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Abstract

In the advancing field of 5G technologies, particularly at the 60GHz band, dielectric

resonator antennas (DRAs) stand out for their low conduction loss and high

radiation efficiency. However, the traditional design process for DRAs, predomi-

nantly reliant on intuitive reasoning and trial‐and‐error methods, is notably

inefficient and resource‐intensive. Addressing this critical challenge, our research

introduces a pioneering approach: a generative adversarial network (GAN)‐based
model specifically tailored for automating DRA structure design. This novel model

represents the first of its kind in the domain, marking a significant departure from

conventional methods. Our GAN model uniquely integrates a simulator for DRA

modeling and a generator for DRA structure design, streamlining the design

process. To effectively train this model, we created a simulated data set comprising

pattern–annotation pairs of geometric shapes and S11 parameters. This data set

enabled the GAN to capture the intrinsic principles underlying DRA design. The

practical impact of our model is profound; it significantly expedites the DRA design

process, aligning it more closely with specific user requirements while conserving

valuable time and resources. This breakthrough approach not only enhances the

efficiency of DRA design but also sets a new standard in antenna technology

development for future wireless communications.
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1 | INTRODUCTION

The advent of millimeter‐wave (mmWave) 5G technology
at 60 GHz has created a demand for antennas with high
bandwidth, high gain, and temperature‐independent
performance, all while maintaining a small footprint.1

Within this framework, dielectric resonator antennas
(DRAs) emerge as a compelling substitute for traditional

metal antennas.2 DRAs offer a range of benefits including a
lack of conduction losses and high radiation efficiency at
high frequencies. Additionally, the use of dielectric
materials with a high dielectric constant allows for
antennas with a reduced footprint. Dielectric resonators
can be designed in a variety of shapes to fit specific
application requirements for better integration into
antenna design. Meanwhile, DRAs can also show excellent
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properties of impedance matching and mode matching.3,4

Several DRA designs for 5G applications have been
demonstrated in recent years.5–10 However, the current
design process relies heavily on prior knowledge of
designers, and there are currently no established design
rules for the V‐band (60GHz) frequency range.

Artificial intelligence breakthroughs offer a new avenue
for automating antenna inverse design. Thanks to the
availability of big data and increasing computational power,
deep learning has shown enormous potential for rackling
complex processing tasks. Multilayer perceptions, autoen-
coder, and generative adversarial networks (GANs), for
instance, can capture the underlying pattern in complex
data sets and leverage them to create new data sets that may
not be intuitive to humans.11–15 This paper demonstrates a
GAN model for the inverse design of DRAs and explores its
ability to generate customized antenna structures. It is
worth noting that the antenna performance is usually
determined by many factors and our work focuses on the
design of the DRA geometry using the GAN model.

2 | DRA DESING AND MODELING

2.1 | mmWave DRNA design

The mmWave DRA structure, illustrated in Figure 1A,
consists of a dielectric resonator mounted on a half‐mode
substrate‐integrated waveguide (HMSIW).16 The
HMSIW, designed as a substrate‐integrated waveguide,
utilizes two metal plates surrounding a dielectric
substrate containing metallic vias to guide and reflect
electromagnetic signals. The tapered line serves as the

transition between the HMSIW and microstrip line,
while a transverse rectangular slot enables the excitation
signal to feed the dielectric resonator from the HMSIW.
The substrate is comprised of a dielectric material
(Rogers 5880) low permittivity and loss tangent of 2.2
and 0.001 at 50 GHz, respectively. The DRA structures
are made of a high dielectric constant material (Rogers
TMM10i) with a permittivity of 10 and a loss tangent of
0.002. The DRA resonator shape largely determines the
antenna's radiation characteristics. Our objective is to
design and train a deep learning model capable of
predicting a DRA's S11 without using a full‐wave
electromagnetic simulation while also generating new
DRA geometries based on a desired S11 spectrum.

2.2 | Numerical simulation

Using the finite element method (FEM) by Ansys HFSS, we
simulated the radiation characteristics of a group of DRAs
with different dielectric resonators but sharing the same
HMSIW substrate. As an example, Figure 1B,C showcase
the simulation results for the DRA with a star‐shaped
resonator. The HMSIW had geometric parameters of
wms= 0.35mm, lms= 10mm, wtr = 0.9mm, ltr = 1.4mm,
w=2.2mm, l=8.9mm, d=0.4mm, s=0.5mm, and a
dielectric thickness of 0.127mm. The dielectric resonator,
with the star shape (inset of Figure 1B) and a thickness of
0.5mm, was simulated for its reflection coefficient in the
frequency range of 45–65GHz. The resulting S11 spectrum
(Figure 1B) exhibited a bandwidth of 32.0% for S| | < −1011

dB at the DRA resonance around 63.8 GHz. The 47.6 GHz
resonance, which associated with the HMSIW slot, was also

FIGURE 1 (A) Schematic diagram of a hexagon‐shaped DR antenna (DRA) on a half‐mode substrate‐integrated waveguide substrate
(top and back view). (B) The finite element method simulation of S11 spectrum for the star‐shaped DRA is shown in the inset. (C) Simulated
patterns at 50 GHz along the E‐plane (xy‐plane) and H‐plane (yz‐plane), respectively.
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observed. Furthermore, the radiation pattern of this DRA
structure was simulated at 50GHz and presented in
Figure 1C, revealing a near omnidirectional pattern across
most of the radiation angles.

3 | DESIGN AND TRAINING OF
NEURAL NETWORK

3.1 | Design of the GAN model

The conventional GAN model can generate synthetic
patterns that resemble ground truth data distribution, aided
by a noise input.11 However, modified GAN models such as
conditional GAN (cGAN), auxiliary classifier GAN, and
InfoGAN have been developed to incorporate supplemen-
tary information into the input data, enabling the produc-
tion of data corresponding to specific target labels.17–19 To
streamline the design and modeling of DRAs, we present a
GAN model based on cGAN. The proposed GAN deep
learning network is depicted in Figure 2A, consisting of
generator, simulator, and critic networks. These networks
are primarily designed based on the convolutional neural
network (ConvNet), which is utilized to extract spatial
features from the two‐dimensional (2D) DRA resonator
geometries.20 Each neural network block, consisting of
ConvNet, batch normalization (BN) layer, and residual
neural network (ResNet),21,22 as depicted in Figure 2B, is
repurposed within the GAN deep learning network. The BN
facilitates output data renormalization and maintains
convergence, while the ResNet helps alleviate gradient
explosion and vanishing commonly encountered during
ConvNet‐based neural network training. The simulator

(Figure 2C) takes geometric shapes as input and predicts the
S11 parameters (S′) of the corresponding DRA pattern. This
module has been trained to serve as a substitute for full‐
wave simulation. The critic classifier, shown in Figure 2C, is
employed to distinguish between generated geometric
shapes and pre‐existing ones. As depicted in Figure 2B,
the generator, featuring a reverse architecture of the
simulator, is trained in conjunction with the critic to
penalize discrepancies between the actual S11 parameters
(S) and the reconstructed S′, as well as errors made by the
critic classifier. By introducing noise (z), the GAN model
can generate a diverse range of data randomly sampled from
the distribution acquired during training. The source code
can be accessed at the following link: https://github.com/
mingdianliu/AntennaGAN.

3.2 | Generation of training data set

To create the learning data set, a group of DRA structures
were simulated using the FEM. The cross‐sections of these
DRAs were generated by using a subset of a public data set
of 2D geometric shapes.23 The 2D patterns include nine
groups of geometries: circles, heptagons, hexagons, nona-
gons, octagons, pentagons, squares, stars, and triangles, as
shown in Figure 3A. We randomly selected the perimeter,
center position, and rotation range of these geometries to
generate a set of 5040 patterns. From each geometric
category, we chose 560 patterns and pixelized them into
32 × 32 binary arrays, which represent the horizontal cross‐
section of the DRAs (Figure 3A). The resonators were
formed on the HMSIW using the high dielectric constant
material with a thickness of 0.127mm. A MATLAB script

FIGURE 2 (A) Generative adversarial network model based on generator, simulator, and critic networks. The inputs of the generator
network (B) include the training S11 data and Gaussian noise. The generator output, representing the calculated DRA pattern, is used as an
input of the simulator and critic networks. (C) Simulator and critic networks consisting of the convolutional neural network, batch
normalization, and residual neural network.
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FIGURE 3 Finite element method simulation results of dielectric resonator antennas (DRAs) in the training data set. (A) Binary images
of the nine representative DRA patterns. (B) Calculated S11 spectra of these representative DRA structures.

was used to automatically generate the FEM models based
on the pixelized patterns and run the simulations for all
5040 DRAs using a high‐performance computing cluster (12
CPUs, Nova cluster; Iowa State University), which took
~6min for each simulation and 21 days in total. The final
S11 spectra were determined by the reflection coefficient in
dB. Figure 3B showcases the simulated S11 spectra for the
selected patterns shown in Figure 3A. It can be observed
that most DRAs in the training data set support one or more
resonances within the 50 to 65GHz frequency range.

3.3 | Training of the GAN model

To train the GAN model, 80% of the simulated S11 spectra
were used as the training data and the remaining spectra
were the testing ones. During the training process, the
simulator (Figure 2C) was first trained using the mean‐
squared error (MSE) loss function, L S S= | − ’ |

n i
n i i

S
1

=1
2,

where S is the ground truth S11 and S′ denotes the
predicted S11 by the simulator, and n is the dimension of S
and S′. The well‐trained simulator achieved an MSE of
0.6392 and 0.8637 for the training and test data sets,
respectively. To train the generator along with the critic
networks, we fixed the weights of the trained simulator.
The loss function of the critic (LC) and generator (LG) was
defined as follows:
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where m is the batch size, x represents the ground
truth pattern, S is the ground truth S11, z denotes the
random noise, C x( )i is the probability that the
generator is rightly classifying the real image,
G S z( , )i i is the image produced by the generator,
C G S z( ( , ))i i is the probability that the generator
misclassifies the generated image, and λ is a hyper-
parameter to balance the MSE loss and cross‐entropy
loss. Since the minimum value of LS was 0.8637, we
searched for the best value of λ in the range of [0.1, 1]
to ensure the L1 and L2 on the same level and get the
best generator and critic performances. Here, the
GAN model took 200 epochs to converge with a
learning rate of 1 × 10−3 and the moving average
parameter of the Adam optimizer of β1 = 0.5 and
β2 = 0.9999.

4 | RESULTS

4.1 | Characteristics of ground truth
data and loss function

The statistical results of the original data set are shown in
Figure 4A,B. The S11 parameter was collected in the range
of 50 to 65GHz. Upon setting the band threshold
as −10 dB, 2983 bands were recognized from the data set.
The bands of simulated antenna designs span from 53 to
65GHz and the minimum S11 values are lower
than −20 dB, indicating the feasibility for practical applica-
tions. In general, the bands of higher center frequency have
a wider bandwidth range. Also, the distribution of the center
frequency and bandwidth emerges into four clusters
implying the underlying physical principles in DRA design.
The largest band found in the data set is close to 16GHz,
which is sufficient for most applications.

4 of 8 | LIU ET AL.
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Throughout the training process of the generator
and critic networks, we observed that the loss initially
converged before diverging from the minimum point.
This behavior can be attributed to the inherent
instability of the GAN model. To prevent divergence,
an early stopping point was established during
the training process. The top five model candidates
were manually examined to verify the accuracy of
the generated antenna patterns, and one of these
five models was selected for further evaluation
experiments.

4.2 | Prediction of DRA's S11

The trained GAN model was used to replace the full‐
wave FEM model for calculating the S11 spectra of new
DRA designs. The HMSIW substrate and the thickness of
the dielectric resonators remained the same as described
in Section 2.2. Four patterns, which were not included in
the training data set, were chosen to evaluate the trained
GAN model's S11 prediction performance. The 2D
antenna designs were pixelized into the 32 × 32 binary
arrays and then input into the simulator of the GAN

FIGURE 4 Statistical analysis of the training data set. (A) Distribution of the S11 spectra, and (B) −10 dB frequency bandwidth as a
function of the operation frequency.

FIGURE 5 Comparision of S11 spectra generated by the well‐trained generative adversarial network model and finite element method
simulation for four different dielectric resonator antenna designs: circle (A), nonagon (B), square (C), and triangle (D).
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model. The predicted S11 spectra were output from the
deep learning model correspondingly. The patterns, as
shown in the insets of Figure 5, were the inputs of the
GAN model. Figure 5 compares the S11 spectra calculated
using the GAN model and the FEM simulation directly.
It can be seen that the GAN predicted S11 spectra agree
well with the FEM simulation results. For these four
examples, the frequency‐averaged GAN model calcula-
tion error is less than 0.42 dB within the 50–65 GHz
range. Apart from some extreme resonance cases, the
simulator can capture the main resonance features in S11
spectra. At resonance frequencies with more than 20 dB
reflection, the GAN prediction results exhibited an error
of 2.2 dB, which is acceptable for the antenna design with
10 dB as the desired reflection threshold.

4.3 | Intelligent design of DRA
structures

The GAN model can also be implemented to generate new
DRA patterns based on a given S11 spectra. The cGAN
model was trained to generate realistic antenna patterns on
the condition of desired S11 spectra to minimize the loss

between given S11 spectra and predicted S11 spectra from
the Simulator. The deep learning model was converged to
learn the intrinsic principle of antenna design. To illustrate
the capability of GAN inverse design function, four desired
S11 spectra were given to the trained GAN model. As
shown in Figure 6, both S11 spectra have the Gaussian
shape with the band threshold, bandwidth, and center
frequency of a, b, and μ, respectively. For the spectrum in
Figure 6A–D, we set the band threshold a as 10 dB for
(A–D), the bandwidth b as 6 GHz for (A–D), the center
frequency μ as 57.5 GHz for (A), 60.0 GHz for (B),
62.5 GHz for (C), and 60.0 GHz for (D), respectively. The
GAN‐generated patterns are shown in the insets of
Figure 6. These shapes from the generator were not
presented in the original 5040‐sample data set. The
generated designs seem a combination of one or two
shapes in the ground truth data set but with some
differences on the edge. For example, the output antenna
shape in (A) is a combination of square and triangle, while
the other shape in (B) is a part of star. Meanwhile, it is
observed that the S11 parameter of generated antenna
designs matches well with the main feature of desired S11
response, especially the bandwidth and center frequency
coefficients.

FIGURE 6 Dielectric resonator antenna patterns generated by the generator network. The comparison between the desired
Gaussian‐like S11 spectrum with (a= 10 dB, b= 6GHz, μ= 57.5 GHz) for (A), (a= 10 dB, b= 6GHz, μ= 60 GHz) for (B), (a= 10 dB,
b= 6GHz, μ= 62.5 GHz) for (C), (a= 10 dB, b= 12 GHz, μ= 60 GHz) for (D), and the corresponding GAN‐generated DRA patterns.
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5 | CONCLUSION

This paper introduces a GAN‐enabled method for
automating the design of mmWave DRAs. We proposed
a novel GAN structure that was trained using paired
antenna shapes and their corresponding S11 spectra.
The final model has been verified for the performance of
forward prediction and inverse design using the existing
data set. Moreover, we observed that the model has
learned the fundamental principles of DRA design and
generated novel antenna shapes based on the desired
S11 characteristics. This proposed method has the
potential to be extended for the design of other types
of antennas. This study recognizes the constraints
arising from the limited size of the data set used in
training our model. Currently, the model is designed to
consider only the S11 parameters. To develop a more
comprehensive machine learning model, our future
work will involve expanding the data set and incorpo-
rating additional parameters, including radiation pat-
tern and efficiency. Additionally, we are considering the
application of alternative neural network architectures,
such as physics‐informed neural networks, to enhance
convergence efficiency.
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