeq 3000 with single-end 50 base pair reads. The

pooled library sample was run over two sequencing lanes (technical replicates for each sample).

2.5.2 RNA-seq data processing

The quality and adapter content were assessed using FastQC (version 0.11.7) (Andrews,

2010). Low quality reads and adapters were trimmed with Trimmomatic (version 0.39) (Bolger

et al., 2014).

Technical replicates were then merged, and the reads were pseudo-aligned and quantified (in

TPM) using Kallisto (version 0.43.1; l = 200, s = 30; b = 100) (Bray et al., 2016). Transcript

sequences on autosomal and sex chromosomes of the mouse genome (GRCm38.p6) from Ensembl

release 98 (Cunningham et al., 2019) were used to build the Kallisto index.

For further quality control, we carried out hierarchical clustering and principal component

analysis (PCA) of samples. First, from the transcripts with raw counts ≥ 20 in ≥ 6 samples, we

obtained the top 50% most variable transcripts, then centered and scaled their expression. Next,

we implemented hierarchical clustering with the hclust() function in R (package stats (R Core

Development Team, 2013), version 3.6.3), using the agglomerative approach with Euclidean

distance and complete linkage. To implement PCA, we used the prcomp() function in R (package

stats, version 3.6.3). We observed samples of each timepoint cluster close to each other and away

from other timepoints. Outlier samples, which did not cluster with their respective timepoint

groups, were removed prior to carrying out downstream analyses (Fig S8).

2.5.3 Cluster analysis

Before performing all clustering procedures, transcripts with low raw counts (mean raw counts

< 20 in all timepoints) were filtered out, and expression data (in TPM) was scaled and

re-centered. Hierarchical clustering, k-means clustering, self-organizing map and spectral

clustering were performed on the top 75
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We implemented hierarchical clustering with the hclust() function in R (package stats (R Core

Development Team, 2013), version 3.6.3), using the agglomerative approach with Euclidean

distance and complete linkage. The resulting dendrogram was cut at the second highest level to

obtain three clusters. To test the robustness of the clustering assignments, we also carried out

clustering with the number of clusters as four and five. K-means clustering was carried out using

the R function kmeans() (centers = 3, 4 and 5, other parameters: default; package stats, version

3.6.3).

Self-organizing map clustering was performed with the R function som() with rectangular 3 ×

1, 4 × 1 and 5 × 1 grid (other parameters: default; package kohonen (Wehrens and Kruisselbrink,

2018), version 3.0.10).

To implement spectral clustering, we utilized the following functions in R:

computeGaussianSimilarity() (sigma = 1) to compute similarity matrix, and spectralClustering()

(K = 3, 4 and 5, other parameters: default; package RclusTool (Wacquet et al., 2013), version

0.91.3) to cluster.

The percent agreement between cluster assignments of different methods was quantified as

(number of transcripts in common between two clusters)/

(total number of transcripts in two clusters) × 100.

To determine how the genes in each cluster relate to specific processes of placental

development, we obtained gene lists from previously published review articles (Cross, 2005;

Hemberger and Cross, 2001; Hu and Cross, 2010; Rossant, 2001; Watson and Cross, 2005), then

calculated the percentage of markers in hierarchical clusters as (number of markers in a cluster)/

(total number of markers of the process) × 100.

2.5.4 Differential expression analysis (DEA)

DEA at transcript and gene levels were carried out with Sleuth (version 0.30.0) (Pimentel

et al., 2017) using the likelihood ratio test (default basic filtering) and the p-value aggregation

process (Yi et al., 2018). Fold change of a transcript was calculated using its average raw TPM
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across all samples. A transcript was considered differentially expressed (DE) if it had a fold

change ≥ 1.5 and a q-value ≤ 0.05. A gene was considered DE if its q-value was ≤ 0.05 and had

at least one protein-coding DE transcript. For lists of DE protein-coding transcripts that had at

least one DE gene, and lists of DE genes with at least one DE protein-coding transcripts, see

Supplementary Table S2.

2.5.5 Definition of timepoint-specific genes

Timepoint-specific gene groups are defined as the following:

• e8.5-specific transcripts: transcripts in e8.5 hierarchical cluster, are up-regulated at e8.5

(compared to e7.5) or are up-regulated at e8.5 (compared to e9.5). E8.5-specific genes are

ones associated with e8.5-specific transcripts.

• e7.5-specific transcripts: transcripts in e7.5 hierarchical cluster, are up-regulated at e7.5

(compared to e9.5), and are not in e8.5-specific group. E7.5-specific genes are ones

associated with e7.5-specific transcripts.

• e9.5-specific transcripts: transcripts in e9.5 hierarchical cluster, are up-regulated at e9.5

(compared to e7.5), and are not in e8.5-specific group. E9.5-specific genes are ones

associated with e9.5-specific transcripts.

2.5.6 Network construction and analysis

The STRING database (version 11.0b) (Szklarczyk et al., 2019) was used to build protein –

protein interaction networks at each timepoint. Edges from evidence channels: experiments,

databases, text-mining and co-expression with confidence score ≥ 0.55 were chosen for further

analyses.

Gene regulatory networks at each timepoint were constructed with GENIE3 (version 1.16.0)

(Huynh-Thu et al., 2010). At each timepoint, as inputs for GENIE3, timepoint-specific

transcripts with average TPM at the timepoint ≥ 5 were aggregated to obtain gene counts with
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the R package tximport (version 1.14.2; countsFromAbundance = lengthScaledTPM) (Soneson

et al., 2016). Genes that encode transcription factors (TFs) and co-TFs, downloaded from

AnimalTFDB (version 3.0) (Hu et al., 2019), were treated as candidate regulators. Then, edges

with weight < the 90th percentile were filtered out.

Largest connected components of the networks were analyzed using Cytoscape (version 3.7.2)

(Shannon et al., 2003). All networks were treated as undirected, and network sub-clustering was

performed using the GLay plug-in (default parameters) (Su et al., 2010). Networks with ≥ 100

nodes were used for further analyses. Hub genes were defined as nodes that have degree,

betweenness and closeness centralities in the 10th percentile of their networks. A gene was

determined to have an annotated role in placental development if it was annotated under all GO

and MGI Phenotype terms related to placenta, TB cells, TE and chorion layer. A gene was

categorized as having possible roles in placental development if it was annotated under all GO

and MGI Phenotype terms related to embryo. GO terms, MGI Phenotype terms and gene

annotations were downloaded from MGI (http://www.informatics.jax.org/) (version 6.19) (Smith

and Eppig, 2009). For lists of terms used, see Supplementary Table S6.

Randomization tests were carried out to determine if the number of known/possible hub genes

at a timepoint is significant. For each timepoint, from the respective timepoint-specific groups,

10,000 gene sets of the same number as the hub gene numbers were sampled. Then the number of

known/possible genes in each set were counted. A p-value was calculated as the number of times

a random gene set has ≥ known/possible genes than the observed number, divided by 10,000.

2.5.7 Gene ontology (GO) analyses

To determine the relevant functions of the gene lists, we used gene ontology (GO) analysis.

ClusterProfiler (version 4.0.5) (Yu et al., 2012) was used, with the mouse annotation from the

org.Mm.eg.db R package (version 3.13.0) (Carlson, 2019), the maximum size of genes = 1000, and

a q-value cut-off = 0.05. Next, a fold change for each term was calculated as GeneRatio/BgRatio.

A GO term was considered enriched when its q-value ≤ 0.05, fold change ≥ 2, and the number of
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observed genes ≥ 5. Hypergeometric test was used for enrichment following the suggestions in

Rivals et al., 2007 (Rivals et al., 2007).

Randomization analysis was carried out to determine if a GO term is statistically significant

for a subnetwork’s genes. For each subnetwork, from the respective timepoint-hierarchical groups,

10,000 gene sets with the same size as the subnetwork were sampled. For each of the random sets,

the q-value of a specific term with ClusterProfiler (same settings as above) was obtained. Then,

the p-value of the randomization test was calculated as the number of random gene sets with

q-values lower than the q-value of that term in the original subnetwork, divided by 10,000.

2.5.8 Deconvolution analysis

To infer the proportion of cell types across timepoints, we carried out deconvolution analysis

using the R package LinSeed (version 0.99.2) (Zaitsev et al., 2019). Gene abundances (in TPM)

used as inputs for the analysis were obtained using tximport (version 1.14.2;

countsFromAbundance = lengthScaledTPM) (Soneson et al., 2016). Then, we used the top 5000

most expressed genes across timepoints, and sampled 100,000 times to test for the significance of

the genes to be used for deconvolution analysis. A significant gene was one with p-value ≤ 0.05.

The number of cell groups was determined after examining the singular value decomposition

(SVD) plot, generated with the svdPlot() function in LinSeed. Cell markers were defined as the

top 100 genes closest to the cell group’s corner, and closer to the corner than any other corners.

2.5.9 Placenta Cell Enrichment and Placenta Ontology analysis

The PlacentaCellEnrich webtool (Jain and Tuteja, 2021) and Placenta Ontology (Naismith

and Cox, 2021) were used to infer the relevant cell types using gene lists. For PlacentaCellEnrich,

cell-type specific groups were based on single-cell transcriptome data of the first trimester human

maternal-fetal interface from Vento-Tormo et al. (Vento-Tormo et al., 2018). A enrichment was

considered significant if its adj. p-value is ≤ 0.05, fold change ≥ 2, and the number of associated

genes found is ≥ 5. For Placenta Ontology, we obtained placenta ontology GMT file from
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Naismith et al. and uploaded the file to the WEB-based GEne SeT AnaLysis Toolkit

(www.webgestalt.org) (Liao et al., 2019) as a functional database. An ontology with FDR ≤ 0.05,

fold change ≥ 2 and the number of observed genes ≥ 5 was considered enriched. To avoid

duplication while sampling, only genes with one-to-one pairwise orthology were considered for the

enrichment tests.

Randomization analysis was carried out to determine if the enrichment of human first

trimester placenta cell type-specific genes is statistically significant for a subnetwork’s genes. For

each subnetwork, from the respective timepoint-hierarchical groups, 10,000 gene sets with the

same size as the subnetwork were sampled. For each of the random sets, the adjusted p-value of a

specific cell type enrichment with PlacentaCellEnrich (same settings as above) was obtained.

Then, the p-value of the randomization test was calculated as the number of random gene sets

with adjusted p-values lower than the adjusted p-value of that cell type in the original

subnetwork, divided by 10,000.

2.5.10 In vitro validation experiments

Cell culture – HTR-8/SVneo (ATCC CRL3271) were cultured as recommended by ATCC

and as done by others (Canfield et al., 2019). Briefly, cells were grown in RPMI-1640 media

(ATCC 302001) supplemented with 5% FBS (VWR, 97068-085) without antibiotics. Cells were

split every 3 to 4 days, at 80-90% confluency.

siRNA knockdown – HTR-8/SVneo cells were transfected with two different siRNAs for

each target gene knockdown (KD). Cells were split at 80% confluency, and siRNA transfection

was performed in 6-well plates; 150,000 cells/well were seeded (Starks et al., 2020). After 24

hours, cells were transfected with 30nM siRNA using RNAiMax 3000 (Thermofisher, 13778150).

Media was replaced after 24 hours of transfection, then cells were collected after 48 hours of

transfection, counted using the TC20 Automated Cell Counter (Bio-rad), and seeded for

migration assays. The remaining cells were pelleted to isolate RNA using the Invitrogen RNA

mini kit (Fisher Scientific, 12183018A). The RNA concentration was determined using a
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Nanodrop, and 200ng of the RNA was converted to cDNA (Thermofisher, 4368814). KD

efficiencies were checked by qPCR using primers listed in Supplementary Table S11. GAPDH was

used for normalization of all four genes’ expression (∆CT). Percent KD were calculated with the

∆∆CT method. SiRNA and primer information can be found in Supplementary Table S11.

Migration assays – Migration assays were performed using Costar inserts (Corning, 3464).

The inserts were placed in a 24 well plate and 75,000 cells in serum-free RPMI media (ATCC,

30-2001) were directly seeded in the top chamber of the insert. The bottom chamber was filled

with 600 µL of RPMI media supplemented with 10% FBS as a chemoattractant. The cells were

allowed to migrate for 24 hours at 37◦C. The cells on the bottom of the inserts were fixed in 4%

PFA (Fisher Scientific, AAJ61899AK) for 5 min and then washed for 1 min with PBS twice. The

cells in the top chamber were scraped off using a wet q-tip (Fisher Scientific, 22029488) and the

cells on the bottom of the inserts were stained with Hematoxylin (Fisher Scientific, 23245677) for

24 hours. The inserts were washed twice in distilled water. The membrane was cut using a scalpel

(Fisher Scientific, 1484002) and mounted on a clean glass slide in Vectamount mounting medium

(Fisher Scientific, NC9354983). The cells were observed under a dissection microscope and

imaged at 12.5X magnification. The images were analyzed using the ImageJ tool, and the

integrated density was obtained for each image.

Western blot - Following siRNA KD, whole cell lysate (4x Laemmli protein sample buffer,

BioRad, 1610747) or cytoplasmic extract (NE-PER extraction kit, Thermofisher, 78833) were

resolved using Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gel and

transferred to the nitrocellulose membrane (BioRad, 1620113) using Trans-Blot Turbo transfer

system (BioRad, 1704150). After protein transfer, membranes were blocked and probed with

antibodies as listed in Supplementary Table S11.

Statistical analysis – Experiments were performed with three replicates per condition

(negative control or knockdown) per gene. P-values were calculated with the one-sided Wilcoxon

rank sum test to test for a significant decrease in cell migration, and the two-sided Wilcoxon rank

sum test for cell count comparisons.
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2.6 Main figures and table
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Figure 2.1: Gene associated with distinct placental processes show timepoint-specific expression.

(A) Boxplots of scaled mean expression (in transcripts per million, TPM) of marker genes showing

timepoint-specific patterns. Ascl2 and Gjb5, expected to peak at e7.5, markers of trophoblast

proliferation and differentiation (Guillemot et al., 1994; Kibschull et al., 2014); Ccnf and Itga4,

expected to peak at e8.5, markers of chorioallantoic attachment (Tetzlaff et al., 2004; Yang et al.,

1995); Gjb2 and Igf2, expected to peak at e9.5, markers of nutrient transport (Gabriel et al., 1998;

Sferruzzi-Perri et al., 2011). (B) Line charts of scaled mean raw counts of transcripts in hierarchical

clusters showing group median expression levels peak at each timepoint.
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Figure 2.1: (Continued)

(C) Bar plots showing that timepoint-associated hierarchical clusters captured most genes

underlying distinct placental processes. Markers of timepoint-associated placental processes were

obtained from previously published review articles (Cross, 2005; Hemberger and Cross, 2001; Hu

and Cross, 2010; Rossant, 2001; Watson and Cross, 2005). Green, markers in hierarchical cluster

with median expression level highest at e7.5; blue, markers in hierarchical cluster with median

expression level highest at e8.5; dark red, markers in hierarchical cluster with median expression

level highest at e9.5; grey, markers in no hierarchical clusters.
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Figure 2.2: Network analysis identifies gene modules with relevant functions and reveals potential

regulators of placental development.
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Figure 2.2: (Continued)

(A) Gene ontology (GO) analysis of networks demonstrates the association of gene sets with

placental development processes. Only selected terms are shown. Dot colors correspond to ranks

of the terms in each analysis; dot sizes correspond to − log10(q-value). A GO term is considered

enriched if its q-value ≤ 0.05, fold change ≥ 2, and the number of observed genes ≥ 5. For full

GO enrichment analysis, see Supplementary Table S5. (B) Network analysis highlights potential

regulators of placental development. Only a subset of networks with enriched terms from (A) are

shown. Diamond shape – hub genes with known roles in placenta; hexagon – hub genes with

possible roles in placenta; rounded square – hubs without related annotation. Color: the darker

the color is, the higher the node’s degree centrality is. For visualization of all other subnetworks,

see Fig S3.



59

BA

e7.5
−specific

e8.5
−specific

e9.5
−specific

0 0 .5 1 1 .5 2

EVT

HB

SCT

VCT

fFB2

EVT

SCT

fFB1

VCT

EndoF

log2(fold change)

Sample

C0
0.25

0.5
0.75

0
0.25

0.5
0.75

C
el

l 1
C

el
l 2

C
el

l 3
C

el
l 4

e7
.5

_2

e7
.5

_3

e7
.5

_4

e7
.5

_5

e7
.5

_6

e8
.5

_1

e8
.5

_2

e8
.5

_3

e8
.5

_4

e8
.5

_5

e8
.5

_6

e9
.5

_1

e9
.5

_2

e9
.5

_3

e9
.5

_4

e9
.5

_5

C
el

l 5

0
0.25

0.5
0.75

0
0.25

0.5
0.75

0
0.25

0.5
0.75

Cell Proportion in Samples

Marker count

0 25 50 75

Markers in
Timepoint-specific Groups

Figure 2.3: Timepoint-specific gene groups can be associated with human placenta cell-specific

expression profiles.

(A) Deconvolution analysis using LinSeed showed five cell groups, three of which had highest

proportions in e7.5 samples (group 3), e8.5 samples (group 2) and e9.5 samples (group 5). Also

using LinSeed, we identified markers of each cell group and observed a high number of genes in

common with timepoint-specific genes (cell group 3 with e7.5-specific genes, cell group 2 with e8.5-

specific genes, cell group 5 with e9.5-specific genes). Left panel: line charts showing cell proportions

in each sample; right panel: bar plots showing the number of cell markers in each timepoint-specific

gene group. (B) Bar plots showing that timepoint-specific genes share similar profiles to these of

human placental cell populations. Enrichment analysis was carried out with PlacentaCellEnrich

using 1st trimester human placenta single-cell RNA-seq data to determine gene groups with cell-

type specific expression. A significant enrichment has adj. p-value ≤ 0.05, fold change ≥ 2, and

number of observed genes ≥ 5. The lightness of the colors corresponds to adj. p-value; the lighter

colors, 0.005 < adj. p-value ≤ 0.05; the darker colors, adj. p-value ≤ 0.005. Only enrichments for

cells of fetal origin are shown. Full enrichment results (including both maternal and fetal cells) are

shown in Fig S5.
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Figure 2.3: (Continued)

(C) Bar plots showing that network genes share similar profiles of specific human placental cell

populations. Enrichment analysis was carried out with PlacentaCellEnrich as in (B) and

Placental Ontology. Grey, adj. p-value > 0.05; the lighter colors, 0.005 < adj. p-value ≤ 0.05; the

darker colors: adj. p-value ≤ 0.005. For PlacentaCellEnrich, three fetal cell types with the lowest

adj. p-values are shown. For Placenta Ontology, selected enrichments are shown. Full enrichment

results (including both maternal and fetal cells and for every network) of PlacentaCellEnrich are

shown in Fig S5. Full enrichment results (for every network) of Placenta Ontology are in

Supplementary Table S8. Abbreviations: SCT, syncytiotrophoblast, HB, Hofbauer cells, EVT,

extravillous trophoblast, VCT, villous cytotrophoblast, EndoF, fetal endothelium, fFB1, fetal

fibroblast cluster 1, fFB2, fetal fibroblast cluster 2, EVT > side population,

GSE57834 extravillous trophoblast UP side population (genes upregulated in EVT compared to

side population – original data from GSE57834),
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Figure 2.3: (Continued)

EVT > CT, GSE57834 extravillous trophoblast UP cytotrophoblast (genes upregulated in EVT

compared to cytotrophoblast – original data from GSE57834), EGFR+ VCT > ITGA2+ TB

niche, GSE106852 EGFR+ UP ITGA2+ (genes upregulated in EGFR+ villous cytotrophoblast

compared to ITGA2+ proliferative trophoblast niche, original data from GSE106852), EGFR+

VCT > HLA-G+ EVCT,

GSE80996 EGFR+ villous cytotrophoblast UP HLA G+ proximal column extravillous cytotrophoblast

(genes upregulated in EGFR+ villous cytotrophoblast compared to HLA-G+ proximal column

extravillous cytotrophoblast, original data from GSE80996).
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Figure 2.4: Gene knockdown of selected network genes showing reduction in cell migration capacity.

Panels correspond to four genes, Siah2, Mtdh, Hnrnpk and Ncor2. Each condition, negative con-

trol (NC), siRNA #1 and siRNA #2, had three biological replicates. Error bars show standard

deviation.
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Figure 2.4: (Continued)

(A) Bar plots showing that gene expression was significantly reduced after knockdown (KD)

compared to NC. GAPDH was used for normalization of all four genes’ expression (∆CT).

Percent KD were calculated with the ∆∆CT method. Values shown were normalized to the NC

siRNAs. Y-axis shows ∆∆CT value. Details of KD efficiencies, siRNAs, and primer sequences

can be found in Supplementary Table S10 and Supplementary Table S11. (*) indicates p-value <

0.05 (one-sided Wilcoxon rank sum test, n = 3). (B) Representative images of migration assays.

Left, NC samples; middle, siRNA #1 samples; right, siRNA #2 samples. Scale bar: 500 µm. (C)

Bar plots showing significant reduction in the integrated density of cells after knockdown (KD)

compared to NC samples. Y-axis shows integrated densities of cells in NC samples, samples KD

with siRNA #1 of each gene, and samples KD with siRNA #2 of each gene. Details of integrated

densities can be found in Supplementary Table S10. (*) indicates p-value < 0.05 (one-sided

Wilcoxon rank sum test, n = 3).
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Table 2.1: Hub genes associated with each network.

Timepoint Network Number of hub genes Hub genes

e7.5
e7.5 1 STRING 7

Mmp9 , Ptprc, Tlr2, Cd68, Ctss, Cybb, Itgb2

e7.5 2 GENIE3 10

Nr2f2 (Hubert et al., 2010), Hmox1 (Zenclussen et al., 2014),

Prdm1 (Mould et al., 2012), Ctbp2 (Hildebrand and Soriano, 2002),

Irx1 , Frk , Siah2, Satb1, Trim8, Irf9

e8.5
e8.5 1 STRING 11

Akt1 (Yang et al., 2003), Mapk14 (Adams et al., 2000),

Mapk1 (Hatano et al., 2003), Adam10 , Creb1 , Apob, Cdh2 , Cttn,

Hsp90aa1, Apoe, Casp3

e8.5 2 GENIE3 17

Erf (Papadaki et al., 2007), Setd2 (Hu et al., 2010), Msx2 , Dvl3 ,

Dnmt1 , Dnmt3b, Lin28a, Chek1 , Dnajc2 , Vgll1, Gpbp1l1, Jade1,

Myef2, Nfxl1, Rbmx, Rhox4e, Cenpf

e9.5

e9.5 1 STRING 7

Fbxl19 , Smurf1 , Ubc, Wnt5a, Ube2d1 , Mgrn1 , Nedd4

e9.5 1 GENIE3 34

Rb1 (Sun et al., 2006),Yap1 (Meinhardt et al., 2020), Esx1 (Li and

Behringer, 1998), Ncoa3 , Ski , Pitx1 , Zfx , Peg3 , Ash1l , Arid1b,

Arrb1 , Prmt2 , Tulp1 , Vgll4 , Creg1 , Foxo3 , Hif1an , Apbb1,

2700081O15Rik, Ankrd2, Bbx, Bbx, Cdk5, Hdac6, Mllt3, Calcoco1,

Cavin1, Cenpb, Cited4, Dtx1, Fam129b, Hcfc2, Mlxip, Phf8, Tsc22d1

e9.5 2 STRING 15

Cdh1 (Stemmler and Bedzhov, 2010), Fn1 (George et al., 1993),

Igf2 (Fowden, 2003), Tgfb1 (Graham et al., 1993), Vegfa (Fer-

rara et al., 1996), Egfr (Lee and Threadgill, 2009), Col1a1 , Csf1 ,

Timp1 , Igf1 , App, Spp1 , Itpkb, Qsox1 , Gas6

e9.5 2 GENIE3 27

E2f8 (Ouseph et al., 2012), Vegfa (Ferrara et al., 1996),

Tead2 (Sawada et al., 2008), Ets1 , Orc2 , Sox18 , Klf3 , Mrtfb,

Trip6 , Cbx7 , Prnp, Arhgef5 , Pias1 , Pias3 , Rasd1 , Txnip,

Zfp362 , Plagl1, 5730507C01Rik, BC004004, Bhlhe40, Ctdsp1, Grhl1,

Ell2, Phf2, Fam83g, Rhox12
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Table 2.1: (Continued)

Timepoint Network Number of hub genes Hub genes

e9.5

e9.5 3 STRING 5 Gaa , Lpcat1 , Olr1 , Cd59a , Stom

e9.5 3 GENIE3 29

Tead1 (Sawada et al., 2008), Smad4 (Yang et al., 1998),

Smad5 (Yang et al., 1999), Foxf1 (Ren et al., 2014), Cebpb,

Jun , Hes1 , Tead3 , Cbx4 , Cdk2 , Dapk3 , Gata1 , Hsbp1 , Ncor2 ,

Dpf3 , Limd1 , Loxl2 , Pcgf5 , Elmsan1, Hexim1, Lhx2, Sin3b, Mta3,

Jade1, Rbm15b, Rhox4g, Rhox6, Rhox9, Tcf25

e9.5 4 STRING 10

Lpar3 (Ye et al., 2005), Gna12 , Gnas, Acta2 , Gcgr , Pik3r3 ,

Rhoc, Rhog , Rhoj, Adcy4

Hub genes associated with each network. Colored genes are ones that have annotated or possible

roles in placental development (see Materials and methods); green, e7.5-specific genes; blue,

e8.5-specific genes; brown, e9.5-specific genes. Genes in bold are hub genes in one network

inference method and nodes in the other method’s networks.
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3.1 Abstract

The assay for transposase-accessible chromatin with sequencing (ATAC-seq) is a common

assay to identify chromatin accessible regions by using a Tn5 transposase that can access, cut,

and ligate adapters to DNA fragments for subsequent amplification and sequencing. These

sequenced regions are quantified and tested for enrichment in a process referred to as “peak

calling”. Most unsupervised peak calling methods are based on simple statistical models and

suffer from elevated false positive rates. Newly developed supervised deep learning methods can

be successful, but they rely on high quality labeled data for training, which can be difficult to

obtain. Moreover, though biological replicates are recognized to be important, there are no

established approaches for using replicates in the deep learning tools, and the approaches

available for traditional methods either cannot be applied to ATAC-seq, where control samples

may be unavailable, or are post-hoc and do not capitalize on potentially complex, but

reproducible signal in the read enrichment data. Here, we propose a novel peak caller that uses

unsupervised contrastive learning to extract shared signals from multiple replicates. Raw coverage

data are encoded to obtain low-dimensional embeddings and optimized to minimize a contrastive

∗These authors contributed equally to this work.
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loss over biological replicates. These embeddings are passed to another contrastive loss for

learning and predicting peaks and decoded to denoised data under an autoencoder loss. We

compared our Replicative Contrastive Learner (RCL) method with other existing methods on

ATAC-seq data, using annotations from ChromHMM genome and transcription factor ChIP-seq

as noisy truth. RCL consistently achieved the best performance.

3.2 Introduction

The assay for transposase-accessible chromatin with sequencing (ATAC-seq) is widely used

when studying chromatin biology (Grandi et al., 2022). ATAC-seq utilizes a hyperactive mutant

Tn5 transposase to cleave double stranded DNA and to attach adapters for subsequent

sequencing by high throughput technologies (Buenrostro et al., 2015). Since DNA is more easily

cleaved where it is unwound and open, sequenced DNA fragments tend to arise from regions of

open chromatin. A standard analysis for ATAC-seq starts with aligning the sequencing reads to a

reference genome using BWA (Li, 2013), Bowtie2 (Langmead and Salzberg, 2012), or other short

read aligner (Musich et al., 2021). Then peak calling methods will identify the open regions

(peaks) in the genome where aligned reads are enriched. Downstream analyses include motif

detection, differential binding analysis or footprint identification (Buenrostro et al., 2013; Grandi

et al., 2022), all of which require accurate peak calls. Unfortunately, peaks of false enrichment

may be called due to mapping errors or experimental noise (Park, 2009). Such errors can be

reduced by masking repetitive regions and using control samples (Zhang et al., 2008), but input

controls for ATAC-seq are typically not used due to high sequencing costs (Yan et al., 2020).

ATAC-seq peaks are often called with the most popular general-purpose peak caller,

MACS (Zhang et al., 2008), and there is an ATAC-seq-specific method called

HMMRATAC (Tarbell and Liu, 2019). MACS slides a fixed-width window across the genome to

find candidate peaks. The number of reads aligned to the genome in the current window is

modeled as a Poisson random variable, with a dynamic mean to capture local variation in

background coverage rates. MACS calculates the p-value for each candidate peak as the
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probability of obtaining coverage at or above the observed coverage given the current background

rate. HMMRATAC (Tarbell and Liu, 2019) employs a hidden Markov model (HMM) with

four-dimensional emissions of varying fragment sizes, nucleosome-free (NF), one nucleosome (1N),

two nucleosome (2N) and three nucleosome (3N) fragments, from three possible hidden states: a

“center” state (open chromatin), with high emissions in all four dimensions, a nucleosome state,

with low NF fragment emission, and a background state, with low emissions in all dimensions.

Once the HMM has been estimated, the Viterbi algorithm is used to classify every 10 base pair

(bp) window in the genome into one of the three states.

Traditional modeling methods tend to predict many false positive peaks in ChIP-seq

applications (Hocking et al., 2017), and some investigations have shown humans to be superior

“peak callers” (Rye et al., 2011; Hocking et al., 2017). Inspired by such human performance and

recent successes in artificial intelligence, two new peak callers, CNN-Peaks (Oh et al., 2020) and

LanceOtron (Hentges et al., 2021), take a deep learning approach. CNN-Peaks (Oh et al., 2020)

uses supervised convolutional neural networks (CNN) to call ChIP-seq peaks. In addition to the

read count information obtained from BAM files, it uses genome annotation information, such as

protein-coding transcripts, to improve estimation of peak locations. In their CNN architecture,

filters of various sizes are used to extract diverse features and a weighted cross-entropy loss is

adopted to account for the imbalanced labels. LanceOtron (Hentges et al., 2021) is another

supervised CNN based deep learning method that can be used on ATAC-seq, ChIP-seq, and

DNase-seq data. It feeds the output of a logistic regression, fit to 11 enrichment scores predicting

labeled peaks, the output of a CNN, fit to fragment coverage in 2000 bp windows predicting

labeled peaks, and the 11 enrichment scores to a multilayer perceptron to produce the overall

peak score. Many of the false-positive peaks generated by other peak callers are filtered out by

these supervised deep learners, increasing precision by about 18% (Hentges et al., 2021).

Unfortunately, these supervised methods require labeled data for model training, which are often

hard or costly to obtain.
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None of these methods consider biological replicates, and in fact most peak calling methods

assess biological replicates separately (Goren et al., 2018). HMMRATAC and some users of

MACS recommend combining multiple replicates to increase signal, but joint analysis of multiple

biological replicates could improve the power to distinguish actual transcription factor binding

events (Newell et al., 2021), since some weak or highly variable peak signals may only become

evident across multiple replicates (Zhang et al., 2014). One common approach for assessing

reproducibility from replicates uses the Irreproducible Discovery Rate (IDR), which identifies

reproducible peaks by measuring the consistency in peak ranks between replicates (Li et al.,

2011). ChIP-R (Newell et al., 2021), which shows improvement over IDR and can handle more

than two replicates, uses the rank product to evaluate the reproducibility across any number of

ChIP-seq or ATAC-seq replicates.

We introduce a novel unsupervised learning method that uses contrastive learning (Le-Khac

et al., 2020) across replicates to separate genomic regions into peaks and non-peaks. The

proposed peak calling framework combines signals from multiple replicates to identify chromatin

accessible regions with ATAC-seq data, and overcomes excess noise and lack of labels to make

better inferences than existing methods.

3.3 Results

3.3.1 The RCL algorithm

In this study, we developed a peak calling tool (RCL), which contrasts biological replicates to

identify the shared signals of replicates to identify high confident ATAC-seq peaks (Figure 3.1).

Peak calling is a difficult task, where the genomic extent and significance of enrichment, together

the peak, must be inferred. Our proposed method separates these tasks, first liberally identifying

candidate regions of possible enrichment, and then learning how to score and classify data

extracted from the regions. The learner makes no attempt to learn peak boundaries, so its

predictions are passed back to the original candidate regions, which become peak predictions if

sufficiently high scoring.
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3.3.1.1 Prediction region selection.

In general, the RCL framework is applicable for replicated experiments. The individual BAM

files of R replicates (R ≥ 2) and a merged BAM file are required to identify candidate peak

regions. Additionally, two user settable parameters, coverage threshold (t, default: “median”, see

Step 1 below) and input segment length (α, default: 1,000), affect the number and length of the

candidate regions. Given these inputs, candidate peak regions are identified as follows:

Step 1: Retain genome positions with coverage > t in all R individual BAM files. Threshold t

defaults to a chromosome-specific value obtained from the input data. Specifically, the read

coverage on each chromosome is calculated using BEDTools genomecov (Quinlan and Hall,

2010) for every replicate (bedtools genomecov -ibam bamFiles -pc -bga), then median

coverage across all nonzero positions per chromosome is obtained. The minimum median

observed across replicates for a chromosome is used as the threshold for that chromosome.

Alternatively, t can be set as a single integer value to be used for every chromosome.

Step 2: Contiguous retained sites are aggregated into regions. Then, regions within 90 base pairs

(bp) are merged, since DNA linkers are known to be 8–90 bp (Singh and Mueller-Planitz,

2021). All regions longer than 100 bp are retained for Step 3. Define this set of regions as A.

Step 3.1: If a region in set A is shorter than α, an α bp long genomic segment is obtained by

extending α
2 bp up- and down-stream of its midpoint.

Step 3.2: For regions in set A longer than α bp, we first get positions with coverage summed

across replicates ≥ 0.95 quantile of the region (obtained from the merged BAM file).

Positions within α bp are merged, then we extended α
2 bp up- and down-stream of each

merged region’s midpoint.

Hereafter, “segment” refers to these selected α bp genomic fragments. Any segment

overlapping with a blacklist region (Amemiya et al., 2019) by at least 1 bp is removed. In the end,

per-base coverage vectors for these length α bp segments from R replicates are the inputs to RCL.
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3.3.1.2 Unsupervised learner.

Given the candidate peak regions, we use a neural network to assign a score to each segment.

These segment scores are combined into a single score for the candidate region (see “RCL peak

calling” in section Method comparison for details), and sufficiently high-scoring regions are called

peaks. As illustrated in Figure 3.1, our method consists of three jointly learned components

along with their respective losses, so the total minimized loss is

L = l1 + l2 + l3,

shown without optional weights that can be tuned by standard cross-validation methods. The

three components are a cross-replicate contrastive learner (Le-Khac et al., 2020), a segment class

(peak/non-peak) learner (Zhong et al., 2020), and an autoencoder (Kramer, 1991). The input to

the contrastive learner and segment class learner is the output of the encoder network that maps

the α bp coverage data to a lower-dimensional representation space.

Encoder. With R replicates of observed coverage in S segments, the input data are

per-base coverage vectors mri, r ∈ {1, . . . , R}, i ∈ {1, . . . , S}. We use ResNET (He et al., 2016) as

the backbone of our encoder network. A ResNET module is composed of three basic blocks

followed by one residual block. A basic block is composed of a 1D convolutional layer (default:

dilation 8 and kernel size 31), followed by a RELU activation function. Our whole encoder e(·) is

made of five such ResNET modules, producing the lower dimensional (default dimension: 50)

representation xri = e (mri).

Replicate-wise contrastive learning. We use the latent space representations xri for

computing the cross-replicate contrastive loss. We follow SimCLR (Chen et al., 2020), where the

replicates are augmentations and the same segments across replicates are positive examples,

otherwise they are negative examples. The pairwise replicate contrastive loss, l1,

− 1

S ×
(
R
2

) S∑
i=1

∑
1≤r′≤r≤R

log
exp

(
x⊤

rixr′i
∥xri∥∥xr′i∥

/τ1

)
∑S

j ̸=i exp

(
x⊤

rixr′j

∥xri∥∥xr′j∥/τ1
) , (3.1)
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where τ1 is the temperature hyperparameter (default: 0.5), aims to learn lower-dimensional

representations such that positive examples are close and negative examples are distant in the

new space.

Segment class learning. Assuming the actual peak/non-peak status of genomic segments

is shared across replicates and there are underlying characteristics of coverage that define peaks

and non-peaks, we expect the low-dimension representation of peak segments to cluster together

and separate from the non-peak segments in the new space. Therefore, we also require the

representations to match in discrete (classification) space, which we achieve by requiring peak

probabilities for each segment to be similar across replicates. The embedded representations xri

are reduced to two dimensions via a fully connected neural network (multilayer perceptron, MLP,

in the following) with one hidden layer the same dimension as xri, followed by the softmax

function, together denoted as g(·). Letting qri = g(xri) be the peak/non-peak probabilities for

segment i in replicate r and p′
rk = (qr1k, qr2k, . . . , qrSk), k ∈ {1, 2}, vectors of peak/non-peak

probabilities across segments for the rth replicate, we maximize similarity in peak calls among

replicates using loss l2

− 1

2×
(
R
2

) 2∑
k=1

∑
1≤r′≤r≤R

log
exp

(
p⊤
rkpr′k

∥prk∥∥pr′k∥
/τ2

)
exp

(
p⊤
rk(1−pr′k)

∥prk∥∥1−pr′k∥
/τ2

) , (3.2)

where temperature hyperparameter τ2 = τ1 in our experiments. This loss strengthens the shared

peak signal across replicates and provides a peak/non-peak prediction for each segment of each

replicate.

Autoencoder learning. We also want to produce cleaner data in the original genomic

space, useful for purposes such as visualization or replicate merging. Therefore, we use decoder

d(·), with structure symmetric to the encoder e(·), to map xri back to predicted data m̂ri in the

genomic space. An autoencoder has good embedded feature representation capability (Baldi,
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2012), learned by minimizing the squared error loss l3,

1

S ×R

S∑
i=1

R∑
r=1

MSE(mri, m̂ri), (3.3)

between the original data mri and the reconstructed data m̂ri.

3.3.2 Performance benchmarking using ChromHMM annotations

We compared the performance of RCL to both unsupervised (MACS, ChIP-R and

HMMRATAC) and pre-trained supervised (LanceOtron) peak callers, where we used data from

four human cell lines, MCF-7, A549, K652 and GM12878, and one dataset generated from mouse

placenta tissues at embryonic day 9.5. The datasets are summarized in Table 3.1.

The RCL method involves one important tunable parameter – the coverage threshold t

(option −t) used to identify the candidate peak regions and segments for model training. By

default, RCL uses a chromosome-specific threshold that depends on the median coverage (see

section Prediction region selection). In all datasets, in addition to using this default setting, we

also implemented RCL with -t 2 to explore the impact of this tuning parameter. In datasets with

higher library size (MCF-7, K562 and A549), chromosome-specific thresholds generally exceed

two (Supplementary Figure S1); default thresholds for lower library size datasets (GM12878 and

mouse placenta) for all chromosomes are one. We observed manual lowering of threshold t

increases the number of candidate regions supplied to the RCL model.

Across all tested datasets of varying library size, RCL achieved the best overall performance

(Tables 3.2, 3.3). Sporadically, HMMRATAC, LanceOtron or ChIP-R achieved higher precision at

the cost of much lower recall. As the threshold t decreases, RCL predicts more peaks with lower

precision and higher recall. Overall, the model trained with lower threshold (RCL-C2 for MCF-7,

K562, and A549; RCL-MED for GM12878 and mouse placenta) achieved universally better F1

scores, suggesting that exposure to more low coverage regions can help RCL distinguish true

peaks. In these comparisons, MACS and ChIP-R peaks were called with q-value 0.05, but

HMMRATAC, LanceOtron, and RCL peaks were called without false discovery control.



87

HMMRATAC calls should be filtered by the score (Tarbell and Liu, 2019), typically a measure of

coverage, and it is similarly advisable to filter RCL calls for higher precision.

Precision recall (PR) curves are useful for comparing methods across all false discovery rates

(Figure 3.2, Supplementary Figure S2). We applied a relaxed q-value threshold (0.5) to generate

candidate peaks for MACS and ChIP-R, and post-hoc thresholded to plot the curves. Since

MACS and ChIP-R are usually run with smaller q-values and no post-hoc thresholding, we also

plot precision and recall point estimates for typical choices of q (methods labeled “multiQ”). The

linear portion of each PR curve from the black dot to 100% recall corresponds to the subset of

ChromHMM-labeled regions with no score assigned by the method. The RCL PR curve,

especially with lower threshold t, dominates the curves of other methods. RCL appears to use

replicate information in the coverage data better than ChIP-R’s post-hoc comparison of peak calls

across replicates, which is generally better than naive aggregation of MACS calls. HMMRATAC

achieves intermediate performance (Table 3.2, 3.3), with higher achievable recall than MACS and

ChIP-R of weak peaks, but sometimes lower achievable precision on strong peaks (Figure 3.2).

HMMRATAC also performs poorly on data with lower library size, probably because coverage

data are too sparse, when partitioned by fragment length, to estimate this parameter-rich model.

Despite the high number of predicted peaks for K562 and A549 data (Table 3.1), RCL maintained

good precision out to much higher recall. In particular, RCL achieved nearly twice as many true

predictions while maintaining higher precision than either MACS or LanceOtron. While ChIP-R,

and sometimes HMMRATAC, can achieve near equal performance on the strongest peaks, only

RCL can maintain high precision on the more difficult peaks. For lower library size GM12878 and

mouse data, all methods called a limited number of peaks, with low achievable recall.

Nevertheless, RCL still obtained better performance, except at the highest achieved recall, where

LanceOtron had higher precision. The slightly lower PRAUC of RCL on these data (Table 3.2)

may yet be overcome by allowing non-integer threshold values t on the average coverage across

multiple sites.
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3.3.3 Performance benchmarking using transcription factor ChIP-seq data

In addition to genome annotations obtained with ChromHMM, we used transcription factor

(TF) ChIP-seq data to evaluate method performance. These data mark potential binding sites of

various TFs, which bind where DNA is accessible and should coincide with ATAC-seq peaks. Due

to the lack of TF ChIP-seq data generated in matching conditions, tool performance on the

mouse placenta data was not evaluated using this metric. (Table 3.4). As observed with

ChromHMM labels, RCL precision improved upon lowering the threshold t.

3.3.4 Gene ontology analysis

As ChromHMM and TF ChIP-seq labels do not cover the whole genome and all methods

predicted peaks outside these label regions, we analyzed the biological functions of genes

associated with peaks called by each method (see section Gene ontology analysis). We expect

meaningful peaks to associate with genes that are related to the known functions of the cell types

or tissues. For example, we expect MCF-7 peaks to be enriched for processes such as epithelial cell

proliferation, migration and invasion, as well as angiogenesis (Comşa et al., 2015). We therefore

checked for the enrichment of any gene ontology (GO) term containing words “epithelial”,

“epithelium”, or “angiogenesis”. The K562 cell line has antiapoptotic characteristics (Kuželová

et al., 2004); therefore, we expect the enrichment of processes related to the negative regulation of

apoptosis, and searched for terms that contained the words “apoptosis” or “apoptotic”. The cell

line A549, a type of lung carcinoma epithelial cell, is an alveolar type II (ATII) cell that secretes

surfactant protein to maintain homeostasis (Lee et al., 2018). Hence, processes underlying this

cell type are related to terms that include “epithelial”, “epithelium” and “surfactant”. GM12878

is a human lymphoblastoid cell line generated by transforming primary B cells from peripheral

blood with Epstein-Barr virus (EBV) (Bird et al., 1981; Anderson and Gusella, 1984). Therefore,

processes involving “B cell” should be enriched if biologically relevant peaks are supplied. Last, in

the mouse placenta at day 9.5, the labyrinth layer is actively developing after chorioallantoic

attachment finishes; as a result, a dense network of fetal blood vessels are forming within the layer
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where nutrients are exchanged (Starks et al., 2021; Cross et al., 2003; Watson and Cross, 2005).

In addition, the placenta is comprised mostly of trophoblast cells, which are epithelial-like cells.

Thus, processes related to “placenta”, “epithelium”, “vasculature”, “angiogenesis”, “labybrinth”

and “insulin” should be expected in meaningful peaks from day 9.5 mouse placenta tissue.

In general, we observed that only peaks uniquely called by RCL are enriched with relevant

biological terms, with the exception of A549 data (Figure 3.3, Supplementary Figures S3–S7,

Supplementary Tables S2–S6). For example, peaks that only RCL identified were associated with

processes related to apoptosis in the K562 dataset (Figure 3.3). In case RCL benefitted from

simply predicting a higher number of peaks, we randomly downsampled all peak sets and

repeated the analysis. RCL continued to enrich on functionally relevant processes (Supplementary

Figures S3–S7, Supplementary Tables S2–S6). For relevant terms, RCL peaks are often associated

with at least five genes and have higher than two-fold enrichment (vertical line, Figure 3.3,

Supplementary Figures S3–S7) unlike the other methods, suggesting they are more likely to be

associated with relevant genes than peaks identified by competing methods. In summary, there is

evidence that unique peaks predicted by RCL, not just those overlapping ChromHMM- or

TF-derived labels, are biologically relevant.

3.4 Discussion

We propose RCL, an unsupervised peak caller for ATAC-seq data using contrastive learning

across biological replicates. In our model, three losses: replicate similarity loss, class similarity

loss and autoencoder loss, are learned simultaneously. We use ResNET as our backbone module

with only five layers, making the network architecture shallow but efficient. On a server

containing two Tesla V100 (16 GB) GPUs, the training time is 118 seconds when there are 4,828

1,000 bp regions and four replicates. Empirical results indicate RCL training time is roughly

linear in the number of segments. In theory, training time is quadratic in the number of replicates

because of the contrastive loss calculation, but replicate numbers remain quite low. Further

investigation on timing is warranted, but total run times were acceptable on all datasets tested
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here. For example, for the A549 dataset (the largest dataset and slowest to train), the training

time (25 epochs) took about 62 minutes.

In practice, only a small proportion of the genome is accessible (Dunham et al., 2012). As a

result, datasets for peak calling tend to be highly imbalanced, making it challenging to separate

peak and non-peak regions. RCL showed no problems with class imbalance, probably because the

region selection step effectively discards nonpeak regions and balances the data. If class

imbalance proves to be a problem for calling datasets with sparser peaks or more widely across

the genome in high coverage datasets, there are opportunities for improvement. For example, due

to similarities to deep embedding clustering (Xie et al., 2016), cluster regularization methods

proposed to avoid local optima or trivial solutions favoring predictions of the larger class (Zhong

et al., 2020; Tao et al., 2018), may be applicable to contrastive learning and RCL.

Highly variable peaks or peaks in low coverage data may be difficult to find from single

replicates, but their signal may become obvious when comparing across multiple replicates.

HMMRATAC utilizes multiple replicates by combining them, which reduces the variance in the

signal, but does not help the method learn what defines noise in a single replicate. ChIP-R, a

post-hoc method to combine peaks called by another method, can improve performance over

MACS, but only when used with a liberal q-value threshold followed by furthering filtering of

ChIP-R-predicted peaks (red PR curves in Figure 3.2). Although both MACS and RCL make

predictions for individual replicates, RCL predicts after learning from all replicates, while MACS

predicts after learning from only the replicate in question. Currently, we combine the RCL

prediction scores by taking the mean across replicates, but one can imagine more sophisticated

approaches to combine predictions across replicates, possibly assessing the quality of prediction

from each replicate and weighting the mean.

Replicates are, by design, an essential component of our method. To demonstrate the value of

biological replicates we conducted an ablation study (Supplementary Text S3.1.2). Contrasting

real biological replicates gave the best predictions across chromosomes, which is not surprising

given that biological replicates are fundamental for reproducibility and false signal reduction (Yan
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et al., 2020). In the absence of biological replicates, contrasting with an augmentation of the

available data is better than contrasting with self. It could be that noise along the genome

recapitulates some of the noise between biological replicates, but more study is necessary to

understand RCL performance in the absence of replicates. Experiments varying the number of

replicates available to RCL showed little effect on performance, even when the added replicate

had substantially higher coverage (Supplementary Text S3.3). All the experimental data

examined in the current study have used high quality data with minimal batch effects and

samples mostly taken from cultured cells with likely little biological variation, all of which may

explain the limited impact of additional replicates. It will be an interesting future direction to

examine how contrastive learning and the RCL framework handle batch effects or the inclusion of

low quality replicates.

We acknowledge that the labeled regions indicating the “ground truth” used for assessment

are noisy. First, the annotations obtained using ChromHMM (Ernst and Kellis, 2017) applied to

several ChIP-seq datasets and thus innately contain technical noise from data generation and

model estimation. The TF ChIP-seq labels were specifically called by MACS2 (Zhang et al.,

2008), which we know produces noisy, imperfect labels. Second, while we matched cell types and

biological conditions, variation in the samples used to generate TF ChIP-seq or ChromHMM

labels were not completely controlled. Third, our translations from ChromHMM states to

open/closed regions were imperfectly determined to the best of our knowledge. There appear to

be noisy truth labels in the MCF-7 data. Some negative ChromHMM regions were assigned high

scores (logit-transformed scores > 10) (Supplementary Figure S9). Although these score

assignments could be due to the shortcomings of RCL, it is also possible that some labels are

wrong. Further investigation will be enabled when the quality of labels is improved.

When there is noise in the labels, the observed performance metrics (precision, recall, F1, and

PR curve) are not equal to the true performance metrics evaluated against the truth (Jiang et al.,

2014). Most worryingly, the observed recall is a function of true recall and the true false positive

rate. Specifically, let ŷ be predicted labels, y unobserved true labels, and z observed noisy labels.
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Further, suppose the labeling error rates P (z = 0 | y = 1) = P (z = 1 | y = 0) = ϵ are constant and

independent of any signal in the data. Then, the observed recall is

P (ŷ = 1 | z = 1) = P (ŷ = 1 | y = 1)P (y = 1 | z = 1) + P (ŷ = 1 | y = 0)P (y = 0 | z = 1), (3.4)

where P (ŷ = 1 | y = 0) is the true false positive rate (FPR). Thus, observed recall is a

contaminated measure of recall, and methods compared via observed recall (or F1 or PR curve)

may not reveal their actual ranking. Given this concern, it is possible to estimate method

performance in the context of label errors (Raykar et al., 2009; Yan et al., 2014) or correct errored

labels so traditional assessment metrics are more accurate (Sabetpour et al., 2021; Zheng et al.,

2021). Alternatively, performance evaluation can be carried out with simulated data. However,

there is no existing simulation method for ATAC-seq data, and the existing methods used for

ChIP-seq, such as (Zheng et al., 2022), are not applicable for ATAC-seq.

RCL learns and predicts on fixed sized segments (length α, default 1,000 bp). We did not

examine the impact of hyperparameter α on RCL performance, but it certainly complicates peak

calling. We chose to transfer RCL prediction scores from the α bp segments to the variable-length

candidate regions produced by the algorithm in section Prediction region selection, because it

works well (Supplementary Text S3.4). Using these candidate regions with mean coverage as a

simple score already does well in MCF-7, but RCL learns additional signals, perhaps peak shape,

that further improve the performance (Supplementary Figure S11). Not only do the candidate

regions work well, but they are not easily substituted. Using the α bp segments as peak

predictions in A549 failed, probably because they lack the resolution to pinpoint narrow peaks,

but a quick and dirty attempt to shrink the prediction regions to the relevant peak summit

performed even worse (Supplementary Figure S11). A better solution may be to learn and predict

directly on the variable-sized candidate regions. We could pad variable-sized inputs to the same

length or we could add a Spatial Pyramid Pooling layer (He et al., 2015) before the first

fully-connected layer to remove the fixed-size constraint of the network. On the other hand, such

an approach would still require data preprocessing to choose the candidate regions. An even
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better solution might be to predict at the nucleotide level, a one-step solution to identify peaks

and their extent.

RCL can be extended and improved in other ways. First, we used simple read coverage as

input, but HMMRATAC reports reproducible signal in the coverage of distinct fragment lengths

around open regions (Tarbell and Liu, 2019). RCL could be extended to take coverage vectors for

multiple fragment lengths, the fragments themselves, or even annotation information, as used by

the supervised method CNN-Peaks (Oh et al., 2020). Second, multiple hyperparameters in both

data processing and model training can be further tuned. For example in input preparation,

regions longer than 100bp are kept in the current method. We have tried keeping regions longer

than 147bp, and it resulted in fewer inputs and fewer called peaks; however, we still obtained

good predictions. Last, we have focused on ATAC-seq data, where peak calling has been

particularly difficult because of the lack of control samples and good truth labels. Nevertheless,

our model assumes nothing particular to ATAC-seq data and can be applied to ChIP-seq,

CUT&RUN (Skene et al., 2018) and other techniques requiring peak calling.

There is clearly much left to learn about how RCL works to extract useful signal from

replicates, but we can offer some preliminary recommendations. First, we recommend users follow

established data preprocessing and quality control steps for ATAC-seq data (Yan et al., 2020).

Where we have tested, few hyperparameters and inputs of RCL had much impact on

performance, other than the coverage threshold t, option -t, and the candidate regions. The

default threshold (“median”) identified highly confident peaks with excellent precision

(Figure 3.2); therefore, this setting can be a good starting point for researchers to find the highest

confident peaks. If a researcher wishes to predict more peaks accurately, it may be better to

reduce threshold t and expose RCL to more and less obvious candidate peaks. This is a

particularly good option for high coverage datasets, where RCL reproducibly outshines the

competing methods. We recommend using all replicates under the assumption that replicates are

still quite sparse because of cost. While additional replicates did not improve performance on

datasets tested here, they also did not hurt performance. Finally, we provide no options to
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explore alternative prediction regions, but users may have good ideas for choosing candidate

regions and they can try them out with the RCL software package.

In summary, we have developed a novel peak calling framework for ATAC-seq data using

contrastive learning techniques to extract signals shared across biological replicates and identify

high confident open chromatin regions. Because RCL can predict more peaks with higher

precision, it will facilitate future epigenome and chromatin accessibility studies in various

biological contexts.

3.5 Methods

3.5.1 ATAC-seq data acquisition

ATAC-seq data sets of the following human cell lines and mouse tissues were obtained from

public databases: MCF-7, A549, K562, GM12878, and mouse placenta. The MCF-7 dataset, with

two biological replicates, was accessed through the ENCODE experiment ID

ENCSR422SUG (Dunham et al., 2012). The A549 dataset, with three biological replicates, was

accessed through the ENCODE experiment ID ENCSR032RGS (Dunham et al., 2012). The K562

dataset, with three biological replicates, was accessed through the ENCODE experiment ID

ENCSR868FGK (Dunham et al., 2012). The GM12878 dataset generated using 50, 000 cells was

obtained from four replicates with the accession numbers SRR891268, SRR891269, SRR891270

and SRR891271 (Buenrostro et al., 2013). Last, the mouse data generated from mouse placenta

at day 9.5, with three biological replicates, was accessed with the accession numbers SRR7912013,

SRR7912014 and SRR7912015 (Starks et al., 2019).

3.5.2 ATAC-seq data processing

FASTQ files were assessed using FastQC (Andrews, 2010) (version 0.11.7) to identify samples

with over-represented sequences or adapter contamination. Trimmomatic (Bolger et al., 2014) was

used to remove adapter content and filter low quality base pairs and reads

(ILLUMINACLIP:overpresentedSeq.fa:2:30:10:2:keepBothReads LEADING:3 TRAILING:3
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MINLEN:36, other settings: default, version 0.39). Here, the overpresentedSeq.fa file contains the

over-represented sequences and adapter content identified with FastQC. Reads were aligned to the

autosomal and sex chromosomes of human reference genome GRCh38 or mouse reference genome

GRCm38 (release 98) (Cunningham et al., 2019) using Bowtie2 (Langmead and Salzberg, 2012)

(-X 1000 --no-discordant, other settings: default, version 2.3.4.1). The genome reference versions

were matched with the label files used for performance assessment, downloaded from public

databases (see Method comparison). As performance comparisons were carried within organisms

with matching references, using different genome versions should not affect the conclusion of the

study. Picard (Broad Institute, 2019) was used to remove duplicate reads

(REMOVE DUPLICATES=true, version 2.17.0). Reads with low quality mapping (MapQ < 20)

were removed before merging, sorting, and indexing the resulting BAM files with

SAMtools (Danecek et al., 2021). Last, to assess sample quality after preprocessing,

ataqv (Orchard et al., 2020) (--ignore-read-groups, other settings: default, version 1.2.1) was used

to check for fragment length distribution and transcription start site (TSS) enrichment. Samples

used for downstream analyses must have a mononucleosome peak in the fragment length

distribution, and TSS enrichment ≥ 1.5.

3.5.3 Tuning RCL

We used dilation 8 and kernel size 31 to train our model. Other hyperparameters are set to be

default values (number of epochs = 25, batch size = 256, learning rate = 10−4 and temperature

τ1 = τ2 = 0.5). Details regarding choosing dilation 8, kernel size 31 and model development were

are discussed in Supplementary Text S3.1. Briefly, RCL was developed on the MCF-7 cell line

data (see section ATAC-seq data acquisition) using different truth labels than those presented in

results. We will demonstrate that a roughly tuned RCL is already substantially superior to

existing methods, not only on MCF-7 with a distinct truth, but on additional holdout datasets as

well.
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3.5.4 Method comparison

We compared RCL to MACS (Zhang et al., 2008), ChIP-R (Newell et al., 2021),

HMMRATAC (Tarbell and Liu, 2019), and LanceOtron (Hentges et al., 2021). Call performance

was assessed using three analyses: comparisons using truth labels of genome annotation obtained

with ChromHMM (Ernst and Kellis, 2017) from independent data collected on the same cell lines

and tissues; comparisons using truth labels of transcription factor ChIP-seq data collected on the

same cell lines and tissues; and the association of peak prediction to biologically relevant genes.

MACS peak calling. MACS (version 2.1.1) (Zhang et al., 2008; Gaspar, 2018) was used to

call peaks with BAM files from individual replicates. Peaks were called with options

-g hg -f BAMPE --bdg --keep-dup all, with the following cut-offs for the q-value

q: 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00002, and 0.00001, and other settings:

default. Any peaks overlapping with a blacklist region (Amemiya et al., 2019) by at least 1 bp are

removed. MACS was originally developed for calling peaks on transcription factor ChIP-seq data,

so the default settings and model assumptions may not apply for ATAC-seq data. We have some

evidence that altering shift and window sizes can improve MACS performance in some aspects

(Supplementary Text S3.5), but settings to consistently improve MACS performance were elusive

and beyond the scope of this work. Given peak calls from individual replicates, the peak union

method was used to combine peaks across replicates. Specifically, a consensus peak set is the

union of peaks overlapping with each other by ≥ 50% length in ≥ 2 replicates. Scores of

consensus peaks were the mean − log10(q-value) at peak summit of the individual peaks observed

in separate replicates. As MACS does not report scores of non-peak regions, replicates not calling

a peak in the region are not used when calculating scores of consensus peaks.

ChIP-R peak calling. We used ChIP-R (version 1.1.0) (Newell et al., 2021) as an

additional, independent method for combining peaks called from MACS. Peaks were first called

with MACS as described above. Then, ChIP-R was run with the following setting:

-m 2, -a 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001,0.00002, and 0.00001 (matching with −q
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in MACS), other settings: default. Any peaks overlapping with a blacklist region (Amemiya et al.,

2019) by at least 1 bp are removed. The reported score was used as scores of ChIP-R peaks.

HMMRATAC peak calling. HMMRATAC (version 1.2.4) (Tarbell and Liu, 2019) was

used to call peaks with a merged BAM file from all replicates, options

-Xmx128G, --window 250000, other settings: default. A peak is a region in the open state with

scores ≥ 0, reported by default with the --peaks option. By default, peak scores of HMMRATAC

are the maximum read coverage of the called center state region. Any peaks overlapping with a

blacklist region (Amemiya et al., 2019) by at least 1 bp were removed.

LanceOtron peak calling. To implement LanceOtron (Hentges et al., 2021) (version

1.0.8), the input bigwig files were obtained using deeptools (version 2.5.2) (Ramı́rez et al., 2016)

with the following command:

bamCoverage -b bamFile -o bigwigFile --extendReads -bs 1 --normalizeUsingRPKM. The inputs

were then used to call peaks with default settings and LanceOtron’s pretrained model. Any

resulting regions overlapping with a blacklist region (Amemiya et al., 2019) by at least 1 bp are

removed. Then, the union of regions overlapping with each other by ≥ 50% length in ≥ two

replicates were obtained as a consensus region set. Scores of consensus regions were the mean

overall peak score of the individual regions. Regions with scores > 0.5 were then defined as peaks

by default.

RCL peak calling. RCL was used with coverage threshold t of “median” and 2, other

settings: default. By default, any segment overlaps with blacklist regions was excluded due to the

segment selection procedure. Let peak prediction score given by RCL be ξri = qri1 for the ith α

bp segment in the rth replicate. We obtain a final peak prediction score for each region in A (see

Step 2 in 3.3.1.1 Prediction region selection) by averaging over ξri for all replicates r = 1, 2, . . . , R

and segments i extracted from the region. A region in A is predicted to contain at least one peak

if this score is > 0.5.
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Compilation of true positive and true negative labeled regions by ChromHMM.

For human cell line data, we obtained genome annotations inferred with ChromHMM (Ernst and

Kellis, 2017) from ENCODE. Specifically, genome annotation for MCF-7 data was accessed via

the experiment ID ENCSR579CCH, the A549 data via ENCSR283FYU, and the GM12878 data

via ENCSR988QYW. True positive regions are those marked “EnhA1”, “EnhA2”, “EnhG1”,

“EnhG2”, “TssA”, “TssFlnk”, “TssFlnkD”, “TssFlnkU”, and “Tx”. True negative regions are

marked as “Het”, “Quies”, “ReprPC”, and “ZNF/Rpts”. Annotations not in these lists were not

used, and regions overlapping with a blacklist region (Amemiya et al., 2019) by at least 1 bp were

removed. For full definitions of the states, see Supplementary Table S7.

For the mouse placenta data, we obtained ChromHMM annotation from (Starks et al., 2021).

True positive regions are those belonging to State 8, 9 and 10, and true negative regions are those

belonging to State 2. Detailed biological characterization of these states were described in (Starks

et al., 2021).

Compilation of true positives from transcription factor (TF) ChIP-seq data. For

human cell line data, we obtained TF ChIP-seq data from matching cell lines from

ENCODE (Dunham et al., 2012). Bed files of IDR thresholded peaks were downloaded from all

datasets that passed all quality control criteria of ENCODE and had “released” status, and their

bio-samples were not perturbed. For mouse placenta data, no TF ChIP-seq data from matching

conditions was available. Therefore, this analysis was not carried out for mouse placenta data.

True positive regions were defined as those with at least one TF ChIP-seq peak. Regions

overlapping with a blacklist region (Amemiya et al., 2019) by at least 1 bp were removed. No true

negative regions were defined using these datasets. For lists of data used, see Supplementary

Table S7.

Calculation of evaluation metrics. Since labelled regions and called regions do not

necessarily coincide, we defined a mapping function to transfer scores of called regions in the

ATAC-seq data to predicted scores for annotated regions. Specifically, suppose there are ni called
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regions overlapping with the ith labeled region, and cj (1 ≤ j ≤ ni) is the predicted score that

overlaps by oj base pairs with the ith labeled region. Then the weighted prediction score for the

ith labeled region is
∑ni

j=1
ojcj∑ni
v=1 ov

. In case ni = 0, we assign the lowest weighted score observed

for that method as the predicted score.

We used point estimates of precision, recall and F1, as well as Precision-Recall (PR) curves to

compare the performance of the methods. Specifically, for MACS and ChIP-R, we calculated

precision and recall for each −q (−a) cut-off. For plotting PR curves, we used MACS or ChIP-R

with q-value 0.5. Results from other q-value settings were presented as point estimates on the

plots. RCL can call more peaks by lowering the threshold t, but changing t will also change the

fitted model and the peak calls made. We always ran RCL with defaults, but we also selected

non-default t so the number of candidate peaks roughly matched the number of peaks called by

MACS (q-value 0.5), ChIP-R (q-value 0.5) and HMMRATAC.

Gene ontology analysis. To assess the potential functional roles of the called peaks by all

methods, we used gene ontology analysis. We examined the following sets of peaks. For the

MCF-7, K562 and A549 data, we used ChIP-R, HMMRATAC, LanceOtron, and RCL peaks

called when t = 2 peaks; for the GM12878 and mouse placenta data, ChIP-R, HMMRATAC,

LanceOtron, and RCL peaks called when t = median peaks; and for all datasets, peaks identified

uniquely by each of these methods. Specifically, a peak is uniquely assigned to a method if it does

not overlap with peaks predicted by any other method, as assessed using BEDTools

intersect -v (Quinlan and Hall, 2010).

We used the Genomic Regions Enrichment of Annotations Tool (GREAT) (version

4.0.4) (McLean et al., 2010; Tanigawa et al., 2022) implemented in R (Gu and Hübschmann,

2022) to carry out GO enrichment using either the human GRCh38 or mouse GRCm38

annotations and the default basal plus extension association rule. For each analysis, we randomly

selected peaks so that the number of input regions for GREAT was the smallest or second

smallest peak set size amongst all tools (see number of peaks from each tool in Supplementary

Table S1). For unique peaks, we also analyzed all peaks without down-sampling. A biological
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process term was considered enriched if its binomial q-value ≤ 0.05, binomial fold change ≥ 2, and

the observed number of associated genes was ≥ 5.

3.6 Main figures and tables

Replicate 2

Segment 1
Segment 2

...
Replicate 1

Replicate similarity loss

Segment 1 Segment 2

Segment 1 Segment 2

...

...

R
ep

lic
at

e 
1

R
ep

lic
at

e 
2

Encoder
e(.)

Decoder
d(.)

MLP
g(.)

α bp α bpdiscard
< 100 bp

merge
within
90 bp

extend

Segment 1
Segment 2

...
Replicate 2

0 1

Replicate 1

0 1

Class similarity lossMSE loss

Replicate similarity loss

Positions with coverage > t Positions merged Inputs for RCL

Tw
o 

re
pl

ic
at

es
 

Class similarity loss

A

B C

Figure 3.1: RCL model. Segment identifies the same genomic region for all replicates. (A) The

raw input is processed to extract α-length input segments. (B) The α-length input segments are

fed to encoder e(·) to compute the cross-replicate contrastive loss. Then the embedding is fed to a

multilayer perceptron (MLP), specifically a fully connected neural network, for class similarity loss

and a decoder for the autoencoder (MSE) loss. The encoder/decoder has five ResNET blocks. (C)

Shaded red boxes represent the elements contrasted in the respective losses.
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Figure 3.2: Precision-Recall (PR) curves for ChromHMM-labeled regions. Black dot in each curve

denotes the region with lowest score; all remaining ChromHMM-labeled regions are not scored the

method. RCL-C2, analysis with coverage threshold 2; RCL-MED, analysis with default “median”

coverage threshold; MACS-multiQ and ChIP-R-multiQ dots are obtained by varying q-value cut-

offs.
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Figure 3.3: Gene ontology analysis using unique peaks called by each method in K562 data.

Only relevant terms enriched with at least one peak set are plotted. Colors correspond to

− log10(Binomial Adjusted P-value) where the adjustment was done following the Benjamini-

Hochberg procedure (Benjamini and Hochberg, 1995); dot sizes correspond to the observed number

of genes associated with the term; x-axis corresponds to log2(Fold change+0.1) and vertical line is

fold change of two. LanceOtron was not plotted since there was no unique peak called by the tool.

Abbreviations: reg., regulation; pos., positive; neg., negative; sig., signaling.

Table 3.1: Datasets used to compare methods on genome-wide annotation regions generated by

ChromHMM.

ChromHMM Number of Called Peaks in ChromHMM Labels

Map. Labels HMMR RCL Lance

Data Src. Org. R Size Rate + – MACS ChIP-R ATAC MED C2 Otron

MCF-7 (Dunham et al., 2012) Human 2 37M 96% 148,531 116,729 65,440 93,860 113,362 92,333 116,367 90,050

A549 (Dunham et al., 2012) Human 3 157M 98% 154,274 120,726 116,654 133,121 80,991 148,725 213,263 94,284

GM12878 (Buenrostro et al., 2013) Human 4 31M 68% 156,817 139,567 58,341 45,498 47,315 59,130 38,637 33,056

K562 (Dunham et al., 2012) Human 3 100M 96% 212,779 190,127 143,269 139,343 87,284 173,790 227,839 110,011

Placenta (Starks et al., 2019) Mouse 3 20M 70% 88,211 18,754 14,598 15,888 6,277 11,332 5,719 4,141

Src., literature source. Org., organism. R, number of biological replicates. Size, mean number of

reads across replicates after filtering in the dataset. Map. Rate, median proportion of aligned

reads to autosomal and sex chromosomes using Bowtie2. ChromHMM labels, number of positive

and negative true regions annotated using ChromHMM. RCL MED (default threshold t based on
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median coverage) and C2 (threshold t = 2) indicate two different coverage thresholds used to build

training segments. Lower threshold results in larger input datasets and provides more predictions,

specifically including predictions for lower coverage, harder-to-predict segments. For the total

number of peaks including those outside of annotated regions, see Supplementary Table S1.

Table 3.2: Metrics on human cell line datasets

MCF-7 A549 GM12878 K562

Precision Recall F1 PRAUC Precision Recall F1 PRAUC Precision Recall F1 PRAUC Precision Recall F1 PRAUC

RCL-C2 0.848 0.637 0.728 0.858 0.791 0.739 0.764 0.855 0.931 0.229 0.368 0.763 0.686 0.948 0.796 0.914

RCL-MED 0.909 0.422 0.576 0.818 0.778 0.636 0.700 0.830 0.882 0.333 0.483 0.761 0.782 0.754 0.768 0.874

HMMRATAC 0.781 0.596 0.676 0.808 0.850 0.349 0.495 0.783 0.850 0.256 0.393 0.738 0.827 0.435 0.571 0.799

MACS 0.779 0.441 0.563 0.748 0.746 0.383 0.506 0.695 0.880 0.218 0.350 0.739 0.740 0.473 0.577 0.746

ChIP-R 0.768 0.412 0.536 0.781 0.733 0.358 0.481 0.725 0.877 0.181 0.300 0.734 0.680 0.480 0.563 0.762

LanceOtron 0.842 0.510 0.635 0.809 0.842 0.435 0.574 0.783 0.911 0.192 0.317 0.764 0.828 0.506 0.628 0.791

Table 3.3: Metrics on mouse placenta dataset

Mouse Placenta

Precision Recall F1 PRAUC

RCL-C2 0.996 0.0648 0.122 0.926

RCL-MED 0.999 0.128 0.227 0.927

HMMRATAC 0.993 0.071 0.132 0.915

MACS 0.999 0.078 0.144 0.923

ChIP-R 0.999 0.090 0.166 0.923

LanceOtron 0.991 0.047 0.089 0.921

Table 3.4: Precision against ChIP-seq labels, using human and mouse data

MCF-7 A549 GM12878 K562

RCL-C2 0.656 0.929 0.361 0.649

RCL-MED 0.541 0.753 0.496 0.562

HMMRATAC 0.593 0.560 0.357 0.227

MACS 0.571 0.682 0.422 0.329

ChIP-R 0.531 0.675 0.422 0.327

LanceOtron 0.547 0.549 0.269 0.257

Performance evaluation metrics. Table 3.2 and 3.3: Precision, recall, F1 scores and PRAUC (area

under the PR curve). To compute precision, recall, and F1 scores for MACS and ChIP-R, a
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q-value of 0.05 was used. To compute PRAUC for MACS and ChIP-R, a q-value of 0.5 was used

and then post-hoc thresholded to obtain a PR curve. All HMMRATAC results were obtained

using scores > 0. All RCL and LanceOtron results were obtained using average scores across

replicates > 0.5. Table 3.4: Precision using transcription factor (TF) ChIP-seq as labels.

3.7 References

Amemiya, H. M., Kundaje, A., and Boyle, A. P. (2019). The ENCODE Blacklist: Identification of
Problematic Regions of the Genome. Scientific Reports, 9(1):1–5.

Anderson, M. A. and Gusella, J. F. (1984). Use of cyclosporin a in establishing epstein-barr
virus-transformed human lymphoblastoid cell lines. In Vitro, 20.

Andrews, S. (2010). FastQC - A quality control tool for high throughput sequence data.
Babraham Bioinformatics.

Baldi, P. (2012). Autoencoders, unsupervised learning, and deep architectures. In Proceedings of
ICML Workshop on Unsupervised and Transfer Learning, ICML ’12, pages 37–49, Edinburgh,
Scotland. JMLR Workshop and Conference Proceedings.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B
(Methodological), 57(1):289–300.

Bird, A. G., McLachlan, S. M., and Britton, S. (1981). Cyclosporin a promotes spontaneous
outgrowth in vitro of epstein–barr virus-induced b-cell lines. Nature, 289.

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for illumina
sequence data. Bioinformatics, 30(15):2114–2120.

Broad Institute (2019). Picard toolkit. https://broadinstitute.github.io/picard/.

Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., and Greenleaf, W. J. (2013).
Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin,
DNA-binding proteins and nucleosome position. Nature Methods, 10(12):1213–1218.

Buenrostro, J. D., Wu, B., Chang, H. Y., and Greenleaf, W. J. (2015). ATAC-seq: A Method for
Assaying Chromatin Accessibility Genome-Wide. Current Protocols in Molecular Biology,
109(1):21.29.1–21.29.9.

https://broadinstitute.github.io/picard/


105

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for contrastive
learning of visual representations. In International conference on machine learning, pages
1597–1607. PMLR.
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3.8 Appendix A: Notes

3.8.1 Software availability

The entire pipeline is released under the GNU Public License to the community as a package

named RCL, for Replicative Contrastive Learner (GitHub

https://github.com/Tuteja-Lab/UnsupervisedPeakCaller). The source code can also be

found in Supplementary Code file.
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4.1 Abstract

The invasive trophoblast cell lineage in rat and human share crucial responsibilities in

establishing the uterine-placental interface of the hemochorial placenta. These observations have

led to the rat becoming an especially useful animal model to study hemochorial placentation.

However, our understanding of similarities or differences between regulatory mechanisms

governing rat and human invasive trophoblast cell populations is limited. In this study, we

generated single-nucleus (sn) ATAC-seq data from gestation day (gd) 15.5 and 19.5 rat

uterine-placental interface tissues and integrated the data with single-cell RNA-seq data

generated at the same stages. We determined the chromatin accessibility profiles of invasive

trophoblast, natural killer, macrophage, endothelial, and smooth muscle cells, and compared

invasive trophoblast chromatin accessibility to extravillous trophoblast (EVT) cell accessibility. In

∗These authors contributed equally to this work.
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comparing chromatin accessibility profiles between species, we found similarities in patterns of

gene regulation and groups of motifs enriched in accessible regions. Finally, we identified a

conserved gene regulatory network in invasive trophoblast cells. Our data, findings and analysis

will facilitate future studies investigating regulatory mechanisms essential for the invasive

trophoblast cell lineage.

4.2 Introduction

Hemochorial placentation is a reproductive strategy utilized by some mammals, including the

mouse, rat, and human (Roberts et al., 2016). This type of placentation involves establishment of

a uterine-placental interface characterized by trophoblast cells of extraembryonic origin breaching

the maternal vasculature (Roberts et al., 2016). Trophoblast cells are the parenchymal cells of the

placenta (Knöfler et al., 2019; Red-Horse et al., 2004; Soares et al., 2018). Their origins can be

traced to the trophectoderm of the early embryo and the initial cell differentiation event during

embryogenesis (Gardner and Beddington, 1988; Rossant, 2001). Trophoblast cells differentiate

into a range of specialized lineages (Gardner and Beddington, 1988; Knöfler et al., 2019; Soares

et al., 2018). Among the specialized trophoblast cell lineages are invasive trophoblast (generic

term) or extravillous trophoblast (EVT, human/primate specific term). These cells exit the

placenta and enter the uterine compartment where they transform the vasculature and immune

environment into a structure ensuring placental and fetal viability and growth (Knöfler et al.,

2019; Soares et al., 2018; Turco and Moffett, 2019). Failures in invasive trophoblast/EVT cell

differentiation and function result in a range of pregnancy diseases such as preeclampsia,

intrauterine growth restriction, and preterm birth (Brosens et al., 2011, 2019). Deep trophoblast

cell invasion and uterine transformation are characteristic features of rat and human placentation

sites (Pijnenborg et al., 2011; Shukla and Soares, 2022; Soares et al., 2012). Identification of

potential regulatory mechanisms controlling cellular constituents of the rodent and human

uterine-placental interface have emerged from single-cell RNA-sequencing (scRNA-seq) (Liu et al.,

2018; Marsh et al., 2022; Nelson et al., 2016; Scott et al., 2022; Sun et al., 2020; Suryawanshi
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et al., 2018; Vento-Tormo et al., 2018). Conserved sets of transcripts have been identified in rat

invasive trophoblast and human EVT cells (Scott et al., 2022). These insights have led to the

identification of candidate regulators of invasive trophoblast and EVT cell lineages and dissection

of their biological relevance using trophoblast stem (TS) cells and rat models (Kuna et al., 2023;

Muto et al., 2021; Varberg et al., 2021). Such experimentation has advanced the field but on its

own is an inefficient strategy for defining gene regulatory networks driving invasive

trophoblast/EVT cell lineage development and function. Gene regulatory networks can be

accessed through genome-wide analysis of the chromatin landscape (Ong and Corces, 2012;

Peñalosa-Ruiz et al., 2019; Tuteja et al., 2014; Yadav et al., 2018). Indeed, insights into the

hierarchical regulation of rodent and human trophoblast cell development have been achieved

through deep sequencing of histone modifications defining gene activation and repression states

(Chuong et al., 2013; Kwak et al., 2019; Lee et al., 2019; Rugg-Gunn et al., 2010; Schoenfelder

et al., 2018; Starks et al., 2021; Tuteja et al., 2016; Xu and Kidder, 2018; Zhang et al., 2021). The

integration of transcriptome and chromatin accessibility datasets has also been used as an

effective tool to elucidate gene regulatory networks in trophoblast tissue and cells (Nelson et al.,

2017; Starks et al., 2019). In this report, we interrogated the chromatin landscape of invasive

trophoblast cells isolated from the uterine-placental interface of the rat using single-nucleus assay

for transposase-accessible chromatin-sequencing (snATAC-seq). These datasets were integrated

with scRNA-seq datasets from rat and human invasive trophoblast/EVT cells (Scott et al., 2022),

as well as ATAC-seq from EVT cells (Varberg et al., 2022), to identify conserved gene regulatory

networks controlling the invasive trophoblast cell lineage.

4.3 Results

4.3.1 Identification of chromatin accessibility profiles in cell types of the rat

uterine-placental interface

We generated snATAC-seq profiles from gestation day (gd) 15.5 and 19.5 uterine-placental

interface tissue of the rat to determine chromatin accessibility of its cellular constituents. These
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datasets were integrated with scRNA-seq profiles obtained from the same tissues (Scott et al.,

2022).

Following quality control and preprocessing (Fig S1, Fig S2), we obtained 25,321 and 14,388

high quality nuclei in the gd 15.5 and gd 19.5 samples, respectively (Table S1). Next,

snATAC-seq data was integrated with scRNA-seq data (Scott et al., 2022) to identify cell

populations based on the relationship between accessibility and gene expression profiles (Stuart

et al., 2019) (Fig 4.1A). Clusters and chromatin accessibility profiles of invasive trophoblast,

natural killer, macrophage, endothelial, and smooth muscle cells were identified (Table S1).

These analyses are based on an assumption that there is a significant correlation between

gene expression level (scRNA-seq data) and chromatin accessibility (snATAC-seq data) (Stuart

et al., 2019). Therefore, as a quality control step for the snATAC-seq cluster labeling, we

calculated the Spearman correlation between gene expression and chromatin accessibility profiles.

We obtained moderate but significant correlations (0.44≤ρ≤0.54, p-value<2.2e-16) in all cell

populations (Fig S3), which agrees with previous studies done at the both single cell and tissue

levels (Merrill et al., 2022; Pervolarakis et al., 2020; Starks et al., 2019). Moreover, we observed

that established marker gene expression for each cell population are generally more accessible in

the respective cell population (Fig 4.1B), demonstrating we have obtained high quality clustering

and cluster annotation.

We further performed differential accessibility analysis at both gestation days to identify the

most accessible peaks in each cell type (defined as cell type-specific peaks). The distance

distribution of cell type-specific peaks to the nearest gene transcription start site (TSS) showed,

that in general, most of the cell type-specific peaks are distal to the TSS (>5 kb) (81.65% at gd

15.5, and 75.16% at gd 19.5) (Figs 4.1C, S4). Moreover, we observed that the invasive trophoblast

cell population had the highest number of cell type-specific peaks of the major cell types

analyzed, despite being of less abundance than some other cell types (Fig 4.1D). This result may

indicate that the invasive trophoblast cell population had the most gene-associated accessible

chromatin among the cell types identified.
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4.3.2 Identification of invasive trophoblast cell regulated genes using cell

type-specific chromatin accessibility profiles

Following the observation that invasive trophoblast cells had the most cell type-specific peaks,

we next checked the number of peaks associated with each gene at each gestation day. At both

gestational timepoints, there were many genes associated with at least two open regions (808 and

349 genes at gd 15.5 and 19.5, respectively) (Fig 4.2A). Next, we investigated the differences in

expression levels of transcripts linked to 2, 3, 4, or 5 peaks using the average expression level

obtained from the scRNA-seq data. In general, we observed an increasing trend of expression

level when a transcript is associated with more peaks. Furthermore, we observed that while gd

15.5 expression levels were significantly different as the number of associated peaks increased, at

gd 19.5, transcript expression profiles were not significantly different when more peaks were

associated with a transcript after a cut-off of 3 (Fig S5). Therefore, we partitioned transcripts

into two groups for the downstream analyses: ≥3 peaks or <3 peaks. At both gestation days,

genes with more than three peaks had significantly higher expression than genes with less than

three peaks (p-value=7.029e-09 and 1.374e-08 at gd 15.5 and 19.5, respectively) (Fig 4.2B),

suggesting that, in general, genes with ≥3 trophoblast-specific peaks are more active within the

cell population and could have important functional roles for trophoblast cells. However, there are

notable exceptions, including Prl7b1 (Table S2), which has <3 peaks, but whose expression is

specific and among the highest in the invasive trophoblast cell lineage.

In addition, we compared transcripts with ≥3 open regions to transcripts with invasive

trophoblast cell cluster-specific expression (invasive trophoblast cell marker transcripts),

previously determined from the scRNA-seq data (Scott et al., 2022) at each gestation day. At gd

15.5, 57 of the 274 genes with ≥3 peaks were also markers of the invasive trophoblast cell cluster

(p-value=5.29e-08), and at gd 19.5, 39 of the 103 genes with ≥3 peaks were markers of the

invasive trophoblast cell cluster (p-value=6.79e-06). These markers included genes with known

trophoblast functions (Tfap2c (Auman et al., 2002; Kuckenberg et al., 2012; Werling and Schorle,

2002), Ets2 (Yamamoto et al., 1998), and Cited2 (Imakawa et al., 2016; Kuna et al., 2023;
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Withington et al., 2006)), and genes known to be prominently expressed in invasive trophoblast

cells (Prl5a1 (Ain et al., 2003)) (Fig 4.2C). Of note, while some of these markers (Cited2 and

Ets2 ) have similar activities around their promoter regions in all cell types, they had multiple

associating peaks specific to the invasive trophoblast cell cluster.

To determine if transcripts that have multiple associated peaks in rat invasive trophoblast

cells also possess multiple associated peaks in human EVT cells, we incorporated open regions

(ATAC-seq peaks) identified in EVT cells into our analysis (Varberg et al., 2022). First, we

associated the EVT cell open regions to genes. Then, we compared the number of EVT cell peaks

associated with genes that have either ≥3 or <3 peaks in rat invasive trophoblast cells (Table S2).

We observed that, at both time points, genes with ≥3 peaks in rat invasive trophoblast cells had

significantly more peaks in human EVT cells than genes that had fewer than 3 peaks in rat

invasive trophoblast cells (p-value<2.2e-16) (Fig 4.2D).

4.3.3 Identification of transcription factors (TFs) enriched in invasive trophoblast

cell-specific peaks

We first defined multiple peak sets that TFs could bind: invasive trophoblast cell-specific

peaks identified at both gestation days (named “common peaks”, consisting of 1242 peaks) (Table

S3), peaks differentially accessible at gd 15.5 (named “gd 15.5-specific peaks”, 51 peaks), and

peaks differentially accessible at gd 19.5 (named “gd 19.5-specific peaks”, 194 peaks) (Table S4).

Using gene ontology (GO) analysis, we observed that only common peaks were enriched for

relevant biological functions such as “cell-cell adhesion” (FDR=1.16e-04), “positive regulation of

cell migration” (FDR=0.012), and “female pregnancy” (FDR=0.017) (Fig. 4.3A, Table S3), while

differentially accessible peaks at both gd were not enriched for any processes. This result suggests

that in the invasive trophoblast cell population, regulatory elements are consistently accessible at

gd 15.5 and 19.5 to regulate biologically important genes, using both stages to select common

peaks may increase confidence, and that stage-specific peaks may be noise. We therefore

proceeded with motif enrichment analysis in the common peaks.
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Following the enrichment tests, filtering, and TF family grouping, we identified 11 TF

families that were enriched in the common peaks, some of which have known roles in regulating

trophoblast biology (Fig 4.3A, Table S3). For example, TFAP2C motifs were enriched with the

highest fold change in the common peaks. TFAP2C is a member of the AP-2 TF family and is a

known regulator of the trophoblast cell lineage in both mouse and human (Kaiser et al., 2015;

Kuckenberg et al., 2012; Soares et al., 2018). We further confirmed the enrichment of the

TFAP2C binding sites by comparing the rat open regions with TFAP2C motifs to TFAP2C

chromatin immunoprecipitation (ChIP)-seq peaks from differentiated mouse TS cells (Lee et al.,

2019). We found that of the 439 rat peaks with TFAP2C motifs, 208 (47.38%) overlapped with

TFAP2C peaks in differentiated mouse TS cells, which was significant (p-value=0.009).

Additionally, all 11 TF families enriched in the rat peaks were enriched in EVT cell ATAC-seq

peaks (Varberg et al., 2022) (Table S3). These comparisons provide evidence for the validity of

the computationally based binding site predictions.

To determine if TF functions could be predicted using the binding sites, we carried out

functional enrichment analysis on the genes associated with peaks where the TF families’ binding

sites were found. We observed four families with at least one term enriched (Table S3), two of

which were enriched for important invasive trophoblast functions: “NR2F6, Pparg::Rxra”

(Thyroid hormone receptor-related factors – RXR-related receptors family, Nuclear receptors with

C4 zinc fingers class) enriched for “positive regulation of cell migration” and “vasculature

development”; and “TFAP2C” (AP-2 family, Basic helix-span-helix factors class) enriched for

“cell-cell adhesion”, “positive regulation of cell motility”, and “vasculature development”. Many

of these observed terms agree with previous findings about roles of the families in trophoblast cell

functions (Auman et al., 2002; Barak et al., 1999; Werling and Schorle, 2002).

Next, we investigated which TF families were associated with the same target genes. We

observed multiple pairs of TF families that shared a significant number of overlapping target

genes, such as: “TCF4” (E2A-related factors family, Basic helix-loop-helix factors class) and

“SNAI1” (More than 3 adjacent zinc finger factors family, C2H2 zinc finger factors class)
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(adjusted p-value=3.64e-55); “JUNB, FOSL2::JUN” (FOS-related factors – JUN-related factors

family, Basic leucine zipper factors class) and “CREB3, Creb5” (CREB-related factors family,

Basic leucine zipper factors class) (adjusted p-value=9.35e-41); and “TFAP2C” (AP-2 family,

Basic helix-span-helix factors class) and “TCF4” (E2A-related factors family, Basic

helix-loop-helix factors class) (adjusted p-value=7.88e-06) (Fig 4.3B, blue scale). Overall, this

analysis highlights TF families that share common target genes. We also checked if TF family

pairs occurred in the same peaks more than expected by chance. We found six pairs of TF families

significantly over-represented together, including: “TCF4” (E2A-related factors) and “SNAI1”

(More than 3 adjacent zinc finger factors family) (adjusted p-value=3.09e-58), “CREB3, Creb5”

(CREB-related factors family) and “JUNB, FOSL2::JUN” (FOS-related factors – JUN-related

factors family) (adjusted p-value=1.36e-45), and “TFAP2C” (AP-2 family) and “TCF4”

(E2A-related factors family) (adjusted p-value=4.67e-04) (Fig 4.3B, dark red scale). Each TF

family that is part of the over-represented pairs has been individually connected to the regulation

of trophoblast cell function. For example, TCF4 and SNAI1 are regulators of trophoblast cell

differentiation and motility (Meinhardt et al., 2014) and trophoblast invasion (E. Davies et al.,

2016), respectively. Moreover, most of the peaks were bound by at least two TF families (Fig

4.3C). This analysis suggested that TF families can bind in the same locations to interact and

regulate cell type-specific functions. TFs can also bind individually to act in their regulatory roles.

4.3.4 Identification of conserved, invasive trophoblast cell-specific regulatory

regions using network analysis

We aimed to create a network that would provide information on TFs that activate gene

expression through conserved cis-regulatory regions. We first determined that 264 of the common

peaks in rat invasive trophoblast cells were conserved in human EVT based on overlap with EVT

ATAC-seq data (Table S5). Of note, a significantly higher proportion of common peaks was

conserved compared to gd 19.5-specific peaks (p-value=1.039e-05), and only 11 gd 15.5-specific

peaks were conserved, further justifying the use of common peaks in the network analysis. Next,
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because of the moderate correlation between ATAC-seq and RNA-seq signal (see Section 1), we

determined if conserved common peaks also had signal for H3K27ac, a histone modification

associated with active enhancers, by using ChIP-Seq data from Varberg et al. (Varberg et al.,

2022). Indeed, we found there was a significant overlap (p-value¡2.2e-16) of conserved common

peaks and EVT H3K27ac peaks (Table S5), indicating that the conserved common peaks are likely

to contribute to activating associated gene expression. Finally, we established the network by

compiling several datasets: i) conserved common peaks, ii) motifs enriched within these regions,

and iii) conserved genes that exhibited invasive trophoblast cell-specific expression, according to

the scRNA-seq analysis (Scott et al., 2022), at both gd 15.5 and 19.5. The resulting network had

11 source nodes, corresponding to 11 TF families, and 34 target genes (Fig 4.4A, Table S5).

In this network, there are multiple genes with high in-degree centrality (≥5), meaning the

genes were associated with invasive trophoblast cell-specific peaks predicted to be bound by TFs

connected to ≥5 TF families. These genes were Plk2 (linked with five TFs), Scap (linked with five

TFs), AABR07027306.1 (PHACTR1 human ortholog, linked with six TFs), Pcdh12 (linked with

six TFs), Galnt6 (linked with six TFs), and Col4a1 (linked with seven TFs) (Fig 4.4A). Pcdh12,

Plk2, Scap, and Col4a1 have previously been linked to the regulation of embryonic and placental

development (Bouillot et al., 2006, 2011; Ma et al., 2003; Matsuda et al., 2001; Oefner et al., 2015;

Okae et al., 2018; Schenke-Layland et al., 2007). Although, Phactr1 and Galnt6 have not been

directly implicated in trophoblast cell biology, they have been shown to regulate migration and

invasion of cancer cells (Gao and Zheng, 2022; Herman et al., 2021; Song et al., 2020). Further

analysis of the involvement of these genes in the regulation of the invasive trophoblast cell lineage

is merited. Regulatory elements and the enriched motifs associated with these genes as well as all

other target genes in the network can be found in Table S4.

Moreover, other target genes in the network and their distal elements could also be important

for regulating invasive trophoblast cell functions. For example, Cited2, a gene required for

trophoblast cell differentiation, placental development, and regulation of invasive

trophoblast/EVT cells (Imakawa et al., 2016; Kuna et al., 2023; Moreau et al., 2014; Withington
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et al., 2006), was predicted to be regulated by a distal peak where TFAP2C and STAT3 motifs

were found (Fig 4.4A and B). This peak (chr1:12808761-12809434) also overlapped with a

TFAP2C ChIP-seq peak from differentiated mouse TS cells (Lee et al., 2019) (Fig 4.4C),

suggesting that it may be bound in vivo.

Together, the target genes, regulatory elements, and TFs we identified will be candidates for

future experiments to interrogate gene regulatory networks controlling invasive trophoblast cells.

4.4 Discussion

The invasive trophoblast cell lineage is an evolutionary adaptation facilitating viviparity in

mammals possessing hemochorial placentation (Pijnenborg et al., 1981). Invasive trophoblast cells

acquire migratory behavior, penetrate the uterine parenchyma, and serve a transformative role on

cellular constituents ensuring a successful pregnancy outcome (Knöfler et al., 2019; Soares et al.,

2018; Turco and Moffett, 2019). The root cause of many obstetric complications is predicted to be

a failure in invasive trophoblast cell-guided uterine transformation (Brosens et al., 2011, 2019).

Surprisingly, existing knowledge of gene regulatory networks controlling development and function

of the invasive trophoblast cell lineage is modest. In this report, we sought to provide new

insights into the regulation of the invasive trophoblast cell lineage. Our efforts focused on the rat,

a species possessing deep intrauterine trophoblast cell invasion with similarities to human

placentation and amenable to testing hypotheses pertaining to the invasive trophoblast cell

lineage in vivo (Shukla and Soares, 2022; Soares et al., 2012). In this report, we integrated

snATAC-seq and scRNA-seq (Scott et al., 2022) datasets from the rat uterine-placental interface

with the goal of gaining insight into gene regulatory networks controlling the invasive trophoblast

cell lineage. Chromatin accessibility profiles for each of the cellular constituents of the

uterine-placental interface were determined. An in-depth analysis of invasive trophoblast cells led

to the identification of invasive trophoblast cell specific genes, TFs, and TF target genes. A

correlation was established between the presence of invasive trophoblast cell-specific open

chromatin and gene expression. Using DNA motif binding enrichment and network analysis, we
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predicted TF pairs and cis-regulatory elements linked to invasive trophoblast cell genes. The

efforts led to the recognition of conservation between rat and human invasive trophoblast cell

lineages and predictions of distal regulatory elements within the invasive trophoblast cell lineage.

Our approach of relating open chromatin to gene expression profiles is not perfect. Gene

regulatory regions can regulate multiple genes (McLean et al., 2010) and can be located

considerable distances from the gene they regulate (Lin et al., 2022). We observed that most open

chromatin regions were distal to genes. Moreover, the open chromatin-gene association rule we

used, together with the stringent requirement for conserved regulatory regions and genes,

contributed to the inference of a relatively small and manageable network of TFs and target

genes. This contributed to a straightforward network analysis that enabled the prediction of

relevant interactions. Other computational methods such as co-accessibility analysis, which

employs chromatin accessibility profiles to predict interactions of cis-elements (Pliner et al., 2018),

represents a complementary approach. Although our network construction method involved using

only conserved open regions and conserved target genes, this does not negate the merits of

investigating TFs and target genes inferred with species-specific elements.

Candidate TFs driving gene regulation in invasive trophoblast cells were identified through

their expression in invasive trophoblast cells and through the presence of corresponding TF DNA

binding motifs associated with invasive trophoblast cell specific genes. The most striking TF

families linked to the invasive trophoblast cell lineage exhibit conservation in human EVT cells

(Varberg et al., 2022) and have been previously implicated in trophoblast cell biology (Hemberger

et al., 2020; Rossant, 2001). Most interestingly, many of the invasive trophoblast cell relevant TFs

are implicated in early phases of trophoblast cell lineage development or the differentiation of

other trophoblast cell lineages. For example, mouse mutagenesis has demonstrated indispensable

roles for Tfap2c, Cdx2, Ets2, and Pparg in trophoblast cells and placentation that precede the

appearance of the invasive trophoblast cell lineage (Auman et al., 2002; Barak et al., 1999;

Chawengsaksophak et al., 1997, 2004; Werling and Schorle, 2002; Yamamoto et al., 1998). Some

of these TFs were predicted to regulate the same genes based on the motif enrichment analysis,
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and all of these TFs had a high degree of connectivity with each other in the network we present.

Previous studies have determined that TFs can work in combination to regulate trophoblast cell

lineages, but different TF partnerships are implicated in the regulation of distinct processes

(Hemberger et al., 2020; Latos et al., 2015; Latos and Hemberger, 2016). Re-use of trophoblast

lineage associated TFs in the regulation of invasive trophoblast cells is intriguing but creates

experimental challenges. Future in vivo investigation will necessitate the establishment of

conditional mutagenesis rat models specific to the invasive trophoblast cell lineage. Such efforts

will be facilitated by the integration of single-nucleus chromatin accessibility and single-cell gene

expression profiles reported here. Unique TF combinations at gene regulatory domains and/or the

recruitment of unique sets of co-regulators may prove crucial to invasive trophoblast cell biology.

The uterine-placental tissue used in generating the snATAC-seq and scRNA-seq contains

invasive trophoblast cells that have exited the placenta and entered the uterus and thus represent

a differentiated cell type. We did not observe any evidence for multiple types of differentiated

invasive trophoblast cell types nor did we detect evidence for invasive trophoblast cell progenitors.

This latter population of progenitor cells should reside in the junctional zone of the rat placenta

or the EVT cell column of the human placenta. Thus, the present analysis is biased towards

characterization of a mature invasive trophoblast cell population. Consequently, the invasive

trophoblast cell gene signature, including TFs, may best represent requirements for maintenance

of the invasive trophoblast cell state. Comparisons of these rat invasive trophoblast cell chromatin

and gene expression profiles with human EVT cell populations isolated from first trimester tissues

(Liu et al., 2018; Marsh et al., 2022; Scott et al., 2022; Sun et al., 2020; Suryawanshi et al., 2018;

Varberg et al., 2022; Vento-Tormo et al., 2018) or derived from human TS cells (Okae et al., 2018;

Varberg et al., 2022) have some inherent limitations. Elucidation of single cell multi-omic profiles

for the junctional zone will provide valuable information regarding derivation of the invasive

trophoblast cell lineage and further insights into conservation of this important developmental

process.
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The datasets and analyses presented in this report represent a framework for constructing

hypotheses relevant to establishing a gene regulatory network controlling the invasive trophoblast

cell lineage. A research approach can now proceed involving identification of candidate conserved

regulatory pathways, evaluating the importance of the regulators using TS cell models, and

testing critical hubs within the pathways using relevant in vivo rat models.

4.5 Materials and methods

4.5.1 Animals

Holtzman rats were originally purchased from Envigo. Rats were maintained on a 14 h

light/10 h dark cycle with open access to food and water. Timed pregnancies were obtained by

mating adult males (>10 weeks of age) and adult females (8-12 weeks of age). Pregnancies were

confirmed the next morning by presence of sperm in a saline vaginal lavage and defined as gd 0.5.

Protocols for research with animals were approved by the University of Kansas Medical Center

(KUMC) Animal Care and Use Committee.

4.5.2 Cell isolation from tissue

Uterine-placental interface tissue (also called metrial glands) were dissected from gd 15.5

(n=3 pregnancies) and 19.5 rat placentation sites (n=3 pregnancies) as previously described (Ain

et al., 2006; Scott et al., 2022) and put in ice cold Hank’s balanced salt solution (HBSS). Tissues

were minced into fine pieces with a razor blade and digested in Dispase II (1.25 units/mL, D4693,

Sigma-Aldrich), 0.4 mg/mL collagenase IV (C5138, Sigma-Aldrich), and DNase I (80 units/mL,

D4513, Sigma-Aldrich) in HBSS for 30 min. Red blood cells were lysed using ACK lysis buffer

(A10492-01, Thermo-Fisher), rotating at room temperature for 5 min. Samples were washed with

HBSS supplemented with 2% fetal bovine serum (FBS, Thermo-Fisher), and DNase1

(Sigma-Aldrich) and passed through a 100 µm cell strainer (100ICS, Midwest Scientific).

Following enzymatic digestion, cell debris was removed using MACS Debris Removal Solution
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(130-109-398, Miltenyi Biotec). Cells were then filtered through a 40 µm cell strainer (40ICS,

Midwest Scientific) and cell viability was assessed, which ranged from 90 to 93%.

4.5.3 Nuclei isolation, library preparation, and sequencing

Cells were isolated from gd 15.5 and 19.5 uterine-placental interface tissue as described above,

and nuclei were isolated from the cell suspension according to the 10X Genomics Nuclei Isolation

protocol. Briefly, cells were washed with HBSS supplemented with 2% FBS (Thermo-Fisher) and

cell number determined. Approximately 500,000 cells were centrifuged, and 100 µL 10X Genomics

Nuclei Isolation Lysis Buffer was added. The suspension was incubated for 3 min, then 10X

Genomics Nuclei Isolation Wash Buffer was added. Cells were passed through a 40 µm cell

strainer and centrifuged. Cells were resuspended in 50 µL chilled 10X Genomics Nuclei Isolation

Buffer. Single nuclei were captured using the Chromium Controller into 10X barcoded gel beads.

Libraries were generated using Chromium Next GEM Single Cell ATAC Library & Gel Bead Kit

v1.1 (10X Genomics) and sequenced in a NovaSeq6000 sequencer at the KUMC Genome

Sequencing Core.

4.5.4 snATAC-seq preprocessing

Read alignment to the rat genome (Rnor 6.0, Ensembl 98 (Cunningham et al., 2019)),

primary peak calling, and feature quantification were performed using Cell Ranger Software

(version 4.0.0). Quality control steps and downstream analyses were performed using the R

package Signac (version 1.1.1) (Stuart et al., 2019). Unless otherwise reported, default parameters

were used. We identified accessible regions using the CallPeaks() function in Signac, which

utilizes model-based analysis for ChIP-seq (MACS) (Zhang et al., 2008). Parameters used for the

analyses were nuclei with a total number of fragments in peaks ranging from 1000 to 20000,

percentage of reads in peaks >15%, and enrichment ratio at transcription start sites >1.5 (Fig

S1). We normalized across samples and across peaks using term frequency-inverse document

frequency, which is implemented through RunTFIDF() in Seurat. We used method =3, which
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computes log(term frequency) × log(IDF), due to great sparsity in the feature matrix and strong

count outliers (Fig S2). All features are retained to perform dimension reduction with singular

value decomposition (SVD). Normalization with term frequency-inverse document frequency

followed by SVD is also known as latent semantic indexing (LSI) (Cusanovich et al., 2015). We

also investigated the correlations between sequencing depth and LSI components (using the

DepthCor() function) as well as ranked the LSI components using the percentage of variance

(using the ElbowPlot() function). As a result, we kept LSI components 2 to 20 for gd 15.5

replicates, and LSI components 2 to 10 for gd 19.5 replicates (Fig S2). Replicates for each time

point were then merged using the Merge() function in Seurat.

4.5.5 snATAC-seq clustering

To identify cell clusters for each time point, we utilized K-nearest neighbor (KNN) graphs

with retained significant LSI components and the smart local moving algorithm (Waltman and

Van Eck, 2013), which was implemented through the Seurat functions FindNeighbors() and

FindClusters(). The clusters were then visualized with uniform manifold approximation and

projection (UMAP).

4.5.6 scRNA-seq and snATAC-seq integration – label transferring

To transfer cluster labels from our corresponding scRNA-seq data, we used the

FindTransferAnchors() and TransferData() functions in the Seurat package (version 4.1.0) (Butler

et al., 2018). Briefly, this process uses canonical correlation analysis for initial dimension

reduction, then identifies cell neighborhoods with KNNs, and mutual nearest neighbors (MNN).

The correspondences between cells were referred to as “anchors”. Next, the anchors were given

scores and weights to eliminate incorrect correspondences and to define the association strengths

between cells and anchors. Finally, anchor classification and anchor weights were used to transfer

labels from scRNA-seq to snATAC-seq data. To check the correlation between snATAC-seq and

scRNA-seq profiles in each cell population, we first estimated the chromatin accessibility profiles
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around transcription start sites using the Signac function GeneActivity(). Then Spearman

correlation and its statistical significance were calculated using the R function cor.test() (stats

package version 4.0.2 (R Core Development Team, 2013)).

4.5.7 Analysis of cell population-specific peaks

The FindAllMarkers() function was used with cell identities transferred from scRNA-seq data

and the fragment counts in peaks, to compare chromatin accessibility profiles between cell types

for each gd. We used a logistic regression framework with a latent variable of the total number of

fragments in peaks to account for the difference in sequencing depths. A peak is considered more

accessible in a cell population (and hence specific) if it has an adjusted p-value ≤0.05 and an

average log2(fold change) ≥ log2(1.5). Rat peaks were associated with the nearest gene (according

to the start position) on the same chromosomes using the Signac function ClosestFeature() with

the underlying genome annotation from Ensembl 98 (Cunningham et al., 2019). This association

rule was also used when the distance distribution of peaks to transcription start sites was

calculated with the R package ChIPseeker (Yu et al., 2015). ATAC-seq peaks in EVT cells

(Varberg et al., 2022) were associated to the single nearest genes with the maximum distance of

1000 kb around the TSS using GREAT (Genomic Regions Enrichment of Annotations Tool)

(McLean et al., 2010). Rat genes were mapped to their one-to-one human orthologs using gene

mapping from Ensembl 98. To assess changes in the expression level of transcripts with different

numbers of associated peaks, or differences in the numbers of EVT peaks between two gene

groups, we used Wilcoxon rank sum test, implemented with the R function wilcox.test() (stats

package version 4.0.2 (R Core Development Team, 2013)). To test the significance of overlap

between genes with ≥3 peaks and invasive trophoblast cell markers, we used hypergeometric tests

with the R function phyper() (stats package version 4.0.2 (R Core Development Team, 2013))

using options lower.tail = TRUE. In all tests, the significance level used was 0.05.
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4.5.8 Common peaks, peak mapping across species, and conserved common peaks

Common invasive trophoblast cell-specific peaks between the two gd were obtained using

BEDTools intersect (version 2.27.1) (Quinlan and Hall, 2010). Regions between the two gd were

considered common if ≥50% of the base pairs overlapped. To compare peaks across species (rat,

mouse and human), all peak sets were converted to human coordinates (hg38) using LiftOver

(default settings) (Hinrichs et al., 2006). Bedtools intersect (version 2.27.1) (Quinlan and Hall,

2010) was used to identify conserved peaks, which were defined as peaks that overlapped with

ATAC-seq peaks in EVT cells (Varberg et al., 2022) by ≥1 base pair (bp).

4.5.9 Motif analysis with common peaks

To identify enriched motifs in common peaks, we used the Homo sapiens, Mus musculus and

Rattus norvegicus motif databases from JASPAR (version 2020) (Fornes et al., 2020). A

BSgenome object for Rattus norvegicus, necessary to add motif information to Seurat objects,

was built using the BSgenome R package (version 1.58.0) (Hervé, 2020) and genome sequences

obtained from Ensembl 98 (Cunningham et al., 2019). We used the gd 19.5 coordinates of the

common peak sets as input, then generated a set of 50,000 background sequences with matched

length and GC content distribution using the Seurat function MatchRegionStats(). For each

motif, we calculated a fold change as the percentage the motif is observed in the input sequences

divided by the percentage it is observed in the background. A motif is considered enriched if its

hypergeometric adjusted p-value is ≤0.05 and fold change ≥1.5. The p-values were adjusted with

the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995).

To identify motif groups, we first mapped enriched motifs for all three organisms to their

corresponding TFs using TF – motif mapping information from the JASPAR database, then

retained only TFs with expression level ≥0.5 at both gd using the scRNA-seq data. Next, we

grouped TFs according to their protein families, also obtained from the JASPAR database. To

compare the observed binding sites of the protein TFAP2C with previously published data from

Lee et al. (Lee et al., 2019), we accessed the TFAP2C ChIP-seq data generated from
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differentiated TS cells through the GEO ID GSM3019344. A rat peak with TFAP2C motifs was

defined to agree with mouse TFAP2C ChIP-seq peaks if they overlapped by ≥1 bp as assessed

with BEDTools intersect (version 2.27.1) (Quinlan and Hall, 2010). The significance of the

overlapping was determined using Fisher’s exact test, with the option alternative = ”greater” and

a significance level of 0.05. To carry out functional enrichment of target genes of the enriched TF

families, we used Webgestalt (version 2019) (Liao et al., 2019) with the rat genome. A term was

considered enriched if its FDR <0.05, enrichment rate ≥2, and number of observed genes is ≥5.

To test for over-representation of shared genes and shared binding locations, we used

hypergeometric tests with the R function phyper() (stats package version 4.0.2 (R Core

Development Team, 2013)) using options lower.tail = TRUE. Correction for multiple testing was

carried out using the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995).

Significance level was set at 0.05.

4.5.10 Network inferences and analyses with conserved common peaks

In our networks, an edge between a TF family and a gene means the gene is the nearest one

to conserved common peaks with the enriched motifs of the family. Source nodes in the network

were TF families named with representative motifs. Target genes were marker genes of the

invasive trophoblast cell clusters at both gd and were conserved in EVT cells according to the

scRNA-seq data (Scott et al., 2022). The network was visualized and analyzed with Cytoscape

(Shannon et al., 2003).
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4.6 Main figures
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Figure 4.1: Chromatin accessibility profiles of cell populations at the uterine-placental interface.

(A) UMAPs of snATAC-seq profiles of cell populations at gestation day (gd) 15.5 and 19.5 showing

cell identities obtained by transferring labels from scRNA-seq data. (B) Dot plots showing known

markers of cell types generally have higher accessibility within 2,000 base pairs (bp) of the tran-

scription start sites (TSS) and in higher percent of nuclei than in other cell populations. Dot sizes

correspond to the percent of nuclei in each cell population that were open around the TSS; colors

correspond to the levels of predicted gene activity.
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Figure 4.1: (Continued)

(C) Stack bar plots showing that cell type-specific open chromatin peaks were most often distal to

the TSS. For distribution of distances for each individual cell type see Fig S4. (D) Bar plots

showing the number of open chromatin peaks specific to a cell population, and the number of

nearest genes to cell-specific open chromatin peaks. Cell specific open chromatin peaks are open

chromatin peaks differentially accessible in the cell population compared to all other cell

populations (adjusted p-value ≤ 0.05, average log2(fold change) ≥ log2(1.5).
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Figure 4.2: Analysis of chromatin accessibility profiles can identify regulatory regions for genes

defining the invasive trophoblast cell population.

(A) Histograms of the number of invasive trophoblast-specific (iTB-specific) peaks per gene showing

that many genes had ≥1 peaks. The x-axis shows the number of peaks per gene, and the y-axis

shows the number of genes. (B) Boxplots of transcript expression associated with iTB-specific

peaks showing that genes with ≥3 peaks had significantly higher expression than genes with fewer

than 3 peaks. Expression was plotted in a log10(average expression + 10−5) scale.
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Figure 4.2: (Continued)

(C) Examples of iTB-specific genes associated with ≥3 peaks at both gd 15.5 and 19.5. For each

subplot, the first section was composed of five tracks of normalized accessibility, corresponding to

five cell types. The right-most column of the first section showed the predicted gene activity using

chromatin accessibility within 2,000 bp of the TSS. The second and third section include two

tracks corresponding to gene location and open chromatin peak locations, respectively.
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Figure 4.2: (Continued)

(D) Boxplots of the number of conserved ATAC-seq peaks in EVT cells and rat invasive

trophoblast cells. Rat genes with ≥3 invasive trophoblast cell-specific peaks had significantly

more EVT cell ATAC-seq peaks than rat genes with <3 invasive trophoblast cell-specific peaks.

ATAC-seq peaks in EVT cells were obtained from Varberg et al. (Varberg et al., 2022).

Statistical analyses were performed using Wilcoxon rank sum tests at a significance level of 0.05.
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Figure 4.3: Motif analysis identified transcription factor (TF) combinations regulating invasive

trophoblast cell functions.
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Figure 4.3: (Continued)

(A) Representative motifs for enriched TF families found in common open chromatin peaks.

Motifs for the top two most highly expressed TFs in each family are shown. In case multiple

motifs are enriched that correspond to the same TF, motifs with the highest fold change are

shown. See the mapping of motifs to TFs in Table S3. A motif is considered enriched if its

hypergeometric adjusted p-value is ≤0.05 and fold change ≥1.5. The p-values were adjusted with

the Benjamini-Hochberg procedure. Only motifs corresponding to genes with expression level

≥0.5 at both gd 15.5 and gd 19.5 were used in the downstream analysis. (B) Representative

motifs for enriched TF families found in common open chromatin peaks. Motifs for the top two

most highly expressed TFs in each family are shown. If multiple motifs are enriched that

correspond to the same TF, then motifs with the highest fold change are shown. See the mapping

of motifs to TFs in Table S3. A motif is considered enriched if its hypergeometric adjusted P

≤ 0.05 and it fold change ≥ 1.5. The P-values were adjusted with the Benjamini-Hochberg

procedure. Only motifs corresponding to genes with expression levels of at least 0.5 at both gd

15.5 and gd 19.5 were used in the downstream analysis. (C) Heatmap of hypergeometric adjusted

(adj.) P-values showing that some TF family pairs share a significant number of target genes and

binding locations. The P-values were adjusted with the Benjamini-Hochberg procedure.

Representative motif names (as in B) were used for TF family names. Significance level was 0.05.

Blue scale, adj. P-values when testing for significance of shared genes; dark red scale, adj.

P-values when testing for significance of shared binding locations. (D) Histogram for number of

TF families per common open chromatin peak showing that most open chromatin peaks had at

least two TF families predicted to be bound, while there were some common open chromatin

peaks with only one TF family predicted to be bound. The x-axis shows the number of TF

families per peak; the y-axis shows the number of peaks.
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Figure 4.4: Network analysis predicted candidate genes and their distal regulatory elements that

govern invasive trophoblast cell functions.
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Figure 4.4: (Continued)

(A) Analysis of a network of TF families and target genes highlighting candidate genes and their

distal regulatory elements underlying invasive trophoblast cell functions. Rectangular nodes: TF

families with representative motif names (as in Fig 4.3A). Round nodes: target genes. Color: the

darker the color, the higher the node in-degree centrality. Directed edges mean peaks with the

predicted TF families were associated to the target genes. (B) Chromatin accessibility tracks of

a candidate invasive trophoblast (iTB) cell-specific distal element associated with the Cited2 gene

in the rat genome (rn6). A region of interest was highlighted in light blue. (C) Locations of the

candidate region, ATAC-seq peaks in EVT cells and TFAP2C ChIP-seq peaks in the human genome

(hg38). A region of interest was highlighted in light blue.
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CHAPTER 5. GENERAL CONCLUSION

In this thesis, we utilized both bulk and single cell NGS datasets generated from rodent

placenta, as well as developed a novel ATAC-seq peak calling framework, to better understand the

molecular mechanisms of placenta development. First, we used transcriptome data from early to

mid-gestation mouse placenta to infer and study gene regulatory networks specific to different

developmental stages. We determined network modules with similar gene profiles to specific cell

types in the human placenta, and as a result identified novel genes regulating placental

development processes. Second, we developed a deep learning framework to identify chromatin

accessible regions using shared signal from biological replicates, with higher precision and recall

rates than other existing tools. Last, we integrated single-cell RNA-seq and single-nucleus

ATAC-seq generated from the rat uterine-placental interface to identify a conserved transcription

factor - gene network that may be active in the invasive trophoblast lineage in both rat and

human. This chapter serves as a summary of the critical findings as well as potential future

directions of the research in this dissertation.

5.1 Specific findings and contributions

5.1.1 Identifying novel regulators of placental development using time-series

transcriptome data

In this report, we generated RNA-seq data from mouse fetal placental tissues at e7.5, e8.5

and e9.5. Next, we used hierarchical clustering and pair-wise differential expression analysis to

identify three gene groups with timepoint-specific expression patterns. Using gene ontology

analysis, we showed that the gene groups are significantly associated with key developmental

functions in the placenta such as “trophoblast giant cell differentiation” and “labyrinthine layer

development”. These timepoint-specific groups also have similar gene profiles to distinct cell
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populations in the human placenta, which was determined using deconvolution analysis and

cell-type enrichment tests. With network analysis, we identified sub-network modules with

significantly similar gene profiles to human extravillous trophoblast (EVT), villous

cytotrophoblast, syncytiotrophoblast, fibroblast and endothelial cells, then determined important

genes using various network interaction metrics. Last, we validated the biological roles of four

predicted regulators, Siah2, Mtdh, Hnrnpk, and Ncor2 in the HTR8-SVneo cells, providing

evidence for conserved functions of the identified candidates across species.

5.1.2 Unsupervised contrastive peak caller for ATAC-seq

In this work, we developed a novel deep learning framework called Replicated Contrastive

Learning (RCL) to identify chromatin accessible regions, also known as “calling peaks”, with

ATAC-seq data. Here, we addressed an important problem of integrating shared signals across

biological replicates to identify open genomic regions with higher precision and recall rates by

using contrastive learning, an unsupervised deep learning techniques. Our model is unsupervised

learning; therefore, it can handle higher dimension than traditional statistical learning, and does

not require labels acquired from external sources like in supervised learning methods. Moreover,

the framework provides researchers with an approach to integrate biological replicates without

having to specify a hard cut-off of meaningful replicate numbers or carrying out post-hoc p-value

correction. We have demonstrated that RCL performed superior to multiple existing tools based

on precision, recall, F1 and area under curve metrics obtained using independent sets of labels in

not only mouse placenta tissue data but also several human cell line data.

5.1.3 Core conserved transcriptional regulatory networks define the invasive

trophoblast cell lineage

In this report, we generated single-nucleus (sn) ATAC-seq data from the uterine-placental

interface in rat tissues at gestational day 15.5 and 19.5, then integrated with previously published

single-cell (sc) RNA-seq with matching conditions and bulk ATAC-seq data from human EVT
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cells. First, upon the integration of snATAC-seq and scRNA-seq, we determined the chromatin

accessibility profiles of major cell populations in the uterine-placental interface, namely invasive

trophoblast, natural killer, macrophage, endothelial, and smooth muscle cells. Specifically in the

invasive trophoblast population, we observed that genes with multiple accessible regions tend to

have crucial roles in the regulation of trophoblast functions. We also carried out motif enrichment

analysis in important open regions in the rat invasive trophoblast, and predicted TF families that

may bind in the same locations to interact and regulate cell type-specific functions. Last, we

integrated the accessible peaks in rat invasive trophoblast with those in human EVT to identify a

conserved network of transcription factors and genes that likely play functional roles in the

trophoblast lineage. Upon the conclusion of this study, we have provided a valuable resource of

novel regulatory regions in major cell types at the uterine-placental interface in rat, genomic

locations for predicted transcription factor binding sites and their associated genes in the rat

invasive trophoblast population, and conserved elements between rat invasive trophoblast and

human EVT. This will be crucial for future hypothesis generation and to identify novel

biomarkers of the trophoblast lineage.

5.2 Future directions

Despite our efforts, we acknowledge several factors that could be improved in our studies.

First, we recognize that our findings could benefit from further experimental validation both in

vitro and in vivo. For example, we tested roles of four candidates (Siah2, Mtdh, Hnrnpk, and

Ncor2 ) in cell migration using the HTR8-SVneo cell line, which has certain differences to first

trimester primary trophoblast cells such as in their miRNA expression profiles (Donker et al.,

2012). It would also be beneficial to validate various novel targets identified when we integrated

rat snATAC-seq data with human EVT ATAC-seq data. Useful models for future experiments are

human TB stem cells derived with the Okae protocol (Okae et al., 2018) or gene knockout in vivo.

Second, our studies could be strengthened with the generation of matching-conditioned data

in mouse, rat and human. For example, our original deconvolution analysis on mouse e7.5, e8.5
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and e9.5 relied on human scRNA-seq data, which suffered from technical and biological noise of

the differences in both the experimental assays and biological models. Since the publication of our

study, scRNA-seq data in mouse placenta in matching timepoints has been generated (Jiang et al.,

2023), which could be useful to integrate with our data to identify mouse-specific cell populations.

Last, our peak calling framework RCL is only one of the first steps to utilize shared signals

across biological replicates. The model can be easily adapted for ChIP-seq and CUT&Tag peak

calling with minor changes, which will be useful to predict high confident transcription factor

binding sites or regions pulled down by histone modification ChIP-seq. We acknowledge that RCL

is limited when determining open region boundaries, which is also a common challenge faced by

all existing peak calling methods. Future extension of RCL models to enable varied-length inputs

could serve as a potential solution to this disadvantage of RCL. Finally, RCL is currently

implemented explicitly for bulk ATAC-seq data. It is an interesting future direction to extend

RCL to call peaks for sc/snATAC-seq data, which is much sparser and noisier than bulk-level

data.
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