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The Ga1 locus controls cross-incompatibility between field corn and popcorn. The Ga1-S haplotype contains 2 types of pectin methy-
lesterase (PME) genes, ZmPme3 and several copies of ZmGa1P that are expressed in silk and pollen, respectively. The ga haplotype
contains nonfunctional tandem repeat sequences related to ZmPme3 and ZmGa1P. This haplotype can cross-pollinate freely and is wide-
ly present in field corn. The primary objective of this study is to characterize the repeat sequences from a diverse collection of maize and
teosinte lines and use this information to understand the evolution of the Ga1 locus. First, we characterized the complexity of the Ga1
genome region in high-quality maize genome assemblies that led to their categorization into 5 groups based on the number and type of
PME-like sequences found at this region. Second, we studied duplication events that led to the ga and Ga1-S repeats using maximum
likelihood phylogenetic reconstruction. Divergence estimates of the gaT haplotype suggest that the duplication events occurred more
than 600 KYA whereas those in Ga1-S occurred at 3 time points, i.e. >600, ~260, and ~100 KYA. These estimates suggest that the ga1
and Gal-S tandem duplication events occurred independently. Finally, analysis of ZmPme3 and ZmGa1P homologs in Zea and
Tripsacum genomes suggests that ga and Ga-S repeats originated from an ancestral pair of PME genes that duplicated and diverged
through 2 evolutionary branches prior to the domestication of maize.
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Introduction

The Gallocus maps to the short arm of maize chromosome 4. The
locus contains 2 genes that regulate cross-incompatibility.
ZmPme3 encodes a pectin methylesterase (PME) expressed in silks
(Moran Lauter et al. 2017; Wang et al. 2022; Zhang, Li, et al. 2023)
that interferes with pollen tube growth, preventing pollination
by maize varieties that do not carry a functional version of the se-
cond gene of the Gal locus. The second gene is called ZmGalP
(Zhanget al. 2018) and also encodes a PME. This gene is expressed
in pollen, and pollen carrying this gene can overcome the barrier
to cross-pollination created by ZmPme3. Wang et al. (2022) discov-
ered thatin addition to the single ZmGa1P gene reported initially, 4
additional tandem repeated sequences of ZmGalP constitute the
male function and were designated as ZmGalPs-m. More such
full-length duplicates of ZmGalP were discovered, and now, a to-
tal of 8 functional ZmGalP genes are reported to constitute the
male function (Zhang, Li, et al. 2023). Similarly, 3 alleles of the
Gal locus have been defined based on which of these 2 genes is
functional; for example, Gal-S carries functional ZmPme3 and
ZmGalP, while gal carries neither. Gal-M carries a functional
ZmGalP but lacks a functional ZmPme3 (Lu et al. 2020). Two other
unilateral cross-incompatibility systems called Ga2 and Tcb1 are
functionally equivalent but not compatible with Gal and map to

different genetic loci. The Ga2 locus has been mapped to a
1.7-Mb region on maize chromosome 5 (Chen, Luo, et al. 2022).
The Tcb1 locus is present on chromosome 4, about 44 cM away
from the Gal locus (Evans and Kermicle 2001). The female func-
tion gene of the Tcbl locus, Tchl-f, was described by Lu et al.
(2019) and encodes a PME protein that differs from ZmPME3 in 9
amino acids. The male function of the Tcb1 locus, also a PME
gene, has been identified recently (Zhang, Li, Zhang, and Chen
2023).

Intriguingly, the genome region around Gal locus has an un-
usual structure. Maize lines carrying the gal haplotype lack func-
tional copies of either of the 2 Gal genes and have multiple
pseudogenes related to each of the 2 active genes of the Gal-S al-
lele. In contrast, the haplotypes containing functional PME genes
lack the nonfunctional pseudogenes related to ZmPme3 but do
contain tandem repeats of the ZmGalP gene.

The complexity of the Gal locus together with its role in con-
trolling cross-compatibility makes the evolution of this locus par-
ticularly interesting. The objective of this study is to compare the
evolutionary history of the gal and Gal-S haplotypes of the Gal lo-
cus in the genus Zea in order to gain a better understanding of the
molecular events that gave rise to this genome region. The results
provide insights into key evolutionary events in the development
of modern maize.
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Materials and methods

Identification of pseudogenes and gene fragments
at the Gal locus in maize genotypes

To identify genomic sequences related to PME genes at the Gal
locus, tblastx searches using amino acid sequences of ZmPme3
and ZmGalP as queries were carried out against Zm-B73
-REFERENCE-NAM-5.0 and Zm-Hp301-REFERENCE-NAM-1.0.
Similar tblastx searches were performed in all nested association
mapping (NAM) founders and other high-quality maize whole gen-
ome assemblies listed in Table 1. All genome assemblies used in
the analysis were downloaded from MaizeGDB (Woodhouse et
al. 2021, https://download.maizegdb.org/).

Self and pairwise alignments and alignment
visualization

The genomes included in this study were masked for repeats using
RepeatMasker (Tarailo-Graovac and Chen 2009) using the MTEC
transposon consensus library (https:/github.com/oushujun/MTEC/
blob/master/maizeTE02052020). Pangenome single nucleotide poly-
morphisms flanking the genomic intervals containing the Gal loci
were identified using GBrowse from MaizeGDB (Supplementary
Tables 1 and 2). Sequences of the genomic regions on chromosome
4 were extracted based on the position information of the markers.
Self-alignments of these genomic intervals were constructed using
the nucmer alignment script from Mummer version 3.23 (Kurtz
et al. 2004). The options nucmer --maxmatch and --nosimplify were
used to find nonexact alignments to identify repeat sequences within
this region of interest. To visualize these alignments, the delta file was
used as an input file for the mummerplot script to generate an image
(.png) file of the self-alignments (Supplementary Fig. 1a—). For pair-
wise dot plots, alignments between repeat masked chromosome 4
of the selected genotypes were made using nucmer --mum option.
The alignments were visualized using “mummerplot” with the pan-
genome marker positions specified for the --xrange and --yrange op-
tions (Supplementary Fig. 2a—d).

Examination of grass genomes for Gal-related
sequences

A BLAST search using the genomic sequence of ZmGalP from
SDG25a (Zhang et al. 2018) was conducted against the entire
NCBI database using the least stringent parameters and an
e-value cutoff of le — 10. A similar BLAST search was conducted
using a transcript sequence of ZmPme3 and the same parameters
as the ZmGalP search. The corresponding predicted protein se-
quences were also identified. To determine whether the identified
significant hits for ZmGalP were more significant to QRT1 (a PME
gene that is not part of the Gal locus but is more closely related
to ZmGalP than ZmPme3) or ZmGalP, the maize QRT1 genomic
sequence was acquired from MaizeGDB (Zm00001d030643/
Zm00001eb028580) and aligned with each respective species’ ref-
erence genome in which a significant ZmGalP hit was found. A
BLAST search was conducted on MaizeGDB using the genomic se-
quences of ZmGalP from SDG25a and ZmPme3 from Hp301 as
queries against Zx-PI566673 Yan 1.0 assembly (teosinte). All pre-
dicted protein sequences are listed in Supplementary Table 6.

Relationship between transposons and
pseudogenes and gene fragments

BEDTools option intersect (Quinlan and Hall 2010) was used to
identify transposon sequences that are inserted within pseudo-
genes and gene fragments of interest. Tables 2 and 3 list gene frag-
ments with transposons inserted within or overlapping either 5’ or

3’ terminals of their sequences. Gene fragments with transposons
inserted within them were pieced together. Such “joined” se-
quences were also included in the sequence data set used for
phylogenetic tree reconstruction of ZmPme3-like sequences in
B73 and ZmGalP-like sequences in Hp301.

Maximum likelihood phylogenetic tree
reconstruction of duplicated sequences

Maximum likelihood phylogenetic reconstruction was used to cre-
ate duplication trees for ZmPme3 sequences in B73 and ZmGalP se-
quences in Hp301 using RAXML-NG (Kozlov et al. 2019). The final
data set included 41 ZmPme3-like sequences in B73 and 18
ZmGalP-like sequences in Hp301. Multiple sequence alignments
were generated using MAFFT. GTR + GAMMA model of rate hetero-
geneity was selected for the analysis. A default extended majority
rule-based bootstrapping test was used to determine a sufficient
number of bootstrap replicates (Pattengale et al. 2010).

Stop codon analysis

The genomic sequences for each of the ZmPme3-like sequences
(including the “joined” sequences) were aligned with the coding
sequence of ZmPme3. The intron was removed during the align-
mentin MEGA X (Kumar et al. 2018). The alignment was translated
to the amino acid sequence, and the positions of stop codons re-
sulting from base substitutions were noted.

Determining retrotransposon ages using LTR age
of insertion analysis

Retrotransposon annotations for NAM founders were downloaded
from https:/ftp.maizegdb.org/MaizeGDB/FTP/. Retrotransposons
with intact right and left long terminal repeats (LTRs) were se-
lected for this analysis. Sequences of the left and right LTRs of
all retrotransposons were extracted using SAMtools. Pairwise
alignments between the 2 LTR sequences of each retrotransposon
were performed using MUSCLE (Edgar 2004). Pairwise alignments
were then used to calculate the divergence distance (d). The sub-
stitution rate, r=3.3x 107® substitutions per site per year, was
used for insertion age estimation (Clark et al. 2005).

Helitron and TIR age assessment using terminal
branch length estimates

The ages of individual helitron and terminal inverted repeat (TIR)
transposon insertions were calculated using terminal branch
lengths from phylogenetic trees of the corresponding TE families.
For each family of helitrons and TIR elements, multiple sequence
alignments of all TE sequences in the corresponding genome were
made using MAFFT. The directionality of the transposons was
maintained using the—adjustdirection option in MAFFT. The
alignments were then used for phylogenetic tree reconstruction
using RaxML-NG. Terminal branch lengths were used as a meas-
ure of divergence distance, and insertion ages were calculated
using the same parameters for LTR insertion age estimation.

Results and discussion

Genomic regions encompassing B73 (gal) and
Hp301 (Ga1-S) loci contain genotype-specific
arrays of sequences homologous to PMEs involved
in gametophytic cross-incompatibility

Ithasbeen reported thatinactive alleles (gal) of the Gal locus con-
tain tandem arrays of pseudogenes related to ZmPme3 and
ZmGalP—the 2 PMEs that confer cross-incompatibility in active
(Gal-S) alleles of the locus. In this study, we identified several
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Table 1. Characteristics of the Gal locus of a diverse set of inbred lines.

Gal Lines ZmPme3-like ZmGa1P-like Domain Group
genotype® sequences sequences length (Mb) designation
Gal-S/M Hp301¢, SK°, CML333, CML52, NC350, NC358, Tzi8 2 (1 full length) 22-27 (8 full 1.5-1.7 A
length)
gal B73,897,CML69,CML103,CML228, CML247, 1114H?, Ki3, 61-64 25-30 1.1-1.2 B
Kill, M162W, M37W, Mo18W, Oh7B, Oh43, P39”,Tx303,
1a453%, B104, DK105, W22, EP1, F7, Mo17, PE007S, PH207
gal MS71 17 8 0.2 C
gal Ky21, CML322, A188 126-139 48-59 31 D
gal CML277 119 35 1.4 E

Bolded Gal-M genotypes can be pollinated by any Gal haplotype (gal, Gal-S, and Gal-M) and can pollinate Gal-S plants (Jones and Goodman 2018).

a

Sweet corn lines.

¢ Popcorn lines.

ZmPme3-like and ZmGa1P-like pseudogenes and gene fragmentsin
the ~1.1-Mb region between 8.56 and 9.6 Mb on chromosome 4 in
Zm-B73-REFERENCE-NAM-5.0. In B73, a few of the ZmPme3-like
sequences are part of a ZmPme3-N-ZmGalP repeat (N=AT.;s0)
that occurs 16 times in the 1.1-Mb region forming a tandem cas-
sette of pseudogenes and gene fragments. Most of the
ZmGalP-like sequences in B73 are truncated to contain 3’ terminal
fragments. In contrast, Zm-Hp301-REFERENCE-NAM-1.0 con-
tained several full-length genes as well as partial ZmGa1P-like se-
quences between 85 and 9.8 Mb with 1 functional ZmPme3
sequence and a 350-bp gene fragment. All sequences in these ar-
rays are oriented in the same direction. The distribution of repeat
sequences in these 2 genotypes is illustrated in the top 2 sections
of Fig. 1. The differences in the genome structure of this region be-
tween B73 and Hp301 led us to examine additional lines to gain a
better understanding of the variation in genome structure present
at this locus.

Variation in genome structure among diverse
maize inbred lines

We examined genomic intervals containing the Gal locus in all
NAM assemblies (Hufford et al. 2021), previously reported high-
quality assemblies of European flint lines (Unterseer et al. 2017;
Haberer et al. 2020), and recent assemblies (Yang et al. 2019; Lin
et al. 2021) from MaizeGDB. Supplementary Figure la-e shows
self-comparisons of the Gal locus of some of the genotypes, se-
lected to illustrate the diversity present among the lines under
study. The dot plots reveal distinct genomic patterns of duplica-
tions throughout the Gal loci, which appear as signals of the cen-
tral diagonal. The dot plots illustrate the substantial diversity of
size, density, and arrangement of the repeat-containing region.

The NAM founders, European flint lines, and recently added
high-quality assemblies together capture a large amount of diver-
sity in maize. This set of inbred lines contained Hp301 and SK, 2
popcorn lines that have an active (Gal-S) genotype, 5 lines with
the male function of Gal-S, i.e. Gal-M, and 30 lines with the in-
active allele gal. Based on the observed genome structures appar-
ent in the representative dot plots (Supplementary Figs. 1 and 2),
the number and type of pseudogenes present, and the length of
the repeat region in the genome, these lines were classified into
5 groups designated “A” through “E” as summarized in Table 1. It
is interesting to note that Jones and Goodman (2018) classified 2
of the lines we classified in this sequence analysis as gal, P39,
and Ki11, as potentially having the Gal-M allele using phenotypic
analysis.

Group A contains all the lines with active Gal components, in-
cluding the alleles Gal-S (found in many popcorn varieties) and
Gal-M. In addition to the active genes (ZmPme3 and ZmGalPs-m),

gal lacks functional copies of ZmPme3 and ZmGalP; Gal-S/M has intact copies of both.

this group is characterized by the presence of only 1 ZmPme3
gene fragment and several ZmGalP-like pseudogenes. Group B is
the largest and contains gal genotypes, which is the genotype of
most cultivated field corn varieties. As described above, this group
is characterized by many pseudogenes related to ZmPme3 and
ZmGalP. Three other groups have only 1 or 2 members and con-
tain unusual rearrangements of genome features found in most
gal genotypes. Thus, group C has a large deletion and is a trun-
cated version of the group B genotype while group D contains a du-
plication of the entire gal locus of group B. Group E with only 1
member, i.e. CML277, appears to have an internally expanded ver-
sion of the group B genome structure with a larger number of
ZmPme3- and ZmGalP-like sequences. The arrangement of
ZmPme3 and ZmGalP genes and pseudogenes in a representative
member of each group is shown in Fig. 1.

Tandem duplications arising from
nonhomologous recombination are responsible
for the formation of gal and Gal-S sequence
clusters

Several types of molecular events can give rise to gene duplica-
tions. These include whole genome duplications, transposition
mediated by transposons of several types, and tandem duplica-
tions arising from nonhomologous recombination events
(Panchy et al. 2016). Transposition via an RNA intermediate is
not likely to be responsible for duplication of Gal-associated
sequences because introns are found in all complete and partial-
length pseudogene sequences. Regions of microhomology in
genomes can be attributed to the presence of transposons and
low-complexity repeated sequences. Nonhomologous recombin-
ation creates proximal repeats that can be targets for subsequent
nonhomologous recombination events, creating several more
copies of the sequences arranged in a tandem array. The tandem
arrangement of the Gal sequence arrays suggests nonhomolo-
gous recombination to be the mechanism for their origin.

To determine the time of these duplication events, we recon-
structed a phylogeny of ZmPme3-like sequences in B73 using the
maximum likelihood phylogeny reconstruction method. A phylo-
genetic tree for the B73 ZmGalP-like sequences is shown in
Supplementary Fig. 3.

Figure 2a shows the topology of the tree for all ZmPme3-like se-
quences from B73. The branch lengths indicate that ZmPme3-like
sequences are highly diverged relative to each other and are
therefore likely to be a result of ancient duplication events.
Although the topology of this phylogeny tells us only about the re-
latedness of the sequences and not the precise order of the dupli-
cation events, the tree offers some clues about the events that led
to the repeat array. The tree topology and the stop codon
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g) o ﬁ)ﬁ, " aﬁ)aaa% go information for all sequences (see Fig. 2a and b) indicate that
clococlagacggg g ZmPme3-like sequences can be broadly divided into 2 groups.
L5LYELUCCRT g . :
ol ol o e R e R SR e Sequences in group I on average are farther from the root (i.e.
o O g UU g uUuUuUuUuUUU [3] . . .
elgzre826558¢8 ¢ the extent of divergence is greater) than those belonging to group
g b Z 88 Z 888838 B IT. Also, group I sequences have a higher number of stop codons
E [3 EE 5 EEEEEEI: (Fig. 2b), some of which are shared by all its members. Group Il se-
EFEEFEEEEEE E quences on the other hand have fewer stop codons as compared to
- 383- 38883 T O roup I, some of which are unique. For example, sequences
R group 1, que. pl€, sequer
B73-Pme3-S7 and B73-Pme3-S9 from group II have just 1 unique
stop codon each and no other disablements. In addition, a
top cod h and ther disabl ts. In addit 1
RNSIBRERIBS B ZmPme3-like sequences that are part of the larger repeating motif,
Ceeoooooooe © ZmPme3-N-ZmGalP described above, belong to group I. The top-
ology suggests that group I sequences were generated by proximal
duplications first, followed by additional duplications leading to
OCNANNONFWONN ™M the group II sequences in multiple distinct nonhomologous re-
NWOWHO O MN OO0 < . .
CRoFavYaaon 9 combination events.
SO0O0O00OO0D Y & The relative positions of the sequences in the genome provide
[e)le) e el o) e eI e) Ie) el INe)] ()] . .
some clues about the nature and order of duplication events
that gave rise to the repeat sequences. First, sequences that are
closely related to each other do not tend to be adjacent to each
OO OO otherin the genome (Fig. 2a and c). This suggests that the duplica-
NONOFONN SN o ion events involved duplication of multiple repeats per event.
ABRIEIRRIZR 32 t t lved duplicat f multiple repeats p t
AAOYNMNO0O NN N A gl B .
SITLUNNEE883F DB Second, group I and group II sequences are imperfectly inter-
O OYOYOYO)Y YOy Oy Oy Oy O (o))

spersed throughout the repeat region (Fig. 2¢). This suggests that
some duplication events involving members of both groups oc-
curred after the 2 groups were established.

L+ L+ + 1 +++ 1+  + An important question in understanding the duplication his-
tory of the array is whether the duplications occurred while the
genes were active or after they had been inactivated by mutations.

Transposon family Strand Transposon start Transposonstop Age (MYA)

= Duplication of active genes may have disrupted reproduction and
o %; Bha b nEnE B resulted in strong selection against the duplicated locus, while du-
§* e S e &é’; S S S S plication of inactive genes wpuld be.reproductively r.leutral. The
© & LOLOLOOL U B73 ZmPme3 phylogeny enriched with stop codon information
) (Fig. 2b) addresses this question. Sequences in group I have 2
stop codons 774 and 549 that are shared by all except 1 of its mem-
= S Sun o bers, indicating that duplication events in this group occurred
ElwBeI3AURRTT X after inactivation of the functional sequences by either or both
K] Q | Z 1 10N O NI < | N|
g NN B ™ Q‘ A stop codons. On the other hand, several group II members have
E bt § § § § S %' © § IR § unique stop codons suggesting that a second series of multiple
g DI 3} g 99 ’i i § 5 g 5 I nonhomologous recombination events occurred. The presence
AIRRERRERERE S < of stop codons shared by all sequences in group I signifies that
o 'm®<\u<|EQLE g X . B
% < EHEE L S ag 2 ; 5 nonfunctional sequences were amplified during the nonhomolo-
& %’D a go SRR % R % gous recombination events that led to the tandem arrays. This
suggests that the role of Gal in reproduction had little impact
§' on the structure of the pseudogene arrays in group I, whereas
2903 0 09 o the reason behind the inactivation of sequences with unique
g % g § § 5 5 8 § stop codons in group Il is unclear. Branch lengths and the nucleo-
%" SRS SRR tide divergence estimates indicate that both group I and group II
[

duplications occurred >600KYA. This estimate for the gal

Table 3. Age of transposon insertions within Gal-S pseudogene sequences in Hp301.

© pseudogene cluster coincides with the Tripsacum-Zea split, which
% AN Jx 0w was recently demonstrated to have occurred ~650,000 years ago
g % g § § g % g § (Chen, Zhang, et al. 2022).
go 2222 ¥R In contrast to the B73 tandem pseudogene array that is domi-
E nated by ZmPme3 pseudogenes, the array in the Gal-S line
Hp301 has only 1 full-length ZmPme3 sequence, only 1 ZmPme3
g fragment, 8 full-length ZmGa1P sequences, and 10 ZmGalP pseu-
E @ § @ % a g a a dogenes. Like the tandem duplications in B73, the ZmGalP se-
g % g, e % f e e quences present in Hp301 may have also arisen due to proximal
E1 8888 5888 duplications from unequal crossover events. The tree for
E ZmGalP sequences is shown in Fig. 3a. Figure 3b shows stop codon
o information for the pseudogenes in the Hp301 ZmGalP tree.
3 Unlike the B73 pseudogene array, sequences in the Hp301 array
SR =T that are most similar to each other tend to be adjacent in the
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Fig. 1. Position of Gal PME genes, and PME pseudogene and gene fragments in 5 representative inbred lines. The haplotype of the Gal locus is shown in
parentheses below the name of each line. Genome positions are adjusted to align with the first base of the cluster in each genotype for ease of comparison.

Group letters on the secondary axis are from Table 1.

genome (Fig. 3c). This suggests that duplication events involved 1
gene/pseudogene sequence at a time. The ZmGalP tree topology
also shows 2 groups of sequences—sequences in group I are older
and duplicated approximately >600 KYA whereas those in group
II duplicated at several different time periods during the locus his-
tory, i.e. at 260 KYA and between 60 and 100 KYA. The differences
in the time and mode of duplications at the Gal region indicate
that the B73 (gal) and Hp301 (Gal-S) tandem arrays arose
independently.

Transposon insertions leading to splitting of
full-length sequences into gene fragments date to
different time periods in B73 and Hp301

Transposons have major impacts on genome structure and evolu-
tion (Wicker et al. 2018). Transposon insertions within full-length
repeats of gal and Gal-S regions provide an indirect measure of
the age of the sequences they insert into. A duplication event giv-
ing rise to a repeat sequence precedes a unique transposon inser-
tion event in the sequence and thereby is older than the insertion
event. In the case of sequences with newer and nested insertions,
we examined the age of the oldest transposons. We compare the
age of transposon insertions between the sequence groupings in
both gal (B73) and Gal-S (Hp301) arrays.

Several of the ZmPme3-like and ZmGa1P-like gene fragments in
B73 and ZmGa1lP-like gene fragments in Hp301 are a result of 1 or
more transposon insertions, causing the originally intact se-
quences to splitinto 5’ and 3’ terminal gene fragments. When ex-
amined further, the 3" and the 5’ ends of the 5" and 3’ fragments
have direct repeats of 5-7 bp, known as target site duplications,
a characteristic feature of LTR retrotransposons and TIR transpo-
sons. In case of LTR retrotransposons, LTRs are identical at the
time of insertion and diverge with time. The sequence divergence
between LTR sequences allows estimation of the age of an inser-
tion event (SanMiguel et al. 1998). For an individual TIR or helitron,
age of insertion can be estimated using its terminal branch length
in the phylogenetic tree of the corresponding transposon family
members in the genome. Tables 2 and 3 list TE insertions in gal
and Gal-S sequences and their corresponding insertion ages.

In Hp301 group Il sequences, the insertion of Gypsy retrotrans-
poson uwum_AC177933_415 within GalP-S12//13 occurred 18,333
years ago. Similarly, the duplication that gave rise to Ga1P-S18//19
was followed by an insertion of another Gypsy retrotransposons
uwum_AC190887_2701, about 77,121 years ago. Most of the

retrotransposon insertions in group I on the other hand are older.
The median insertion age of transposons within group I sequence
GalP-S5//6//7//8 was found to be 454 KYA whereas the 2 insertions
in group II sequences occurred in the last 80,000 years. This is ex-
pected as group I sequences in Hp301 are older and duplicated
~600 KYA as compared to group II sequences, which originated
~80-100 KYA.

Ages of transposon insertions in sequences belonging to the 2
groups in the B73 ZmPme3 phylogeny were also examined. The
only insertion in the group II sequence has an age of 380 KYA
whereas the median age of insertions in group I sequences was
found tobe 420 KYA. Insertions within group I sequences are older
and are more numerous as compared to group II, also indicating
that group I sequences originated before group II.

BLAST analysis of the male and female function
genes of the Gal locus shows gal and Gal-S-like
sequence arrays across all Zea genomes

BLAST analysis of ZmPme3 and ZmGalP gene sequences queried
against teosinte genomes from the Pan-And project (https:/
panandropogoneae.com/) show the presence of sequence arrays
like those of gal and Gal-S in various species of the Zea genus.
Figure 4 depicts the position of these arrays on chromosome 4 of
teosinte genomes released in phase I of the Pan-And project.
Supplementary Tables 3-5 are a list of ZmPme3 and ZmGalP
BLAST hits in all teosinte genomes.

BLAST results of ZmPme3 gene sequence queried against teo-
sinte genomes show the presence of 3 ZmPme3 copies in Zea
mays mexicana accession TIL18 and a sequence that has 99.92%
identity to the ZmPme3 sequence in Z. mays parviglumis accession
TILO1. The next closest BLAST hits for ZmPme3 (99.38-99.61% iden-
tities) are present across all other Zea genomes except mexicana ac-
cession TIL25. ZmGalP BLAST hits with sequence identities
between 98.9% and 99.8% occur in the same genomic region as
ZmPme3 loci. Together, they form the Gal-S-like haplotype struc-
ture in many of the Zea genomes studied. Supplementary Figure 4
shows a phylogenetic tree of all ZmGalP BLAST hits in Zea and
Tripsacum genomes. Sequences with ~98% identities to the
ZmPme3 sequence along with ZmGa1P BLAST hits with ~96% iden-
tities represent the female (Tcb1-f) and the male function genes re-
spectively, and together they constitute the Tcb1 loci in the Zea
genomes. Figure 4 also depicts the location of the Tcb1 loci in add-
ition to the gal and Gal-S arrays mentioned above.
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Fig. 2. Analysis of ZmPme3-like sequences of the gal haplotype. a) Phylogenetic analysis of ZmPme3-like sequences in B73. The tree has been rooted using
Tripsacum ZmPme3 homologs. Sequences are numbered according to their relative positions in the genome. Sequences B73-Pme3-5(1,4,6,8,11//12,14,17//
18,20//21,24,26,33,34,36,42,48//49,52) are part of the repeat motif ZmPme3-N-ZmGalP and are shown in colored text. The symbol (/) indicates sequences
with transposon insertions. Tcb1-f is a PME gene similar in sequence to ZmPme3 but at the Tcb1 locus. b) Stop codons in sequences of the ZmPme3
phylogeny. The tree topology shows 2 groups of sequences. In group I, stop codons 774 and 549 are shared by the majority of its members. Group II
sequences have more unshared stop codons. c) Genome positions of ZmPme3 pseudogene sequences in B73 (colored by group).

Figure 5 is a phylogenetic tree of ZmPme3 BLAST hits. Tripsacum
ZmPme3 BLAST hits form the outgroup of this tree. The pseudo-
gene arrays in Z. mays parviglumis accession TIL11, Zea diploperen-
nis accession Momo, and Z. mays accession B73 form distinct
clades in the tree. Full-length sequences on the other hand form
2 other clades—1 with ZmPme3 and the other with Tcbl-f as a
member.

TIL11 has a Group B-type (see Table 1) pseudogene array be-
tween positions 9.06 and 9.91 Mb in its genome. This array is
syntenic to the gal haplotype in B73. Interestingly, among
non-Z. mays members, only Z. diploperennis (Momo) has a pseudo-
gene array like TIL11 and B73. This array is present between 41.71
and 41.86 Mb on chromosome 4 in its genome and has a fewer
number of repeats as compared to TIL11 or B73. Figure 6 depicts
the relative genomic position of these pseudogene arrays in the
genotypes Momo, TIL11 and B73.

Z. mays parviglumis is considered the closest relative of Z. mays
L., and 2 accessions were sequenced in the Pan-And project.
Accession TIL11 contains an arrangement of PME pseudogenes
thatis syntenic to the gal haplotype of modern field corn varieties.
In contrast, accession TILO1 contains a haplotype that is similar to
the Gal-S haplotype found in many Z. mays L. popcorn varieties
(Fig. 4). Thus, Z. mays parviglumis contains a locus equivalent to
the Gal locus of Z. mays L. with haplotypes equivalent to gal and
Gal-S.

The presence of 3 tandem Gal-S arrays in the Z. mays mexicana
accession TIL18 is noteworthy. All 3 copies of the female

function gene in these arrays have 100% identities to the
ZmPme3 sequence. The presence of a gal-like arrayin Z. diploper-
ennis accession Momo is also interesting. The widespread occur-
rence of both alleles in modern maize may be attributed to a
weak genome-wide bottleneck during improvement (Hufford
et al. 2012).

PME genes homologous to those encoded by the
Ga1l locus of maize are widespread and often occur
in proximity to each other in several cereal
genomes

Predicted PME proteins that share high sequence similarities
(>45%) to the male and female determinants of the Gal locus
have been reported in several cereal genomes. We used ZmPme3
and ZmGalP mRNA transcript sequences as queries to conduct
BLAST searches in cereal genomes to identify predicted gene
and protein sequences that share high sequence similarities
with the Gal locus genes. Supplementary Table 6 lists predicted
protein homologs identified in cereal genomes. Figure 7 depicts
the positions of the ZmPme3-like and ZmGa1P-like genes in some
cereal genomes. Rice (Oryza sativa japonica), wild rice (Oryza bra-
chyantha), Sorghum (Sorghum bicolor), and foxtail millet (Setaria itali-
ca) contain a PME with sequence similarity to the maize ZmPme3.
Additionally, these species have a Pme63-type and occasionally a
QRT1-type PME with sequence similarity to maize's ZmGalP genes.
QRT1 in Arabidopsis is involved in the separation of pollen tetrads
after meiosis in the pollen mother cell (Francis et al. 2006) and is
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therefore not functionally orthologous to the maize PMEs that
control cross-incompatibility. In the case of Setaria, the
Pme63-type ZmGalP homolog is within 0.15Mb of the
ZmPme3-like gene (Fig. 7). In Sorghum chromosome 4 the distance
between the ZmPme3 homolog and the QRT1-type gene is ~11 kb
whereas the distance between ZmPme3 homolog and the
Pme63-type gene on chromosome 5 is more than 60 Mb. O. bra-
chyantha has 2 genes that are like ZmGalP and are situated ~1.8
and 2.3 Mb away, respectively, from the ZmPme3-like gene; how-
ever, O. sativa japonica has 3 genes like ZmPme3 and 3 genes similar
to ZmGalP on chromosome 11. One of the 3 ZmPme3-like genes is
within ~5.0-6.0 Mb from the genes like ZmGalP. The genes with
similarity to the Gal locus in both rice species are located on a por-
tion of chromosome 11 that is syntenic with each other and the
short arm of maize chromosome 4 where the Z. mays Gal locus

is located (Moore et al. 1995; Chen et al. 2013; Sun et al. 2017).
The genes identified in foxtail millet and Sorghum, however, are lo-
cated on chromosomes that are nonsyntenic with maize chromo-
some 4 (Moore et al. 1995; Paterson et al. 2009; Zhang et al. 2012;
Sun et al. 2017).

These results indicate that a locus similar to Gal is relatively
widespread among grasses, in the sense that homologs of the
Gal male and female function genes appear to be present in
proximity in numerous cereal genomes examined. Neither
Sorghum nor Setaria has been reported to have unilateral cross-
incompatibility. While some japonica by indica hybrids in rice
have been reported to experience UCI, the mechanism is differ-
ent from that of maize, resulting in aborted embryo and endo-
sperm development and functional pollen tube growth
(Matsubara et al., 2003).
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Conclusion

After examining the duplication histories of the gene and pseudo-
gene sequences, estimating their divergence dates, calculating
transposon insertion ages, and analyzing sequences from Zea gen-
omes using BLAST, we arrive at a model for the evolution of the
Gal locus (see Fig. 8). According to this model, the gal and Gal-S
haplotypes evolved from a pair of ancestral PME genes through
2 distinct evolutionary branches. In 1 branch, the gene pair under-
went pseudogenization followed by multiple duplication events
leading to the sequence arrays present in Z. diploperennis and
Z. mays parviglumis accession TIL11, which later formed the non-
functional gal haplotype in modern maize. In the second branch
of the model, the male function gene underwent a series of dupli-
cations at 3 different time periods during its evolution, i.e. >600,
~260, and 80-100 KYA to yield several functional copies as well
as copies that underwent pseudogenization. The female function
gene is also duplicated at a time corresponding to the second

duplication event of the male function gene, and together all these
sequences constitute the Gal-S haplotype in modern maize.

The Gal locus controls cross-incompatibility in maize. Two dif-
ferent haplotypes of this locus contain structurally and temporal-
ly independent repeat regions. The repeat regions both appear to
have evolved through multiple rounds of proximal duplication by
nonhomologous recombination. Because 1 of the duplication
events in the gal array occurred after inactivation of ancestral
functional genes, at least this duplication event may have oc-
curred independent of the function of the Gal locus. Thisis an im-
portant case study that may provide insights into the evolution of
repeated regions of genomes.

Data availability

The authors affirm that all data necessary for confirming the con-
clusions of the article are present within the article, figures,
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tables, and supplemental material. Supplemental material is
available at figshare: https:/doi.org/10.25387/g3.24018756. Raw
data files are available at https:/github.com/amruta0306/G3-
2023-404295.
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