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ABSTRACT 

The big-data analysis of multi-omics data associated with maize genomes is increasingly 

utilized to accelerate genetic research and improve agronomic traits. As a result, efforts have 

increased to integrate diverse datasets and extract meaning from these measurements. For my 

Ph.D. dissertation, I have evaluated the current pitfalls of multi-omics data integration and 

analysis and built platforms that automatically analyze these omics’ datasets. One such platform 

is qTeller, now designed to handle pan-genome level transcriptomics and proteomics datasets 

and extract meaningful interpretation from them by providing an interactive user interface. 

Although genomics and transcriptomics have been more extensively used, other omics 

technologies, such as epigenomics, variomics, and proteomics, are now often incorporated into 

standard research methodologies.  

Therefore, I designed a fully automated platform, called Maize Feature Store (MFS), that 

allows the integration of complex omics to construct models that can be used to predict complex 

gene traits or annotations. To demonstrate the utility of the MFS, I critically discussed the 

application of MFS in pan-genome analysis using only a single maize genome (B73v5) as a 

multi-omics utility case study. I also aim to utilize these large-scale omics data to solve several 

other complex biological problems associated with the maize genome and phenome. I aim to 

continue improving the tools and assisting users in implementing them.  
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CHAPTER 1.    GENERAL INTRODUCTION 

In recent years, the field of plant biology has been revolutionized by the advent of omics 

data and computational approaches (Dai and Shen 2022; Mahmood et al. 2022; Scossa, Alseekh, 

and Fernie 2021; Van Emon 2016). The Human Genome Project and the subsequent advent of 

next-generation sequencing (NGS) technologies have been the catalysts for an explosion of 

genomics-related information that is having a profound effect on plant research (Koboldt et al. 

2013; Ray and Satya 2014; Satam et al. 2023).  

Multiple “omics” approaches have emerged as successful technologies for plant systems 

over the last few decades. Omics data refers to large-scale datasets that capture information 

about various biological molecules and processes, such as genomics, proteomics, metabolomics, 

and transcriptomics (Perez-Riverol et al. 2019). Multi-omics approaches with high throughput 

techniques provide a comprehensive view of the molecular components and interactions within a 

plant, enabling researchers to gain insights into the complex biological processes 

underlying growth, senescence, yield, and the responses to biotic and abiotic stress in numerous 

crops. These omics approaches have been implemented in some important crops including wheat 

(Triticum aestivum L.), soybean (Glycine max), tomato (Solanum lycopersicum), barley 

(Hordeum vulgare L.), maize (Zea mays L.), millet (Setaria italica L.), cotton (Gossypium 

hirsutum L.), Medicago truncatula, and rice (Oryza sativa L.) (Yang et al. 2021; Yang et al. 

2023). The integration of functional genomics with other omics highlights the relationships 

between crop genomes and phenotypes under specific physiological and environmental 

conditions.  

The need for omics data in current plant breeding and agriculture is paramount. With the 

growing global population and the increasing demand for food, there is a pressing need to 
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develop crops that are more resilient, productive, and nutritious. Omics data can provide valuable 

information about the genetic makeup of plants, allowing breeders to identify desirable traits and 

develop improved varieties through targeted breeding programs (AbuQamar, Moustafa, and Tran 

2016). Additionally, omics data can help in understanding the molecular mechanisms underlying 

plant responses to biotic and abiotic stresses, such as diseases, pests, drought, and temperature 

extremes. This knowledge can inform the development of strategies to enhance plant resilience 

and productivity in the face of changing environmental conditions (Zogli et al. 2020). 

The integration and application of omics data have become essential for solving complex 

biological problems in plants. The combination of these approaches has allowed significant steps 

forward in all phases of the breeding process, from the discovery of novel genetic variation to 

more extensive and detailed phenotyping, until the elucidation (and introgression) of a myriad of 

growth-related, life-history, stress resistance and metabolic traits (Sreeman et al. 2018). By 

combining multiple omics datasets, researchers can gain a more comprehensive understanding of 

the molecular networks and regulatory mechanisms that govern plant biology, identify key 

genes, proteins, and metabolic pathways that are involved in specific biological processes or 

traits of interest (Qi et al. 2023). Computational approaches, such as network analysis and 

machine learning algorithms, can be applied to omics data to uncover hidden patterns and predict 

gene functions (Picard et al. 2021). These computational tools facilitate the annotation of genes 

and the deciphering of their functions, which is crucial for advancing our understanding of plant 

biology and for guiding crop improvement efforts. 

1.1 Different facets of plant omics 

Among the various types of omics data, genomics, transcriptomics, proteomics and 

epigenomics have emerged as major focuses of research in plant biology (Chao et al. 2023). 
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Therefore, in this dissertation the primary focus has been on these four major types of omics 

datasets. 

1.1.1 Plant genomics:  

Plant genomes exhibit remarkable features such as genome size variation, gene content 

conservation, and the presence of repetitive sequences (Pellicer et al. 2018). The variation in 

genome size is primarily attributed to the accumulation of repetitive DNA sequences and 

polyploidy events. By unraveling the complexities of plant genomes, researchers can gain 

insights into the evolution and biology of different plant species (Li, Jain, et al. 2017; You 2023). 

The advent of Next-Generation Sequencing (NGS) techniques has revolutionized the study of 

plant genomes (Nguyen et al. 2019). These techniques have made it possible to sequence, 

assemble, and analyze the genomes of numerous plant species (Dmitriev, Pushkova, and 

Melnikova 2022). 

The release of the first plant genome sequence, belonging to Arabidopsis, in 2000, 

marked a significant milestone in our understanding of plant genomics (Initiative, 2000). This 

breakthrough provided new insights and perspectives into the field (Initiative, 2000). Since then, 

rapid progress has been made in plant genomics, with the sequencing of not only model 

organisms but also a wide variety of species of ecological, agricultural, or economic importance 

(Song et al. 2023). This has resulted in the generation of a vast amount of genomic data. To 

make these data accessible to the scientific community, various web portals have been 

established, such as the Ensembl Plants portal and the NCBI genome portal (Cunningham et al. 

2022). These portals provide researchers with easy access to the publicly available plant genomic 

data.  

The availability of plant genomic data has opened new avenues for research in plant 

biology. For example, the sequencing of the tomato genome has provided insights into the 
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evolution of fleshy fruits. By comparing the genome sequences of domesticated tomato and its 

closest wild relative, Solanum pimpinellifolium, researchers have gained a better understanding 

of the genetic basis of fruit development (Tomato Genome 2012). Similarly, the sequencing of 

the Brachypodium genome has made it a valuable model system for studying plant biology. The 

genome sequence of Brachypodium distachyon, the flagship species of the genus, has led to 

significant advancements in our understanding of plant chromosomes and biology (Scholthof et 

al. 2018). 

Plant genomics has become a vital component of understanding gene functions, and 

developing techniques like gene-targeted mutational forward genetics, sequence-based markers, 

and microarray platforms for gene expression studies (You 2023). These tools are instrumental in 

molecular breeding and the identification of economically important genes, addressing the 

challenges of providing food, fiber, and fuel for the growing global population. 

1.1.2 Plant transcriptomics:  

Plant transcriptomics is a field of study that focuses on understanding the dynamic 

changes in the transcriptome of plants, which play a crucial role in their inherent adaptive 

potential (Tyagi et al. 2022).As sessile organisms, plants have evolved mechanisms to respond 

and adapt to various developmental and environmental signals. These responses are reflected in 

the dynamic nature of the transcriptome, which represents the collective expression of genes in a 

given cell or tissue (Cha, Yang, and Lee 2022). The extensive gene duplication events in plant 

genomes have contributed to the formation of large gene families, allowing for sub-

functionalization and the creation of specialized networks (Panchy, Lehti-Shiu, and Shiu 2016). 

The differential regulation of paralogs and their interactions across the genome contribute to the 

diverse transcriptome configurations that define different adaptive responses in plants. 
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Understanding the dynamics of the plant transcriptome is crucial for unraveling the molecular 

mechanisms underlying plant adaptation (Lian et al. 2020). 

Over the past three decades, the field of plant transcriptomics has undergone significant 

advancements in technology and approaches used for profiling the transcriptome. These 

advancements have allowed researchers to gain a deeper understanding of the dynamic changes 

in gene expression in plants. Initially, semi-global clone-by-clone sequencing of expressed 

sequence tags (ESTs) provided insights into specific genes, followed by global hybridization-

based profiling using microarrays and first-generation global sequencing-based platforms like 

massively parallel signature sequencing (MPSS) (Wang and Chekanova 2019). However, the 

most recent and transformative innovation in plant transcriptomics has been the application of 

next-generation sequencing (NGS) technology. This paradigm shift has enabled an even more 

comprehensive scope of profiling the spatio-temporal transcriptome fluxes by directly sampling 

and deep-sequencing transcripts, a feat not possible with earlier technologies (Wang, Gerstein, 

and Snyder 2009). 

This technology, known as RNA-seq, has revolutionized the field by allowing researchers 

to obtain a more comprehensive and detailed view of gene expression patterns in plants. It has 

provided researchers with a universal tool for profiling gene expression in different tissues, 

developmental stages, and under various environmental conditions. By analyzing the 

transcriptome, researchers can identify key genes involved in specific biological pathways, 

unravel regulatory networks, and gain insights into plant responses to different stimuli. 

1.1.3 Plant proteomics:  

Proteomics offers direct insight into cellular functions by analyzing the proteome—the 

entire complement of proteins expressed by a cell, tissue, or organism—thereby revealing the 

network of molecular interactions that make up biological systems. Unlike genetic codes or 
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messenger molecules, proteomics allows researchers to investigate the actual proteins present in 

cells and understand their roles in various biological processes. In the context of plant biology, 

knowledge of plant proteins and their dynamics in response to environmental and biological 

stressors can have a significant impact on improving crop yield and nutritional properties. 

Functional genomic tools, including proteomics, have become indispensable in plant research 

(Eldakak et al. 2013). Proteomics is routinely employed to comprehensively profile complex 

protein extracts from plant organisms, providing valuable qualitative and quantitative 

information on protein dynamics. By studying the proteome, researchers can gain insights into 

the abundance, modifications, interactions, and functions of proteins in plants. The application of 

proteomics in plant research has led to significant advancements in understanding plant biology 

and addressing agricultural challenges (Liu, Lu, et al. 2019). Proteomic studies have shed light 

on the identification and characterization of key proteins involved in various biological 

processes, such as photosynthesis, metabolism, stress responses, and signal transduction 

pathways (Zhou et al. 2022). This knowledge has the potential to enhance our understanding of 

plant physiology and improve crop traits.  

1.1.4 Plant epigenomics:  

Plant epigenomics is a rapidly advancing field that focuses on the study of epigenetic 

modifications and their impact on gene expression and plant development. Epigenetic 

modifications, for example the tri-methylation of lysine 27 on histone H3 protein (H3K27me3), 

play a crucial role in regulating tissue-specific expression patterns and determining cell fate in 

plants (Zhao et al. 2020). The development of advanced technologies has enabled high-resolution 

mapping of plant epigenomes, providing valuable insights into the distribution and dynamics of 

epigenetic modifications. Understanding plant epigenomics, the study of epigenetic 

modifications and their impact on gene expression and plant biology, has important implications 
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for various aspects of plant research. Epigenetic modifications can contribute to phenotypic 

variation and adaptation in plants, influencing traits such as stress tolerance, growth, and 

development. Epigenomic variation can also influence the heritability of adaptive traits, although 

the extent of this influence is still not fully understood (Dar et al. 2022). 

Epigenomic studies have revealed the role of epigenetic modifications in plant responses 

to environmental stimuli, including stressors such as biotic and abiotic factors. These 

modifications can regulate the expression of genes involved in stress responses and adaptation, 

providing insights into the molecular mechanisms underlying plant resilience (Rajpal et al. 

2022). Furthermore, epigenomic variation has been observed in natural populations and non-

model plant species, highlighting the importance of epigenetic modifications in adaptation and 

evolution. Epigenetic changes can contribute to phenotypic variation and influence fitness, 

potentially subjecting them to natural selection (Ashe, Colot, and Oldroyd 2021). 

1.2 Challenges in omics data integration 

In the era of Big Data, massive waves of ‘omics’ data have revolutionized the way we do 

science. These multi-dimensional large data sets, termed as ‘Big Data’- constitute a collection of 

huge structured and unstructured data sets. Complete extraction of information from such huge 

raw data stimulates scientific inventions in the field of precision agriculture and crop breeding 

(Popescu, Noutsos, and Popescu 2016). Plant science researchers are no longer analyzing one 

data set at a time but are moving towards multi-disciplinary integrative biology. It has been 

demonstrated that integration of different ‘omics’ data types (such as on genomes, 

transcriptomes, proteomes, epigenomes, etc..), boosts biological discoveries and improves 

predictions of the underlying interactions and regulation among molecular entities. Integrating 

different ‘omics’ datasets is a challenging task that relies heavily on data mining and machine 

learning algorithms (Flores et al. 2023). One must account for the specificities of each data type, 
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solve problems associated with processing data across different platforms, and consider the 

variable reliability levels of heterogeneous data.  

Heaviness of such data sets makes it very complex to connect and correlate relationships 

among them, maintaining the hierarchies and multiple data linkage. It is very complex to manage 

large volumes of multidimensional raw data smoothly. Since ‘Big Data’ includes structured and 

unstructured data sets, it is very difficult to store, transfer, process, search the raw data and it 

cannot be managed using conventional database systems and software tools. The heterogeneous 

‘Big data’ set may contain petabytes or exabytes of raw data consisting of billions to trillions of 

archives (Xia, Wang, and Niu 2020). 

Integrating heterogeneous multi-omics data presents a cascade of challenges involving 

the unique data scaling, normalization, and transformation requirements of each individual 

dataset. Any effective integration strategy will also have to account for the regulatory 

relationships between datasets from different omics layers in order to accurately and holistically 

reflect the nature of this multidimensional data. 

Furthermore, there is the issue of integrating omics and non-omics (OnO) data, like 

numerical or imaging data, for example, in order to enhance analytical productivity and to access 

richer insights into biological events and processes (Lopez de Maturana et al. 2019). Currently, 

the large-scale integration of non-omics data with high-throughput omics data is extremely 

limited due to a range of factors, including heterogeneity and the presence of sub phenotypes, for 

instance. The crux of the matter is that without effective and efficient data integration, multi-

omics analysis will only tend to become more complex and resource-intensive without any 

proportional or even significant augmentation in productivity, performance, or insight generation 

(Subramanian et al. 2020). 

https://blog.biostrand.be/making-sense-of-multi-omics-data
https://blog.biostrand.be/en/multidimensional-scalability-in-multi-omics-research
https://pubmed.ncbi.nlm.nih.gov/30897838/
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1.3 Maize as model organism for plant omics research 

Maize (Zea mays) has emerged as a valuable model organism for plant multi-omics 

research due to its genetic architecture, complex responses to abiotic stress, and its significance 

as a staple crop (Farooqi et al. 2022). As a model organism, maize provides researchers with a 

unique opportunity to study fundamental aspects of plant biology, including genetic inheritance, 

genomic properties, domestication, epigenetics, evolution, and chromosome structure (Hake and 

Ross-Ibarra 2015). Additionally, maize serves as a model for investigating complex traits such as 

hybrid vigor and quantitative trait loci (Wallace, Larsson, and Buckler 2014). An integrated 

developmental atlas of the transcriptome, proteome, and phosphoproteome of maize has been 

generated, highlighting the use of maize as a model organism for multiomics research. This atlas 

has allowed for the construction of transcriptome- and proteome-based networks, providing a 

comprehensive understanding of maize development (Walley et al. 2016). 

The use of multi-omics approaches in maize research has greatly enhanced our 

understanding of various aspects of its biology. These approaches, which integrate genomics, 

transcriptomics, proteomics, metabolomics, and phenomics, have provided insights into maize 

crop growth, senescence, yield, and responses to biotic and abiotic stresses (Zenda et al. 2021). 

By employing multi-omics technologies, researchers can generate multi-layered information that 

allows for a comprehensive understanding of the interactions between maize and its 

environment. 

Furthermore, the application of multi-omics approaches in maize research has facilitated 

the development of breeding strategies for abiotic stress tolerance. By studying the metabolic 

responses of maize to stressors such as drought, heat, and nutrient deficiencies, researchers can 

identify key genes and pathways involved in stress tolerance and develop improved maize 

varieties (Roychowdhury et al. 2023). Maize's status as a model organism also extends to its role 
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in advancing plant systems biology. The integration of multi-omics data in maize research has 

led to the development of computational tools and methodologies for data analysis and mining 

(Pazhamala et al. 2021). These tools enable researchers to extract meaningful insights from 

large-scale multi-omics datasets and uncover hidden patterns and relationships within the data.  

1.4 Computational approaches for multi-omics data integration and analysis 

In recent years, there has been a significant advancement in high-throughput omics 

(HTO) technologies, such as genomics, transcriptomics, proteomics, metabolomics, and 

phenomics which have revolutionized the field of crop science (Shaw et al. 2021). These omics 

techniques have provided researchers with a wealth of data, but the integration, visualization, and 

analysis of multi-omics data pose significant challenges due to their heterogeneity and non-

structured nature. To address these challenges, various computational approaches and tools have 

been developed, including bioinformatics resources, software packages, and databases 

(Krassowski et al. 2020). These resources have become indispensable for data production, 

mining, integration, and extraction of valuable information. The integration of omics resources in 

crop breeding holds great promise for the development of better-designed crops. However, to 

fully harness the potential of multi-omics data, innovative analytical approaches are required.  

Machine learning has emerged as an effective solution for large-scale data analysis in 

plant biology (Liakos et al. 2018). Machine learning algorithms can handle the complexity and 

volume of multi-omics data by creating data compatible with parallel computing infrastructures. 

This enables researchers to extract meaningful patterns and insights from the data. By leveraging 

machine learning algorithms, researchers can effectively integrate and interpret multi-omics 

platforms, facilitating the study of plant molecular omics interactions (Cembrowska-Lech et al. 

2023). Machine learning offers promising computational and analytical solutions for the 
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integrative analysis of large, heterogeneous, and unstructured datasets on the Big-Data scale and 

is gradually gaining popularity in plant biology. 

Despite the progress made so far, there are still several challenges that need to be 

addressed. For instance, the integration of the entire omics by employing the 'phenotype to 

genotype' and 'genotype to phenotype' concept is yet to be fully realized (Hardiman 2020). 

Additionally, there is a lack of minimum information standards for multi-omics experiments. 

Currently, such standards are only available for single omics datasets, which hinders the 

comparability and reproducibility of multi-omics studies. Therefore, it is essential to develop 

novel hosting options that can accommodate the multi-platform and multi-layered nature of 

omics data (Conesa and Beck 2019). These hosting options should provide a unified framework 

for integrating and analyzing multiple omics data types, thereby facilitating better accessibility 

and collaboration among the genomics community. The purpose of this dissertation is to address 

these challenges and propose innovative approaches for preprocessing, quality control, hosting, 

and access of multiomics datasets. By embracing the nature of multi-platform and multi-layered 

omics data, this research aims to create frameworks that can effectively integrate and analyze 

various omics data types. These frameworks will not only enhance the accessibility of 

multiomics datasets but also enable researchers to gain deeper insights into the complex 

relationships between genotype and phenotype. 

1.5 Dissertation Organization 

Chapter 1 serves as a general introduction to multi-omics data and computational 

techniques related to the work in this dissertation. It provides an overview of plant omics and big 

data in the fields of plant and crop biology, discusses each omics layer individually, including 

genomics, transcriptomics, proteomics and epigenomics, highlights the challenges associated 

with handling and integration of omics dataset, covers the importance of maize as model species 



12 

 

to understand the plant multi-omics biology, introduces biological resources, datasets, online 

bioinformatics tools and machine learning approaches that are in the public domain. 

Chapter 2 consists of a published manuscript titled “qTeller: a tool for comparative multi-

genomic gene expression analysis” published in Bioinformatics (Woodhouse, Sen, et al. 2021b). 

In this report, we performed gene-level comparative analysis of gene expressions across many 

different conditions, tissues using RNA-Seq datasets from the 26 maize genomes. The detailed 

workflow of qTeller is outlined in (Fig 1.1). We developed an easy-to-use web application for in-

depth analysis of gene expression data. With this MaizeGDB instance of qTeller we 

encompassed expression dataset generated from 200 different RNA-seq mapping pipelines, a 

modernized interface and back-end database and an optimized framework for adoption by other 

organisms’ databases. The focus of this work is to make data generated from individual genomic 

analysis accessible and reusable at a gene-level scale and allow for comparative analysis between 

genes, across different genomes and meta-analyses. 

Chapter 3 consists of a published manuscript titled “Maize Feature Store (MFS): A 

centralized resource to manage and analyze curated maize multi-omics features for machine 

learning applications” published in Oxford Database (Sen et al. 2023). In this work, we introduce 

a framework that hosts gene-based machine learning features built on multi-omics data to 

facilitate the exploration and modeling of classification problems. We populated an instance of 

this framework at MaizeGDB, called the Maize Feature Store (MFS), with over 14,000 gene-

based features based on published genomic, transcriptomic, epigenomic, variomic, and 

proteomics data sets. In addition, we also integrated supervised and unsupervised machine-

learning algorithms that can significantly simplify the analysis and prediction of complex 
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genome annotations. Last, we demonstrated the tool's utility by achieving high classification 

accuracy for distinguishing core and non-core genes in the maize pan-genome (Fig 1.2). 

Chapter 4 consists of a manuscript named “Predicting genes associated with biotic or 

abiotic stress across different maize lines and related species”. In this report, we created a 

computational model that predicted stress-responsive genes associated with abiotic and biotic 

stresses in Maize (Zea Mays) as well as across other maize genome assemblies (e.g., maize 

inbred lines W22 and Zea mays ssp. mexicana L (TIL-18, TIL-25)) by performing meta-analyses 

of a comprehensive set of multi-omics datasets. The workflow provided a framework that 

yielded insight into the possible characteristics of specific genes and the role they play in 

response to different environmental stimuli (Fig 1.3).  

Chapter 5 consists of the conclusions of the thesis and discusses the future directions of 

the work. 

 1.6 Main Figures 

 

Figure 1.1 Graphical workflow of the interactive qTeller comparative RNA-seq expression 

platform. 
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Overall graphical workflow of the interactive qTeller comparative RNA-seq expression 

platform. qTeller assembles preprocessed RNA-seq expression datasets from varied sources, 

collected from multiple tissues and conditions. The assembling requires three inputs: a gff or bed 

file of the gene models of interest; a directory containing files with RNA-Seq and/or protein 

abundances by experiment; and a metadata file structured. The assembled data is later stored in a 

SQLite database and is presented interactively via multiple HTML and PHP files. 

 

 

Figure 1.2 Maize Feature Store Data Flow: a central place to transform, store, and serve raw data 

for both online and offline predictions, model training, and exploratory analyses. 
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Figure 1.3 Computational model to predict stress-responsive genes associated with abiotic and 

biotic stresses in maize as well as across other maize lines. 
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2.1 Abstract 

Motivation: Over the last decade, RNA-Seq whole-genome sequencing has become a 

widely used method for measuring and understanding transcriptome-level changes in gene 

expression. Since RNA-Seq is relatively inexpensive, it can be used on multiple genomes to 

evaluate gene expression across many different conditions, tissues, and cell types. Although 

many tools exist to map and compare RNA-Seq at the genomics level, few web-based tools are 

dedicated to making data generated for individual genomic analysis accessible and reusable at a 

gene-level scale for comparative analysis between genes, across different genomes and meta-

analyses.  

Results: To address this challenge, we revamped the comparative gene expression tool 

qTeller to take advantage of the growing number of public RNA-Seq datasets. qTeller allows 



22 

 

users to evaluate gene expression data in a defined genomic interval and also perform two-gene 

comparisons across multiple user-chosen tissues. Though previously unpublished, qTeller has 

been cited extensively in scientific literature, demonstrating its importance to researchers. Our 

new version of qTeller now supports multiple genomes for intergenomic comparisons and 

includes capabilities for both mRNA and protein abundance datasets. Other new features include 

support for additional data formats, modernized interface and back-end database and an 

optimized framework for adoption by other organisms’ databases. 

2.2 Introduction 

Since the introduction of RNA-Seq technology over 10 years ago (Wang, Gerstein, and 

Snyder 2009), the number of available RNA-Seq libraries has increased rapidly (Fig. 2.1). Many 

software programs, mostly in R, such as EdgeR, ggplot2, WGCNA and DEvis (Langfelder and 

Horvath 2008; Price et al. 2019; Robinson, McCarthy, and Smyth 2010), have been created to 

visualize RNA-Seq abundances across different tissues and time points. However, there are few 

tools that allow users not trained in programming to visualize RNA-Seq expression patterns 

across multiple genes or genomic intervals, particularly in an interactive way or to compare any 

given two genes. In 2012, this need was addressed in the creation of qTeller, a web-hosted RNA-

Seq visualization platform that allows users to compare RNA-Seq expression across tissues 

within a genomic interval, across multiple genes or compare expression between any two genes 

in a given genome (https://github.com/jschnable/qTeller). The platform displays preanalyzed 

values from publicly available, published datasets. At the time, qTeller hosted instances for Zea 

mays, Arabidopsis thaliana and Brassica rapa. Although unpublished, qTeller has been used by 

many researchers and cited extensively, including in the areas of evolution (Man, Gallagher, and 

Bartlett 2020; Pophaly and Tellier 2015; Wang et al. 2019; Woodhouse et al. 2014), 

metaanalysis (Hawkins et al. 2015; Jia et al. 2018; Zhang et al. 2018), gene and gene family 

https://github.com/jschnable/qTeller
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identification (Li et al. 2019; Liu, Qu, et al. 2019), quantitative trait and association studies (Liu 

et al. 2012; Wu, Li, et al. 2016), orthology (Sindhu et al. 2018) and general reviews (Liu, Fernie, 

and Yan 2020; Wang, Lu, and Deng 2016). qTeller’s breadth of use demonstrates its value to the 

research community. In 2018, the Maize Genetics and Genomics Database (MaizeGDB) 

(Portwood et al. 2019) released its own version of qTeller for maize 

(https://qteller.maizegdb.org/). Since then, MaizeGDB has optimized qTeller to host information 

on protein abundance as well as mRNA abundance (i.e. RNA-Seq data), and to allow 

comparisons across gene models annotated in different reference genomes. By offering this tool 

as a web page to the maize community, MaizeGDB helps researchers to quickly compare 

precomputed gene expression abundances across maize genes and genomes. Here, we present a 

description of qTeller and its functionality, and how users can download and run the software 

themselves. The MaizeGDB qTeller is available at https://github.com/MaizeGenetics-and-

Genomics-Database/qTeller. 

2.3 Material and methods 

2.3.1 qTeller basic functionality  

There are three main sections of qTeller: Section 2.3.1.1, Section 2.3.1.2 and Section 

2.3.1.3. Each section is accessed through a drop-down menu on the web page and presents gene 

expression information in a different way to meet the needs of users with distinct use cases. 

Users may investigate expression within one genome, across multiple genomes or compare RNA 

expression to protein abundances. The three sections are described below.  

2.3.1.1 Genes in an interval  

Section 2.3.1.1 allows users to select a chromosome and coordinate interval of interest for 

a given genome (only one genome at a time can be selected) (Fig. 2.2). The primary use case for 

this section of qTeller is when a researcher has mapped a gene or QTL to a defined interval in 

https://qteller.maizegdb.org/
https://github.com/MaizeGenetics-and-Genomics-Database/qTeller
https://github.com/MaizeGenetics-and-Genomics-Database/qTeller
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the genome and wishes to use gene expression data within this interval to prioritize among the 

potential candidate genes within the interval. The interface can be set up for a single reference 

genome or to have a selectable list of genomes from a set. Next, the user selects the RNA-Seq 

libraries of interest below the genomic coordinate selection, selects all RNA-Seq libraries under 

a given set, or selects all RNA-Seq libraries in the database. qTeller then returns the RNA-Seq 

abundances of all the selected libraries of all the genes within the selected interval for that given 

genome. A user has the option of selecting ‘All Chromosomes’ in the dropdown menu and 

leaving the coordinate boxes blank to return the RNA-Seq abundances for all genes in the 

genome (excluding unplaced scaffolds). The output is in the format of a table that includes gene 

model ID, RNA-Seq abundances for each selected library, and a link to visualize the data as a 

bar chart for every gene model (see Section 2.3.1.3). A user has the option of either viewing the 

table as a web page or downloading the table as a .csv file. genome start and end position, and 

check boxes for each of the RNA-Seq experiments (organized by project or paper). Each set of 

RNA-Seq experiments has an ‘All on’ and ‘All off’ option. 

2.3.1.2 Genes by name  

The Section 2.3.1.2 is similar to Section 2.3.1.1 except that it allows a user to paste a list 

of gene models of interest instead of selecting genomic coordinates (Fig. 2.3). The use cases for 

this section of qTeller include users with a set of genes of interest identified via other means (e.g. 

a set of GWAS hits or a cluster of genes linked by protein interaction data). For a multi-genome 

instance, a mix of gene models across different genomes is permitted, e.g. allowing users to 

compare expression from gene models across multiple genomes of a pangenome. Library 

selection and output tables are the same as for Section 2.3.1.1.  
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2.3.1.3 Visualize expression  

The Section 2.3.1.3 tool draws a bar chart for all libraries for a given input gene model or 

draws a dot plot of all libraries between two gene model inputs (Fig. 2.4). The latter case is 

useful for comparing relative expressions between two gene models. The dot plot feature for the 

multi-genome qTeller instance allows a user to input two gene models from any genome. The 

use cases for this section of qTeller include comparisons of duplicated genes to identify potential 

evidence of regulatory subfunctionalization, or comparison of patterns of expression of 

equivalent gene models between different genetic backgrounds/genomics to identify genotype-

specific patterns of regulation as the result of cis- or trans-regulatory divergence. Advanced 

options for both the bar chart and dot plot allow users to select their libraries of interest instead 

of visualizing all libraries. Under each visualization output, qTeller generates a shareable link to 

recreate the bar chart or dot plot images if a user wants to share the data with others or use it in a 

publication. A user can mouse over the bars in the bar chart, or the dots in the dot plot, to get 

information about the abundances and how the data were generated experimentally. A user can 

also change the axes of the dot plot to zoom in on a region of interest for better resolution.  

2.3.2 qTeller expanded functionality  

2.3.2.1 Protein expression visualization  

Gene expression is the measurement of how genes produce functional products used to 

carry out processes in a cell. There are two primary ways to measure gene expression: mRNA 

abundance using RNA-Seq, and protein abundance using mass spectrometry [reviewed in (Zhang 

et al. 2010)]. Gene expression at the mRNA abundance level can be only poorly predicted using 

data on gene expression at the protein abundance level and vice versa, and both types of data can 

be used to associate genes with functional characteristics. The functionality of qTeller was 

expanded to include protein expression as well as RNA-Seq data.  
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The ‘Compare RNA & Protein’ tool draws four different types of visualization, a bar 

chart and three different dot plots. The ‘Single-Gene Expression’ tool under ‘Visualize RNA 

versus Protein’ is similar to the single-genome Section 2.3.1.3 bar chart, except that the user can 

select either mRNA abundance (FPKM) or protein abundance (NSAF) for all selected libraries 

for a single input gene model. The first dot plot (Two-Gene Scatterplot, Fig. 2.5A) compares two 

gene model inputs using the same data type, either mRNA versus mRNA or protein versus 

protein. This dot plot is useful for comparing relative mRNA or protein abundance between two 

gene models. The dot plot feature for the multi-genome qTeller instance allows a user to input 

two gene models from any genome as long as the expression data from both genomes were 

generated by the same project with a consistent methodology. The second dot plot (‘Single Gene 

Expression versus Abundance’) is used to make a comparison between mRNA abundance and 

protein abundance for the single input gene model across different tissues. The third dot plot 

(‘MultiGene Expression versus Abundance in a Single Tissue’, Fig. 2.5B) is similar to the 

second dot plot except that it allows a user to select the tissue of interest and enter a list of gene 

models. This dot plot makes a direct comparison between mRNA and protein abundance for a 

fixed tissue and set of gene models. The latter two plots also provide a Pearson correlation 

coefficient that measures linear correlation between two variables and abundance types.  

2.3.2.2 Multi-genome functionality  

qTeller now offers a multi-genomic option when building and calling a database; this 

feature is useful for genomes and/or RNA-Seq datasets that were constructed using the same 

methods across genome assemblies (e.g. NAM founders in maize, doi:10.1101/ 

2021.01.14.426684). This functionality is specific for multiple genomes within the same species, 

requiring that all genomes have the same number of chromosomes with the same chromosome 

ID designation (i.e. chr1, chr2, etc. or 1, 2, etc.). The main technical difference between qTeller 
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and multi-genome qTeller is that an input bed file is required which contains information about 

each genome ID. The bed file follows the typical structure of a normal bed file, with the gene 

model ID in Column 4 and the ID of the genome in Column 5 (see Supplementary Table S1). 

The genome ID can be any alphanumeric string. In order for experiments to be treated as paired 

data, and thus appropriate for between-genome dot plots and comparisons in multi-genome 

qTeller, they must be assigned exactly matching values in the ‘data_id’ column. For instance, if 

SRR12345 for Genome A is described as ‘pollen tube’ in the ‘data_id’ metadata column, then if 

Genome B’s SRR23456 from the same experiment is also from pollen tube tissue, its ‘data_id’ 

must also be written as ‘pollen tube’ exactly, and have the same experiment Source, if the user 

wishes these experiments to be fetched together.  

The biggest difference in the qTeller interface structure for multigenome is under Section 

2.3.1.1, where users can select a genome of their choice from the drop-down menu at the top. 

This reflects a change in the database structure wherein each gene model in the multi-genome 

database is assigned a genome ID (see Software Usage below). Because Section 2.3.1.1 is based 

on a genomic coordinate system, more than one genome cannot be fetched at a time. However, 

under Section 2.3.1.2 or Section 2.3.1.3, gene model IDs from more than one genome can be 

fetched. Ideally, cross-genome RNA-Seq datasets should be matched with identical descriptions 

only when the RNA samples used for quantification were collected, processed, and sequenced by 

the same laboratory, to ensure that any differences observed in relative abundances between 

genomes are not due to differences in laboratory technique or environment.  

2.3.2.3 Expanded qTeller navigation  

The expanded qTeller software package includes a reformatted homepage and a menu 

header on each page for quick access to each of the four tools or links to general information 
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(contact, data sources and FAQs). Each tool menu item has a submenu listing which genomes are 

available. There is also a new ‘News’ item feature on the side of the page.  

2.3.3 Basic qTeller software usage  

qTeller was originally written in Python 2.7 (http://www.python. org), html and PHP5 for 

SQlite3 (https://www.sqlite.org/) software. We updated the Python code to Python 3 and ensured 

that the PHP scripts were PHP7 compatible. Images are drawn using Python Matplotlib (Hunter 

2007). Python3 dependencies are listed in qteller_packagelist_python3.txt in our GitHub and can 

be installed using Python3 pip. The most basic form of qTeller requires only three inputs: a gff or 

bed file of the gene models of interest; a directory containing files with RNA-Seq and/or protein 

abundances by experiment; and a metadata file structured as described in Supplementary Table 

S2. There are two main directories: the build_db directory, where the database is built; and the 

web_interface directory, which contains the dynamic web pages.  

qTeller’s basic structure allows for most types of RNA-Seq mapping pipelines to be used, 

since qTeller accepts fpkm abundances calculated by Cufflinks (genes.fpkm_mapping outputs) 

from genomic mapping pipelines such as GSNAP (Wu, Reeder, et al. 2016), STAR (Dobin et al. 

2013) and TopHat (Kim et al. 2013) or TPM abundances calculated by transcript RNA-Seq 

mapping programs such as Salmon (Patro et al. 2017) or Kallisto (Bray et al. 2016). However, 

qTeller’s structure is based on gene models, not transcripts; therefore, if a user has 

Salmon/Kallisto output files that quantify expression at the per-transcript level, it will first be 

necessary to calculate an aggregate gene-level abundance, whether via averaging or another 

process, and the resulting gene-level data constructed as .txt file where Column 1 is the Gene ID, 

and Column 2 is the averaged TPM abundance (see Supplementary Table S3). The qTeller 

build.py scripts will automatically detect whether the directory containing the RNA-Seq 

abundances have the .txt or .fpkm_tracking extension and proceed accordingly. The two-column, 

https://www.sqlite.org/
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gene/abundance .txt file configuration will also work for abundances calculated through EdgeR 

or some other method. It is important to emphasize that all inputs combined in a single qTeller 

instance should be mapped using the same pipeline and use the exact same method of counting 

abundances (either FPKM or TPM or some other method). The combination of datasets 

generated using different quantification pipelines will generate many apparent differences in 

expression, resulting from technical differences in quantification rather than biological 

differences in expression.  

The .txt file or .fpkm_mapping outputs must be preprocessed to replace empty 

abundances as ‘Nan’ before running them as input files in the qTeller build.py scripts. This 

preprocessing of the input files enables qTeller to differentiate between 0 abundance value and 

null abundance value. This preprocessing of the .txt file or .fpkm_mapping outputs can be either 

done by the user using Excel, or by the qTeller script metadata_NA_to_Nan.py available in our 

GitHub. One can also customize the code as per the user input file structure.  

qTeller will accept multiple biological replicates. However, if a user has a large number 

of libraries to work with, it is advised to average the biological replicate abundances by gene, 

and create a text file as described above, for the RNA input; otherwise, visualization of datasets 

can become crowded and difficult to resolve visually. This method of averaging biological 

replicates was used to construct the current MaizeGDB qTeller instances.  

Because .gff file structures can vary in Column 9 in terms of whether genes are prefaced 

by ‘ID¼’ or some other scheme, qTeller allows the user to indicate which identifier is used in the 

gene model input .gff file by selecting –gff and then –gene_def_tag and typing the identifier 

afterward. If this option is not selected, qTeller will assume the identifier is ‘ID’.  
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Metadata files need to be organized exactly as the example given in Supplementary Table 

S2. The qTeller web pages are organized based on the project from which the RNA-Seq data was 

collected, processed and sequenced (i.e. ‘Source’ in the metadata files.) This ensures that all the 

data within a collection has been extracted and sequenced the same way, so as to avoid the issue 

of artifactual relative abundances due to differences in laboratory technique or environment. 

Note that abundances in similar tissues across different laboratories (i.e. leaf) may differ 

somewhat due to differences in laboratory handling and other factors. Metadata is dynamically 

organized on each web page based on the contents of the database.  

qTeller builds a SQLite3 database from the gene model, RNA (and protein) abundance 

and metadata information. This database is then the source of all data called by qTeller in the 

web pages for Section 2.3.1.1, Section 2.3.1.2 and Section 2.3.1.3.  

Certain files are hard-coded for drop-down menu information and must be manually 

changed by the user. For instance, in the index_*.php files (index_singlegenome.php, 

index_multigenome.php and Protein_index.php) that correspond to the Section 2.3.1.1 pages, the 

chromosome selection drop-down menu must be edited to reflect the number of chromosomes in 

the target genome(s), and the name of the chromosomes in the target genome. For instance, 

maize has 10 chromosomes, designated chr1, chr2, etc., whereas Sorghum’s chromosomes are 

designated Chr01, Chr02, etc. in the current Sorghum reference genome release, and Arabidopsis 

thaliana has only five chromosomes; the drop-down menu in index_*.php will need to be edited 

to reflect the target genome’s configuration (see Supplementary Fig. S1). Also, in the 

index_multigenome.php file for multiple genomes, the drop-down menu for genome selection 

will need to be manually changed to reflect the genomes used, based on their designation in 
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Column 5 of the gene model bed file input. The default index_multigenome.php in our GitHub 

download is configured for the multigenome test data (see below).  

Example databases of a subset of incomplete maize data for single-genome, multi-

genome and protein data, as well as example metadata, bed and fpkm files to generate these 

databases, are included in the build_db directory. 

2.4 Results 

2.4.1 Use case: MaizeGDB qTeller  

There are several features in MaizeGDB’s qTeller instance that are uniquely specified for 

maize, including the maize genomes, maize datasets and MaizeGDB-specific metadata and other 

information. The homepage for the MaizeGDB qTeller website (https://qteller. maizegdb.org/) 

has a general description of qTeller, news items, quick links for each of the four tools, two 

sections for getting started and frequently asked questions (FAQs) and a Contact page linked to a 

local JIRA (https://www.atlassian.com/software/jira) instance to track errors or issues. The 

datasets used in MaizeGDB qTeller are described below.  

2.4.2 Datasets  

2.4.2.1 Maize genomes  

MaizeGDB currently hosts three instances of qTeller: RNA-Seq and protein abundance 

data for the latest two versions (versions 4 and 5) of the reference maize genome B73, and RNA-

Seq data for the NAM founder genomes, consisting of the genomes of 26 diverse maize inbred 

lines (doi:10.1101/2021.01.14.426684, https://namgenomes.org/).  

The well-known and most used public founder maize variety B73 was sequenced in 2009 

(Schnable et al. 2009). For nearly a decade, B73 was the reference genome for the maize 

research community, and most of the genomic tools, resources and datasets at MaizeGDB were 

oriented around this single reference. MaizeGDB’s 2018 release of qTeller centered around 

https://namgenomes.org/
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version 4 of the B73 genome (RefGen_v4) released in 2017 (Jiao et al. 2017). As sequencing 

technology became more affordable, additional maize reference-quality genomes were 

sequenced (Hirsch et al. 2016; Springer et al. 2018; Sun et al. 2018). While these genome 

assemblies had great potential to advance maize research, the underlying assemblies and 

supporting datasets (e.g. RNA-Seq) were generated with different methodologies and conditions.  

In 2020–2021, the NAM Sequencing Consortium (doi:10.1101/ 2021.01.14.426684, 

https://nam-genomes.org/) released the first set of maize genomes sequenced, assembled and 

annotated in a consistent way. The NAM Sequencing Consortium’s data release included a new 

version of B73 (RefGen_v5) and the 25 founder lines of the Nested Association Mapping 

(NAM) population, which has been used extensively by maize and other researchers to study 

maize flowering time (Buckler et al. 2009), leaf architecture (Tian et al. 2011), disease resistance 

(Poland et al. 2011) and other important agronomic traits (Wallace et al. 2014). These assemblies 

presented the opportunity for constructing pan-genomes and identifying pan-gene sets (genes 

conserved across the varieties), as well as making it possible to develop pan-genome tools. The 

multi-genome version of qTeller at MaizeGDB includes these 25 NAM founder lines and B73 

RefGen_v5. The MaizeGDB project currently supports 44 maize genomes that could be included 

into qTeller as additional multigenome gene expression datasets become available.  

2.4.2.2 Maize gene expression  

The MaizeGDB qTeller has over 200 unique datasets from 12 projects available at 

MaizeGDB. The B73 version 4 instance of qTeller has RNA-Seq data from six studies (Forestan 

et al. 2016; Johnston et al. 2014; Kakumanu et al. 2012; Stelpflug et al. 2016; Walley et al. 2016; 

Waters et al. 2017) covering 158 tissues/conditions. The B73 version 5 instance has data from 

eight studies (Forestan et al. 2016; Johnston et al. 2014; Kakumanu et al. 2012; Makarevitch et 

al. 2015; Opitz et al. 2014a; Stelpflug et al. 2016; Walley et al. 2016; Warman et al. 2020) 

https://nam-genomes.org/
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covering 172 tissues/conditions. The multi-genome set of NAM founders has three studies with 

23 tissues/conditions (10.1101/2021.01.14.426684, 10.1105/ tpc.17.00475, 10.1186/s13059-017-

1328-6). The ‘Compare RNA & Protein’ tool has data from one mRNA and protein study 

(Walley et al. 2016) for 23 tissues/conditions; this dataset is currently the only large-scale gene 

expression atlas that provides both RNA-Seq and protein abundance data.  

2.4.2.3 Data processing  

All of the RNA-Seq datasets for MaizeGDB qTeller were mapped with a consistent 

methodology. Fastq files were mapped to either Ensembl AGPv4 B73, Ensembl AGPv5 B73 or 

the NAM founder genomes using STAR, and abundances calculated using Cufflinks. The protein 

abundance data was projected to both AGPv4 B73 and AGPv5 B73 based on gene synteny [see 

methods in (Walsh et al. 2020)]. 

2.5 Main Figures and table 

 

Figure 2.1 Plant RNA-Seq datasets at the NCBI Short Read Archive. 
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The chart shows the growth of plant RNA-Seq datasets at the GenBank Short Read 

Archive from 2010 to 2020. The x-axis is labelled by year. The y-axis is labeled by the number 

of RNA-Seq experiments. The blue bars for each year show the number of experiments added 

during that calendar year. The red line shows the cumulative number of experiments available 

during the given year. 

 

Figure 2.2 ‘Genes in an Interval’ tool. 

The screenshot is from MaizeGDB’s qTeller instance for the ‘Genes in an Interval’ tool 

for a set of maize genomes (NAM founders). The input form has a drop-down menu for the 
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genomes and chromosomes (including an ‘All Chromosomes’ option), text boxes for the genome 

start and end position, and check boxes for each of the RNA-Seq experiments (organized by 

project or paper). Each set of RNA-Seq experiments has an ‘All on’ and ‘All off’ option. 

 

 

Figure 2.3 ‘Genes by Name’ tool. 

The screenshot is from MaizeGDB’s qTeller instance for the ‘Genes by Name’ tool for a 

set maize genome (NAM founders). The input form takes as input a text box for a list of gene 

model identifiers and check boxes for each of the RNA-Seq experiments (organized by project or 

paper). Each set of RNA-Seq experiments has an ‘All on’ and ‘All off’ option. 
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Figure 2.4 ‘Visualize Expression’ tool. 

The screenshot is from MaizeGDB’s qTeller instance for the ‘Visualize Expression’ tool 

for genes in the B73 v5 maize genome. (A) The output of the B73 gene Zm00001eb207060 for a 

subset of root tissue from the ‘Single-Gene Expression’ tool that creates a bar chart showing the 

mRNA abundance from selected RNA-Seq experiments. (B) The output from the ‘Two-Gene 

Scatterplot’ tool which displays a scatter plot comparing the expression for two genes. 

Zm00001eb207060 from the bar chart image is compared to its retained homeolog 

Zm00001eb233290. Notice that Zm00001eb207060 is expressed consistently higher in root 

tissue than Zm00001eb233290. 
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Figure 2.5 ‘Compare RNA and Protein’ tool. 

 

The screenshot is from MaizeGDB’s qTeller instance for the ‘Compare RNA and 

Protein’ tool for genes in the B73 v5 maize genome. (A) The output from the ‘Single-Gene 

Expression versus Abundance’ tool that creates a scatter plot comparing mRNA expression and 

protein abundance from selected RNA-Seq experiments. (B) The output from the ‘Multi-Gene 

Expression versus Abundance in a single tissue’ tool which displays a scatter plot comparing 

mRNA expression and protein abundance for the selected tissue and set of gene models. 

 

 



38 

 

2.6 References 

Bray, N. L., H. Pimentel, P. Melsted, and L. Pachter. 2016. 'Near-optimal probabilistic RNA-seq 

quantification', Nat Biotechnol, 34: 525-7. 

Buckler, E. S., J. B. Holland, P. J. Bradbury, C. B. Acharya, P. J. Brown, C. Browne, E. Ersoz, S. 

Flint-Garcia, A. Garcia, J. C. Glaubitz, M. M. Goodman, C. Harjes, K. Guill, D. E. 

Kroon, S. Larsson, N. K. Lepak, H. Li, S. E. Mitchell, G. Pressoir, J. A. Peiffer, M. O. 

Rosas, T. R. Rocheford, M. C. Romay, S. Romero, S. Salvo, H. Sanchez Villeda, H. S. da 

Silva, Q. Sun, F. Tian, N. Upadyayula, D. Ware, H. Yates, J. Yu, Z. Zhang, S. Kresovich, 

and M. D. McMullen. 2009. 'The genetic architecture of maize flowering time', Science, 

325: 714-8. 

Dobin, A., C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson, 

and T. R. Gingeras. 2013. 'STAR: ultrafast universal RNA-seq aligner', Bioinformatics, 

29: 15-21. 

Forestan, C., R. Aiese Cigliano, S. Farinati, A. Lunardon, W. Sanseverino, and S. Varotto. 2016. 

'Stress-induced and epigenetic-mediated maize transcriptome regulation study by means 

of transcriptome reannotation and differential expression analysis', Sci Rep, 6: 30446. 

Hawkins, L. K., J. E. Mylroie, D. A. Oliveira, J. S. Smith, S. Ozkan, G. L. Windham, W. P. 

Williams, and M. L. Warburton. 2015. 'Characterization of the Maize Chitinase Genes 

and Their Effect on Aspergillus flavus and Aflatoxin Accumulation Resistance', PLoS 

One, 10: e0126185. 

Hirsch, C. N., C. D. Hirsch, A. B. Brohammer, M. J. Bowman, I. Soifer, O. Barad, D. Shem-Tov, 

K. Baruch, F. Lu, A. G. Hernandez, C. J. Fields, C. L. Wright, K. Koehler, N. M. 

Springer, E. Buckler, C. R. Buell, N. de Leon, S. M. Kaeppler, K. L. Childs, and M. A. 

Mikel. 2016. 'Draft Assembly of Elite Inbred Line PH207 Provides Insights into 

Genomic and Transcriptome Diversity in Maize', Plant Cell, 28: 2700-14. 

Hunter, John D. 2007. "Matplotlib: A 2D Graphics Environment." In, 90-95. IEEE Computer 

Society. 

Jia, H., W. Sun, M. Li, and Z. Zhang. 2018. 'Integrated Analysis of Protein Abundance, 

Transcript Level, and Tissue Diversity To Reveal Developmental Regulation of Maize', J 

Proteome Res, 17: 822-33. 

Jiao, Y., P. Peluso, J. Shi, T. Liang, M. C. Stitzer, B. Wang, M. S. Campbell, J. C. Stein, X. Wei, 

C. S. Chin, K. Guill, M. Regulski, S. Kumari, A. Olson, J. Gent, K. L. Schneider, T. K. 

Wolfgruber, M. R. May, N. M. Springer, E. Antoniou, W. R. McCombie, G. G. Presting, 

M. McMullen, J. Ross-Ibarra, R. K. Dawe, A. Hastie, D. R. Rank, and D. Ware. 2017. 

'Improved maize reference genome with single-molecule technologies', Nature, 546: 524-

27. 



39 

 

Johnston, R., M. Wang, Q. Sun, A. W. Sylvester, S. Hake, and M. J. Scanlon. 2014. 

'Transcriptomic analyses indicate that maize ligule development recapitulates gene 

expression patterns that occur during lateral organ initiation', Plant Cell, 26: 4718-32. 

Kakumanu, A., M. M. Ambavaram, C. Klumas, A. Krishnan, U. Batlang, E. Myers, R. Grene, 

and A. Pereira. 2012. 'Effects of drought on gene expression in maize reproductive and 

leaf meristem tissue revealed by RNA-Seq', Plant Physiol, 160: 846-67. 

Kim, D., G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, and S. L. Salzberg. 2013. 'TopHat2: 

accurate alignment of transcriptomes in the presence of insertions, deletions and gene 

fusions', Genome Biol, 14: R36. 

Langfelder, P., and S. Horvath. 2008. 'WGCNA: an R package for weighted correlation network 

analysis', BMC Bioinformatics, 9: 559. 

Li, Y., L. Zhai, J. Fan, J. Ren, W. Gong, X. Wang, and J. Huang. 2019. 'Genome-wide 

identification, phylogenetic and expression analysis of the maize HECT E3 ubiquitin 

ligase genes', Genetica, 147: 391-400. 

Liu, J., A. R. Fernie, and J. Yan. 2020. 'The Past, Present, and Future of Maize Improvement: 

Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement', 

Plant Commun, 1: 100010. 

Liu, R., H. Jia, X. Cao, J. Huang, F. Li, Y. Tao, F. Qiu, Y. Zheng, and Z. Zhang. 2012. 'Fine 

mapping and candidate gene prediction of a pleiotropic quantitative trait locus for yield-

related trait in Zea mays', PLoS One, 7: e49836. 

Liu, Y., J. Qu, L. Zhang, X. Xu, G. Wei, Z. Zhao, M. Ren, and M. Cao. 2019. 'Identification and 

characterization of the TCA cycle genes in maize', BMC Plant Biol, 19: 592. 

Makarevitch, I., A. J. Waters, P. T. West, M. Stitzer, C. N. Hirsch, J. Ross-Ibarra, and N. M. 

Springer. 2015. 'Transposable elements contribute to activation of maize genes in 

response to abiotic stress', PLoS Genet, 11: e1004915. 

Man, J., J. P. Gallagher, and M. Bartlett. 2020. 'Structural evolution drives diversification of the 

large LRR-RLK gene family', New Phytol, 226: 1492-505. 

Opitz, N., A. Paschold, C. Marcon, W. A. Malik, C. Lanz, H. P. Piepho, and F. Hochholdinger. 

2014. 'Transcriptomic complexity in young maize primary roots in response to low water 

potentials', BMC Genomics, 15: 741. 

Patro, R., G. Duggal, M. I. Love, R. A. Irizarry, and C. Kingsford. 2017. 'Salmon provides fast 

and bias-aware quantification of transcript expression', Nat Methods, 14: 417-19. 

Poland, J. A., P. J. Bradbury, E. S. Buckler, and R. J. Nelson. 2011. 'Genome-wide nested 

association mapping of quantitative resistance to northern leaf blight in maize', Proc Natl 

Acad Sci U S A, 108: 6893-8. 



40 

 

Pophaly, S. D., and A. Tellier. 2015. 'Population Level Purifying Selection and Gene Expression 

Shape Subgenome Evolution in Maize', Mol Biol Evol, 32: 3226-35. 

Portwood, J. L., 2nd, M. R. Woodhouse, E. K. Cannon, J. M. Gardiner, L. C. Harper, M. L. 

Schaeffer, J. R. Walsh, T. Z. Sen, K. T. Cho, D. A. Schott, B. L. Braun, M. Dietze, B. 

Dunfee, C. G. Elsik, N. Manchanda, E. Coe, M. Sachs, P. Stinard, J. Tolbert, S. 

Zimmerman, and C. M. Andorf. 2019. 'MaizeGDB 2018: the maize multi-genome 

genetics and genomics database', Nucleic Acids Res, 47: D1146-D54. 

Price, A., A. Caciula, C. Guo, B. Lee, J. Morrison, A. Rasmussen, W. I. Lipkin, and K. Jain. 

2019. 'DEvis: an R package for aggregation and visualization of differential expression 

data', BMC Bioinformatics, 20: 110. 

Robinson, M. D., D. J. McCarthy, and G. K. Smyth. 2010. 'edgeR: a Bioconductor package for 

differential expression analysis of digital gene expression data', Bioinformatics, 26: 139-

40. 

Schnable, P. S., D. Ware, R. S. Fulton, J. C. Stein, F. Wei, S. Pasternak, C. Liang, J. Zhang, L. 

Fulton, T. A. Graves, P. Minx, A. D. Reily, L. Courtney, S. S. Kruchowski, C. 

Tomlinson, C. Strong, K. Delehaunty, C. Fronick, B. Courtney, S. M. Rock, E. Belter, F. 

Du, K. Kim, R. M. Abbott, M. Cotton, A. Levy, P. Marchetto, K. Ochoa, S. M. Jackson, 

B. Gillam, W. Chen, L. Yan, J. Higginbotham, M. Cardenas, J. Waligorski, E. 

Applebaum, L. Phelps, J. Falcone, K. Kanchi, T. Thane, A. Scimone, N. Thane, J. Henke, 

T. Wang, J. Ruppert, N. Shah, K. Rotter, J. Hodges, E. Ingenthron, M. Cordes, S. 

Kohlberg, J. Sgro, B. Delgado, K. Mead, A. Chinwalla, S. Leonard, K. Crouse, K. 

Collura, D. Kudrna, J. Currie, R. He, A. Angelova, S. Rajasekar, T. Mueller, R. Lomeli, 

G. Scara, A. Ko, K. Delaney, M. Wissotski, G. Lopez, D. Campos, M. Braidotti, E. 

Ashley, W. Golser, H. Kim, S. Lee, J. Lin, Z. Dujmic, W. Kim, J. Talag, A. Zuccolo, C. 

Fan, A. Sebastian, M. Kramer, L. Spiegel, L. Nascimento, T. Zutavern, B. Miller, C. 

Ambroise, S. Muller, W. Spooner, A. Narechania, L. Ren, S. Wei, S. Kumari, B. Faga, 

M. J. Levy, L. McMahan, P. Van Buren, M. W. Vaughn, K. Ying, C. T. Yeh, S. J. 

Emrich, Y. Jia, A. Kalyanaraman, A. P. Hsia, W. B. Barbazuk, R. S. Baucom, T. P. 

Brutnell, N. C. Carpita, C. Chaparro, J. M. Chia, J. M. Deragon, J. C. Estill, Y. Fu, J. A. 

Jeddeloh, Y. Han, H. Lee, P. Li, D. R. Lisch, S. Liu, Z. Liu, D. H. Nagel, M. C. McCann, 

P. SanMiguel, A. M. Myers, D. Nettleton, J. Nguyen, B. W. Penning, L. Ponnala, K. L. 

Schneider, D. C. Schwartz, A. Sharma, C. Soderlund, N. M. Springer, Q. Sun, H. Wang, 

M. Waterman, R. Westerman, T. K. Wolfgruber, L. Yang, Y. Yu, L. Zhang, S. Zhou, Q. 

Zhu, J. L. Bennetzen, R. K. Dawe, J. Jiang, N. Jiang, G. G. Presting, S. R. Wessler, S. 

Aluru, R. A. Martienssen, S. W. Clifton, W. R. McCombie, R. A. Wing, and R. K. 

Wilson. 2009. 'The B73 maize genome: complexity, diversity, and dynamics', Science, 

326: 1112-5. 

Sindhu, A., D. Janick-Buckner, B. Buckner, J. Gray, U. Zehr, B. P. Dilkes, and G. S. Johal. 

2018. 'Propagation of cell death in dropdead1, a sorghum ortholog of the maize lls1 

mutant', PLoS One, 13: e0201359. 



41 

 

Springer, N. M., S. N. Anderson, C. M. Andorf, K. R. Ahern, F. Bai, O. Barad, W. B. Barbazuk, 

H. W. Bass, K. Baruch, G. Ben-Zvi, E. S. Buckler, R. Bukowski, M. S. Campbell, E. K. 

S. Cannon, P. Chomet, R. K. Dawe, R. Davenport, H. K. Dooner, L. H. Du, C. Du, K. A. 

Easterling, C. Gault, J. C. Guan, C. T. Hunter, G. Jander, Y. Jiao, K. E. Koch, G. Kol, T. 

G. Kollner, T. Kudo, Q. Li, F. Lu, D. Mayfield-Jones, W. Mei, D. R. McCarty, J. M. 

Noshay, J. L. Portwood, 2nd, G. Ronen, A. M. Settles, D. Shem-Tov, J. Shi, I. Soifer, J. 

C. Stein, M. C. Stitzer, M. Suzuki, D. L. Vera, E. Vollbrecht, J. T. Vrebalov, D. Ware, S. 

Wei, K. Wimalanathan, M. R. Woodhouse, W. Xiong, and T. P. Brutnell. 2018. 'The 

maize W22 genome provides a foundation for functional genomics and transposon 

biology', Nat Genet, 50: 1282-88. 

Stelpflug, S. C., R. S. Sekhon, B. Vaillancourt, C. N. Hirsch, C. R. Buell, N. de Leon, and S. M. 

Kaeppler. 2016. 'An Expanded Maize Gene Expression Atlas based on RNA Sequencing 

and its Use to Explore Root Development', Plant Genome, 9. 

Sun, S., Y. Zhou, J. Chen, J. Shi, H. Zhao, H. Zhao, W. Song, M. Zhang, Y. Cui, X. Dong, H. 

Liu, X. Ma, Y. Jiao, B. Wang, X. Wei, J. C. Stein, J. C. Glaubitz, F. Lu, G. Yu, C. Liang, 

K. Fengler, B. Li, A. Rafalski, P. S. Schnable, D. H. Ware, E. S. Buckler, and J. Lai. 

2018. 'Extensive intraspecific gene order and gene structural variations between Mo17 

and other maize genomes', Nat Genet, 50: 1289-95. 

Tian, F., P. J. Bradbury, P. J. Brown, H. Hung, Q. Sun, S. Flint-Garcia, T. R. Rocheford, M. D. 

McMullen, J. B. Holland, and E. S. Buckler. 2011. 'Genome-wide association study of 

leaf architecture in the maize nested association mapping population', Nat Genet, 43: 

159-62. 

Wallace, J. G., P. J. Bradbury, N. Zhang, Y. Gibon, M. Stitt, and E. S. Buckler. 2014. 

'Association mapping across numerous traits reveals patterns of functional variation in 

maize', PLoS Genet, 10: e1004845. 

Walley, J. W., R. C. Sartor, Z. Shen, R. J. Schmitz, K. J. Wu, M. A. Urich, J. R. Nery, L. G. 

Smith, J. C. Schnable, J. R. Ecker, and S. P. Briggs. 2016. 'Integration of omic networks 

in a developmental atlas of maize', Science, 353: 814-8. 

Walsh, J. R., M. R. Woodhouse, C. M. Andorf, and T. Z. Sen. 2020. 'Tissue-specific gene 

expression and protein abundance patterns are associated with fractionation bias in 

maize', BMC Plant Biol, 20: 4. 

Wang, Y., X. Hua, J. Xu, Z. Chen, T. Fan, Z. Zeng, H. Wang, A. L. Hour, Q. Yu, R. Ming, and J. 

Zhang. 2019. 'Comparative genomics revealed the gene evolution and functional 

divergence of magnesium transporter families in Saccharum', BMC Genomics, 20: 83. 

Wang, Y., W. Lu, and D. Deng. 2016. 'Bioinformatic landscapes for plant transcription factor 

system research', Planta, 243: 297-304. 

Wang, Z., M. Gerstein, and M. Snyder. 2009. 'RNA-Seq: a revolutionary tool for 

transcriptomics', Nat Rev Genet, 10: 57-63. 



42 

 

Warman, C., K. Panda, Z. Vejlupkova, S. Hokin, E. Unger-Wallace, R. A. Cole, A. M. Chettoor, 

D. Jiang, E. Vollbrecht, M. M. S. Evans, R. K. Slotkin, and J. E. Fowler. 2020. 'High 

expression in maize pollen correlates with genetic contributions to pollen fitness as well 

as with coordinated transcription from neighboring transposable elements', PLoS Genet, 

16: e1008462. 

Waters, A. J., I. Makarevitch, J. Noshay, L. T. Burghardt, C. N. Hirsch, C. D. Hirsch, and N. M. 

Springer. 2017. 'Natural variation for gene expression responses to abiotic stress in 

maize', Plant J, 89: 706-17. 

Woodhouse, M. R., F. Cheng, J. C. Pires, D. Lisch, M. Freeling, and X. Wang. 2014. 'Origin, 

inheritance, and gene regulatory consequences of genome dominance in polyploids', Proc 

Natl Acad Sci U S A, 111: 5283-8. 

Wu, T. D., J. Reeder, M. Lawrence, G. Becker, and M. J. Brauer. 2016. 'GMAP and GSNAP for 

Genomic Sequence Alignment: Enhancements to Speed, Accuracy, and Functionality', 

Methods Mol Biol, 1418: 283-334. 

Wu, X., Y. Li, J. Fu, X. Li, C. Li, D. Zhang, Y. Shi, Y. Song, Y. Li, and T. Wang. 2016. 

'Exploring Identity-By-Descent Segments and Putative Functions Using Different 

Foundation Parents in Maize', PLoS One, 11: e0168374. 

Zhang, G., B. M. Ueberheide, S. Waldemarson, S. Myung, K. Molloy, J. Eriksson, B. T. Chait, 

T. A. Neubert, and D. Fenyo. 2010. 'Protein quantitation using mass spectrometry', 

Methods Mol Biol, 673: 211-22. 

Zhang, X., L. Lei, J. Lai, H. Zhao, and W. Song. 2018. 'Effects of drought stress and water 

recovery on physiological responses and gene expression in maize seedlings', BMC Plant 

Biol, 18: 68. 

 

2.7 Appendix A. Notes 

2.7.1 Data availability statement 

The source code for qTeller is open-source and available through GitHub (https:// 

github.com/Maize-Genetics-and-Genomics-Database/qTeller). A maize instance of qTeller is 

available at the Maize Genetics and Genomics database (MaizeGDB) 

(https://qteller.maizegdb.org/), where we have mapped over 200 unique datasets from GenBank 

across 27 maize genomes.  
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CHAPTER 3.    MAIZE FEATURE STORE (MFS): A CENTRALIZED RESOURCE TO 

MANAGE AND ANALYZE CURATED MAIZE MULTI-OMICS FEATURES FOR 

MACHINE LEARNING APPLICATIONS 

Shatabdi Sen1 , Margaret R. Woodhouse2, John L. Portwood II2, and Carson M. Andorf2,*  

1Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA 

2USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA 

 3Department of Computer Science, Iowa State University, Ames, IA 50011, USA 

Modified from a manuscript published in Oxford Database 

3.1 Abstract 

The big-data analysis of complex data associated with maize genomes accelerates genetic 

research and improves agronomic traits. As a result, efforts have increased to integrate diverse 

datasets and extract meaning from these measurements. Machine learning models are a powerful 

tool for gaining knowledge from large and complex datasets. However, these models must be 

trained on high-quality features to succeed. Currently, there are no solutions to host maize multi-

omics datasets with end-to-end solutions for evaluating and linking features to target gene 

annotations. Our work presents the Maize Feature Store (MFS), a versatile application that 

combines features built on complex data to facilitate exploration, modeling, and analysis. Feature 

stores allow researchers to rapidly deploy machine learning applications by managing and 

providing access to frequently used features. We populated the MFS for the maize reference 

genome with over 14,000 gene-based features based on published genomic, transcriptomic, 

epigenomic, variomic, and proteomics data sets. Using the MFS, we created an accurate pan-

genome classification model with an AUC-ROC score of 0.87. The MFS is publicly available 

through the maize genetics and genomics database.  Database URL: https://mfs.maizegdb.org/ 

https://mfs.maizegdb.org/
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3.2 Introduction 

The study of cellular, molecular, and genetic interactions in maize generates huge 

amounts of data. Due to the high dimensionality and heterogeneity of multi-omics data, 

integrating and analyzing these datasets has proven to be extremely difficult. Recently there has 

been an increased interest in analyzing large-scale omics data, particularly for predicting 

genotype-phenotype relationships. Over the last decade, machine learning has found numerous 

applications in plants, resulting in a slew of papers and reviews (Dai et al. 2020; Lloyd et al. 

2015; Singh et al. 2016). There has been particular interest in maize, making it the most studied 

crop using machine learning (Benos et al. 2021). This interest can be attributed to the fact that it 

is grown in many parts of the world and has a variety of uses, including direct human 

consumption, animal feed, the production of ethanol, and other biofuels.  

To further advance and facilitate the application of machine learning in crop and plant 

research, robust analytical methods and tools are required to manage multi-omics data through 

efficient data management, linkage, and integration strategies. This need is particularly strong for 

maize research, where a vast amount of data exists. Numerous storage methods have been 

developed to manage and analyze multi-omics data (Gui et al. 2020), including the Maize 

Genetics and Genomics Database (MaizeGDB) (https://www.maizegdb.org/), which comprises 

maize reference sequences, diversity data, expression data, phenotypic data, epigenetic and 

regulatory data, as well as metabolic pathway data along with multiple tools for genome-wide 

maize data exploration (Woodhouse, Cannon, et al. 2021); Panzea (https://www.panzea.org/), 

comprising genotypic and phenotypic data from several maize lines (Zhao et al. 2006); and 

Phytozome (https://phytozome-next.jgi.doe.gov/) a centralized hub of annotated plant gene 

families, evolutionary data and functional data (Goodstein et al. 2012). Other comprehensive 

databases and data repositories such as GenBank (https://www.ncbi.nlm.nih.gov/genbank/) 

https://www.maizegdb.org/
https://www.panzea.org/
https://phytozome-next.jgi.doe.gov/
https://www.ncbi.nlm.nih.gov/genbank/
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(Benson et al. 2007), Gramene (http://www.gramene.org/) (Tello-Ruiz et al. 2021), ePlant 

(http://bar.utoronto.ca/eplant_maize/) (Waese-Perlman et al. 2021), MODEM 

(http://modem.hzau.edu.cn/) (Liu et al. 2016) and a more recent maize multi-omics database 

ZEAMAP (http://www.zeamap.com/) (Gui et al. 2020) also collect maize omics data. While 

these databases are quite useful, they store data in a structured manner using relational databases 

and require advanced multi-layer data structures to optimize data management and analysis. 

Additionally, they frequently lack interactive multivariate methods for exploring and integrating 

datasets. These databases enable users to access data in various file formats, including annotation 

data in GFF format and SNP datasets in VCF format. Although these datasets are easily 

accessible via these repositories, they do not come in a format suitable for performing diverse 

multivariate analyses, particularly at the gene level. Users who wish to apply modeling to these 

multi-omics datasets must spend considerable time collecting, cleaning, and aggregating before 

using them for model training.  

Regardless of the challenges, omics integration studies have pervaded literature in recent 

years (Fukushima et al. 2009; Zogli et al. 2020; Deshmukh et al. 2014). As a result, the growing 

collection of omics data in maize is gaining attention among researchers to carry out systematic 

integrative analysis and storage of the heterogeneous data (Rajasundaram and Selbig 2016). In 

response to the challenges of handling heterogeneous data, non-traditional databases (NoSQL) 

emerged as an alternative, more flexible, and more scalable data store (Gundla and Chen 2016; 

Wang et al. 2014). Therefore, this paper presents the Maize Feature Store (MFS), a NoSQL-

based interactive, modular, and dynamic user interface for systematically integrating and 

analyzing over 14,407 gene-based features based on the most recent maize multi-omics dataset 

(version 5 of the B73 reference genome, or B73v5). Feature stores are becoming a powerful 

http://www.gramene.org/
http://bar.utoronto.ca/eplant_maize/
http://modem.hzau.edu.cn/
http://www.zeamap.com/


48 

 

resource for data scientists to have readily available access to high-quality features for rapid 

deployment of machine learning applications, but feature stores are not available for most model 

organism databases. We aim to demonstrate how MFS provides a suite of methods and modeling 

modules, enabling users to find meaningful patterns from the maize omics data.  

To demonstrate the utility of the MFS, we discussed the application of MFS in pan-

genome analysis using the maize genome (B73v5) as a multi-omics utility case study. The pan-

genome represents the entire set of genes within a species (Medini et al. 2005), consisting of a 

“core” genome, containing gene models shared between all individuals of the species, and the 

“non-core” genome, made up of near-core, dispensable, and private gene models occurring in 

most, some, or a single genome, respectively. Plant genomes are highly dynamic, and several 

challenges remain to be overcome before cost effective and rapid pan-genome construction is 

possible (Morneau 2021). Therefore, we provide modules aimed at tackling problems associated 

with pan-genome analysis by applying machine learning algorithms and classifying genes as core 

or non-core in a new genome using only multi-omics data associated with the genes. 

3.3 Materials and Methods 

3.3.1 Overview of the Maize Feature Store database  

We have created an application that uses a MongoDB database (NoSQL) named 

“BigFeatureDb”. MongoDB is a document-oriented data store that stores data in collections. 

Collections are made up of documents, and each field in a document is associated with a value. 

Complex maize omics data has been imported into these embedded data models via the Pymongo 

library. We stored each omics data type in separate collections for each feature type (e.g. 

“DNASequenceFeatures”). These collections contain documents corresponding to the gene 

model set of the B73v5 reference genome (Hufford et al. 2021). The document’s key is used as 

the MongoDB primary key. Within each document, field value pairs are used to hold pairs of 
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gene model feature names and feature values. This database structuring allows a variety of 

aggregation operations to process complex queries.  

3.3.2 Maize Feature Store Architecture  

The Maize Feature Store has three layers, Transform (to ingest and process data and 

create features), Store (for storing the created features and their metadata), and Serve (to make 

available the stored features). The data in the Maize Feature Store is stored in the MongoDB 

database, and the features are extracted and pre-processed from varied sources using customized 

Python scripts. The front-end application in the Python Flask framework makes the data 

available to various end-users.  

3.3.3 Application Development  

We developed an interactive web-based query system to retrieve the desired information 

from the maize reference genome version B73v5 omics data using Flask, HTML5, JavaScript, 

and CSS. The server-side scripting uses Python code and Pymongo (v3.11.3) drivers. A 

sophisticated search query system enables users to conduct multiple searches, data visualization, 

and modeling.  

The graphical user interface is designed to help users conduct an automatic end-to-end 

analysis of the maize omics data, along with basic exploratory analysis and predictive modeling 

of the datasets. To do this, the interface is divided into sections and subsections in the form of 

various menus on the navigation bar. The home page (https://mfs.maizegdb.org/) illustrates the 

overall functioning of the tool with three major components (“Features and Analysis”, “Models”, 

and “More”) for getting started with the analyses.  

The “Features and Analysis” module (https://mfs.maizegdb.org/features) is divided into 

three main sections: All data analysis, Downsampled analysis, and User candidate gene analysis. 

Each of these sections is further subdivided into Sequence Features, Gene Structure Features, 

https://mfs.maizegdb.org/
https://mfs.maizegdb.org/features
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Expression Features, Chromatin Features, Count Features, Correlation Features, and Other 

Features. These sections have additional subsections with specialized functions that operate 

dynamically on the selected dataset. Users can select their desired features and labels in each 

subsection and carry out a wide range of analyses using tables and graphs. Each subsection can 

analyze either the entire dataset or a randomly down-sampled dataset. The outputs of the selected 

analysis (tables and graphs) are displayed reactively on a separate webpage. The user can 

download all the tables (copy or .csv or .xlsx or .pdf ) and plots (.png) using specified buttons. 

Additionally, tables and graphs are interactive, allowing for deeper data exploration. It is crucial 

to note that some subsections, such as “DNA Sequence” Features, do not display the whole 

dataset to prevent the complexity of selecting hundreds of features and avoid the visualization 

becoming unwieldy. However, users can always download the selected subset or the complete 

dataset via the “Download Source” or “Download All” choices. All the front-end structures were 

created using Bootstrap (v4.0), jQuery (v3.5.1), and Flask (v1.1.2) Python packages. The plots 

were built by Dashbio v0.7.1 and plotly (v5.3.1) / matplotlib (v3.4.2), respectively.  

The “Predictions” section consists of machine-learning models as a web service. As a 

use-case, we provide two models: the “Advanced” model 

(https://mfs.maizegdb.org/model_advanced) and the “Basic” model 

(https://mfs.maizegdb.org/model_basic), for classifying maize core and noncore genes (Hufford 

et al. 2021). Two simple forms are built using HTML and CSS to take input from the users on 

the top 25 features that were highly predictive for differentiating between core and non-core 

genes. Our application uses a Gradient Boosting Classifier for the "Advanced" model and a 

Random Forest Classifier for the "Basic" model, both built with scikit-learn (v1.0.2) and 

wrapped in Flask. The “More” section holds additional information for the smooth functioning of 

https://mfs.maizegdb.org/model_advanced
https://mfs.maizegdb.org/model_basic
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the interface, such as links to the Data Sources, Tool Sources, Frequently Asked Questions, and 

Contact Page.  

3.3.4 Data acquisition  

The central idea behind generating and extracting a broad set of omics data associated 

with the maize genome is to allow researchers to explore these intrinsic and extrinsic gene 

features and conclude their research findings linked to any eukaryotic organisms or, more 

specifically, to maize.  

We curated an extensive set of genomics, transcriptomics, epigenomic, variomic, and 

proteomics data from three major sources: MaizeGDB, peer-reviewed publications, and data 

generated in other labs (https://mfs.maizegdb.org/data_sources). The B73v5 maize gene models, 

canonical protein sequences, and coding sequences were collected from the MaizeGDB database. 

Gene structural features were extracted from the annotation files (GFF) linked to the B73v5 

genome. The gene expression (mRNA and protein abundance) datasets across multiple tissue 

types and conditions were collected from peer-reviewed publications and from other labs. The 

epigenomic and variomic datasets were gathered from MaizeGDB JBrowse (Woodhouse, 

Cannon, et al. 2021) and the maize Nested Association Mapping paper (Hufford et al. 2021).  

3.3.4.1 Sequence Feature Generation  

We used the canonical transcript and protein sequences to generate the sequence features 

for genes with multiple transcripts. The coding sequence data was used for generating various 

numerical representation schemes of DNA sequences. Four modules of the rDNAse package 

(Zhu and Dong 2016), basic tools, nucleic acid composition, autocorrelation, and pseudo 

nucleotide composition (details on the DNA features can be found here: 

https://mfs.maizegdb.org/DNAseq) were used to generate DNA sequence features. The genomic 

sequences were also used to generate various codon and amino acid usage features such as the 

https://mfs.maizegdb.org/data_sources
https://mfs.maizegdb.org/DNAseq
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codon adaptation index, expected effective number of codons, and stacking energy using the 

SADEG package (Babak Khorsand 2017).  

Numerous structural and physicochemical descriptors, such as amino acid composition, 

autocorrelation, composition/transition/distribution (CTD), conjoint triad, quasi-sequence order, 

pseudo amino acid composition, and the amphiphilic pseudo-amino acid composition (details on 

the protein sequence features can be found here: https://mfs.maizegdb.org/Proteinseq), were 

extracted from the peptide/protein sequences using the protr package (Xiao et al. 2015). The 

protein sequences were also used to generate predicted protein subcellular localization features 

(nucleus, cytoplasm, extracellular, mitochondria, cell membrane, endoplasmic reticulum, plastid, 

golgi apparatus, lysosome/vacuole, peroxisome) using the WolfPsort (Horton et al. 2007) and 

Deeploc (Almagro Armenteros et al. 2017) programs. The protein structural features such as 

coils, hot loops, transmembrane helices, and signal peptides were predicted from the amino acid 

sequences as an input using DisEMBL (Linding et al. 2003), TMHMM (Krogh et al. 2001), and 

SignalP (Petersen et al. 2011), respectively.  

3.3.4.2 Structure Feature Generation  

The gene annotation (GFF) files linked to the B73v5 maize genome were used to extract 

numerous gene structural features such as the gene length, number of isoforms, exon length, 

average exon length, number of exons, chromosome associated with each gene, coding sequence 

length, five-prime untranslated regions (UTR) length and three-prime UTR length using 

customized Python script. The Python script parses through the GFF file to generate these 

features.  

Distance features such as distance from the chromosome center, distance to the nearest 

knob, the centromere, and the telomere were also generated for each gene of the B73v5 maize 

genome. The data was downloaded from MaizeGDB.  

https://mfs.maizegdb.org/Proteinseq
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3.3.4.3 Expression Feature Collection  

The maize transcriptomics and proteomics data consist of expression levels for each gene 

across multiple tissue types and experimental conditions. The RNA expression features included 

data from the MaizeGDB qTeller (Woodhouse, Sen, et al. 2021a) B73v5 instance. The 

MaizeGDB qTeller contains almost 200 unique datasets from 12 projects. Each dataset was 

mapped with a consistent pipeline to provide fair comparisons. Any future datasets added to the 

MFS will follow the same pipeline. The B73v5 instance of qTeller contains data from eight 

studies from multiple labs (Forestan et al. 2016; Warman et al. 2020; Walley et al. 2016; 

Stelpflug et al. 2016; Opitz et al. 2014b; Makarevitch et al. 2015; Kakumanu et al. 2012; 

Johnston et al. 2014) covering 172 tissues/conditions. The “Compare RNA & Protein” tool of 

qTeller incorporates data from a single mRNA and protein study (Walley et al. 2016) spanning 

23 tissues/conditions. Apart from gene expression, we estimated the average mRNA abundance 

level, protein abundance level, maximum mRNA abundance level, maximum protein abundance 

level, tissue gene abundance breadth, and tissue protein abundance breadth for each gene across 

all tissues and conditions. The breadth is defined as the number of tissues where the gene or 

protein showed expression.  

3.3.4.4 Chromatin Feature Generation 

Chromatin features comprised of chromatin states, three histone modifications 

(H3K4me3, H3K27me3, H3K27ac), open chromatin as quantified by ATAC-Seq, and DNA 

methylation (quantified separately in CG, CHG, and CHH contexts) were obtained from the 

ChromHMM software and Dai, Xiuru et al. (Dai et al. 2020). The chromatin states were 

generated from ChIP-Seq data (including nine types of histone modifications, H2AZ, H3, 

H3K4me1, H3K4me3, H3K9ac, H3K27ac, H3K27me3, H3K36me3, H3K56ac) in two tissues, 

ear and leaf (Ricci et al. 2019). Histone modifications are often found in recurring combinations 
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at promoters, enhancers, and repressed regions. These combinations are called “chromatin states” 

and can annotate regulatory regions in genomes. We have included multiple chromatin states 

features from ChIP-Seq data using the tool ChromHMM (A multivariate HMM for chromatin 

combinatorics) (Ernst and Kellis 2017).  

3.3.4.5 Count Feature Generation  

We generated the “Count” features by finding and counting annotations from multiple 

genome interval files whose genomic coordinates overlapped with the maize gene sites using the 

bedtools suite (Quinlan and Hall 2010). The genome annotation files included the MaizeGDB 

B73v5 JBrowse annotations (mutational insertions, transcription factor binding sites, 

transcription start sites, enhancers, transposable elements, miRNAs) ((Ricci et al. 2019), (Dong 

et al. 2019; Bolduc et al. 2012; Oka et al. 2017; Vollbrecht et al. 2010; McCarty et al. 2013; 

Mejia-Guerra et al. 2015)) and G-quadruplexes. The G-quadruplex annotation files were 

generated using in-house Python scripts from the B73v5 maize genome sequence. Counts were 

computed for three genomic regions: the first region included the gene body, the second included 

a 1KB region upstream and downstream of the gene start and end sites, and the third covered a 

much larger region, comprising 5 KB upstream and downstream of the gene start and end site.  

3.3.4.6 Correlation Feature Collection  

The correlation features include 12 co-expression modules identified through weighted 

gene co-expression network analysis. The data comprises 79 tissues, 6-organ developmental 

gene atlas coupled with five abiotic/biotic stress transcriptome datasets (Hoopes et al. 2019). 

These topology features were available for B73 AGPv4 gene models; therefore, B73 AGPv4 

gene models were converted to B73v5 using a conversion list published on MaizeGDB.  
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3.3.4.7 Varionomic Feature Generation  

Varionomic features included the count of single nucleotide polymorphisms (SNPs) per 

gene model and the effects of SNPs on the genes. The count of SNPs per gene model was 

calculated by finding overlapping regions between the SNP data VCF file from (Hufford et al. 

2021) and maize gene coordinates using Bedtools, and SnpEff was used to annotate and predict 

the impact of variations on genes. This tool takes pre-defined variations listed in a VCF file 

containing the nucleotide change and its location and predicts if the variants are detrimental.  

3.3.4.8 Other Feature Generation  

The “Other” feature section includes evolutionary gene age (described below) and the 

total number of presence/absence of associated Pfam-domains per gene model (Hufford et al. 

2021; Mistry et al. 2021). The direction and magnitude of natural selection were inferred from 

the ratio of nonsynonymous substitutions (Kn) / synonymous substitutions (Ks) between 

Sorghum and maize B73v5 orthologous genes and from the ratio of nonsynonymous 

substitutions (Kn) / synonymous substitutions (Ks) between maize Tzi8, a tropical maize line 

(Hufford et al. 2021), and maize B73v5 orthologous genes. Ks and Kn values were derived 

between syntenic ortholog coding sequences of B73v5 and Sorghum bicolor v3 

(https://phytozome-next.jgi.doe.gov/info/Sbicolor_v3_1_1) using the tool CoGe SynMap (Lyons 

and Freeling 2008) (https://genomevolution.org/coge/SynMap.pl) with the parameters Relative 

Gene Order; -D 20; - A 5; Quota Align Merge; Syntenic Depth B73:Sorghum 2:1; and CodeML 

Kn/Ks. Ks and Kn values between B73v5 and the maize tropical cultivar Tzi8 were derived 

using similar parameters except the Syntenic Depth was set to 1:1.  

The evolutionary gene age was calculated by searching for homologs within increasingly 

broad clades using the phylostratr pipeline (Arendsee et al. 2019). The deepest clade that 

contains a homolog of the protein(s) encoded by a gene is that gene’s age as described by 

https://phytozome-next.jgi.doe.gov/info/Sbicolor_v3_1_1
https://genomevolution.org/coge/SynMap.pl
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(Arendsee et al. 2019). The maize gene age is classified into 21 categories based on the 

presence/absence of the homologs of maize genes in 20 representative eukaryotic species 

(including cellular organisms, Andropogoneae, commelinids, Embryophyta, Eukaryota, 

Liliopsida, Magnoliopsida, Mesangiospermae, PACMAD clade, Panicoideae, Petrosaviidae, 

Poaceae, Poales, Spermatophyta, Streptophyta, Streptophytina, Tracheophyta, Tripsacinae, and 

Viridiplantae).  

3.3.4.9 Label Generation 

In addition to the different genomics, proteomics, and transcriptomics features, the Maize 

Feature Store also includes example biological annotations. They can be used as class labels for 

users looking to classify their genes of interest to any of the biological annotations or identify 

relationships between these gene annotations and a variety of features offered through the MFS. 

These gene annotations are not only meant to act as targets but are also intended to function as 

features when appropriate. For example, we can use whole-genome duplication (WGD)/tandem 

gene annotations as features when trying to solve core/non-core gene prediction problems and 

vice versa. Currently, MFS contains three sample labels: “Classical” (classical/other) genes, 

“Pangenome” (core/near-core/dispensable/private) genes, “Gene Origin” (WGD/tandem/both) 

genes, and a “No Label” option. Classical genes are the most well-studied genes in maize, most 

of which have a visible mutant phenotype (for example, liguleless2) as described by (Schnable 

and Freeling 2011). We downloaded 430 maize classical genes from MaizeGDB (Classical 

Genes). The core/near-core/dispensable/private genes and WGD/tandem/both genes were 

collected from maize pan-genome generated as part of the Nested Association Mapping (NAM) 

genome sequencing project (Hufford et al. 2021). The “No Label” option lets users view the 

relationship between the genes independently of any annotations. This selection is provided to 

enable users to view the properties of all genes without labeling them into different gene 
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categories or annotations. Using this feature, users can examine the features of multiple genes 

and can choose to annotate them based on common patterns identified between different genes. 

As it involves the inspection of all the genes, they work only for the "Submit for analysis" 

button.  

3.3.5 Data Visualization  

The MFS user interface is pre-configured with plotly, matplotlib, and Dashbio allowing 

innovative visualizations such as data distributions, connections between features, and aggregate 

statistics (minimum, maximum, average, unique categories, outliers, missing values, etc.). This 

enables researchers to gain rapid insight into the features and make more informed decisions 

about using specific features. The interface also provides detailed instructions on the usage and 

interpretation of each plot. Users are given options to conduct each exploratory analysis using 

the entire omics dataset or the downsampled data using the “Submit analysis” and 

“Downsampled analysis” buttons.  

3.3.6 Downsampled analysis  

The ratio of label categories is frequently uneven, resulting in a bias favoring the majority 

class. For example, seventy-two percent of our genes are marked as core in the maize reference 

genome version B73v5, and twenty-eight percent are annotated as non-core (near-core, 

dispensable and private genes). Therefore, we offer the random down-sampling method to 

address the issue of unbalanced data during exploratory analysis and provide users with the 

option of “Downsampled analysis”. It is important to note that the size of the downsampled data 

is different for each label (Classical/Pan-genome/Gene-Origin) selection as the size of the 

minority class is different in each label.  
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3.3.7 User candidate gene analysis  

The user candidate gene analysis section allows users to do a comparative study on their 

genes of interest. Users can enter a single gene of interest, or a group of candidate genes linked 

to specific biological pathways or functions and compare them with other down sampled sets of 

maize genes. Two types of analyses are possible for the user-defined candidate genes: a) single 

candidate gene analysis and b) analysis of multiple candidate genes. For single gene analysis, 

users can enter a single gene of interest and visualize the output for the selected features either in 

tabular format or graphical format with a marginal plot showing the frequency distribution of the 

selected gene features for all maize genes along with highlighting the candidate gene 

(Supplementary Figure S1A). For analysis of multiple candidate genes, users can enter a list of 

genes and compare their gene list for the selected feature with the other downsampled maize 

genes in various univariate or multivariate plots. When using multiple candidate genes, it is 

recommended that a larger gene list be entered (fifty or more) so that a more reliable comparison 

of the candidate genes and the downsampled other maize genes can be made. The down-

sampling is random based on the number of candidate genes; therefore a larger candidate gene 

list requires more down sampled genes, resulting in a better representation of the population.  

To demonstrate the potential use case of the user candidate gene analysis, we gathered a 

set of fifty stress genes differentially expressed between the control and salt stress samples (Li, 

Cao, et al. 2017) and used them to identify unique characteristics common among salt stress 

genes (Supplementary Figure S1B). Using our univariate analysis, we found that the maize 

B73v5 salt stress genes differed significantly from other downsampled maize genes regarding the 

gene structural features of isoform count, coding sequence length, three-prime UTR length, and 

five-prime UTR length. These structural features showed a significantly higher range among the 

candidate genes. Previous work on stress genes has also discovered that 3'UTR-based mRNA 
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stability controls are present in stressed cells (Zheng et al. 2018), thereby further supporting our 

findings from the salt stress genes.  

3.3.8 Exploratory analysis  

The exploratory analysis module in the Maize Feature Store assists users in visualizing 

all accessible features and labels in tabular and graphical formats after initial preprocessing, 

cleaning, and normalization steps. Omics datasets come in diverse scales and follow their own 

statistical distributions as they are collected from disparate sources; therefore, data 

standardization becomes crucial for omics datasets. The MFS application allows for the 

normalization of omics numerical features by centering the features with their mean and the 

standard deviation between 0 and 1 using the StandardScalar function of Sklearn.  

Apart from providing fundamental functionality, high-end modules in MFS calculate and 

perform various univariate, bivariate, or multivariate analyses such as Histograms, Count and 

Distribution plots, Pair plots, Box plots, Violin plots, Joint plots, Scatter plots, Correlation plots, 

Categorical Bar plots, Heatmaps, Clustering plots, and Dimension reductions (PCA) (see 

Supplementary Methods). However, the “Gene Expression” dataset currently provides a preview 

of the results by limiting the display of Histograms, Count and Distribution plots, Pair plots, Box 

plots, Violin plots, Correlation plots, and Heatmaps to five tissues of the selected lab. Since each 

lab includes multiple tissues, the limit of visualizing five tissues is intended for better analysis 

and visualization of plots. Users can modify the script to view more than five tissues from a lab. 

Most of these plots have options to download, zoom-out/zoom in, reset axes, autoscale, toggle 

spike lines, show the closest data on hover, compare data on hover, box select, pan, and lasso. 

Users can also select specific legends to view data only for the selected legends. The Histograms, 

Count and Distribution plots, and the Categorical Bar plots also come with a two-sided p-value 

analysis displayed at the top of the selected feature chart to determine whether there is enough 
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statistical evidence in favor of a hypothesis (there is a difference in the selected feature values or 

frequencies across the different categories of the target variable). For comparing the effect of the 

selected continuous feature on the classical/other genes target variable (binary), we carry out a 

two-sample test using the scipy.stats library in Python. For comparing the effect of the selected 

continuous feature across multiple categories of the target variable such as core/near-

core/dispensable/private genes or WGD/tandem/both genes, we carried out a one-way ANOVA 

test using the Python stats library, and lastly, for comparing the effect of the selected categorical 

feature across two or more categories of the target variable, we carried out the Chi-square test 

using the scipy.stats library in Python.  

Details on the usage and interpretation of all the plots and tables are also available on the 

MFS website (https://mfs.maizegdb.org/Structure) and Supplementary Methods. While MFS is 

intended to facilitate plot generation using a graphical user interface, by hiding sophisticated 

plotting routines behind MFS modules, users can download the appropriate module Python script 

for direct replication and transformation of the visualizations.  

3.3.9 Data Clustering  

The MFS uses advanced functionalities to analyze unlabeled omics data rather than 

labeled data to overcome the lack of manual annotations. The module can efficiently compute 

several unsupervised clustering algorithms on downsampled omics data and provides interactive 

visualization of the results using Dendrograms, Heatmaps, Hierarchical Scatter plots, 

Hierarchical Heatmaps, and PCA plots (2D, 3D, biplot) (see Supplementary Methods). Different 

user options are available for some of these modules to dynamically show different results. For 

example, in the Hierarchical Scatter plots, the “Choose Clusters” option is available where the 

users can manually enter the number of clusters to visualize in the Pair plot. However, it is 

recommended that users enter the number of clusters as per the output generated by the 

https://mfs.maizegdb.org/Structure
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Dendrogram plot. To save time and complexity, we limited the Heatmap plot to only display the 

relationship between the first hundred down-sampled genes and the selected attributes; however, 

users with sufficient resources are free to utilize the function and customize it to include as many 

genes as necessary for their specific analysis. 

3.4 Results 

3.4.1 Maize Feature Store Workflow  

Maize omics data are generally large, complex, and contain a variety of structures. The 

ability to store and retrieve data effectively is critical in maize research. Historically, huge 

datasets have been kept as flat files on disk or relational databases. These platforms are difficult 

to develop, maintain, and adapt to big-data applications because they adhere to inflexible table 

structures and frequently lack scalability, such as data aggregation. Therefore, we propose to 

design our application to carry out complex operations, including 1) Flexible, to handle a wide 

variety of data types. This enables researchers to rapidly evolve data models and conduct 

customized analyses. 2) Scalable, permitting researchers to easily explore large and complex 

datasets without waiting long periods for simple queries. 3) Operationally mature, including end-

to-end encryption, fine-grained data access control, and operational tooling. These operations can 

facilitate the management of multi-omics data and the accurate alignment of genes across 

multiple datasets, thereby increasing the feasibility of multi-omics integrative analysis.  

Numerous biological prediction problems (van Dijk et al. 2021) are based on standard 

feature sets such as gene length, exon number, and gene expression. These conventional feature 

sets are repeatedly utilized to tackle many different biological problems and to obtain these 

features from raw data requires users to know bioinformatics, such as annotating gene models 

from a genomic fasta file, mapping RNA-Seq reads to genomes or extracting counts of exons per 

gene model. These processes become tedious and repetitive if we use the same features to solve 
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further biological problems. A feature store allows researchers to overcome this obstacle and 

improve the usability of the omics in the genotype-to-phenotype context. We developed the 

Maize Feature Store tool to simplify the management, access, and analysis of omics datasets for 

a wider range of users. 

3.4.2 Application of MFS on pan-genome classification  

We illustrate the capability of the Maize Feature Store in applying and analyzing multi-

omics data for classifying genes as core or non-core and identifying top omics features that are 

most helpful in predicting their classification within a pan-genome. As reported in Figure 3.1, 

several modules were developed to follow a precise exploratory analysis workflow that goes 

from the data selection to the downstream data analysis and ultimately to modeling. For our case 

study, we developed two models: one that utilized all omics features (a total of 14,407 features) 

(https://mfs.maizegdb.org/feature_details) and another that utilized a subset of omics features (a 

total of 10,271 features) consisting of only the gene structure, gene sequence, and protein 

sequence data (https://mfs.maizegdb.org/feature_details). The model development lifecycle 

involved several stages, such as feature engineering, dealing with imbalanced data, feature 

selection, model building, hyperparameter tuning, and finally selecting the most optimal model 

(see Supplemental Methods).  

An example of the “Data Table” module is shown in Table 3.1. In the “Data Table” 

module, it is possible to view all the genes and the selected features. Users can sort the table 

columns and use the search bar to look up specific gene IDs. We used the MFS data exploration 

and visualization modules to perform several univariate, bivariate, and multivariate analyses of 

the core and noncore gene structural features (Supplementary Figures S2-S6, see Supplemental 

Methods). An initial analysis of the data provided a quick visual summary of the potential 

association between the selected features of interest and the various categories of the “Pan-

https://mfs.maizegdb.org/feature_details
https://mfs.maizegdb.org/feature_details
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genome” label (Figure 3.2 and Supplementary Figures S2-S6). By simultaneously exploring gene 

structure features, we can observe that several features are significantly correlated in both core 

and non-core genes. Therefore, the plots can initially demonstrate how the different genomic 

features can contribute to our understanding of core or non-core genes and highlight the potential 

for gene structural features in pan-genome classification.  

3.4.3 Unified features excel over individual subsets in maize gene classification: core vs. 

non-core categories  

The "Modeling" module of MFS offers an “Advanced Model” form and a “Basic Model” 

form which allows users to make predictions for their genes based on certain inputs. We trained 

the “Advanced” model using the top 25 features from a comprehensive set of omics features 

generated using a Hybrid Feature Selection method and a base Gradient Boosting Classifier with 

five-fold cross-validation (Supplementary Tables S1-S2 and Figure 3.3A). We built a simplified 

“Basic” model by training on the top 25 features generated using a similar approach from only 

the gene structural features and sequence features (Supplementary Tables S3-S4 and Figure 

3.3B). To evaluate the specific contributions of each feature type to the overall accuracy of core 

and noncore gene prediction, we performed individual predictions using the other distinct subsets 

of features (Expression Features, Chromatin Features, Count Features, Correlation Features, and 

Other). This involved constructing separate machine-learning models for each feature subset 

(Supplementary Figure S11-S16). We tested the performance of six machine-learning algorithms 

for the classification of “Pan-genome” genes on both “Advanced” and “Basic” models, namely: 

(1. Logistic Regression, 2. Random Forest Classifier, 3. Gradient Boosting Classifier, 4. Extra 

Trees Classifier, 5. KNeighborsClassifier, and 6. SVM Classifier) and two distinct optimization 

approaches (1. Random and 2. Grid Search). In general, all five approaches performed well, but 

Gradient Boosting Classifier performed significantly better in the “Advanced” model with the 
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area under the Receiver Operating Characteristic Curve (AUC-ROC) = 0.85, Average Precision-

Recall (PR) = 0.96, and F1 = 0.92 (Figure 3.3C) and the Random Forest Classifier performed 

significantly better in the “Basic” model yielding an AUC-ROC = 0.80, Average PR = 0.92 and 

F1 = 0.89 (Figure 3.3D). We compared the results to random classification to gain a proper 

perspective on the model performances. Based on random classification, the AUC-ROC would 

be 0.5. When AUC=0.5, the classifier cannot distinguish between positive (core) and negative 

(non-core) class points, as the classifier is predicting a random class or a constant class for all the 

data points. An increase in AUC-ROC and F1 can be seen in the “Advanced” model, especially 

compared to the “Basic” model. Therefore, our performance increased significantly when we 

used both intrinsic and extrinsic features, as demonstrated by the “Advanced” model.  

Additionally, both of our models: “Basic” and “Advanced”, outperformed a previous 

model in terms of accuracy recently published by Yocca, E, Alan et al. (Yocca and Edger 2021), 

which predicted core genes of Oryza sativa and Brachypodium distachyon using only intrinsic 

features such as gene sequence features, evolutionary features, and gene structural features. They 

achieved an AUC-ROC of approximately 0.77 and an accuracy of approximately 0.71 when 

trained and tested with the Oryza sativa balanced datasets and an AUC-ROC of approximately 

0.86 and an accuracy of approximately 0.80 when trained and tested with the Brachypodium 

distachyon balanced datasets using a Random Forest method for ML, whereas our “Basic” model 

(Random Forest Classifier) achieved an AUC-ROC of approximately 0.80 and an accuracy of 

approximately 0.84 in the testing set, and our “Advanced” model (Gradient Boosting Classifier) 

achieved an even higher accuracy of approximately 0.89 and AUC-ROC of approximately 0.85. 

In this way, our models not only classify genes as core or non-core but also challenge the 

efficacy of current pipelines by comparing model output with pipeline output. Analyses of 
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complex genomes by pan-genome pipelines often result in the incorrect annotation of genes as 

core or non-core. Our model can provide extra validation to the pipeline output and identify mis-

annotations that may occur in the current pipelines, which are both time-consuming and 

computationally expensive.  

3.4.4 Investigating the features that have strong differentiation powers in both the 

“Basic” and “Advanced” models  

The best performing model (Gradient Boosting Classifier in the “Advanced” model and 

Random Forest Classifier in the “Basic” model) was used to determine which predictor variables 

are most significant for prediction performance. In this way, we can gain insights into the 

biology of core and non-core genes. The 25 most important variables (Figure 3.3A and 3.3B) for 

training the “Advanced'' model and the “Basic” model were generated using a Hybrid Feature 

Selection method and a base Gradient Boosting Classifier as described in the materials and 

methods section. A Gradient Boosting Classifier has a built-in variable importance assessment. 

The Kn/Ks ratio of both sorghum vs. B73 and Tzi8 vs. B73, a measure of evolutionary pressures 

on protein-coding regions, was among the top five most significant features in the “Advanced'' 

model. There have been previous pan-genome studies that compared synonymous (Ks) and 

nonsynonymous substitution (Kn) rates (Tao et al. 2019). These studies have indicated that 

dispensable genes undergo more non-synonymous substitutions, as well as increasing Kn/Ks 

ratios, implying greater positive selection on dispensable genes (Gordon et al. 2017; Wang et al. 

2018; Li et al. 2014). While performing exploratory analysis with the genes, we also observed a 

difference in the Kn/Ks ratio of Tzi8 vs. B73 among the “Pan-genome” genes with a mean value 

of 13.90 in the dispensable genes and 4.58 and 4.70 in the near core and core genes, respectively, 

aligning with results found in the previous studies of greater positive selection on dispensable 

genes. The two-sided p-value analysis also indicated a significant difference in the Kn/Ks ratio 
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observed among the “Pan-genome” genes. Other important predictors in our “Advanced” model 

were the difference in the ratio of the WGD regions among the core or noncore genes, presence, 

and absence of Pfam domains (protein families, domains, and functional sites extracted from the 

Pfam database) for coding genes in the core genome set and those in the dispensable genome, 

Transcription Factor Ethylene Responsive Element Binding Factor domain EREB (stress-

responsive transcription factors) and (TE) transposable elements.  

Gene duplications play a major role in the evolution of novel traits in eukaryotes (Ohno 

1970; Yu et al. 2019). The WGD regions are found to contain a higher ratio of core and near-

core genes, whereas non-WGD regions (tandem regions) contain a higher ratio of dispensable 

and private genes (Liu et al. 2020; Bayer et al. 2020). Additionally, the exploratory analysis also 

indicated that in our omics dataset, the non-core genes had a higher tandem repeats ratio than the 

core genes (Supplementary Figure S7). An enrichment of TEs in the vicinity of dispensable 

genes was reported in B. distachyon (Gordon et al. 2017) and B. oleracea (Golicz et al. 2016). 

Our model, as well as our exploratory analysis (https://mfs.maizegdb.org/TE), complements the 

findings of previous studies on transposable elements and Pfam domains (Zhao et al. 2006), as 

the maize B73 dispensable genes were also found to be enriched with transposable elements 

around the 1Kb and 5Kb regions upstream and downstream of the gene start site and end site 

respectively, and the total Pfam domains were also abundant among the maize B73 core genes 

compared to the dispensable genes. As the EREB transcription factors are involved in plant 

hormone responses under stress conditions (68), they are more likely to be enriched among 

dispensable genes than the core genes, and our study confirms this 

(https://mfs.maizegdb.org/TFbindingSite). 

https://mfs.maizegdb.org/TE
https://mfs.maizegdb.org/TFbindingSite
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 The top features in our “Basic” model having the most influence in the classification of 

core or non-core genes are the five-prime UTR length, three-prime UTR length, isoforms count, 

and sequence features such as Composition Transition Distribution (CTDD), pseudo dinucleotide 

composition (PseDNC) and many more. Most of these features displayed significant differences 

between the maize B73 core and non-core genes (https://mfs.maizegdb.org/Structure). Earlier 

studies have also stated that dispensable genes tend to display common features similar to young 

genes: short gene length, weak homology, low expression, rapid evolution, and turnover 

(Christine Tranchant-Dubreuil 2019), thereby further supporting our findings on the topological 

properties of core and non-core genes. 

3.5 Discussion 

The growing number of omics datasets from diverse sources have highlighted the 

importance of evaluating specific models and methods for collecting, managing, and analyzing 

multi-omics data to better explore the interplay between the multiple cellular, molecular, and 

phenotypic layers. While several multi-layer data structures are available, there is still a need for 

end-to-end solutions for storing, exploring, and modeling data. To solve this need, we proposed 

using MFS as a suitable structure to manage commonly used maize omics features. MFS will 

benefit bioinformaticians, data scientists, and experimental researchers interested in solving 

complex biological problems. Our tool enables researchers to share and discover features, create 

more effective machine-learning pipelines, and perform exploratory analyses. It provides users 

without domain knowledge or modeling experience the ability to identify the most significant 

factors affecting the target problem. For example, during the exploratory analysis of “Pan-

genome” genes (Figure 3.2), we observed that the exon number varied across the pan-genome 

categories and thus might be a strong predictor of core or non-core genes.  

https://mfs.maizegdb.org/Structure
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An example of a current application of these models involves classifying genes in a new 

species closely related to maize as core or non-core without constructing an expensive pan-

genome. Our models outperform random assignment for most downstream applications with 

around 90% accuracy. Our model would also be ideal for newly sequenced or poorly annotated 

genomes. Where other tools like BLAST could also infer annotation, it does not provide 

underlying insights for the assignments beyond sequence homology.  

Each year, numerous papers and research articles are published on maize, utilizing omics 

data. However, although data repositories exist, there is a need to extend model organism 

databases like MaizeGDB to provide end-to-end data analysis. MFS, in this context, provides a 

central hub of maize omics features with flexible and expandable functionality that enables 

maize researchers to configure the tool for specific analyses. Additionally, MFS's modeling 

module utilizes a comprehensive set of omics features to conduct a core/non-core gene 

classification. Even though several prediction or classification problems have been addressed 

using a wide range of omics features in mice (Yuan et al. 2012), D. melanogaster (Campos, 

Korhonen, Hofmann, et al. 2020; Aromolaran et al. 2020), and C. elegans (Campos, Korhonen, 

Sternberg, et al. 2020), no work on plants, more specifically maize, has been reported. We were 

able to build a classification model utilizing the comprehensive set of features (“Advanced” 

model) and perform a comparative study by building another model utilizing just sequence and 

structural features known as the “Basic” model. Although the “Basic” model was more 

generalized, the “Advanced” model performed significantly better (Figure 3.3C), thus showing 

that an elaborate assembly of intrinsic and extrinsic factors from a wide range of sources 

covering multiple aspects of a gene greatly outperforms the approach based solely on sequence 

or structural features. We further emphasized the necessity of using both intrinsic and extrinsic 



69 

 

features by comparing our models (both "Basic" and "Advanced") with already existing models 

by Yocca, E, Alan et al. (Yocca and Edger 2021), which predicted core and non-core genes of 

Oryza sativa and Brachypodium distachyon, respectively. Our “Advanced” model performed 

significantly better with an accuracy of almost 25% higher than their same species Oryza sativa 

model (trained and tested on the Oryza sativa balanced datasets) and almost 11% higher than 

their Brachypodium distachyon model (trained and tested on the Brachypodium distachyon 

balanced datasets). 

 In this work, we aimed at the needs of both experimental and computational researchers. 

We addressed the need for resources that bridge the gap between the growing number of omics 

datasets and their potential as training data for modeling and machine learning. We developed a 

framework that hosts over 14,000 gene-based machine learning features built on multi-omics 

data to facilitate the exploration and modeling of classification problems. The tool's modularity 

will allow computational researchers to add additional functionality, fine-tune existing 

functionalities, and reproduce the entire application for other species of interest. 
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3.6 Main Figures and Tables 

 

Figure 3.1 Module description: The MFS consists of three main modules: Features, Downstream 

Analysis, and Modeling. 

We assembled the omics features associated with each gene model in Zea mays (B73v5) 

based on various sources as indicated by the “Data sets” arrows of the figure. Many preliminary 

and advanced exploratory analyses can be performed on the generated features as indicated by 

the “Exploratory analysis” module of the figure. Systematic evaluation of machine learning 

(ML) approaches is used in the Modeling section to solve complex biological problems, such as 

pan-genome prediction. The Graphical Overview was created using BioRender.com. 
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Figure 3.2 Example Maize Feature Store outputs. 
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The MFS provides users with options to carry out several univariate, bivariate, and 

multivariate analyses for both the total and downsampled omics data. Univariate analysis 

example: (A) Total Histogram; (B) Downsampled Histogram; Bivariate analysis example: (C) 

Total Scatter plot; (D) Downsampled Scatter plot; Multivariate analysis example: (E) Total 

Correlation plot; (F) Downsampled Correlation plot. These plots were generated from the 

selected Gene Structures such as Gene length, Exon number, three-prime UTR length, five-prime 

UTR length, and the selected label (“Pangenome”: core/near-core/dispensable/private). The 

plot's colors and legends indicate the multiple “Pangenome” categories. In addition to the graph, 

to increase the interpretability of the data, we have also included p-values, mean and standard 

deviations of the selected datasets. For details on the interpretation of the plots, see 

(https://mfs.maizegdb.org/Structure). 

 

https://mfs.maizegdb.org/Structure
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Figure 3.3 Maize Feature Store example Basic and Advanced models. 

(A) In our Advanced model, both intrinsic and extrinsic features contributed substantially 

to the core/non-core gene predictions in maize B73v5. The 25 omics features were 

ranked based on how useful the model found each feature in predicting the target 

(core/non-core genes). (B) The Basic model feature importance plot displays only the 

structural and sequence features most predictive of identifying the core and non-core 

genes in B73v5. Higher scores indicate that a specific feature has a larger impact on 

the model used to predict a specific variable (core/non-core). (C, D) The prediction 

performance of both the “Advanced” model and the “Basic” model was evaluated 
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across all classifiers on the test set using AUC-ROC (left) and the area under the 

Precision Recall Curve AUC-PR (right) metrics. For detailed model evaluation and 

performance analysis, see the Supplementary Figure S17-S18. 
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Table 3.1 Dynamic visualization of the selected gene structure datasets. 

 

 

Gene structure datasets (exon number, five-prime UTR length, gene length, three-prime UTR 

length, and the “Pan-genome” categories) using the MFS’s “Data Table” option. Only ten rows 

are displayed per page. 
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3.8.1 Data availability statement 

Project name: Maize Feature Store (MFS); Project home page: MFS is freely available on 

GitHub at https://github.com/shatabdi123/MFS_Application Web version of MFS is available at 

https://github.com/shatabdi123/MFS_Application
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https://mfs.maizegdb.org/. The dataset for MFS can also be accessed on Kaggle: 

https://kaggle.com/datasets/332177dbd2271966f2291640acf6f7057bde915d939b3bf67545a5f24 

a0e3fe3. Programming language: Python, R, JavaScript, HTML, CSS; Other requirements: Flask 

1.1.2 or higher. The application is platform independent. 
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3.9 Appendix B: Supplementary tables and figures 

All supplementary tables and figures can be found online at Sen et al., 2023: 

https://mc.manuscriptcentral.com/database. 
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ABIOTIC STRESS ACROSS DIFFERENT MAIZE LINES AND RELATED 
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Modified from a manuscript to be submitted in Bioarchive  

4.1 Abstract 

Maize is a crop that is highly susceptible to various biotic and abiotic stresses throughout 

its growth cycle, particularly during the developmental stage and before flowering. To develop 

stress-resistant and high-yielding crop varieties, it is crucial to understand the molecular 

mechanisms and identify stress-responsive genes that control plant responses to these stresses. 

Genome-wide association studies (GWAS) of the maize reference genome, B73, have revealed 

numerous stress-responsive genes in this model species. However, functional genomics results 

can sometimes be ambiguous, and sequence similarity alone is not always reliable for identifying 

stress genes. Transcriptome profiling studies have provided insights into the molecular 

mechanisms underlying stress response, but these studies have been limited to a subset of 

species. Additionally, the features underlying stress-associated genes are poorly understood, 

making computational prediction challenging. To address these challenges, we employed several 

approaches based on machine learning classification algorithms and evaluated their ability to 

accurately predict stress-responsive genes based on non-homology gene features. In this study, 

comprehensive omics datasets from the Maize Feature Store were harnessed, and a machine-

learning-based workflow was applied to predict stress-responsive genes in maize. We discovered 
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strong predictors of stress-responsive genes in the reference genome B73, which can pave the 

way for computational predictions of stress-responsive genes in other maize accessions and non-

model plant species. The models trained on gene expression datasets as target labels 

outperformed the models trained on GWAS datasets. Furthermore, the results showed that 

models trained on generic RNA-Seq fold change cutoffs for annotating target labels as stress- 

responsive or non-responsive genes performed better than models trained on stringent cutoffs. 

The findings highlight the importance of considering gene expression datasets and using generic 

cutoffs for accurate classification of stress-responsive genes. This research contributes to the 

advancement of stress-responsive gene prediction and has implications for improving crop 

resilience and productivity in the face of biotic and abiotic stresses. 

4.2 Introduction 

Maize is one of the most widely cultivated crops globally. Its production is not only 

integral to food security, but it is also pivotal in biofuel production (Gong et al. 2014). It is the 

third most significant crop grown after wheat and rice (Assem 2015). The demand for maize is 

increasing, especially in developing nations, due to the rising consumption of animal and human 

food (Grote et al. 2021), therefore, maize production needs to dramatically increase to meet 

future demand. However, the yield and growth of maize are influenced by various factors, 

including changing climate conditions and different types of stress, both biotic and abiotic 

(Hemathilake and Gunathilake 2022). Under natural conditions, plants undergo different phases 

to complete their life cycle. In recent years, climatic parameters such as precipitation and 

temperature have become more unpredictable and extreme, resulting in prolonged droughts and 

changes in temperature beyond the optimal state (Habib-Ur-Rahman et al. 2022). Such changes 

have posed significant challenges to crop production. The susceptibility of plants to abiotic stress 

poses several challenges to sustaining an increase in crop production with changing climatic 
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patterns (Raza et al. 2019). Abiotic stress refers to the negative impact of non-living factors, such 

as drought, high temperature, salinity, and nutrient deficiency, on plant growth and development 

(Gull, Lone, and Wani 2019). Biotic stress on the other hand is imposed by pathogens, including 

fungal, bacterial, and viral, and can cause heavy damage leading to yield reduction in plants 

(Nazari et al. 2023). Some examples of prevalent maize diseases are northern corn leaf blight, ear 

rot, maize rough dwarf disease and sugarcane mosaic disease. Maize is also plagued by pests, 

including stem borer, pink borer, shoot fly, termites and the storage pest maize weevil (Gong et 

al. 2014). The origin of new pathogens and insect races due to climatic and genetic factors is a 

major challenge for plant breeders in breeding biotic stress resistant crops. These stressors can 

disrupt normal physiological processes in plants, leading to reduced growth, yield, and overall 

productivity. Approximately 10% of the global maize yield is lost each year as a result of biotic 

stresses (Jakhar and Singh 2015). 

Therefore, the identification of resistant genes paves the way to the development of 

disease-resistant cultivars and is essential for reliable production in maize and other plant 

species. The rapid acceleration in genome sequencing is providing complete sequences for 

dozens of new plant species each year (Henry 2022). Thus, this transformative capability has 

paved the way for the application of comparative genomics in the identification of stress-

responsive genes in plants. This methodology involves the systematic comparison of genomic 

sequences across different plant species, enabling the identification of conserved regions and 

variations associated with stress tolerance. However, a significant challenge of homology-based 

functional annotation is that these annotations are often propagated from one sequence to the 

next without associated data on provenance (Dai and Shen 2022). Another potential problem is, 

despite shared evolutionary history, a gene responding transcriptionally to cold stress in one 
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species may not be a good predictor of whether syntenic orthologous genes in related species 

would also respond to cold stress in the same treatment at the same developmental stage (Meng 

et al. 2021). This low conservation of transcriptional responses across conserved genes in related 

species is consistent with the results of a previous comparison of the transcriptional responses of 

maize and sorghum to stress (Zhang et al. 2017) and the variation in transcriptional responses to 

stress between different alleles of the same gene in maize (Gahlaut et al. 2016). 

In addition to employing sequence similarity, clustering methodologies also serve as a 

valuable tool for functional assignment of stress genes (Chiu and Ong 2022). A common strategy 

involves correlation analysis, utilizing Pearson or Spearman correlation based on gene 

expression data, coupled with subsequent clustering. This method groups genes with similar 

expression patterns, allowing for the inference of functional assignment by assessing if annotated 

genes within a cluster are enriched for recognized stress-related biological functions. The 

assignment of genes to specific stress-related clusters relies on their correlation strength. 

However, it's essential to acknowledge that these approaches, grounded in linear or monotonic 

relationships, may encounter challenges in capturing the intricate spatio-temporal dynamics 

inherent in the complex relationships among stress-responsive genes (Oyelade et al. 2016). 

Traditional wet lab approaches have provided valuable direct insights into stress gene 

identification. However, these methods have certain limitations that can hinder a comprehensive 

understanding of stress gene regulation. Direct gene expression measurement and valuable 

information about stress-responsive genes are possible using wet lab techniques like RNA 

sequencing and qPCR, but these approaches have certain limitations (Han et al. 2015). Firstly, 

wet lab approaches may overlook low-abundance genes that are difficult to detect using 

conventional methods. Secondly, these techniques often lack temporal dynamics, providing a 



88 

 

static picture of gene expression at a specific time point. Additionally, the limited availability of 

RNA-seq datasets for various stress conditions poses a significant challenge. The scarcity of such 

datasets stems from the time-consuming and costly nature of RNA-seq experiments, impeding 

comprehensive exploration and analysis of stress-responsive genes across diverse conditions. 

Lastly, inherent biases and limitations associated with individual wet lab techniques can affect 

the accuracy and robustness of stress-responsive gene identification. 

To overcome the limitations of existing bioinformatics tools and wet lab approaches, the 

integration of machine learning with multiomics datasets has emerged as a crucial strategy for 

stress-responsive gene identification. Machine learning (ML) algorithms can handle large-scale 

data with diverse molecular information, allowing for the integration of multiple omics datasets, 

such as transcriptomics, proteomics, and epigenomics (Feldner-Busztin et al. 2023). This 

integration enables a more comprehensive analysis of stress-responsive gene regulation, 

capturing the complex interactions and regulatory networks involved. In recent years, researchers 

have increasingly utilized machine learning algorithms to gain insights into plant phenotyping, 

gene function prediction, and molecular studies (Mahood, Kruse, and Moghe 2020; Danilevicz et 

al. 2022). These applications have revolutionized the field by enabling the analysis of large-scale 

datasets and providing accurate predictions and classifications. ML is making significant strides 

in plant breeding. Its application in maize, for instance, in classifying DNA sequence regions 

into active genes and pseudogenes based on features like DNA methylation (Niederhuth and 

Schmitz 2017). ML is has also been employed to predict crossover regions in the plant genome, 

where genetic material exchanges between paternal and maternal genomes (van Dijk et al. 2021). 

Furthermore, ML has gained traction in plant population genetics, exemplified by predicting 

genomic regions influenced by natural selection (Schrider and Kern 2018). These applications 
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highlight ML's evolving role in plant breeding, extending beyond traditional gene annotation in 

newly sequenced genomes. ML, with its emphasis on predictive patterns, serves as a valuable 

complement to conventional comparative omics approaches in exploring and understanding plant 

genome function. 

In this paper, we explored the integration of machine learning with multiomics datasets as 

a strategy to address the challenges of wet lab approaches as well as existing bioinformatics tools 

and pipelines. The characterization of stress-responsive genes in terms of their biophysical and 

biochemical properties have remained elusive and limited to certain features through direct or 

indirect observations (Latorre et al. 2022). A systematic and comprehensive study of the features 

characterizing stress-responsive genes has not yet been performed. This is an important step 

towards understanding gene expression regulation and improving the tools used in plant biology 

and biotechnology (Poljsak and Milisav 2012). Hence, here we create a computational model 

that will predict stress-responsive genes associated with abiotic and biotic stresses in maize (Zea 

Mays) as well as across other maize genome assemblies (e.g., maize inbred lines W22 and Zea 

mays ssp. mexicana L (TIL-18, TIL-25) (Lu et al. 2017)) by performing meta-analyses of a 

comprehensive set of multi-omics datasets. Broadly speaking, the workflow will provide a 

framework that yields insight into the possible characteristics of specific genes and the role they 

play in response to different environmental stimuli.  

4.3 Materials and Methods 

4.3.1 Definition of stress-responsive genes 

The catalog of stress-responsive genes in Maize B73 was defined using differential 

expression analysis, performed with DESeq2 (Madzima et al. 2021) (v1.26.0) and genome-wide 

association studies (GWAS) (Challa and Neelapu 2018). 
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4.3.1.1 GWAS based definition of target labels 

Genome-wide association studies (GWAS) are a powerful tool for investigating multiple 

or complex traits related to any single/multiple stress. GWAS on various plants/crops have 

identified novel gene candidates, or genes or quantitative trait loci, responsible for abiotic stress 

and biotic stress.  

The GWAS based labeling of genes was carried out based on clean, processed GWAS 

dataset from MaizeGDB. The first group of GWAS data from MaizeGDB (Woodhouse, Cannon, 

et al. 2021) aggregated genome-wide association mapping for 41 different phenotypes to 38,421 

SNPs from the Maize Hapmap1 and Hapmap2 projects. Individual SNPs are present with the 

trait(s) that segregates with that SNP. The original data was from (Wallace et al. 2014). 

Association mapping across numerous traits reveals patterns of functional variation in 

maize. This study used the maize Nested Association Mapping (NAM) population and nearly 30 

million segregating variants to identify variants that were significantly associated with at least 

one phenotype. The phenotypes cover various plant architecture, developmental, disease 

resistance traits and 12 different metabolites in leaves. 

The data was originally mapped to the B73 RefGen_v2 genome. MaizeGDB used the 

50bp upstream and downstream flanking sequences for each SNP (in RefGen_v2) from the 

RefGen_v2 SNP genomic coordinates (retrieved using bedtools getfasta) as query sequences 

aligned to B73 RefGen_v5 and the 25 NAM founder lines. This data included the top syntenic 

hit (from blastn, -evalue 0.00001 and dagchainer, -D 10000000 -g 10000 -A 3 -e -0f -x 1 -E 0.1 -

M 100) for each of the query sequences. 

Reference SNP (RS) identifiers were assigned based on coordinate positions for the B73 

RefGen_v4 SNPs downloaded from the European Variation Archive (March 2020). The GWAS 

SNP data was remapped to RefGen_v4. MaizeGDB using the 100bp upstream and downstream 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/quantitative-trait-loci
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/biotic-stress
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flanking sequences (retrieved using bedtools getfasta) for each SNP (in RefGen_v2). The data 

included the top hit (from blastn, -evalue 0.00001) where a GWAS SNP mapped to the same 

position as an EVA SNP (with a RS ID) in v4. 

Another set of GWAS dataset associated with multiple phenotypes were retrieved from 

MaizeGDB describes genome-wide association mapping (GWAS) from 133 papers covering 531 

studies for 279 traits across ~42,000 loci overlapping ~8,400 genes (Portwood et al. 2019). The 

data was compiled and remapped to B73_v4 at the GWAS Atlas database by the National 

Genomics Data Center at the Chinese Academy of Sciences (Tian et al. 2011). Each GWAS hit 

includes trait name, tissue, position, allele, p-value, R^2 value, RS number, RS reference allele, 

RS alternate allele, publication information, and PubMed link.  

All of the original coordinates for B73 RefGen_v2, v3, and v4 have been remapped to 

B73 RefGen_v5. MaizeGDB used the 100bp upstream and downstream flanking sequences 

(retrieved using bedtools getfasta) for each SNP (in RefGen_v4) from the RefGen_v4 SNP 

genomic coordinates from the GWAS Atlas database (retrieved using bedtools getfasta) as query 

sequences aligned to B73 RefGen_v5 with at least 98% coverage and 98% sequence identity. 

Only the top hit for each of those query sequences were considered. If multiple top hits exist, the 

hit nearest the original location is chosen.  

BLAST was used for the mapping (example command syntax: "blastn -db Zm-B73-

REFERENCE-NAM-5.0.fa -query flanking_sequences.fasta -perc_identity 98 -qcov_hsp_perc 

98"). 

For each GWAS SNP throughout the genome, genes were annotated as stress or non-

stress based on the presence or absence of SNPs within three distinct genomic regions: one using 

the gene body, defined as the region from the annotated transcription start site to the annotated 

https://ngdc.cncb.ac.cn/gwas/index
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transcription stop site, a second for the upstream and downstream region, defined as a 1 KB 

(kilobase) region directly upstream and downstream of the transcription start site and 

transcription stop site respectively, and a third for the upstream and downstream region, defined 

as a 5 KB (kilobase) region directly upstream and downstream of the transcription start site and 

transcription stop site respectively. 

4.3.1.2 RNA-Seq based definition of target labels 

The RNA-Seq based classification of genes into stress-responsive or non-responsive 

categories was determined by comparing the expression levels of the genes in treatment versus 

control samples. This categorization relied on data aligned to high-quality RNA-Seq expression 

reads, mapped specially to the most recent version of the B73 reference genome (B73v5). 

Twenty-five (25) quality RNA-Seq datasets from published RNA-Seq studies related to biotic 

and abiotic stress generated from tissues of the B73 cultivar were used in this analysis (Table 

4.1). The RNA-Seq studies collected for this study captured various types of abiotic stress factors 

including drought, heat, cold, salinity, waterlogging, nitrogen, cadmium, phosphate, nitrate, 

ammonium and elevated ozone (UV). The biotic datasets were generated from B73 inoculated 

with pathogens such as Cercospora Zeina (causal agent of gray leaf spot), Fusarium 

graminearum (causal agent of Gibberella stalk rot), Fusarium venenatum, Colletotrichum 

graminearum, Sugarcane Mosaic Virus, Mites herbivores and Weed stress.  

To assess the model's effectiveness on different maize inbred lines, we utilized three additional 

high-quality RNA-Seq datasets. These datasets were sourced from published studies on abiotic 

stress (specifically drought and cold stress) and were derived from the tissues of the maize inbred 

line W22 and the cultivar Zea mays ssp. mexicana L. (specifically, TIL-18 and TIL-25) (Lu et al. 

2017).  
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For our analysis, two sets of RNA-Seq based target labels were generated. Read counts 

were utilized to discern stress-responsive genes by contrasting gene expression in treatment vs. 

control samples. In the first set, differentially expressed genes were specified as those with an 

adjusted P value < 0.05 and an absolute log2 fold change ≥1 and <-1, as determined by EdgeR 

(Robinson, McCarthy, and Smyth 2010). Non-responsive genes were characterized as those not 

meeting the expression criteria between treatment and control values at all time points and 

conditions. 

Meanwhile, the second set of RNA-Seq based stress-responsive gene labels employed a 

more stringent cutoff [|log2(fold change)| ≥ 2 and < -2, p-value < 0.05], ensuring a refined 

selection of stress-responsive genes based on a higher threshold for fold change and statistical 

significance. 

4.3.1.3 Unified approach of defining target labels 

In adopting a unified approach to designate genes as stress-responsive or non-responsive, 

the synergistic strengths of both GWAS and RNA-Seq studies were harnessed. This strategy 

aimed to capitalize on the distinct advantages offered by each method. Genes were meticulously 

annotated as stress-responsive when they were identified as such by either GWAS and DESeq 

analyses [|log2(fold change)| ≥ 1 and < -1 , p-value < 0.05]. By integrating the results from both 

genomic and transcriptomic analyses, this unified labeling approach ensured a robust and multi-

faceted identification of genes exhibiting stress responsiveness. 

4.3.2 Preparing features for predictive analysis 

Feature generation is the process of transforming raw, unstructured data into a set of 

features that describes and represents the diverse attributes of the input data, often for statistical 

analysis or classification purposes. This process is performed after data collection and 

integration. In stress-responsive gene prediction, the input data are a set of omics features 
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associated with the genes transformed into numerical representations (features) and passed to a 

classifier that is expected to classify as either stress-responsive or non-responsive. This set of 

features can be broadly categorized as intrinsic and extrinsic features as defined in the Maize 

Feature Store (Sen et al. 2023). We define intrinsic features as features that can be directly 

derived from gene and protein sequences without association or comparison with another 

sequence; examples include gene sequence, protein sequence and codon usage features. Features 

are extrinsic if they are computed from the sequence’s interaction with another sequence or its 

environment. Examples are localization, which estimates the probability of a gene to reside in a 

particular compartment within the cell; topology, which computes the degree of interaction 

among genes or proteins. 

The intrinsic and extrinsic set of predictive features were divided into seven categories: 

Sequence, Gene Model Structure, Gene and Protein Expression, Chromatin, Count, Variomic , 

and Evolutionary features. All these intrinsic and extrinsic sets of gene features were retrieved 

from the Maize Feature Store for Maize B73 (reference genome) and were generated for the 

NAM founder lines as detailed in the Maize Feature Store.  

4.3.3 Stress features filtering for modeling 

The focus of feature selection is to select a subset of variables from the input which can 

efficiently describe the input data while reducing effects from noise or irrelevant variables and 

still provide good prediction results (Chandrashekar and Sahin 2014). The standardized maize 

multi-omics data can contain thousands of variables of which many of them could be highly 

correlated with other variables (e.g., when two features are perfectly correlated, only one feature 

is sufficient to describe the data). The dependent variables provide no extra information about 

the classes and thus serve as noise for the predictor. This means that the total information content 

can be obtained from fewer unique features which contain maximum discrimination information 



95 

 

about the classes. Hence by eliminating the dependent variables, the amount of data can be 

reduced which can improve the stress classification performance. By applying feature selection 

techniques, we can gain some insight into the process and can improve the computation 

requirement and prediction accuracy. 

There are a lot of ways of performing feature selection, but most feature selection 

methods can be divided into three major types: Filter-based, Wrapper-based and Embedded. 

Filter methods act as preprocessing to rank the features wherein the highly ranked features are 

selected and applied to a predictor. In wrapper methods the feature selection criterion is the 

performance of the predictor i.e., the predictor is wrapped on a search algorithm which will find 

a subset which gives the highest predictor performance. Embedded methods (Guyon and 

Elisseeff 2003) include variable selection as part of the training process without splitting the data 

into training and testing sets. Therefore, here we proposed to use a vote-based approach to take 

advantage of the benefits of each one of the feature selection techniques. We applied a variety of 

feature selection methods from each of the three-feature selection techniques. The chi-squared 

test was opted for the filter-based feature selection method. The wrapper-based feature selection 

techniques used were Recursive Feature Elimination, Recursive Feature Elimination with Cross-

Validation and finally the embedded methods used were Random Forest-based feature selection, 

L1-based feature selection, typically associated with LASSO regression and Extra Trees-based 

feature selection to pick the top variables and assign a vote for each variable chosen. At the end, 

we calculated the total votes for each variable chosen and then chose the best features based on 

majority voting. 

4.3.4 Stress feature modeling and hyperparameter tuning 

For classification methods, we used seven distinct machine-learning algorithms, namely: 

(1. Logistic Regression, 2. Random Forest Classifier, 3. Gradient Boosting Classifier, 4. Extra 
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Trees Classifier, 5. KNeighborsClassifier and 6. XGB Classifier). In the initial steps of our 

methodology, we focused on preparing the dataset for our classification tasks. Data 

standardization was paramount, involving the scaling of numerical features to a standardized 

range, with a mean of 0 and a standard deviation of 1. This crucial preprocessing step ensured 

that each feature contributed fairly to the subsequent machine learning models, preventing biases 

that might arise from varying feature scales. 

Moreover, recognizing the challenges posed by our imbalanced stress gene datasets, 

where one of our classes (non-responsive genes) was underrepresented compared to the other 

(stress-responsive genes), we implemented strategies for data balancing. Techniques such as 

oversampling the minority class and Synthetic Minority Over-sampling Technique (smote) or 

undersampling the majority class were employed to create a more balanced representation, 

mitigating potential biases in favor of the majority class. 

Furthermore, to enhance the generalizability of our models, we incorporated two different 

hyperparameter optimization approaches: Random Search and Grid Search. Random Search 

involves randomly selecting combinations of hyperparameters from a predefined search space, 

allowing for an efficient exploration of a wide range of possibilities. On the other hand, Grid 

Search systematically explores a manually specified subset of hyperparameter combinations, 

providing a more exhaustive evaluation of potential configurations. 

4.3.5 Model evaluation 

To ascertain stress-responsive genes through computational methods, it is essential to 

validate the model's predictions and assess its effectiveness. The accuracy of predictions must be 

verified to ensure the computational approach aligns with experimental methods. Evaluation 

occurs on unseen data rather than the training set, adhering to standard practices for reliable 

machine learning model assessments. For our stress-responsive gene classification, we employed 
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the ten-fold cross-validation technique, a robust method. This process entails randomly dividing 

the training data into ten groups, constructing the model with nine of them, and evaluating it on 

the tenth group. The performance is recorded, and this cycle repeats for the remaining groups, 

providing a comprehensive evaluation of the model's effectiveness. 

Since we are addressing a binary classification task, determining whether a gene is stress-

responsive or non-responsive, we rely on standard binary classification evaluations metrics to 

evaluate the model's performance. The metrics included for our analysis are Accuracy, Precision, 

Sensitivity (Recall), and F1-Score. The evaluation process involved fundamental parameters like 

True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN). TP 

signifies a correct Positive prediction, FP represents an incorrect Positive prediction, TN 

corresponds to a correct Negative prediction, and FN indicates an incorrect Negative prediction. 

In the context of evaluating binary classification models, precision, recall, and F1-score 

are metrics that highlight the positive class of interest, often neglecting the negative class. 

Accuracy, on the other hand, can be deceptive while dealing with imbalanced dataset. We 

incorporated graphical methods such as the Area Under Receiver Operating Characteristic 

(ROC-AUC) curve and the Area Under Precision-Recall curves (PR-AUC) for our model 

assessment. The ROC-AUC curve visually demonstrates the trade-off between the true positive 

rate (sensitivity) and false positive rate (1—specificity) at different thresholds. It served as a tool 

to select optimal binary classifiers independently of class distribution, with scores ranging from 0 

to 1 across different stress-responsive gene classifiers. The Precision-Recall curves (PR-AUC) 

depict the trade-off between the true positive rate and positive predictive value, offering more 

informative insights, particularly in scenarios of imbalanced datasets, as observed in our stress-

responsive gene classification. 
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4.3.6 Deciphering feature significance: Interpretable AI 

Understanding the decisions of complex AI models in predicting stress-related genes is 

vital. To unravel these complexities, we have employed two robust Python frameworks: Local 

Interpretable Model-agnostic Explanations (LIME) (Ribeiro, Singh, and Guestrin 2016) and 

SHapley Additive exPlanations (SHAP) (Lundberg and Lee 2017). LIME is an innovative 

explanation technique that interprets classifier predictions faithfully and understandably by 

creating a local interpretable model around the prediction. The process involves generating 

random datapoints near the target data point, with closer points receiving more weight. The 

outcomes from these datapoints, predicted by the complex model, serve as ground truth, while 

predictions from simpler models are considered. The final step minimizes differences between 

complex and simple model outcomes, with a weighted emphasis on instances close to our target 

data point.  

On the other hand, SHAP is a game-theoretic approach based on Shapley values, 

quantifying each feature's contribution to the model's outcome. Starting with the expected value 

as the base, SHAP values reveal how each feature contributes to the predicted probability 

relative to the base value. While initially a method for local interpretation, SHAP can also be 

employed for global interpretation by aggregating SHAP values across multiple prediction cases. 

This comprehensive approach, encapsulating intricate details of the dataset, model 

architecture, and interpretation results, significantly contributes to the scholarly understanding of 

key features in stress-responsive gene classification within the expansive domain of AI-driven 

genomic analysis. 



99 

 

4.4 Results 

4.4.1 Comparing model performance across diverse feature combinations 

Distinct subsets of features, along with the RNA-Seq determined criteria for target labels 

(where stress-responsive genes were defined by an adjusted P value < 0.05 and an absolute log2 

fold change ≥1 and <-1), were utilized to conduct separate predictions. The goal was to assess 

the varying contributions of different feature types to the overall accuracy of predicting stress- 

responsive genes through the construction of diverse machine learning models. The study 

highlighted the best-performing model for each feature subset, as depicted in Figure 4.1.  

Models trained exclusively on gene model structure features, encompassing parameters 

such as gene length, number of isoforms, exon length, average exon length, number of exons per 

gene, coding sequence length, five prime untranslated regions (UTR) length, and three-prime 

UTR length, exhibited strong performance. The most effective model within this structural 

feature subset was the Gradient Boosting Classifier, achieving notable metrics, including an area 

under the Receiver Operating Characteristic Curve (AUC-ROC) of 0.81, accuracy of 0.80, 

Average Precision-Recall (PR) of 0.89, and F1 score of 0.85 (refer to Supplementary Figure 4.5). 

In contrast, models trained on genomic count features, such as the count of mutational 

insertions, transcription factor binding sites, transcription start sites, enhancers, transposable 

elements, miRNAs, and G-quadruplexes, computed across three genomic regions, demonstrated 

robust performance. These regions encompassed the gene body, a 1KB region upstream and 

downstream of gene start and end sites, and a larger region covering 5 KB upstream and 

downstream of the gene start and end sites. The Gradient Boosting Classifier emerged as the top-

performing model among all, achieving an AUC-ROC of 0.84, accuracy of 0.81, Average 

Precision-Recall (PR) of 0.91, and F1 score of 0.87 (see Supplementary Figure 4.6). 
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Models trained individually on epigenetic, evolutionary, sequence, and codon-based 

features exhibited overall similar performance, with an AUC-ROC ranging from 0.77 to 0.79, 

accuracy around 0.73, Average Precision-Recall (PR) from around 0.85 to 0.87, and F1 from 

around 0.78 to 0.80 (see Supplementary Figure 4.7, Supplementary Figure 4.8, Supplementary 

Figure 4.9, and Supplementary Figure 4.10, respectively). Tree-based models such as Gradient 

Boosting and Random Forest performed optimally when trained on these feature subsets. 

Among different subgroups of features, models trained on expression features (with 

stress-based experiments removed), including gene expression, protein expression, and gene co-

expression values, demonstrated the best performance with an AUC-ROC of 0.88, accuracy of 

0.83, Average Precision-Recall (PR) of 0.93, and F1 of 0.87 (see Supplementary Figure 4.11). Of 

all the models, the extra-tree classifier exhibited the most optimal performance when trained 

exclusively on expression features. 

The variomic features-based model exhibited the least favorable performance compared 

to all other feature subsets, with an AUC-ROC of 0.74, accuracy of 0.73, Average Precision-

Recall (PR) of 0.93, and F1 of 0.80 (see Supplementary Figure 4.12). 

Ultimately, the combined model, trained using the unified set of features, incorporating 

intrinsic and extrinsic predictive features such as Sequence, Gene Model Structure, Codon, Gene 

and Protein Expression, Chromatin, Count, Variomic, and Evolutionary features, emerged as the 

best-performing model for stress-responsive gene classification. It achieved an AUC-ROC of 

0.91, accuracy of 0.86, Average Precision-Recall (PR) of 0.96, and F1 of 0.90 (see Figure 4.2). 

Therefore, in terms of performance ranking, the top-performing model was the unified 

model, followed by the expression-based model, genomic count model, gene structural model, 
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epigenetic model, evolutionary model, sequence model, codon-based model, and variomic 

feature-based model (see Figure 4.1). 

4.4.2 Model comparison based on different labeling techniques 

Distinct models were trained based on the four distinct definitions of stress-responsive 

genes: the RNA-Seq-based definition employing a generic cutoff [|log2(fold change)| ≥ 1 and < -

1, p-value < 0.05], a more stringent criterion [|log2(fold change)| ≥ 2 and <-2, p-value < 0.05], a 

GWAS-based definition, and a unified approach for defining stress genes. 

The model's optimal performance was observed when trained on the RNA-Seq-based 

definition of stress-responsive genes with a generic cutoff [|log2(fold change)| ≥ 1 and < -1, p-

value < 0.05], yielding an impressive area under the Receiver Operating Characteristic Curve 

(AUC-ROC) of 0.91, accuracy of 0.86, Average Precision-Recall (PR) of 0.96, and F1 of 0.90 

(see Figure 4.2). 

Models trained on the unified approach for defining stress genes and the more stringent 

RNA-Seq-based definition of stress-responsive genes [|log2(fold change)| ≥ 2 and < -2, p-value < 

0.05] exhibited comparable performance, with AUC-ROC values ranging from 0.83 to 0.86, 

accuracy of 0.78 to 0.80 , Average Precision-Recall (PR) of 0.85 to 0.90, and F1 of 0.76 to 0.78 

(see Supplementary Figure 4.13, Supplementary Figure 4.14, respectively). 

In contrast, models trained on the GWAS-based definition of stress-responsive genes as 

true labels displayed the least favorable performance, with an AUC-ROC of 0.54, accuracy of 

0.63, Average Precision-Recall (PR) of 0.36, and F1 of 0.23 (see Supplementary Figure 4.15). 

These results strongly indicate that the RNA-Seq-based definition of stress-responsive 

genes with a generic cutoff [|log2(fold change)| ≥ 1 and < -1, p-value < 0.05] stands out as the 

gold standard for labeling stress-responsive genes. It is suggested as the most ideal method for 
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labeling stress-responsive genes when employing machine learning-based predictions or 

classifications. 

4.4.3 Statistical modeling and ranking the most distinctive features of stress-responsive 

genes 

In this study we employed three criteria to identify optimal features. Firstly, the features 

needed to be easily accessible and available across a wide range of plant organisms. Intrinsic 

features could be readily extracted as long as an organism possessed a fully sequenced genome. 

Context-dependent features were considered based on their generation feasibility through 

existing pipelines, customized Python scripts, or retrieval from major plant databases and peer-

reviewed publications. 

Furthermore, the chosen features must demonstrate substantial predictive prowess in the 

context of gene stress classification, aligning with the strengths of gradient boosting. To assess 

the predictive power of each feature, a bootstrapping approach was employed. This process 

entailed evaluating the accuracy of each tree in the boosting ensemble using out-of-bag samples 

for validation. The labels of the feature were permuted, and the resulting average reduction in 

accuracy was leveraged to ascertain the importance score, utilizing the varImp function from the 

scikit-learn (v1.0.2) package for gradient boosting. 

Thirdly, the features were required to minimize biological redundancy. Biologically 

redundant features, often derived from a similar source, tend to exhibit high correlations with 

each other. For instance, CBI (Codon Bias Index) has demonstrated strong Pearson correlation 

coefficients with CAI (Codon Adaptation Index) and Fop (Frequency of optimal Codons) 

because these features are all derived from the codon usage of a gene and share similar biological 

meanings. Including such redundant features not only poses challenges for various machine 
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learning classifiers but also introduces complexity without necessarily enhancing the inferential 

and predictive power of the classifier. 

Applying the aforementioned criteria, from a myriad of features under consideration, we 

pinpointed the top 25 features potentially linked to stress genes, displaying relatively mild 

correlations among themselves (refer to Figure 4.3 and Table 4.2). The selection was based on 

the top 25 features derived from the most effective model trained on the unified set of features 

and the RNA-Seq based definition of stress-responsive genes using a generic cutoff [|log2(fold 

change)| ≥ 1 and < -1, p-value < 0.05]. Notably, these features encapsulate diverse aspects 

ranging from sequence to function. 

The predominant factors influencing the classification of stress-responsive or non-

responsive genes in our highly effective gradient boosting classifier model include EREB 

Transcription Factors, specifically EREB 138, EREB 29, and EREB 71. These transcription 

factors are recognized for their responsiveness to ethylene, a plant hormone integral to diverse 

stress responses. Additionally, the model gives substantial importance to LBD (LATERAL 

ORGAN BOUNDARIES DOMAIN) Transcription Factor (LBD 19), PFAM domains, genes 

categorized as dispensable, gene breadth, gene co-expression features, tandem genes, gene 

structural features like mRNA length, chromatin features such as activation sites and open 

chromatin regions, as well as evolutionary features such as gene age. We corroborated these key 

predictors through validation against previous studies on stress-responsive genes and their 

attributes. Notably, earlier research has highlighted a robust positive correlation between the 

number of transcription factors targeting a gene and the likelihood of the gene being responsive 

to stress (Kimotho, Baillo, and Zhang 2019). 
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The transcription factors EREB 138, EREB 29, EREB 71, and LBD 19 have been linked 

to stress responses in maize. EREB10, belonging to the AP2/EREB family, is recognized for its 

involvement in the maize response to abiotic stress (Fagny et al. 2020). Additionally, the LBD 

transcription factor ZmLBD5 has been identified as a negative regulator of drought tolerance, 

impacting abscisic acid synthesis. In Arabidopsis, ZmLBD5 enhances drought sensitivity by 

suppressing ROS accumulation (Jiao et al. 2022; Xiong et al. 2022). The presence and 

characterization of the LBD transcription factor family in bread wheat suggests its potential role 

in stress responses. Screening of LBD transcription factors has revealed their participation in salt 

stress responses in Rosa rugosa (Wang et al. 2021). Moreover, during shoot-borne root initiation 

in maize, transcriptome profiling has implicated LBD genes such as rtcs, rtcl, rtcn, and lbd34 in 

this process (Muthreich et al. 2013). Furthermore, class II LBD genes ZmLBD5 and ZmLBD33 

have been identified as regulators of gibberellin and abscisic acid biosynthesis, shedding light on 

their function in stress responses (Xiong et al. 2021). Collectively, these findings underscore the 

crucial roles of EREB and LBD transcription factors in maize stress responses. 

Previous studies have also corroborated the association between PFAM domains and a 

spectrum of stress-responsive genes, notably those integral to general stress responses like sigma 

factors and histidine kinases/phosphatases (Jacob et al. 2014).  

Tandem duplicate genes exhibit a heightened presence in co-expression patterns, 

indicating their potential involvement in stress gene responses (Li et al. 2016). Additionally, 

dispensable genes, characterized by present/absent variation, are proposed to play a pivotal role 

in enhancing phenotypic diversity and heterotic performance in hybrids, particularly in the 

context of stress-responsive genes (Weisweiler et al. 2019). 
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Chromatin features, including histone modifications and chromatin accessibility, have 

been correlated with the activation of stress-responsive genes in maize under drought stress 

conditions (Halder et al. 2022). The role of histone acetylation in the transcriptional regulation of 

stress-responsive genes underscores the importance of epigenetic regulation in stress gene 

responses. Moreover, low-temperature stress has been demonstrated to induce genome-wide 

hypermethylation of transposable elements and centromeres in maize, suggesting the 

involvement of epigenetic modifications in stress gene responses (Chang et al. 2020). 

Evolutionary features, such as gene age and adaptive evolution post-gene duplication, 

have been identified as influential factors in species adaptability and the regulation of stress-

responsive genes (Doughty et al. 2020). Furthermore, the distinct expression patterns of 

aquaporin genes have been linked to the maintenance of water use efficiency in drought-stressed 

sorghum compared to maize, providing insights into the genetic basis of drought tolerance in 

different plant species, specifically in the context of stress gene association (Prasad et al. 2021). 

4.4.4 Explainability and Interpretability of the Gradient Boosting model for stress-

responsive and non-responsive gene classification 

The LIME technique provides a comprehensive explanation and interpretation of the 

prediction for a specific instance, such as an individual stress-responsive gene (refer to Figure 

4.4A). For instance, the predicted outcome for the gene depicted in Figure 4 suggests a high 

likelihood of being stress-responsive with 100.0% prediction confidence. Furthermore, LIME 

elucidates the rationale behind this prediction by delineating the contributions of input features 

(WGCNA Module 11, three-prime UTR length, tandem duplicates, mRNA length, Effective 

number of codons (Nc)) to the predicted outcome (i.e., a high chance of being a stress-responsive 

gene). 
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For instance, Module 11 (Hoopes et al. 2019) exhibits enrichment for leaf-specific genes 

(P < 2e-15), and its association with stress-responsive genes is validated through GO term 

enrichment, particularly for genes related to 'photosynthesis' (GO:0015979). Similarly, Module 3 

(Hoopes et al. 2019), enriched for root-specific and biotic-related DE genes (P < 0.001), 

demonstrates an association with stress-responsive genes, as affirmed by GO enrichment 

identifying terms like 'response to oxidative stress' (GO:0006979) and 'cell wall organization or 

biogenesis' (GO:0071554). 

In a similar vein, the SHAP technique elucidates the prediction outcome by evaluating 

the contribution of each feature to the prediction, offering global explanations (refer to Figure 

4.4B). The feature importance analysis based on the SHAP technique revealed that, in 

descending order of significance, PFAM domains, tandem duplicates, gene breadth, Heat treated 

seeding RNA-Seq expression, SNPs, and three prime UTR length were influential input variables 

affecting the model's performance in predicting the likelihood of being stress-responsive genes. 

The detailed contributions of these variables to the prediction of stress-responsive genes are 

presented in Figure 4.4B. The SHAP beeswarm plot further provides intricate insights into how 

the parameters within each variable contribute to the desired outcome, offering a global 

explanation and interpretation. 

As depicted in Figure 4.4B, the anticipated outcome can manifest as either non-

responsive genes (negative side on the x-axis) or stress-responsive genes (positive side on the x-

axis). Consequently, a detailed examination of the impact of each prognostic parameter is 

presented in Figure 4.4B. The analysis indicates that a higher number of PFAM domains, lower 

tandem duplicates, genes expressed in a majority of conditions or tissues (gene breadth), elevated 

gene expression under heat-treated conditions, longer three prime UTR length, a higher number 
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of genes associated with WGCNA module six (Module 6, jointly enriched for internode-specific 

genes, biotic-related DE genes, and DE genes under both biotic and abiotic stress, P < 5e-9), and 

a higher number of genes associated with E4 (H3K27ac + H2AZ + H3K4me1 + H3K56ac) 

histone modification combination are all correlated with an increased likelihood of being stress-

responsive genes (Figure 4.4B). 

4.4.5  Model performance on other maize lines 

We assessed the efficacy of a model trained on widely applicable and generalized 

features, specifically codon-based sequence features, using independent experimentally validated 

datasets. Upon training and testing on the maize B73 reference genome, this model displayed 

satisfactory performance, achieving an area under the Receiver Operating Characteristic Curve 

(AUC-ROC) within the range of 0.77 to 0.79. The accuracy was approximately 0.73, with 

Average Precision-Recall (PR) values spanning from 0.85 to 0.87, and F1 scores falling between 

0.78 and 0.80 (refer to Supplementary Figure 4.10). Since these same sequence features can be 

calculated for genes across different maize lines, it becomes feasible to evaluate the predictive 

capacity of stress-responsive gene expression in one maize line based solely on information 

about the stress responsiveness of genes in other maize lines. 

Hence, it was employed to evaluate the model's performance on datasets generated by 

different research groups worldwide, specifically focusing on genes designated as stress-

responsive in the maize inbred line W22 and the Zea mays ssp. mexicana L. genomes (TIL-18 

and TIL-25). The classification was based on the RNA-Seq definition of stress-responsive genes 

using a generic cutoff [|log2(fold change)| ≥ 1 and < -1, p-value < 0.05]. The test dataset 

exclusively comprised the positive class, representing genes labeled as stress-responsive genes. 

Due to limited availability of expression datasets for the W22 and mexicana genomes, defining 
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non-responsive genes was not feasible. Consequently, the codon-based model's performance was 

assessed solely on the positive test cases for each maize line. 

The model demonstrated robust performance in classifying genes as stress-responsive, 

achieving an accuracy of approximately 93% for TIL-18 by correctly identifying 5,688 stress-

responsive genes out of the total 6,147 in TIL-18 (refer to Supplementary Figure 4.16A). 

Similarly, for TIL-25, the model achieved an accuracy of around 92%, accurately classifying 

6,444 genes as stress-responsive genes out of the total 6,982 stress-responsive genes in TIL-18 

(Supplementary Figure 4.16B). Additionally, for W22, the model exhibited an accuracy of 

around 87%, accurately classifying 4033 genes as stress-responsive genes out of the total 4617 

stress-responsive genes in W22 (Supplementary Figure 4.16C). 

4.5 Discussion 

Abiotic and biotic stress responses are traditionally thought to be regulated by discrete 

signaling mechanisms. Recent experimental evidence revealed a more complex picture where 

these mechanisms are highly entangled and controlled by a range of cellular, molecular, and 

genetic mechanisms that act together in a complex regulatory network. Transcription factors, 

functional domains, gene structures, genome localizations, and expression profiles are key 

components of this crosstalk, as are heat shock factors and small RNAs. Despite shared 

evolutionary history, a gene responding transcriptionally to cold stress in one species was not a 

good predictor of whether syntenic orthologous genes in related species would also respond to 

cold stress in the same treatment at the same developmental stage (Meng et al. 2021). This low 

conservation of transcriptional responses across conserved genes in related species is consistent 

with the results of a previous comparison of the transcriptional responses of maize and sorghum 

to stress (Zhang et al. 2017) and the variation in transcriptional responses to stress between 

different alleles of the same gene in maize (Zeng et al. 2021). This suggests that identifying and 
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characterizing key genes and their potential characteristics, which discriminates abiotic and 

biotic stress responses, would increase our understanding of plant stress response manyfold and 

provide targets for genetic manipulation to improve their stress tolerance. Identifying master 

regulators such as stress-responsive genes that connect both biotic and abiotic stress response 

pathways is fundamental in providing opportunities for developing broad-spectrum stress-

tolerant crop plants. 

In summary, our comprehensive methodology, combining standardized and balanced 

data, a diverse set of classification algorithms, and thoughtful hyperparameter tuning, aims to 

develop robust models for accurately classifying stress-responsive and non-responsive genes. 

This multi-faceted approach ensures that our models are well-equipped to handle the intricacies 

of the classification task and produce reliable predictions.  

It is becoming increasingly apparent that genomic sequences represent only one aspect of the 

complex genetic relationships that have evolved under diverse selection pressures; therefore, it is 

necessary to consider a variety of features, including both intrinsic and context-dependent 

features. We hypothesize that a combined or advanced model built utilizing an entire set of 

omics data will outperform the generalized model build using just the sequence and structural 

features for maize stress-responsive or non-responsive gene classification. 

For the purpose of reproducibility, the supervised classification models trained on just 

gene features, including sets of features that can be calculated solely from genomic sequence 

data and gene structural annotation, can provide significant accuracy to predict which genes will 

transcriptionally respond to a specific abiotic or biotic stress. The success we achieved in 

prediction based on gene-sequence features greatly expands the potential application of this 

technique to non-model species—including those adapted to extreme environments—for which a 
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reference genome sequence has been generated, but substantial functional genomic datasets are 

lacking. Unlike the combined model, which requires data, the pure genomic feature model can be 

applied to any species with a sequenced genome and annotated gene models.  

While the unified feature model offers superior accuracy and efficiency, obtaining input 

features for this model necessitates the utilization of specialized sequencing techniques and 

resequencing data from diverse populations. To establish a highly adaptable prediction platform 

applicable to any species with a sequenced genome and annotated gene models, we developed a 

generalized model that exclusively relies on gene and protein sequences along with structural 

features. These genomic features are conveniently accessible or readily available in the form of 

GFF files. 

Furthermore, we conducted a comprehensive comparison and evaluation of models 

trained using different labeling techniques for defining genes as stress-responsive and non-

responsive. Our findings highlight those genes defined as stress-responsive with a generic cutoff 

[|log2(fold change)| ≥ 1 and < -1, p-value < 0.05] serve as the gold standard for labeling stress-

responsive genes, as they lead to optimal performance compared to GWAS-based labeling or a 

more stringent RNA-Seq-based labeling. 

Although the optimal cutoff may vary based on specific analysis goals and dataset 

characteristics, our validation process, utilizing independent datasets and cross-validation to 

assess performance across diverse contexts, revealed that a more stringent cutoff heightened 

specificity (reducing false positives) but concurrently resulted in decreased sensitivity 

(increasing false negatives). This stricter threshold excluded genes with subtle yet meaningful 

changes, resulting in information loss and potentially diminishing classification accuracy. 
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Therefore, a meticulous evaluation of both features and labels is crucial for constructing 

an optimal model for stress-responsive gene classification. In summary, our exploration 

involving the integration of various omics datasets, labels, and analyses enhances the annotation 

of stress-responsive genes, contributing to a deeper understanding of the molecular mechanisms 

underlying multiple stress responses in plants. 

4.6 Main Figures and table 

 

Figure 4.1 Prediction performance chart of the best performing model trained on distinct or all 

genomic descriptors. 

In the chart, we display the prediction performance of the best performing model trained 

on distinct or all genomic descriptors (Unified, Expression, Count, Structural, Epigenetic, 

Evolutionary, Sequence, Codon and Variomic). The chart summarizes the models' best scores on 

the testing dataset for each criterion (accuracy, precision, recall, F1, AUC-ROC) 
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Figure 4.2 Graphical representation of the prediction performance of the “unified” model. 

Graphical representation of the prediction performance of the “unified” (structural + 

sequence + genomic count + epigenetic + expression + variomic + codon + variomic) features 

based model evaluated on the test set using AUC-ROC (left) and Precision Recall Curve PR 

metrics (right). 

 

 

Figure 4.3 Feature Importance plot of the comprehensive unified feature model. 
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For our comprehensive unified feature model, both intrinsic and extrinsic features 

contributed substantially to the stress-responsive/non-responsive gene predictions in maize 

B73v5. The 25 omics features were ranked based on how useful the model found each feature in 

predicting the target (stress-responsive/non-responsive). 

 

 

Figure 4.4 LIME and SHAP explainable AI plot. 

(A) LIME explainability of a single instance. (B) SHAP beeswarm summary plot on the 

impact of input variables on the Gradient Boosting classifier model’s predictive 

ability. 
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Table 4.1 Tabular view of the RNA-Seq data sources. 

 

 

 

PMID DOI/References Type  Project 

Accession 

28298920 https://doi.org/10.3389/fpls.2017.00290 Abiotic PRJNA335771 

31245722 https://doi.org/10.1002/pld3.57 Biotic PRJNA325825 

34557211 https://doi.org/10.3389/fpls.2021.699146 Biotic PRJNA730310 

24885787 https://doi.org/10.1186/1471-2229-14-141 Abiotic PRJNA210356 

28298916 https://doi.org/10.3389/fpls.2017.00267 Abiotic PRJNA339768 

27461139 https://doi.org/10.1038/srep30446 Abiotic PRJNA290180 

30257650 https://doi.org/10.1186/s12864-018-5109-8 Abiotic PRJNA398446 

26042133 https://doi.org/10.3389/fpls.2015.00341 Abiotic PRJNA269060 

36016425 https://doi.org/10.3390/v14081803 Biotic PRJNA846583 

32756433 https://doi.org/10.3390/genes11080881 Abiotic PRJNA645274 

34502437 https://doi.org/10.3390/ijms22179527 Abiotic PRJNA723826 

33730156 https://doi.org/10.1093/plcell/koab083 Abiotic PRJNA659061 

29206208 https://doi.org/10.3390/ijms18122624 Abiotic PRJNA420600 

31968691 https://doi.org/10.3390/ijms21020686 Abiotic PRJNA594965 

33106639 https://doi.org/10.1038/s41477-020-00787-9 Biotic PRJNA577898 

29426290 https://doi.org/10.1186/s12864-018-4513-4 Biotic PRJNA357594 

28535078 https://doi.org/10.1094/MPMI-03-17-0054-R Biotic PRJNA369690 

30186298 https://doi.org/10.3389/fpls.2018.01222 Biotic PRJNA390756 

32121334 https://doi.org/10.3390/genes11030267 Abiotic PRJNA606824 

https://doi.org/10.3389/fpls.2017.00290
file:///C:/Users/Shatabdi/OneDrive/Thesis/1002/pld3.57
file:///C:/Users/Shatabdi/OneDrive/Thesis/fpls.2021.699146
https://doi.org/10.1186/1471-2229-14-141
https://doi.org/10.3389/fpls.2017.00267
https://doi.org/10.1038/srep30446
file:///C:/Users/Shatabdi/OneDrive/Thesis/10.1186/s12864-018-5109-8
file:///C:/Users/Shatabdi/OneDrive/Thesis/10.3389/fpls.2015.00341
https://doi.org/10.3390/v14081803
file:///C:/Users/Shatabdi/OneDrive/Thesis/10.3390/genes11080881
file:///C:/Users/Shatabdi/OneDrive/Thesis/10.3390/ijms22179527
file:///C:/Users/Shatabdi/OneDrive/Thesis/10.1093/plcell/koab083
file:///C:/Users/Shatabdi/OneDrive/Thesis/10.3390/ijms18122624
file:///C:/Users/Shatabdi/OneDrive/Thesis/10.3390/ijms21020686
file:///C:/Users/Shatabdi/OneDrive/Thesis/10.1038/s41477-020-00787-9
https://doi.org/10.1186/s12864-018-4513-4
file:///C:/Users/Shatabdi/OneDrive/Thesis/10.1094/MPMI-03-17-0054-R
file:///C:/Users/Shatabdi/OneDrive/Thesis/10.3389/fpls.2018.01222
file:///C:/Users/Shatabdi/OneDrive/Thesis/10.3390/genes11030267
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Table 4.1continued 

 

 

The table lists the twenty-five (25) quality RNA-Seq dataset sources with their PMID, 

Digital Object Identifier (DOI), Type of stress and Project Accession information. 

 

Table 4.2 The top 25 omics features most useful in predicting the target (stress-responsive/non-

responsive genes). 

Features Feature Details Sources 

Total_PFAM_x Total number of 

Protein domains 

 

https://download.maizegdb.org/Zm-

B73-REFERENCE-NAM-5.0/ 

Origin_Tandem Adjacent 

sequential genes 

https://pubmed.ncbi.nlm.nih.gov/34353

948/ 

 

 

 

 

PMID DOI/References Type  Project 

Accession 

30537259 https://doi.org/10.1111/tpj.14184 Biotic PRJEB10574 

25569788 https://doi.org/10.1371/journal.pgen.1004915 Abiotic PRJNA244661 

25174417 https://doi.org/10.1186/1471-2164-15-741 Abiotic PRJNA226757 

36345007 https://doi.org/10.1186/s13059-022-02807-7 Abiotic PRJNA849202 

26990640 https://doi.org/10.1371/journal.pone.0151697 Abiotic PRJNA304223 

35579358 https://doi.org/10.1093/genetics/iyac080 Advance Abiotic PRJNA604929 

https://download.maizegdb.org/Zm-B73-REFERENCE-NAM-5.0/
https://download.maizegdb.org/Zm-B73-REFERENCE-NAM-5.0/
https://pubmed.ncbi.nlm.nih.gov/34353948/
https://pubmed.ncbi.nlm.nih.gov/34353948/
file:///C:/Users/Shatabdi/OneDrive/Thesis/10.1111/tpj.14184
https://doi.org/10.1371/journal.pgen.1004915
file:///C:/Users/Shatabdi/OneDrive/Thesis/10.1186/1471-2164-15-741
https://doi.org/10.1186/s13059-022-02807-7
https://doi.org/10.1371/journal.pone.0151697
https://doi.org/10.1093/genetics/iyac080%20Advance
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Table 4.2 continued 

Features Feature Details Sources 

Gene_Breadth Variety of 

expressed genes 

https://qteller.maizegdb.org/rna_data_s

ources.php 

Heat_Treated_Seedlings Expression of 

genes under heat 

stress 

https://qteller.maizegdb.org/rna_data_s

ources.php 

CrownRoot_Node4_V7 Expression of 

crown root at 

node 4  

https://qteller.maizegdb.org/rna_data_s

ources.php 

SNPs count of single 

nucleotide 

polymorphisms 

(SNPs) 

https://pubmed.ncbi.nlm.nih.gov/34353

948/ 

UTR3Length Three prime UTR 

length 

https://download.maizegdb.org/Zm-

B73-REFERENCE-NAM-5.0/ 

Dispensable Gene Genes present 

across 2 to 23 of 

the NAM lines 

https://pubmed.ncbi.nlm.nih.gov/34353

948/ 

Tassel_Primordia The expression of 

tassel primordia 

https://qteller.maizegdb.org/rna_data_s

ources.php 

WGCNA_Module6 Weighted gene 

co‐expression 

network module 6 

https://pubmed.ncbi.nlm.nih.gov/30537

259/ 

Leaf_E4_Activation chromatin states 

associated with 

gene activation 

https://www.nature.com/articles/s4147

7-019-0547-0 

Nonpollinated_Leaf_6_DAP Expression of the 

non-pollinated 

leaf (6 days after 

pollination) 

https://qteller.maizegdb.org/rna_data_s

ources.php 
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https://qteller.maizegdb.org/rna_data_sources.php
https://qteller.maizegdb.org/rna_data_sources.php
https://qteller.maizegdb.org/rna_data_sources.php
https://download.maizegdb.org/Zm-B73-REFERENCE-NAM-5.0/
https://download.maizegdb.org/Zm-B73-REFERENCE-NAM-5.0/
https://pubmed.ncbi.nlm.nih.gov/34353948/
https://pubmed.ncbi.nlm.nih.gov/34353948/
https://qteller.maizegdb.org/rna_data_sources.php
https://qteller.maizegdb.org/rna_data_sources.php
https://pubmed.ncbi.nlm.nih.gov/30537259/
https://pubmed.ncbi.nlm.nih.gov/30537259/
https://www.nature.com/articles/s41477-019-0547-0
https://www.nature.com/articles/s41477-019-0547-0
https://qteller.maizegdb.org/rna_data_sources.php
https://qteller.maizegdb.org/rna_data_sources.php
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Table 4.2 continued 

Features Feature Details Sources 

Nonpollinated_Leaf_30_DAP Expression of the 

non-pollinated 

leaf (30 days after 

pollination) 

https://qteller.maizegdb.org/rna_data_s

ources.php 

5kb_dTSS_Root Gene counts 

around 5 kilo 

base pair of the 

TSS 

B73v5 TSS 

Avg_Gene_Abundance Average gene 

expression level 

https://qteller.maizegdb.org/rna_data_s

ources.php 

mRNA_Length mRNA length B73v5 miRNA 

UTR5Length Five prime UTR 

length 

https://download.maizegdb.org/Zm-

B73-REFERENCE-NAM-5.0/ 

Core_Gene Genes present 

across all the 26 

NAM lines 

https://pubmed.ncbi.nlm.nih.gov/34353

948/ 

V18_Meiotic_Tassel Expression of the 

V18 meiotic 

tassel 

https://qteller.maizegdb.org/rna_data_s

ources.php 

EREB_138 Ethylene-

Responsive 

Element Binding 

(EREB)Transcript

ion factor 

Ricci 2019 TFBS DAP-seq 

 

The table outlines the 25 most valuable omics features for predicting the target (stress-

responsive/non-responsive), along with details about their sources or methodologies of data 

generation. 

https://qteller.maizegdb.org/rna_data_sources.php
https://qteller.maizegdb.org/rna_data_sources.php
https://academic.oup.com/plcell/article/27/12/3309/6096495
https://qteller.maizegdb.org/rna_data_sources.php
https://qteller.maizegdb.org/rna_data_sources.php
https://ftp.ncbi.nlm.nih.gov/genomes/all/annotation_releases/4577/103/GCF_902167145.1_Zm-B73-REFERENCE-NAM-5.0/
https://download.maizegdb.org/Zm-B73-REFERENCE-NAM-5.0/
https://download.maizegdb.org/Zm-B73-REFERENCE-NAM-5.0/
https://pubmed.ncbi.nlm.nih.gov/34353948/
https://pubmed.ncbi.nlm.nih.gov/34353948/
https://qteller.maizegdb.org/rna_data_sources.php
https://qteller.maizegdb.org/rna_data_sources.php
https://www.nature.com/articles/s41477-019-0547-0
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Figure 4.5 Graphical representation of the prediction performance of the “Gene Structure” 

model. 

The Graphical representation of the prediction performance of the “Gene Structural” 

features based model evaluated on the test set using AUC-ROC (left) and Precision Recall Curve 

PR metrics (right). 



124 

 

 

Figure 4.6 Graphical representation of the prediction performance of the “Genomic Count” 

model. 

The Graphical representation of the prediction performance of the “Genomic Count” 

features based model evaluated on the test set using AUC-ROC (left) and Precision Recall Curve 

PR metrics (right). 

 

 

Figure 4.7 Graphical representation of the prediction performance of the “Epigenetic” model. 

The Graphical representation of the prediction performance of the “Epigenetic” features 

based model evaluated on the test set using AUC-ROC (left) and Precision Recall Curve PR 

metrics (right). 
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Figure 4.8 Graphical representation of the prediction performance of the “Evolutionary” model. 

The Graphical representation of the prediction performance of the “Evolutionary” 

features based model evaluated on the test set using AUC-ROC (left) and Precision Recall Curve 

PR metrics (right). 

 

 

 

 

Figure 4.9 Graphical representation of the prediction performance of the “Sequence” model. 

Graphical representation of the prediction performance of the “Sequence” features based 

model evaluated on the test set using AUC-ROC (left) and Precision Recall Curve PR metrics 

(right). 
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Figure 4.10 Graphical representation of the prediction performance of the “Codon” model. 

Graphical representation of the prediction performance of the “Codon” features based 

model evaluated on the test set using AUC-ROC (left) and Precision Recall Curve PR metrics 

(right). 

 

 

 

Figure 4.11 Graphical representation of the prediction performance of the “Expression” model. 

The Graphical representation of the prediction performance of the “Expression” features 

based model evaluated on the test set using AUC-ROC (left) and Precision Recall Curve PR 

metrics (right). 
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Figure 4.12 Graphical representation of the prediction performance of the “Variomic” model. 

The Graphical representation of the prediction performance of the “Variomic” features 

based model evaluated on the test set using AUC-ROC (left) and Precision Recall Curve PR 

metrics (right). 

 

 

 

 

 

Figure 4.13 Graphical representation of the prediction performance of the model trained using 

the unified approach of defining the stress-responsive genes (GWAS + RNA-seq cut off). 

The Graphical representation of the prediction performance of the model trained using 

the unified approach of defining the stress-responsive genes (GWAS + RNA-seq cut off 
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[|log2(fold change)| ≥ 1 and < -1, p-value < 0.05]) and on the comprehensive set of features . The 

performance is being evaluated on the test set using AUC-ROC (left) and Precision Recall Curve 

PR metrics (right). 

 

Figure 4.14 Graphical representation of the prediction performance of the model trained using 

the stringent RNA-seq cut off. 

The Graphical representation of the prediction performance of the model trained using 

the stringent RNA-seq cut off [|log2(fold change)| ≥ 2 and < -2, p-value < 0.05] and on the 

comprehensive set of features . The performance is being evaluated on the test set using AUC-

ROC (left) and Precision Recall Curve PR metrics (right). 
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Figure 4.15 Graphical representation of the prediction performance of the model trained using 

GWAS based definition of stress-responsive genes. 

The Graphical representation of the prediction performance of the model trained using 

GWAS based definition of stress-responsive genes as true labels and on the comprehensive set of 

features . The performance is being evaluated on the test set using AUC-ROC (left) and 

Precision Recall Curve PR metrics (right). 
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Figure 4.16 Confusion matrix displaying for evaluating W22, TIL-18, TIL-25 genome test 

datasets. 

(A) Confusion matrix displaying the true positive and false negative instances on W22 

genome test data. (B) Confusion matrix displaying the true positive and false negative instances 

on TIL-18 genome test data. (C) Confusion matrix displaying the true positive and false negative 

instances on TIL-25 genome test data. 
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CHAPTER 5.    GENERAL CONCLUSION 

The surge in sequencing capacity and cost reduction has facilitated the accumulation of 

extensive omics datasets, notably within repositories such as MaizeGDB 

(https://www.maizegdb.org/) , PMBB (Panzea Maize Bioinformatics Database) 

(https://www.panzea.org/), and MaizeCODE (http://www.maizecode.org/) . This reservoir of 

public omics data presents an opportunity for comprehensive meta and predictive analyses. A 

substantial portion of plant genes, particularly in maize, remains underexplored, exhibiting 

dissimilarity to known gene sequences and posing challenges in deciphering their functions. 

Homology-based approaches run the risk of introducing inaccuracies and misleading functional 

annotations. The strategic use of meta-analysis, leveraging the abundant omics data available, 

proves indispensable in understanding the contextual nuances for studying these genes 

(Bhandary et al. 2018). 

However, despite the wealth of omics data, the shortage of reusable datasets is evident. 

Many laboratories worldwide contribute data to these repositories, yet the lack of user-friendly 

explanations for their datasets poses a hurdle for scientists seeking to repurpose the information 

(Gomez-Cabrero et al. 2014). This renders a substantial portion of deposited omics data 

inaccessible and complicates endeavors in meta-analysis. 

Therefore, in this thesis, our primary objective was to address the challenges posed by 

vast and diverse omics datasets in terms of their accessibility and interpretability for addressing 

intricate biological issues related to maize genomes. Initially, we harnessed transcriptome data 

from a multitude of sources, incorporating over 200 unique datasets from 12 projects accessible 

through MaizeGDB for 26 Nested Association Mapping founder lines (Hufford et al. 2021). To 

enhance user interaction, we developed an interactive interface facilitating the comparison of 

https://www.maizegdb.org/
https://www.panzea.org/
http://www.maizecode.org/
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RNA-seq expressions across various data sources for a user-defined gene list or genomic 

interval. Additionally, users can visually compare expressions between two genes, capitalizing 

on the expanding pool of public RNA-Seq datasets. 

Subsequently, we introduced a framework, the Maize Feature Store (MFS), housing 

gene-based machine learning features derived from multi-omics data to aid in exploring and 

modeling classification problems. The MFS incorporates over 14,000 gene-based features 

sourced from published genomic, transcriptomic, epigenomic, variomic, and proteomics datasets. 

Furthermore, the MFS integrates supervised and unsupervised machine-learning algorithms, 

streamlining the analysis and prediction of intricate genome annotations. A practical application 

of the MFS showcased its effectiveness in achieving high classification accuracy when 

distinguishing core and non-core genes within the maize pan-genome. 

Lastly, we harnessed the comprehensive array of omics features to unravel the intricacies 

of stress-responsive genes, pinpointing key factors associated with these genes. This chapter 

serves as a synthesis of critical findings and outlines potential avenues for future research arising 

from the investigations conducted in this dissertation. 

5.1 Specific findings and contributions 

5.1.1  qTeller: a tool for comparative multi-genomic gene expression analysis 

qTeller was developed to address the need for an accessible tool to organize, integrate, 

access, compare and visualize gene expression data. Though it was previously unpublished, the 

tool has been used and cited broadly by the plant research community in the study of evolution, 

meta-analyses, gene and gene family identification, quantitative trait and association studies and 

ontology. MaizeGDB expanded qTeller’s functionality to include multiple genomes and protein 

abundance data and enhanced the website layout to make qTeller even easier to use. qTeller was 
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designed for plant species but is broadly extendable to any species with a sequenced genome and 

RNA-Seq or protein abundance data. 

5.1.2  Maize Feature Store (MFS): A centralized resource to manage and analyze curated 

maize multi-omics features for machine learning applications 

In this work, we aimed at the needs of both experimental and computational researchers 

by providing them with two instances of the tool: a user-friendly instance and a modular 

instance. The user-friendly side of the tool will assist researchers without any prior 

computational background, by providing them a convenient one-click interface to retrieve, 

analyze and model heterogeneous maize data. In contrast, the tool’s modularity will allow 

computational researchers to add additional functionality, fine-tune the existing functionalities, 

and model or perhaps even reproduce the entire application for the species of interest. Therefore, 

our approach enables both experimental and computational researchers to perform 

comprehensive analyses of maize multi-omics data, including methods to analyze the 

relationship between gene phenotypes and gene length, copy numbers and expression levels, 

epigenetic markers, cross-species conservation, and SNP densities, thereby covering a 

significantly larger portion of the maize genome and phenome. 

Our models outperform random assignment for most downstream applications, but their 

accuracy rates are not high enough to replace pan-genomes altogether. However, if 89% 

accuracy is a satisfactory trade-off between complexity and ease in capturing preliminary 

variation in genes without comprehensive genome resources then our model can be the most 

optimal approach. Our model would also be ideal for newly sequenced or poorly annotated 

genomes. Where other tools like BLAST could also infer annotation, it does not provide 

underlying insights for the assignments beyond sequence homology.  
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5.1.3  Predicting genes associated with biotic or abiotic stress across different maize lines 

and related species 

This study aimed to develop a more efficient framework for narrowing down the search 

space for stress-responsive genes, facilitating experimental validation by focusing efforts on a 

smaller, highly relevant subset of genes. A comprehensive examination of the top-ranked gene 

characteristics identified by the model, particularly those discriminating between the stress 

responsive and non-responsive genes, was conducted. These characteristics played a crucial role 

in advancing our understanding of the intricate nature of plant responses to multiple stressors. 

The simplified models, trained solely on sequence or gene structural features, can be 

applied to predict stress-responsive genes in less-studied species with newly sequenced genomes. 

This research marks a significant stride in unraveling gene expression regulation, enhancing 

tools in synthetic biology and biotechnology for stress gene identification. Additionally, it 

addresses the lack in systematically characterizing stress-gene features, with particular 

implications for plant science research, given the intrinsic connection between stress responses 

and sustainability or productivity. 
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