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ABSTRACT

Recording observations for plant traits is a time-consuming and costly process called

phenotyping. These observations of the phenotypes of plant traits are valuable for improving

crops by identifying genetic regions of interest identified through association studies.

Genome-Wide Association Studies (GWAS) require genotypic marker information across all of the

chromosomes for members of a population and phenotypic data that characterizes a trait.

Improvements in genotyping technologies and the encouragement of data sharing have made

genotypic datasets for maize populations accessible. Concurrently, high-throughput phenotyping

methods are being developed to improve data collection and involve expensive automated

machinery and sensors to collect measurement and scoring data. Natural language descriptions of

plants contain a wealth of underutilized phenotypic information. Recent research efforts use

structured descriptions of data that apply ontologies, which are structured data that represent

relatedness to other terms and ease the computational burden of determining semantic similarity

or word meaning similarity. Comparative analysis of gene interaction demonstrated the utility of

structured language descriptions of plant phenotypes. Methods to automate the development of

structured descriptions of plants indicate that humans who curate these data may use new

computational methods to generate such terms. Additionally, computational pre-trained natural

language models enable computing on free-text (i.e., unstructured data) to categorize and predict

gene interactions. New methods for generating and analyzing plant descriptions are pertinent

because of the success of extracting biologically meaningful information from free-text

descriptions of plant phenotypes. This work culminates in developing processes to collect, process,

and analyze spoken language descriptions of plants recorded in a field environment. Descriptions

of the accessions in the Wisconsin Diversity panel are used to perform GWAS to identify regions

of interest of the genome associated with the plant height trait.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction

Phenotyping plants is a process in which the traits of plants are observed. These observations

are a valuable source of information that can be obtained through scoring (e.g. scoring disease

prevalence (Menkir and Ayodele (2005) and Beyene et al. (2017))), measuring with digital or

ruled apparatus’ (e.g. plant height or leaf width (Tilly et al. (2014) and Pearce et al. (1975))), or

even using machinery that detect features that cannot be seen with the human eye (e.g. infrared

sensors (Spielbauer et al. (2009) and Masuka et al. (2012))). Plant breeders and geneticists have

traditionally relied on selecting plants to breed based on these physical features, and in the past

thirty years, vast improvements in genotyping have enabled and dominated the acceleration of

breeding and genetics (summarized in Durmaz et al. (2015)). These physical features of plants are

a result of the elaborate interaction of genetics and the environment in which the plants grow

(reviewed in Rutherford (2000)). Plant Biologists and Agronomists historically recorded

descriptions of plant features along with their measuring and scoring data. An example includes

the vivid descriptions reported by Gregor Mendel while studying pea seeds, pods, and flowers

(Mendel (1865)). A great deal of research effort has been placed on making the process of

phenotyping more automated and less labor intensive (reviewed in Gage et al. (2019)). These

methods generally result in numeric measures or scores that make performing association studies,

which identify regions of the genome that are of interest for the traits, plausible.

Efforts to investigate the biological meaning of text-based phenotypic descriptions of plants

have effectively been investigated using word meaning similarity, known as semantic similarity

methods. Research that computes on and compares structured text descriptions of plants

(Oellrich et al. (2015)) and Braun and Lawrence-Dill (2020) use ontologies (i.e., Gene Ontology

(GO; Ashburner et al. (2000)) and Plant Ontology (PO; Cooper et al. (2012))). Ontologies are
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directed acyclic graphs (DAGs) where nodes contain descriptions of gene functions, and child

nodes have more specific descriptions than parental nodes. Additional structures that ease

computing on text descriptions are Entity-Quality (EQ) statements (reviewed in Mungall et al.

(2010)), an example being the ”whole plant” entity, where a quality of the ”whole plant” entity is

”dwarf-like”. While computing on structured language is intrinsically less computationally

intensive, the process of structuring data involves a large curation effort that is human labor

intensive.

Research efforts have demonstrated that the formation of EQ statements can be automated,

which may reduce the need for human curation (Braun and Lawrence-Dill (2020)). Additionally,

the advent of pre-trained models (Bidirectional Encoder Representations from Transformers

(BERT; Devlin et al. (2018)), BioBERT (Lee et al. (2019)), Wikipedia (Lau and Baldwin (2016)),

etc.) enables using free-text descriptions of plants for tasks such as categorizing genes into pairs

using semantic similarity (Braun et al. (2021)). Using free-text descriptions of plant phenotypes is

advantageous to structured data because the researchers are not confined to a syntax or

predefined structure in which they must make their observations. Despite advancements in

natural language processing, few researchers have protocols for collecting whole plant descriptions

in the field environment, which limits data availability for developing methods to apply these

spoken descriptions to biological hypotheses.

Of the few researchers who collect descriptive data in the field, spoken descriptions of plant

phenotypes are collected (Kazic (2020)). The collection of spoken data bottleneck has been a

need for methods to process these data and to enhance investigating biological insights from these

data. As tools for speech-to-text become more accurate, accessible, and inexpensive, collecting

spoken data is becoming viable. Additionally, these data can be processed and used, in the same

manner as measured or scored data, as input for Genome-Wide Association Study (GWAS)

pipelines, such as Genome Association and Prediction Integrated Tool (GAPIT; Lipka et al.

(2012)), to identify regions implicated for traits of interest. The work described in this
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dissertation includes the development of datasets and pipelines to perform association studies on

natural language descriptions of plant phenotypes.

1.2 Research Goals

The essence of the research described in this dissertation is to enable researchers to collect

natural language descriptions of plants in a manner that is not mechanical. Structuring language

for the ease of silicon burdens data collectors, and our objective is to develop tools that allow

researchers to use natural language in a humanistic way.

The first goal of this research was to contribute to developing tools to predict biological

relationships from descriptive text datasets. This work included catalyzing the reproducibility of

a pipeline that processes text descriptions of plant phenotypes to predict shared phenotypes. The

biological applicability of relationships of gene pairs generated from various computational

approaches was compared to those determined from a benchmark curation-based approach.

The second goal of this research was to develop datasets to investigate whether biologically

relevant results can be extracted from spoken descriptions of plants collected in a field setting.

The robust dataset we designed, collected, and disseminated includes audio processing procedures

and methods, camera images, drone images and footage, field layout details, human prompting

procedures, measuring and scoring data, weather data, and a set of sample of audio collected by

volunteers. Numeric scoring and measuring techniques accompanied spoken data as ground truth

for subsequent genome-wide association studies.

The third goal of this research was to demonstrate the use of spoken descriptions of plants for

association studies. These recordings of descriptions were processed using computational tools,

and association studies were performed using Genome-Wide Association Study (GWAS) tools.

Principally, we used spoken phenotype descriptions to recover known genes of interest for the

plant height trait and discover new candidate genes of interest for plant height.
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1.3 Dissertation Organization

This dissertation contains chapters including this chapter (Chapter 1), which contains the

general introduction followed by publications (Chapters 2-5) and a general conclusion (Chapter

6). Chapter 2, a perspective published in Plant Phenomics, addresses investigating biological

questions and applications of natural language descriptions of plant phenotypes. Chapter 3, a

manuscript submitted to Database, describes investigating and comparing biological relationships

that can be generated using various computational approaches on text descriptions of plant

phenotypes. Chapter 4, a data note under review in BMC Data Notes, reports and describes the

dataset we developed to investigate field-generated spoken phenotype descriptions of plants for

association studies. Chapter 5, a manuscript to be submitted to G3: Genes|Genomes|Genetics,

details using spoken descriptions of plants to perform association studies to recover known and

new genes of interest for plant traits. Chapter 6 includes a general conclusion summarizing the

work described in this dissertation, future directions, and a summary of projects that enhance my

doctoral training but remain outside the breadth of my direct research.

My contributions to these works include, for Chapter 2, I conceptualized methods for using

natural language descriptions of plants, and I wrote and edited the perspective article. For

Chapter 3, I reviewed and edited the manuscript draft and accompanying code and directed the

reproducibility review of the scripts to perform the analysis described in the manuscript. For

Chapter 4, I assisted in obtaining Institutional Review Board (IRB) Exempt Status, designed and

planted an experimental field, designed and organized in-filed data collection, managed student

participants, wrangled data, obtained a Digital Object Identifier (DOI) for the data, and wrote

the first draft of the data note. For Chapter 5, I performed preprocessing, performed

Genome-Wide Association Studies (GWAS), performed the data analysis, submitted to obtain a

DOI for the analysis data, and wrote the first draft of the manuscript.
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2.1 Abstract

Many newly observed phenotypes are first described, then experimentally manipulated. These

language-based descriptions appear in both the literature and in community datastores. To

standardize phenotypic descriptions and enable simple data aggregation and analysis, controlled

vocabularies and specific data architectures have been developed. Such simplified descriptions

have several advantages over natural language: they can be rigorously defined for a particular

context or problem, they can be assigned and interpreted programmatically, and they can be

organized in a way that allows for semantic reasoning (inference of implicit facts). Because

researchers generally report phenotypes in the literature using natural language, curators have

been translating phenotypic descriptions into controlled vocabularies for decades to make the

information computable. Unfortunately, this methodology is highly dependent on human

curation, which does not scale to the scope of all publications available across all of plant biology.

Simultaneously, researchers in other domains have been working to enable computation on
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natural language. This has resulted in new, automated methods for computing on language that

are now available, with early analyses showing great promise. Natural language processing (NLP)

coupled with machine learning (ML) allows for the use of unstructured language for direct

analysis of phenotypic descriptions. Indeed, we have found that these automated methods can be

used to create data structures that perform as well or better than those generated by human

curators on tasks such as predicting gene function and biochemical pathway membership. Here,

we describe current and ongoing efforts to provide tools for the plant phenomics community to

explore novel predictions that can be generated using these techniques. We also describe how

these methods could be used along with mobile speech-to-text tools to collect and analyze in-field

spoken phenotypic descriptions for association genetics and breeding applications.

2.2 Background

The volume of data related to phenotyping of plants is enormous and growing consistently.

While sensor-based high-throughput technologies (described elsewhere in this issue) are

responsible for much of this growth in phenotype data, text-based phenotype descriptions also

contribute significantly. The scientific literature serves as the primary source of phenotype

descriptions, where an example might look something like “maize line X with specific mutation Y

exhibits delayed flowering under stress condition Z.” Some phenotype descriptions find their way

into model organism databases (e.g., TAIR, MaizeGDB, and SGN) through dedicated curation

efforts (Berardini et al. (2015), Portwood et al. (2018), Fernandez-Pozo et al. (2014)).

Given the volume of phenotype descriptions available and the relevance of these descriptions

to biological problems generally, interest in finding ways to compute on phenotypic descriptions is

quite high. The most common method for making phenotypic descriptions computable involves

representing the data using terms from large but finite and highly structured vocabularies such as

the gene ontology (GO; Ashburner et al. (2000)), the plant ontology (PO; Cooper et al. (2012)),

or the plant trait ontology (TO; Cooper et al. (2017)), among others (reviewed in Braun and

Lawrence-Dill (2020)). The utility of using such vocabularies has been immense across the life
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sciences generally, with over 27,000 citations to the first GO publication alone (see Ashburner

et al. (2000)). Use of these controlled vocabularies allows for increased consistency in how

phenotypes are described, and the architecture of these data structures makes querying over a

large volume of phenotypes realistic. Their hierarchical nature also enhances the meaning of each

phenotype collected as a data point by inheriting implicit knowledge. For example, the GO

hierarchy (Figure 2.1(a)) specifies that fruit ripening is a type of aging, so the association of a

phenotype related to fruit ripening with this term allows that phenotype to be recovered by a

query for aging, without that association being explicitly stated.

Despite the computational and inferential advantages that this type of annotation confers,

detailed manual curation comes at the cost of the time and effort required to construct

high-quality annotations for the large number of phenotypes observed, and the simplification of

phenotypic descriptions to match the architecture of a particular knowledge representation

necessarily reduces the specificity of a phenotypic description, thus losing some shades of meaning

that are conveyed using natural language directly. How can these shortcomings be addressed?

There are several applications for which unannotated natural language is becoming directly

computable, a fact which has been largely underexploited in the biological disciplines.

The field of natural language processing (NLP) has made great advancement in recent years.

NLP methods are used to compute on language directly to gain insights from semantic

(meaning-based) and syntactic (structural) patterns. In the field of human health, applications of

NLP with machine learning (ML) have been used to discover hidden patterns which can aid in

informing patient care decisions. Such applications include text mining of medical records to

predict probabilities of disease, machine translation of physician notes, and automated

identification of articles relevant to disease phenotypes, to name just a few (reviewed in

Ohno-Machado (2011)). These types of text analyses typically involve representing natural

language using numerical vectors, which can then be used as inputs for ML models or to derive

similarity scores (Figure 2.1(b)).
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In a recent publication, we used NLP and ML to encode descriptions of plant phenotypes and

measured pairwise similarity to construct similarity networks (Braun and Lawrence-Dill (2020)).

These computationally generated networks were shown to recover underlying gene functions and

to predict membership in biochemical pathways, even on datasets distributed across multiple

species. Most importantly, these computationally generated networks outperformed networks

constructed using high-quality, ontology-based manual annotations in many cases, demonstrating

that for these types of predictive tasks involving large datasets, applying computational methods

over natural language descriptions yields comparable results to what can be achieved using a

slower, labor-intensive, manual curation-based approach. Although high-quality curation plays an

invaluable role in organizing phenotypic data, our findings suggest that there is much to be gained

by applying purely computational approaches to phenotypic descriptions in plants.

2.3 What Do Phenotype Networks Look Like and How Can They Be Used?

Figures 2.1(c) and 2.1(d) illustrate what two types of similarity networks inferred from

natural language descriptions of phenotypes look like. The first is useful for novel candidate gene

prediction, and the second could become useful for genome-wide association studies (GWAS)

through specification of a concept we call “synthetic traits” where clustered phenotypes are

treated as a single trait.

For the novel candidate gene prediction application (Figure 2.1(c)), each node in the network

refers to a particular gene and its corresponding phenotype. The similarity between two nodes

implies an increased probability that the pair of genes is involved in a common regulatory

network, biochemical pathway, or similar shared process. For example, two genes associated with

phenotype descriptions that mention leaf size and shape are predicted to be involved in the same

pathway or process. This sort of data structure enables researchers to generate new hypotheses

about which genes may be involved in processes that generate a given phenotype.

For gene discovery, computationally generated phenotype similarity networks would be

generated with no associations to genes asserted within the network (Figure 2.1(d)). In such a
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network, highly related phenotypes would create clusters, which we are defining as “synthetic

traits.” Sequence data from plants with and without each synthetic trait could then be analyzed

with well-understood GWAS approaches (Visscher et al. (2017)) to correlate specific genetic loci

with the synthetic traits. This methodology could lead to the discovery of genes related to some

phenotype properties that a researcher was not specifically looking to discover but that may be

well represented in a specific growing environment by the germplasm under observation. For

example, the graph may contain a cluster with words or phrases related to aerial root mucilage

(Figure 2.1(d)) enabling this property to be used as a trait in downstream analyses like GWAS,

even if this phenotype was not previously well understood (Van Deynze et al. (2018)). For

collecting these data in a field environment, we envision phenotypic descriptions of plants being

spoken and recorded, translated to text, then parsed computationally into specific statements. As

such, this methodology is applicable to qualitative descriptions, rather than continuous numerical

measurements. From there, the networks are created, highly interconnected clusters are identified

as synthetic traits, and those traits are associated with genomic variants.

2.4 What Seems Unexpected (to Us) about the Use of Automated Methods

for Computing on Phenotypic Descriptions?

The diversity of phenotype descriptions is beneficial to (rather than a hindrance to) this

method of computing on the data. It is not necessary to standardize the words used to describe

phenotypes for computational analysis, and the diversity of descriptions actually improves the

quality of the result if enough phenotypic observations are recorded. By using data-driven

approaches to specify synthetic traits, the concept of a trait becomes objective. This objectivity

in grouping observations means that scientists may discover phenotype and trait groups that have

not yet been conceived of and described previously. We are at the beginning of a new era for

computing on phenotypic descriptions. In the past, researchers had to create simplified and

structured descriptions to make phenotypes computable. Put another way, researchers were asked

to think and behave like computers. Now, computational methods can accommodate the rich
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language that experts use to describe phenotypes. With NLP and ML, computers are able to

reason like humans.
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2.9 Figures and Tables

Figure 2.1 Phenotypic similarity. (a) For the GO, the similarity between two concepts

can be evaluated based on the relationship between the sets of terms from the

ontology that represent those concepts. This relationship can be quantified

using metrics such as Jaccard similarity (shown). (b) Natural language pro-

cessing technique such as sentence embedding using machine learning models

or presence and absence of individual words can be used to produce high-di-

mensional vector representations of concepts, where their position within the

vector space allows for quantification of similarity. The example shown plots

concepts within three dimensions.
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Figure 2.1 Phenotypic similarity continued. (c) Example phenotypic similarity network

where nodes represent genes and any associated phenotypic text descriptions.

(d) Example phenotypic similarity networks where nodes represent words or

phrases drawn from a set of descriptions about some population of plants.
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3.1 Abstract

Similarities in phenotypic descriptions can be indicative of shared genetics, metabolism, and

stress responses, to name a few. Finding and measuring similarity across descriptions of

phenotype is not straightforward, with previous successes in computation requiring a great deal of

expert data curation. Natural language processing of free text descriptions of phenotype is often

less resource intensive than applying expert curation. It is therefore critical to understand the

performance of natural language processing techniques for organizing and analyzing biological

datasets and for enabling biological discovery. For predicting similar phenotypes, a wide variety of

approaches from the natural language processing domain perform as well as curation-based

methods. These computational approaches also show promise both for helping curators organize

and work with large datasets and for enabling researchers to explore relationships among available

phenotype descriptions. Here we generate networks of phenotype similarity and share a web
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application for querying a dataset of associated plant genes using these text mining approaches.

Example situations and species for which application of these techniques is most useful are

discussed.

3.1.1 Database URLs

The database and analytical tool called QuOATS are available at

https://quoats.dill-picl.org/. Code for the web application is available at

https://git.io/Jtv9J. Datasets are available for direct access via

https://zenodo.org/record/7947342#.ZGwAKOzMK3I (Braun et al. (2023)). The code for the

analyses performed for the publication is available at

https://github.com/Dill-PICL/Plant-data and

https://github.com/Dill-PICL/NLP-Plant-Phenotypes.

3.2 Keywords

Phenotype, Ontology, NLP, Machine Learning, Plant Biology

3.3 Introduction

Phenotypes, defined as measurable characteristics or properties of an organism that result

from interactions between genetics and the environment, comprise an enormous portion of the

biological data considered important across a wealth of domains in the life sciences and beyond.

Phenotypes are everything we see or measure in biology. On a more practical note, phenotypes

encompass critical information related to human health and medicine, and important agronomic

traits such as plant height and biomass of crop species. The scope of phenotypic information also

ranges widely, from cellular phenotypes such as membrane composition or chemical

concentrations, to community-level phenotypes like total leaf surface area in a field of crops. The

extreme diversity in how phenotypes can be observed and represented makes handling this

information on a computational level fundamentally different than genomic data, which lends

https://quoats.dill-picl.org/
https://git.io/Jtv9J
https://zenodo.org/record/7947342#.ZGwAKOzMK3I
https://github.com/Dill-PICL/Plant-data
https://github.com/Dill-PICL/NLP-Plant-Phenotypes
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itself to computational means of representation and analysis based on the existing natural codes

of bases and amino acids (reviewed in Braun et al. (2018)). This is especially true for phenotypes

that are comparative, such as two different leaf morphologies, rather than phenotypes that are

easily translated into a quantitative value, such as height (reviewed in Braun et al. (2020)).

Despite these challenges, bio-ontologies have greatly helped to enable computation on

phenotypic information by providing standardized, hierarchical sets of descriptors (terms) that

can be used to annotate phenotypic information. Doing so enables comparison between data

points, including comparisons across multiple species, studies, and sources in a meaningful way,

which has contributed to the use of these data structures in recent years. Using terms from the

Gene Ontology (GO; Ashburner et al. (2000)) to describe cellular components, functions, and

processes allows researchers to quickly find genes related to a biological concept of interest, and to

understand which biological processes are potentially carried out or influenced by a group of genes

of interest (Huang et al. (2008)). Using this same ontology as the format for predictions about

gene functions allows datasets of predicted gene functions to be seamlessly incorporated with and

compared to known information (Zhou et al. (2019)). Biomedical vocabulary graphs such as the

Human Phenotype Ontology (HPO; Robinson et al. (2008)) and Disease Ontology (DO; Schriml

et al. (2011)) allow for organization and interoperability of the vast and growing body of

knowledge surrounding human medicine. Efforts such as Phenoscape (Edmunds et al. (2015)), the

Monarch Initiative (Mungall et al. (2016)), and Planteome (Cooper et al. (2017)), use ontologies

to provide common data representations and allow for comparisons across diverse species or

across evolutionary history.

At the same time, both the performance and availability of natural language processing

(NLP) and machine learning (ML) methods for working with natural language and text data have

continually improved. Large language models now include artificial intelligence (AI) tools such as

ChatGPT, developed by OpenAI (OpenAI (2023)). The release of ChatGPT is popular, in part,

because of its public availability and conversational nature. ChatGPT uses a generative

pre-trained transformer (GPT) model (Radford et al. (2018)), a deep-learning language model,



20

and has elicited an excited response within the language processing community (Dwivedi et al.

(2023)). Improvements in language processing are due to recent and continued innovations in how

neural networks are designed to handle this type of information (Mikolov et al. (2013), Le and

Mikolov (2014), Vaswani et al. (2017)), and how they can be trained on massive volumes of

unlabeled data (such as Wikipedia or PubMed) to provide systems for accurately modeling text

in computable formats, and allowing for transfer to other domains and fine-tuning for more

specific problems (Devlin et al. (2018), Wolf et al. (2020)). One result of this progress is that such

techniques now represent a complementary approach to computationally handle the diversity of

phenotypic information, at least for cases where phenotypes are represented as text descriptions.

Given that phenotypes have been described in academic articles for more than a century, sources

for phenotypic descriptions abound. Although the vast majority of phenotypes described in the

literature have not been extracted and represented in computationally accessible community

databases, some databases do exist that contain phenotype descriptions in free text fields.

Previously, we demonstrated that for some organizational tasks (like grouping functionally

similar genes together), computational approaches that process text descriptions of phenotypes

can work as well as, or better than, curated ontology term annotations for the creation of

meaningful similarity measurements (Braun and Lawrence-Dill (2020)). Here, we demonstrate

that this finding holds true for a larger dataset of the available phenotype text descriptions from

across six different plant species. This means that, where available, text descriptions of

phenotypes have the potential to provide useful biological insight when combined with a variety of

methods from the field of NLP. We therefore make a case for expanded inclusion of free text

descriptions as a valuable component of biological databases going forward, whether as a

supplemental data type to more standardized ontology term annotations, or as a potential

short-term alternative for species currently lacking the curatorial resources to produce large scale

datasets of high-confidence, curated annotations.

In demonstrating the utility of analyzing text descriptions of phenotypes with NLP

approaches, we focus on what can be learned from evaluating similarity between descriptions as a
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measure of gene pair similarity. This is closely comparable to the ongoing problem in NLP of

measuring sentence similarity, which has applications for text querying, text classification, and

other tasks (De Boom et al. (2016)). An enormous variety of solutions have been put forward for

this problem, including both general solutions as well as more narrowly focused solutions for

working in particular domains, such as biomedical literature (Soğancıoğlu et al. (2017), Chen

et al. (2019)). The number of solutions to this task is related to the fact that virtually all

approaches for dealing with text computationally involve representing words or sentences as

numerical vectors, on top of which similarity or distance metrics can then be applied to quantify

relatedness between the two texts. In other words, all approaches for vectorizing text, which is

typically the first step in handling any problem with NLP, can subsequently be used to find

similarity between two texts by applying similarity metrics to their vector representations. This

enables the generation of networks for organizing data across large datasets. In this work, we

assess the performance of a variety of both simple and state-of-the-art methods for translating

plant phenotype descriptions into numerical vectors and build networks that can be used to make

inferences from pairwise similarities.

We also discuss and demonstrate how these same techniques can be applied for organizing and

analyzing large phenotype description datasets, accounting for phenotypic characteristics that

have not yet been explicitly defined by the input data. Finally, we provide a web application that

enables others to explore and make use of phenotypic similarities identified. The application,

called QuOATS (Querying with Ontology Annotations and Text Similarity), can be used to

search for plant genes with similar phenotypic descriptions using gene identifiers, ontology terms,

keywords, or similarity to searched phenotype descriptions as input.

3.4 Materials and Methods

3.4.1 Datasets

Species included for our analyses included Arabidopsis thaliana (L.) Heynh. (Arabidopsis),

Zea mays L. subsp. mays (maize), Medicago truncatula Gaertn. (barrel medic or Medicago),
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Oryza sativa L. (rice), Glycine max (L.) Merr. (soybean), and Solanum lycopersicum L.

(tomato). We collected a dataset of available phenotype descriptions that have been mapped to

specific plant genes, primarily through mutation studies, from the model species databases for

Arabidopsis - TAIR (Berardini et al. (2015)), maize - MaizeGDB (Portwood et al. (2018)), and

solanaceous plants - SGN (Fernandez-Pozo et al. (2014)), and combined these data with as a

dataset of phenotype descriptions created by Oellrich et al. (2015) that includes all six species.

After merging data from multiple sources and preprocessing the texts, the combined dataset

consisted of 7,907 genes from the 6 plant species, with the quantity of genes and the text

describing their associated phenotypes varying across species (Table 3.1). The distributions of

sentences and words quantities present per gene also vary broadly across species (Figure 3.1).

Portions of the vocabulary used to describe phenotypes in each of the species are unique to that

particular species, but in all cases more than 80% of the vocabulary was shared with at least one

other species (Figure 3.2).

For the genes in this dataset, we also collected three types of ontology term annotations:

Gene Ontology (GO; Ashburner et al. (2000)) annotations, Plant Ontology (PO; Jaiswal et al.

(2005), Cooper et al. (2012)) annotations, and entity-quality (EQ) statements composed of

multiple ontology terms. For in-depth discussion on how EQ statements are composed and

compared to one another, see (Hoehndorf et al. (2011), Oellrich et al. (2015), Braun and

Lawrence-Dill (2020)). GO and PO annotations were additionally sourced from the model species

databases (Berardini et al. (2015), Portwood et al. (2018), Wimalanathan et al. (2018)) and

Planteome (Cooper et al. (2017), http://www.planteome.org), and were limited to those with

evidence codes indicating they were either experimentally determined or created through author

or curator statements (Consortium et al. (2012), Giglio et al. (2018)). The EQ statements were

sourced from the dataset of curator-defined EQ statements created by Oellrich et al. (2015). Not

all genes in the dataset had at least one annotation of each type, and these quantities are given in

Table 3.1. The preprocessed, merged, and cleaned dataset described here is available and further

described through a dedicated repository (see Section 3.7 Data and Code Availability).

http://www.planteome.org
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We also mapped the genes in this dataset to objects from additional bioinformatics resources,

namely biochemical pathways in KEGG (Kanehisa (2002)) and PlantCyc (Schläpfer et al.

(2017)), protein-protein associations in STRING (Szklarczyk et al. (2016)), ortholog relationships

in PANTHER (Thomas (2003)), and a hierarchical Arabidopsis gene classification based on

phenotypes (Lloyd and Meinke (2012)). A subset of the genes in the complete dataset are found

in each of these resources (Table 3.1).

3.4.2 Measure of gene pair similarity

We used a set of approaches for generating n by n pairwise similarity matrices, where n is the

number of genes in the dataset, and the values in the matrix are some measure of the similarity

between a given pair of genes. Each approach yields one matrix. The approaches belong to two

main groups: text-based approaches that translate the text descriptions of phenotype(s)

associated with each gene into numerical vectors, so that gene pair similarity can then be found

using cosine similarity, and curator-based approaches, that rely on similarities between existing

annotations for each gene (GO terms, PO terms, or EQ statements) to quantify gene pair

similarity. Each of the text-based approaches used is described in overview here, as well as how

the curator-based approaches determine gene pair similarity from annotations.

3.4.2.1 Tokenizing sentences

For each of the text-based approaches, we determined the effects of treating the entirety of the

phenotype descriptions associated with a gene as one concatenated text, and comparing between

those texts for pairs of genes to measure gene pair similarity, or by first tokenizing (separating)

the phenotype descriptions into individual sentences, and treating those sentences as individual

text instances. Then the maximum similarity scores obtained by any pair of sentences was taken

as the gene pair relatedness score. This measure is intended to alleviate the effects of genes with

longer phenotype descriptions seeming to appear unrelated to ones with shorter ones, and is

analogous to looking for local alignments in the text, rather than global ones. In the subsequent
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Methods sections, we use the word ‘text’, to mean either the concatenation of all phenotype

descriptions associated with a gene, or a single sentence from those descriptions, depending on

which of these two methods is being described. Sentence tokenization was done with the NLTK

package (Bird et al. (2009)).

3.4.2.2 Baseline approach

Some genes in the collected dataset have identical phenotype descriptions. As a baseline

approach against which to compare the subsequently described approaches, we include an

approach that simply yields a similarity value of 1 for gene pairs that have identical texts, and 0

for gene pairs with texts that differ in any way, after preprocessing.

3.4.2.3 TF-IDF

Constructing tf-idf (term frequency-inverse document frequency) vectors is one of simplest

ways of representing text in a computable format. With this approach, phenotype descriptions

are treated as a bag-of-words, and translated to a vector which is the same length as the total

number of unique words in the dataset vocabulary, where each position in the vector corresponds

to a particular word. The value at the position in the vector for a particular word is the number

of times that word appears in the phenotype description (term frequency) weighted by the inverse

of the fraction of phenotype descriptions in which that word appears (inverse document

frequency). Weighting by the inverse document frequency emphasizes the importance of rarer

words (e.g., ‘gametophyte’) and de-emphasizes the importance of more common words (e.g.,

‘plant’) in the vector encoding. In addition to this straightforward implementation of the tf-idf

approach, we also used as a bigram approach where positions in the vector represent a sequence of

two consecutive words (as opposed to the unigram approach, where positions are a single word, as

described above). We also used a tf-idf monogram approach where the phenotype descriptions in

the datasets are first subset to only include words that are over-represented in journal articles

abstracts related to plant phenotypes. The criteria for inclusion was that a word appeared at
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least twice as frequently in the dataset of plant phenotype related abstracts compared to a

general domain corpus. In all cases, cosine similarity was used to calculate gene pair similarity

after phenotype descriptions were translated into vectors.

3.4.2.4 Computational annotation (NOBLE Coder)

NOBLE Coder (Tseytlin et al. (2016)) is a computational tool for annotating text with

ontology terms. We used NOBLE Coder to annotate phenotype descriptions with terms from a

set of bio-ontologies (GO, PO, and PATO), inheriting additional terms using the hierarchical

structure of the ontologies. We used NOBLE Coder with both the exact and partial match

parameters, which alters how strictly an ontology term must match a text string for an

annotation to be assigned. After assigning terms to phenotype descriptions for genes by this

method, each gene is represented by a set of terms rather than a set words, and the process of

translating these representations into numerical vectors and calculating gene pair relatedness

using cosine similarity is the same as with the tf-idf approach, with positions in the resulting

vectors referencing terms instead of words. Again, cosine similarity was applied to yield similarity

matrices from these resulting vectors.

3.4.2.5 Topic modeling (LDA and NMF)

We used Latent Dirichlet-Allocation (LDA; Blei et al. (2003)) and Non-negative Matrix

Factorization (NMF; Lee and Seung (1999)) to perform topic modelling on the dataset of

phenotype descriptions. These are decomposition algorithms that are widely used in NLP

applications (reviewed in Jelodar et al. (2018)), and result in translating a document-term matrix

into a document-topic matrix (in our case, documents are phenotype descriptions). If the

algorithm is run to learn 10 topics, then the outcome is that each phenotype is represented by a

vector of length 10 where each position indicates the probability that the phenotype is derived

from that particular topic. Determining the appropriate number of topics to use for a particular

dataset is often a matter of trying a range of values, and looking at which value produces the
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most coherent or logical topics given the subject matter. Based on the word probability

distributions created using a range of topic quantities, we used our best judgement to elect to use

50 topics and 100 topics for our embedding approaches using each of these algorithms.

3.4.2.6 Neural network-based embeddings (Word2Vec, Doc2Vec, BERT,

BioBERT)

We also used machine learning approaches designed to find vector embeddings that represent

the semantics of input text in a compressed space, with positions in the embedding representing

abstract semantic features. Word2Vec (Mikolov et al. (2013)) is an approach for generating word

embeddings based on the contexts in which words appear in a corpus. We used a skip-gram

model, where a shallow network is trained to take one word at a time from our corpus as input

and predict surrounding context words. The result of this self-supervised training step is a vector

embedding for each word that occurs in the dataset of descriptions that reflects the context those

words appear in, in a compressed feature space (200 dimensions). To supplement our dataset of

phenotype descriptions to build a larger corpus for self-supervised training, we shuffled in

sentences accessed from PubMed that were present in abstracts retrieved with queries for the

word ‘phenotype’ and any of the names of the species present in our dataset. Hyperparameters

for model construction were selected through a validation task of predicting whether ontology

term names and synonyms from PATO and PO were parent-child or sibling pairs, or more

distantly related. This validation task led to the selection of a skip-gram model using a window

size of 8, and a hidden layer size of 200 (see genism package (Rehurek and Sojka (2010)) for

parameter details). In addition, as a point of comparison, we also used pre-trained published

models trained on PubMed (Pyysalo et al. (2013)) and Wikipedia (Lau and Baldwin (2016)).

Doc2Vec is an extension of Word2Vec that either exclusively learns embeddings for documents

(texts with multiple words) or learns embeddings for documents simultaneously with word

embeddings. We used a distributed bag of words architecture where the arbitrary document tags

are used as an input in a self-supervised process to predict randomly selected words from the
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input documents, resulting in network architecture that can be used to infer document-specific

embeddings (Le and Mikolov (2014)). We utilized the same training approach as for word

embeddings, using only concept pairs with multiple words as validation data. In addition, we

used a pre-trained Doc2Vec model trained on Wikipedia (Lau and Baldwin (2016)).

BERT (Bidirectional Encoder Representations from Transformers) is a large-scale neural

network architecture trained on large unlabeled text datasets to predict masked words in

sentences and predict whether one sentence follows another in a corpus (Devlin et al. (2018)).

This results in a network where the encoder can be used to generate context-specific vector

embeddings for words in an input sentence. We used both the BERT base model (Devlin et al.

(2018)) and BioBERT models fine-tuned on abstracts from PubMed and articles from PubMed

Central (Lee et al. (2019)).

The Doc2Vec models were used to directly infer vector embeddings for phenotype

descriptions. The Word2Vec and BERT models generate vector embeddings for each word in

phenotype descriptions, so these individual word-embeddings were combined to produce a single

vector embedding for each phenotype description. Whether the vectors are summed or averaged is

a hyperparameter choice, along with how many encoder layers are used to build the BERT word

vectors, and whether those layers should be summed or concatenated. These hyperparameter

choices were made using performance on the validation task described previously for the networks

trained on phenotype descriptions, and for the pre-trained models we selected hyperparameters

based on their performance on a related biomedical sentence similarity problem with the

BIOSSES dataset (Soğancıoğlu et al. (2017)), and went forward with the hyperparameters that

provided the best results on that separate dataset. As with the other approaches, cosine similarity

was applied to the resulting vectors to yield similarity matrices.

3.4.2.7 Using embeddings to generate meaningful vectors with word replacement

Producing the most informative vector representations of phenotype descriptions requires

combining the tf-idf approach of explicitly representing the quantity of each particular word from
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the vocabulary that is present in each phenotype description, and also accounting for semantics

through learning vector embeddings of particular words relative to their own meanings in this

vocabulary or their meaning relative to the words around them in these phenotypes. We used an

approach where pairwise word-similarity matrices for each word in the vocabulary as represented

by our Word2Vec models were used to replace each word in all descriptions with the most

common word in the vocabulary out of the word itself and the three other most similar words

predicted by that model (algorithm detailed in Pontes et al. 2016). This results in substitutions

such as ‘susceptible’ to ‘resistance’ that may allow comparisons to be made between phenotypes

that simpler bag-of-words approaches would consider as distinct. The resulting vector

representations are tf-idf vectors, but the semantic relationships between words as informed by

the neural network models is already accounted for prior to encoding.

3.4.2.8 Curated annotations (GO, PO, EQ statements)

For a point of comparison to the text-based approaches described above, we also used the

curator-based annotations to quantify gene pair relatedness. For GO and PO annotations, we

calculated similarities as the maximum information content of any single term shared between the

annotation sets for a given pair of genes. The more similar two sets of annotations are, the more

specific (with higher information content) the terms shared between the two sets will be with

respect to the ontology graph structure, leading to greater similarity. In this case, information

content is transformed to be in the range of 0 to 1, so that it can be used as a similarity metric

compatible with the other approaches used. To quantify similarity between genes using EQ

statements, we used the pairwise similarities provided in Oellrich et al. (2015).

3.4.3 Formulating Biologically Relevant Questions

We used additional bioinformatic resources (KEGG, PlantCyc, STRING, PANTHER, etc.) to

assess representation of biologically relevant relationships between gene pairs in the dataset, that

each approach described above can attempt to recover by quantifying the similarity for that pair
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of genes, allowing for direct comparison among the approaches (Table 3.2). Because not all genes

in the dataset map to each resource (Table 3.1), the number of gene pairs that are applicable to

each question are not consistent (Table 3.3). Although these questions are likely related to one

another in terms of true biology (e.g., if a pair of genes are related to the same observable

phenotype, they are probably more likely to act in a shared pathway), these questions are neither

identical nor redundant in the context of this work, because different questions apply to different

portions of the dataset, and even within the overlaps of gene pairs that apply to multiple

questions, the set of positives (gene pairs for which the correct answer is ‘true’) are not the same

(Table 3.4). For example, the two most similar tasks are ‘Associations’ and ‘Pathways’, where

1,271,297 of the same gene pairs are considered in both tasks, and the Jaccard similarity between

the two sets of target values (‘true’, ‘false’) between those gene pairs is only 0.172 (Table 3.4). For

this reason, we looked at the results of each of these questions individually rather than combining

them.

3.5 Results

3.5.1 Text-based approaches recover biological relationships

Using each of the text-based approaches as well as using similarity metrics over the existing

curated annotations, we calculated gene pair similarity values for all pairs of genes in our dataset.

We measured the success of each approach for (1) predicting whether two genes were orthologs

(as specified in PANTHER), (2) predicting known protein associations specified in STRING, (3)

predicting whether two genes functioned in at least one of the same biochemical pathways (as

specified in PlantCyc and KEGG), and (4) at predicting whether two Arabidopsis genes belonged

to one of the phenotype categories specified by Lloyd and Meinke (2012). For each of these

biological questions, a given approach for measuring gene similarity is considered useful if the

distribution of values for gene pairs for which the answer to the question is true is distinct from

the distribution of values for gene pairs for which the answer to question is false. The success of

each approach for each biological question was calculated in terms of the maximum F1 statistic.



30

We also recalculated the maximum F1 statistic for just the genes for which we have GO

annotations, PO annotations, and EQ statements, to directly compare performance of each

approach on each question with approaches that are based on curation (Table 3.5, Supplemental

Table 3.6).

3.5.1.1 Text-based approach performance is dependent on biological query type

Of the four biological questions assessed for this analysis, predicting whether two genes were

orthologous, whether two genes shared an association, or whether two genes belonged to a shared

biochemical pathway were infeasible for any of the text-based or curation-based approaches, in

terms of broad performance measured with maximum F1 statistics (Table 3.5, Supplemental

Table 3.6). The largest F1 statistic obtained across all three of these tasks for any approach was

0.140 using the curated GO annotations, with all other approaches yielding F1 values less than

0.12 (Table 3.5, Supplemental Table 3.6). However, F1 statistics were much higher for the task of

predicting whether two genes belonged to the same phenotypic category, an expected result given

that this prediction follows directly from the explicit contents of the phenotypic descriptions

(Table 3.5). This was true for both the text-based and curation-based approaches, but the best

performance was achieved using text-based approaches (Table 3.5). Performance on this task of

predicting whether two genes share a phenotypic category can be broken down by general classes

of approach (Figure 3.3).

As previously stated, all approaches were unsuccessful in predicting ortholog relationships

(Supplemental Table 3.6). In addition, all approaches were completely unsuccessful in predicting

whether two genes from different species were involved in a common biochemical pathway

(Supplemental Table 3.7). Even though the maximum F1 statistics for predicting whether two

genes share a pathway were already low, these values were even lower when filtering the dataset

to only look at interspecies gene pairs, and marginally greater when filtering the dataset to only

look at intraspecies gene pairs (Supplemental Table 3.7). Therefore, even the very small amount

of biological information recovered only applies to looking at genes from within the same species.
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This indicates that comparing the text of phenotype descriptions across different species is not

biologically informative in this case. This might not be true for all species or all phenotypes, but

it does not generalize across the current dataset of available plant phenotype descriptions.

3.5.1.2 Significant description similarity within individual phenotype and

pathway gene groups

We evaluated similarities of phenotypic descriptions as a percentile based on F1 score, and to

visualize the results, plotted the average gene-to-gene similarity for phenotypic categories (Figure

3.4 (a)). Next, we imposed the same evaluation and visualization for genes mapped to each

individual pathway (Figure 3.4 (b) and (c)). Although predicting whether two genes shared a

biochemical pathway was generally unsuccessful (low maximum F1), this is in part a consequence

of the fact that pathways vary greatly in how related the phenotype descriptions for their

component genes are. In Table 3.5 we report calculated p-values. This was accomplished by

randomly sampling groups of genes at each value of n then calculating p-values for each

phenotype category and pathway based on the probability of each approach generating a mean

similarity value between genes in that group that is that large or larger, controlling for false

discovery rate for each approach with the Benjamini–Hochberg procedure. For text-based

approaches using sentence tokenization, 81% to 100% of the phenotypic categories had a

significantly large average similarity value (with respect to the Benjamini–Hochberg procedure),

while between 6% and 39% of the pathways obtained significant average similarity values, for

these same approaches, with an average of 23% (Table 3.5). Taken together, these results indicate

that while text-based similarity values are not broadly indicative of whether or not two genes

share a pathway, there is a significant subset of known pathways for which this is the case. In the

case of groups of genes belonging to the same pathway that do have similar phenotype

descriptions, these are generally either due to mentions of downstream phenotypic effects of

pathway disruption, or more direct mentions of the pathway function or role. For example, the

descriptions associated with genes in the chlorophyll degradation pathway include mentions of
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necrotic lesions, and the descriptions associated with genes in the phospholipid desaturation

pathway include mentions of fatty acid levels or composition.

3.5.1.3 Combining syntactic and semantic approaches improves recovery of

phenotypic categories

The purely syntactic text-based approaches (tf-idf) were among the most successful in terms

of maximum F1 statistic for predicting whether gene pairs belonged to the same phenotypic

category (Table 3.5, Figure 3.3). In general, semantic approaches that use ML techniques to

drastically reduce the dimensionality of the vector encoding for each text instance were

comparably successful (Table 3.5, Figure 3.3). However, the combined approaches where semantic

techniques were used to augment the information in the tf-idf vectors by replacing words with

similar words prior to encoding provided a boost in performance over other approaches (Table

3.5, Figure 3.3). Taken together, this indicates that this dataset contains phenotype descriptions

for genes in the same phenotypic category that are similar both in terms of explicitly shared

words (where syntactic approaches are most helpful), as well as genes that are similar only in

terms of shared meaning but not specific words (where semantic approaches provide an

advantage). Using word embedding models trained on plant phenotype specific data provided

marginal improvement over models trained on PubMed generally or the Wikipedia corpus, but all

three models provided the same boost over other approaches when applied to word replacement,

indicating that useful associations between words for recovering common phenotypic categories

from descriptions are not limited to relationships only represented in a narrow corpus of text

related to plant phenotypes. Given that using bio-ontologies for this same task did not perform as

well as text-based approaches, and one of the main functions of such ontologies in this case is to

inject domain-specific inferences into the similarity metrics, this result is not surprising.
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3.5.1.4 Sentence tokenization is important for comparing phenotypes

For all the text-based approaches on all the biological questions posed, the preprocessing step

of tokenizing phenotype descriptions into sentences and evaluating gene pair relatedness as the

maximum pairwise sentence similarity resulted in greater F1 statistics (Table 3.5, Supplemental

Table 3.6). Unexpectedly, this held true even for approaches that are generally intended for use

with larger input texts, such as Doc2Vec, and topic modeling algorithms LDA and NMF. This

indicates that when predicting whether two genes share a common role, it is important to account

for ‘local alignments’ in their associated phenotype descriptions, as the similarity might exist

between single sentences associated with those genes while other sentences act as noise obscuring

this relationship.

3.5.2 Enabling biologists to use these methods and dataset

3.5.2.1 Web application (QuOATS)

We have developed a web application called QuOATS (Querying with Ontology Annotations

and Text Similarity) for querying the dataset described here through leveraging the computational

methods described here (Figure 3.5 (a)). The underlying dataset of plant genes is the same as is

described previously (Table 3.1), and can be filtered to include particular species (Figure 3.5 (b)).

The application supports four different query types (Figure 3.5 (d)), with the primary purpose

being to obtain lists of genes that are related to phenotypes described similarly to some

phenotypic characteristic(s) of interest. Firstly, a free text query can be used to search the dataset

for any genes related to phenotypes that are described similarly to text strings separated by

periods in the query (Figure 3.5 (e)). Secondly, a keyword query can be used to input any number

of strings of any length, and genes whose phenotype descriptions contain those strings (after

preprocessing including stemming and case-normalization) are returned (Figure 3.5 (f)). Thirdly,

an ontology term query can be used to search for any genes annotated by curators with one or

more ontology terms, either directly or inherited through the ontology hierarchy (Figure 3.5 (g)).

Lastly, a gene identifier query can be carried out to search for any gene name, protein name, gene
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model, or any other gene identifier potentially represented in the dataset. Selecting a gene from

the returned list of candidates that match the query will auto-complete a second query that

returns genes related to phenotypes that are described similarly to the selected genes (Figure 3.5

(h)). The similarity scores used to rank genes in the returned list are calculated using approaches

described here, selected from a drop-down menu in the web application (Figure 3.5 (c)).

3.5.2.2 Proof of concept applications of the web tool

In our previous findings illustrated in Braun and Lawrence-Dill (2020), we discussed how a set

of genes related to anthocyanin biosynthesis could be used to demonstrate recovering gene groups

by querying specifically with phenotype descriptions or computationally generated annotations

from those descriptions. Specifically, we looked at a dataset of 16 maize genes (Li et al. (2019))

and 21 genes from Arabidopsis (Appelhagen et al. (2014)) but only 10 of the maize genes and 16

of the Arabidopsis genes were present in the dataset. Our expanded dataset in this work includes

14 of those maize genes and 18 of the Arabidopsis genes. We now evaluate the results of querying

with each of these genes in the web application QuOATS, to recover both genes in the same

species from these sets and genes in the alternate species. Over the 64 total queries (32 within the

same species and 32 between species), we quantified the average and standard deviation of the

number of target genes contained in bins of ranks in the query results, in bin sizes of 10 up to 50,

and a final bin for genes that obtain ranks higher than 50 (Figure 3.6). Additionally, we also

repeated this analysis for a set of 9 core autophagy genes in Arabidopsis (Figure 3.6). These

queries illustrate a proof-of-concept whereby the web application can be used to query with

phenotypic descriptions associated with one gene to recover other related genes. This application

demonstrates the utility of applying text-based algorithms in cases where ontology annotations

are either not present, are insufficient, or could simply be augmented by allowing additional, less

rigidly-defined phenotype descriptions to be searchable as well.
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3.6 Discussion

The difficulty in computing on phenotypic data is largely a consequence of extreme variability

with which these data are represented, and the diversity of ways that phenotypes are measured,

quantified, and described. This is in contrast with sequence data; biology as a field has

enormously benefited from the ways in which sequence data are intuitively computed on, given the

naturally occurring nucleic acid and amino acid coding systems. Sequencing technology provided

the datasets to compute on, and algorithms and applications like BLAST provided the means to

make use of these data (Altschul et al. (1990)). Ontologies have begun to provide a similar means

for making phenotypic data computable, and processing of natural language provides an

additional avenue by which we can make biological inferences if we have the datasets on which to

apply them. The combination of biological ontologies, machine learning approaches, and NLP

provide strategies for handling phenotypic descriptions and learning from it where it exists.

Plant phenotypes are frequently described as text within academic papers or research notes.

However, these text descriptions are rarely incorporated into relevant research community

databases, associated with a specific gene or genotype, and made readily available as part of the

growing data resources for that species. This could be the case for a variety of reasons, including

the difficulties involved with extracting phenotype descriptions from larger texts, the curatorial

effort necessary to produce high quality datasets of phenotypes descriptions associated with

genes, or because these text representations of phenotypes are considered a non-valuable data

type, and are instead represented by annotations using structured vocabularies of hierarchical

terms such as biological ontologies. Notable exceptions to this situation exist, including The

Arabidopsis Information Resource (TAIR), which contains thousands of text descriptions of

phenotypes mapped to specific Arabidopsis genes (Berardini et al. (2015)).

In this work, we have shown that a variety of NLP approaches for vectorizing phenotype

descriptions in order to generate gene pair similarity matrices are equally or more predictive in

general of known phenotype categorizations compared to using existing curated annotations for

this task. Based on these results, we argue that it is worthwhile for databases that contain
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gene-to-phenotype information to include natural language descriptions of phenotypes. In

addition, these descriptions should be made accessible to emergent AI tools, like ChatGPT, to

enable the creation of additional resources that can make text descriptions of plant phenotypes

more findable and accessible for biological analytics.

The natural language descriptions of phenotypes are useful, and when combined with NLP

approaches for computationally representing text can be leveraged to provide a way for

researchers to quickly identify genes associated with phenotypes similar to the ones that they are

observing or studying. Natural language descriptions can also be used to organize genes

computationally on a large scale and discover which categorizations of phenotypes are present in a

dataset, with techniques like clustering and topic modeling. In some cases, this natural language

data may be easier to generate than ontology annotations. In situations where curators are not

available (or have limited time) to generate the high-confidence ontology term annotation

datasets, it may be faster or still possible for authors or someone else to at least identify the

free-text portions of the manuscript that include phenotype descriptions, and the genes associated

with them. In the near future, NLP techniques for parsing full-texts may also progress to the

point where this phenotype identification could be done automatically as well. In these instances,

we argue it is worthwhile to generate and make accessible this free text phenotype information. In

other cases, these text data might already be generated, but are potentially discarded. In

situations where curators are actively involved in generating ontology annotations from papers,

this process often involves the tasks of highlighting text from the paper, or possibly writing down

the phenotype descriptions first then producing the ontology term representation of those

associations. Given that the free text itself is useful, we argue it should be retained in the final

mapping in the resulting database or dataset rather than being discarded as an intermediate data

form. It is possible that for some applications the ontology annotations will be more useful than

the natural language descriptions, for example when making comparisons between species, but we

have shown that this is not always the case, and if it is being generated regardless, it makes sense

to retain the natural language and make it available.
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The area where the application of these methods would likely make the most difference is for

species where phenotypes are still largely described in general biological terms rather than in cases

where phenotype descriptions are limited to special vocabularies and/or where phenotype data

have been carefully curated in a pervasive, large-scale way (as is the case with human phenotypes

and diseases). In addition, these approaches would make the most sense to use when high quality,

curated datasets of ontologized phenotypes are either not available or curation into those data

forms are not financially feasible. In these cases, if at a minimum phenotype descriptions are

extracted from literature and associated with specific genes in an accessible community database,

NLP methods can be applied to organize these data and to group by genes into sets that impact

similar phenotypes, therefore allowing researchers to search based on linguistic similarity.

Not only do plant scientists understand their phenotypes and use rich language to describe

them, there is a diversity of algorithms available to enable computation on phenotypic

descriptions so that the scope of data any single researcher can access becomes quite expansive.

In 2011, Mike Freeling made an impression by saying, “Ontologies are for people who don’t

understand their phenotype,” to CJLD at the Annual Maize Meeting Genetics Conference in

response to a request to review the completeness of the MaizeGDB Phenotypic Controlled

Vocabulary (Michael Freeling personal communication). While ontologies have proved invaluable

for managing and analyzing the massive quantity of data that biologists deal with, we think that

this quote emphasizes the key finding for the efforts here: that we should not undervalue the

utility of free text as a datatype, and that it should be made available through bioinformatic

resources that provide phenotypic data to the research community, given that we have the

computational tools to leverage it in useful ways.

3.7 Data and Code Availability

The dataset of plant genes collected from other sources for this work is available at Braun

et al. (2023), along with all the code for preprocessing, reshaping, and merging this data

https://github.com/Dill-PICL/Plant-data. The code for carrying out the analysis shown

https://github.com/Dill-PICL/Plant-data
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here has its own repository at https://github.com/Dill-PICL/NLP-Plant-Phenotypes. The

results given here can be reproduced using code and datasets at those locations. In addition, a

Python package called OATS (Ontology Annotation and Text Similarity) for working with

gene-phenotype datasets, ontology annotations, and free-text was developed in parallel with this

work. This package was used extensively for this analysis, and can be found at

https://git.io/JTuqv, with documentation available at

https://irbraun-oats.readthedocs.io. We have combined the dataset and some of the

techniques for identifying similar texts into a streamlit web application named QuOATS available

at https://quoats.dill-picl.org/. Use this tool for looking up genes by phenotype keywords

or phrases, or finding genes with similar descriptions to a searched phenotype description. The

code for this web application is available at https://git.io/Jtv9J.
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3.12 Figures and Tables

Figure 3.1 Phenotype description text length distributions across six plant species. The

distributions for quantities of text in terms of both sentences (Left) and words

(Right) describing phenotypes for genes in each of the plant species. Outliers

with very long descriptions are not shown, which includes <1% of the genes

belonging to Arabidopsis and <0.1% of the genes belonging to maize. The

y-axis is scaled to be proportional to the quantity of genes for each individual

species.
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Figure 3.2 Overlap among vocabularies used to describe phenotypes in each species. For

each of the six species in the dataset, listed on the left, the proportion of words

in the total vocabulary used in all phenotype descriptions of that species that

are shared with the vocabularies of a given additional number of species are

shown, with colors indicated on the right. For example, plum/purple indicates

the proportion of words used only in that species, and light green indicates the

proportion of that species vocabulary that is shared with the vocabulary of all

five other species.

Figure 3.3 Comparing the groups of gene pair similarity approaches. The maximum F1

statistics for each approach in each broad category for measuring gene similarity

is shown, with the bar indicating the best F1 statistics among all the approaches

in that general group. Bars on the left indicate performance when phenotype

descriptions are treated as one concatenated piece of text, and bars on the right

indicate performance when the descriptions are sentence tokenized first.
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Figure 3.4 Cohesiveness of phenotype and pathway gene groups. Phenotype categories (a)

are listed, with the number of genes in these datasets belonging to each group

listed to the right of the group’s name. The x-axis indicates group cohesiveness,

given as the percentile against all pairwise gene distances that the average

distance between any two genes in that group falls in. The minimum value of

this metric achieved by any approach that is in the listed category is shown.

For example, the location of the yellow dot in a particular row indicates the

smallest intragroup distance percentile obtained by any approach in the topic

modeling category of text-based approaches for that particular group of genes.
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Figure 3.4 Cohesiveness of phenotype and pathway gene groups continued. Cohesiveness

of phenotype and pathway gene groups continued. Biochemical Pathways (b)

and (c) are listed, with the number of genes in these datasets belonging to

each group listed to the right of the group’s name. The x-axis indicates group

cohesiveness, given as the percentile against all pairwise gene distances that the

average distance between any two genes in that group falls in. The minimum

value of this metric achieved by any approach that is in the listed category is

shown. For example, the location of the yellow dot in a particular row indicates

the smallest intragroup distance percentile obtained by any approach in the

topic modeling category of text-based approaches for that particular group of

genes.



50

Figure 3.5 Querying plant genes, annotations, and phenotype descriptions. (a) The name

of the web application we have developed. (b) Option to subset the available

dataset to only include certain species. (c) Option to select the algorithm or

method used to compare phenotype descriptions. (d) Four different types of

querying are supported. (e), (f), (g), (h). The information given here for each

query type is presented when using the webtool, but has been re-organized and

truncated for the sake of illustration. The queries listed are the text strings

that are entered into the search bar to generate the results shown. The returned

genes appear in the results in the row indicated by the number to the left of

the gene names. The reasons that these genes appear in this order given these

particular queries are described to the right of the gene names.
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Figure 3.6 Querying with autophagy core genes and anthocyanin biosynthesis genes in

QuOATS. The labels above each plot indicate the set of genes, the species of

the genes used as the queries, and then the species for which the resulting

ranked genes were filtered (in the case of the left three plots the species is the

same for queries and targets). Bars represent bins of rank values for returned

genes. Their height indicates the average number of genes with those ranks

returned in each query. The error bar indicates the standard deviation in each

case. Bars in each plot are labeled with the rank that falls in the right-most

edge of that bin. For example, the bar labelled 20 represents genes that were

ranked between 11 and 20 in the query results.
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Table 3.2 Biological relationships tested in each task.

Task Description (Are genes A and B. . . ) Knowledge Source

Phenotypes ...impacting the same phenotype? Lloyd and Meinke, 2012

Pathways ...functioning in the same pathway? PlantCyc, KEGG

Associations ...known to share a function or process? STRING

Orthologs ...orthologous to one another? PANTHER

Table 3.3 Number of genes and gene pairs used for each task.

All Text Data With Annotations

Question Genes Pairs Positive Pairs Genes Pairs Positive Pairs

Phenotypes 2,356 2,774,190 303,009 10.92% 2,284 2,607,186 293,221 11.25%

Pathways 1,838 1,688,203 45,847 2.72% 1,045 545,490 14,853 2.72%

Associations 4,620 9,343,325 147,271 1.58% 2,377 2,530,556 52,541 2.08%

Orthologs 921 248,913 65 0.03% 368 43,187 23 0.05%

Table 3.4 Similarities among datasets across biological tasks.

Task 1 Task 2 Overlap Size Jaccard (Pairs) Jaccard (Values)

Associations Pathways 1,271,297 0.130 0.172

Phenotypes Pathways 511,566 0.129 0.050

Phenotypes Associations 2,687,721 0.285 0.032

Pathways Orthologs 29,654 0.016 0.012

Phenotypes Orthologs 0 0.000

Associations Orthologs 0 0.000
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Table 3.5 Comparing F1 scores and group significance rates for phenotype and pathway

relationships.

Phenotypes (F1, % Significant) Pathways (F1, % Significant)

Approach Category Concat All Genes Curated All Genes Curated

Baseline Baseline Yes 0.197 17% 0.202 19% 0.052 7% 0.053 3%

TF-IDF (Unigrams) TF-IDF Yes 0.465 100% 0.473 100% 0.105 61% 0.114 57%

TF-IDF (Unigrams & Bigrams) TF-IDF Yes 0.473 100% 0.482 100% 0.109 64% 0.120 58%

TF-IDF (Plant Article Unigrams) TF-IDF Yes 0.462 100% 0.471 100% 0.100 59% 0.110 59%

NOBLE Coder (Precise) Annotation Yes 0.364 91% 0.370 91% 0.075 34% 0.079 23%

NOBLE Coder (Partial) Annotation Yes 0.372 100% 0.380 100% 0.087 42% 0.094 33%

LDA (50 Topics) Topic Modeling Yes 0.327 88% 0.336 88% 0.075 12% 0.088 24%

LDA (100 Topics) Topic Modeling Yes 0.329 88% 0.337 91% 0.072 25% 0.083 26%

NMF (50 Topics) Topic Modeling Yes 0.436 100% 0.448 100% 0.090 44% 0.103 46%

NMF (100 Topics) Topic Modeling Yes 0.418 100% 0.423 100% 0.093 49% 0.102 48%

Doc2Vec (Wikipedia) ML (Embeddings) Yes 0.313 86% 0.322 86% 0.068 22% 0.068 15%

Doc2Vec (Plants) ML (Embeddings) Yes 0.237 45% 0.240 50% 0.059 20% 0.060 15%

Word2Vec (Wikipedia) ML (Embeddings) Yes 0.276 98% 0.284 98% 0.087 12% 0.096 21%

Word2Vec (PubMed) ML (Embeddings) Yes 0.320 93% 0.327 98% 0.093 14% 0.108 21%

Word2Vec (Plants) ML (Embeddings) Yes 0.443 98% 0.452 98% 0.102 26% 0.111 36%

BERT ML (Embeddings) Yes 0.289 93% 0.296 95% 0.084 4% 0.096 15%

BioBERT ML (Embeddings) Yes 0.309 81% 0.316 83% 0.087 5% 0.098 17%

Word2Vec (Wikipedia) ML (Word Replacement) Yes 0.387 98% 0.396 100% 0.099 46% 0.107 43%

Word2Vec (PubMed) ML (Word Replacement) Yes 0.417 100% 0.426 100% 0.104 50% 0.111 45%

Word2Vec (Plant Phenotypes) ML (Word Replacement) Yes 0.456 98% 0.464 100% 0.103 59% 0.114 53%

Baseline Baseline No 0.465 74% 0.476 76% 0.089 19% 0.097 39%

TF-IDF (Unigrams) TF-IDF No 0.544 95% 0.555 100% 0.100 51% 0.108 61%

TF-IDF (Unigrams & Bigrams) TF-IDF No 0.540 95% 0.552 95% 0.100 58% 0.107 63%

TF-IDF (Plant Article Unigrams) TF-IDF No 0.555 98% 0.562 100% 0.098 33% 0.106 52%

NOBLE Coder (Precise) Annotation No 0.457 83% 0.466 83% 0.089 5% 0.103 33%

NOBLE Coder (Partial) Annotation No 0.501 95% 0.510 98% 0.095 24% 0.102 47%

NMF (50 Topics) Topic Modeling No 0.509 88% 0.520 88% 0.092 13% 0.099 30%

NMF (100 Topics) Topic Modeling No 0.517 93% 0.527 95% 0.090 18% 0.100 37%

LDA (50 Topics) Topic Modeling No 0.500 98% 0.511 100% 0.089 11% 0.099 35%

LDA (100 Topics) Topic Modeling No 0.500 98% 0.510 100% 0.097 19% 0.104 41%

Doc2Vec (Wikipedia) ML (Embeddings) No 0.518 100% 0.529 100% 0.100 23% 0.107 51%

Doc2Vec (Plants) ML (Embeddings) No 0.561 95% 0.571 95% 0.098 26% 0.104 52%

Word2Vec (Wikipedia) ML (Embeddings) No 0.521 98% 0.532 98% 0.098 12% 0.106 38%

Word2Vec (PubMed) ML (Embeddings) No 0.529 95% 0.540 100% 0.100 19% 0.108 42%

Word2Vec (Plants) ML (Embeddings) No 0.558 98% 0.569 98% 0.103 30% 0.111 51%

BERT ML (Embeddings) No 0.500 100% 0.511 100% 0.102 25% 0.111 43%

BioBERT ML (Embeddings) No 0.515 100% 0.526 100% 0.104 24% 0.113 48%

Word2Vec (Wikipedia) ML (Word Replacement) No 0.558 100% 0.568 100% 0.102 33% 0.110 53%

Word2Vec (PubMed) ML (Word Replacement) No 0.554 100% 0.566 100% 0.101 34% 0.109 51%

Word2Vec (Plant Phenotypes) ML (Word Replacement) No 0.566 95% 0.577 93% 0.099 37% 0.107 51%

GO Curation 0.249 64% 0.140 38%

PO Curation 0.215 17% 0.056 9%

EQs Curation 0.475 74% 0.093 51%
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3.13 Appendix: Supplementary Tables

Table 3.6 Comparing F1 scores for associations and orthologous gene pair relationships.

Associations (F1) Orthologs (F1)

Approach Category Concat All Genes Curated All Genes Curated

Baseline Baseline Yes 0.031 0.041 0.001 0.001

TF-IDF (Unigrams) TF-IDF Yes 0.049 0.068 0.010 0.061

TF-IDF (Unigrams & Bigrams) TF-IDF Yes 0.051 0.072 0.016 0.054

TF-IDF (Plant Article Unigrams) TF-IDF Yes 0.048 0.067 0.008 0.057

NOBLE Coder (Precise) Annotation Yes 0.037 0.049 0.012 0.022

NOBLE Coder (Partial) Annotation Yes 0.042 0.060 0.003 0.016

LDA (50 Topics) Topic Modeling Yes 0.039 0.053 0.002 0.005

LDA (100 Topics) Topic Modeling Yes 0.038 0.053 0.005 0.004

NMF (50 Topics) Topic Modeling Yes 0.042 0.060 0.007 0.013

NMF (100 Topics) Topic Modeling Yes 0.043 0.061 0.006 0.020

Doc2Vec (Wikipedia) ML (Embeddings) Yes 0.033 0.047 0.015 0.029

Doc2Vec (Plants) ML (Embeddings) Yes 0.031 0.041 0.001 0.007

Word2Vec (Wikipedia) ML (Embeddings) Yes 0.042 0.059 0.003 0.003

Word2Vec (PubMed) ML (Embeddings) Yes 0.042 0.060 0.006 0.007

Word2Vec (Plants) ML (Embeddings) Yes 0.052 0.070 0.012 0.065

BERT ML (Embeddings) Yes 0.045 0.059 0.003 0.003

BioBERT ML (Embeddings) Yes 0.046 0.062 0.009 0.020

Word2Vec (Wikipedia) ML (Word Replacement) Yes 0.046 0.065 0.006 0.029

Word2Vec (PubMed) ML (Word Replacement) Yes 0.048 0.066 0.023 0.133

Word2Vec (Plant Phenotypes) ML (Word Replacement) Yes 0.048 0.069 0.018 0.080
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Table 3.6 Comparing F1 scores for associations and orthologous gene pair relationships

continued.

Associations (F1) Orthologs (F1)

Approach Category Concat All Genes Curated All Genes Curated

Baseline Baseline No 0.044 0.067 0.004 0.008

TF-IDF (Unigrams) TF-IDF No 0.051 0.072 0.006 0.008

TF-IDF (Unigrams & Bigrams) TF-IDF No 0.051 0.072 0.005 0.007

TF-IDF (Plant Article Unigrams) TF-IDF No 0.051 0.073 0.004 0.007

NOBLE Coder (Precise) Annotation No 0.051 0.068 0.004 0.003

NOBLE Coder (Partial) Annotation No 0.048 0.069 0.004 0.005

NMF (50 Topics) Topic Modeling No 0.049 0.070 0.004 0.007

NMF (100 Topics) Topic Modeling No 0.049 0.071 0.005 0.006

LDA (50 Topics) Topic Modeling No 0.047 0.069 0.005 0.006

LDA (100 Topics) Topic Modeling No 0.048 0.069 0.006 0.008

Doc2Vec (Wikipedia) ML (Embeddings) No 0.051 0.071 0.007 0.008

Doc2Vec (Plants) ML (Embeddings) No 0.051 0.071 0.006 0.010

Word2Vec (Wikipedia) ML (Embeddings) No 0.049 0.070 0.006 0.005

Word2Vec (PubMed) ML (Embeddings) No 0.048 0.071 0.007 0.009

Word2Vec (Plants) ML (Embeddings) No 0.053 0.074 0.006 0.008

BERT ML (Embeddings) No 0.048 0.070 0.005 0.008

BioBERT ML (Embeddings) No 0.048 0.071 0.005 0.008

Word2Vec (Wikipedia) ML (Word Replacement) No 0.052 0.073 0.005 0.007

Word2Vec (PubMed) ML (Word Replacement) No 0.052 0.073 0.005 0.006

Word2Vec (Plant Phenotypes) ML (Word Replacement) No 0.050 0.072 0.006 0.007

GO Curation 0.094 0.059

PO Curation 0.048 0.001

EQs Curation 0.063 0.014
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Table 3.7 Comparing F1 scores for pathways for intraspecies and interspecies gene pairs.

Pathways, All Genes (F1) Pathways, Curated (F1)

Approach Category Concat Intraspecies Interspecies Intraspecies Interspecies

Baseline Baseline Yes 0.053 0.051 0.054 0.049

TF-IDF (Unigrams) TF-IDF Yes 0.107 0.067 0.116 0.094

TF-IDF (Unigrams & Bigrams) TF-IDF Yes 0.111 0.069 0.123 0.097

TF-IDF (Plant Article Unigrams) TF-IDF Yes 0.102 0.067 0.112 0.092

NOBLE Coder (Precise) Annotation Yes 0.078 0.055 0.082 0.073

NOBLE Coder (Partial) Annotation Yes 0.088 0.058 0.097 0.072

LDA (50 Topics) Topic Modeling Yes 0.084 0.060 0.089 0.076

LDA (100 Topics) Topic Modeling Yes 0.078 0.060 0.086 0.065

NMF (50 Topics) Topic Modeling Yes 0.092 0.073 0.104 0.097

NMF (100 Topics) Topic Modeling Yes 0.091 0.068 0.104 0.081

Doc2Vec (Wikipedia) ML (Embeddings) Yes 0.069 0.051 0.070 0.062

Doc2Vec (Plants) ML (Embeddings) Yes 0.060 0.055 0.062 0.049

Word2Vec (Wikipedia) ML (Embeddings) Yes 0.089 0.053 0.102 0.067

Word2Vec (PubMed) ML (Embeddings) Yes 0.095 0.056 0.114 0.074

Word2Vec (Plants) ML (Embeddings) Yes 0.105 0.071 0.115 0.107

BERT ML (Embeddings) Yes 0.087 0.052 0.102 0.059

BioBERT ML (Embeddings) Yes 0.089 0.051 0.104 0.060

Word2Vec (Wikipedia) ML (Word Replacement) Yes 0.100 0.063 0.110 0.088

Word2Vec (PubMed) ML (Word Replacement) Yes 0.105 0.062 0.114 0.088

Word2Vec (Plant Phenotypes) ML (Word Replacement) Yes 0.106 0.071 0.115 0.108

Baseline Baseline No 0.091 0.051 0.101 0.049

TF-IDF (Unigrams) TF-IDF No 0.102 0.067 0.109 0.099

TF-IDF (Unigrams & Bigrams) TF-IDF No 0.102 0.069 0.109 0.093

TF-IDF (Plant Article Unigrams) TF-IDF No 0.100 0.066 0.107 0.098

NOBLE Coder (Precise) Annotation No 0.093 0.057 0.106 0.081

NOBLE Coder (Partial) Annotation No 0.096 0.058 0.105 0.069

NMF (50 Topics) Topic Modeling No 0.094 0.054 0.102 0.070

NMF (100 Topics) Topic Modeling No 0.093 0.058 0.103 0.070

LDA (50 Topics) Topic Modeling No 0.091 0.056 0.102 0.069

LDA (100 Topics) Topic Modeling No 0.098 0.070 0.107 0.077

Doc2Vec (Wikipedia) ML (Embeddings) No 0.103 0.056 0.110 0.070

Doc2Vec (Plants) ML (Embeddings) No 0.101 0.063 0.106 0.077

Word2Vec (Wikipedia) ML (Embeddings) No 0.100 0.055 0.108 0.069

Word2Vec (PubMed) ML (Embeddings) No 0.103 0.060 0.112 0.082

Word2Vec (Plants) ML (Embeddings) No 0.106 0.072 0.113 0.104

BERT ML (Embeddings) No 0.104 0.057 0.115 0.069

BioBERT ML (Embeddings) No 0.106 0.057 0.116 0.079

Word2Vec (Wikipedia) ML (Word Replacement) No 0.104 0.070 0.112 0.102

Word2Vec (PubMed) ML (Word Replacement) No 0.104 0.064 0.111 0.090

Word2Vec (Plant Phenotypes) ML (Word Replacement) No 0.103 0.073 0.108 0.108

GO Curation 0.137 0.191

PO Curation 0.057 0.107

EQs Curation 0.097 0.049
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CHAPTER 4. WISCONSIN DIVERSITY PANEL PHENOTYPES:

SPOKEN DESCRIPTIONS OF PLANTS AND SUPPORTING DATA

Colleen F. Yanarella1, Leila Fattel1, Ásrún Ý. Kristmundsdóttir1, Miriam D. Lopez2, Jode W.

Edwards2, Darwin A. Campbell1, Craig A. Abel2, and Carolyn J. Lawrence-Dill1

1 Iowa State University, Ames, IA, 50011, USA

2 USDA ARS, Ames, IA, 50011, USA

Modified from a manuscript under review in BMC Research Notes

4.1 Abstract

4.1.1 Objectives

Phenotyping plants in a field environment can involve a variety of methods including the use

of automated instruments and labor-intensive manual measurement and scoring. Researchers also

collect language-based phenotypic descriptions and use controlled vocabularies and structures

such as ontologies to enable computation on descriptive phenotype data, including methods to

determine phenotypic similarities. In this study, spoken descriptions of plants were collected and

observers were instructed to use their own vocabulary to describe plant features that were present

and visible. Further, these plants were measured and scored manually as part of a larger study to

investigate whether spoken plant descriptions can be used to recover known biological phenomena.

4.1.2 Data description

Data comprise phenotypic observations of 686 accessions of the maize Wisconsin Diversity

panel, and 25 positive control accessions that carry visible, dramatic phenotypes. The data

include the list of accessions planted, field layout, data collection procedures, student participants’

and volunteers’ observation transcripts, volunteers’ audio data files, terrestrial and aerial images
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of the plants, Amazon Web Services method selection experimental data, and manually collected

(measurements and scores) phenotypes (e.g., plant height, ear and tassel features, etc.). Data

were collected during the summer of 2021 at Iowa State University’s Agricultural Engineering and

Agronomy Research Farms.

4.2 Keywords

Phenotyping, Maize, Association Studies, Audio Recordings, Text Transcripts, Images,

Wisconsin Diversity panel

4.3 Objective

Formative research using free text descriptions of plant phenotypes along with Natural

Language Processing (NLP) methods has demonstrated that computing on plant phenotypes

alone can recover known genotype-phenotype associations (Oellrich et al. (2015), Braun and

Lawrence-Dill (2020)). Building on these successes, continued efforts to generate plant phenotype

descriptions that are both structured (e.g., ontologies) and unstructured (i.e., free text) hold great

promise for enabling researchers to advance analytics for phenotypes and traits, especially when

these data are made publicly accessible (Braun et al. (2021)).

We developed this dataset as a foundation for analyzing large volumes of spoken phenotype

descriptions in a field environment. These phenotype observations were drawn from the

Wisconsin Diversity panel, which contains sufficient phenotypic diversity in a field environment

for various genotype-to-phenotype analyses (Hansey et al. (2011), Hirsch et al. (2014), Mazaheri

et al. (2019)). Observers generating the datasets were not confined to rigid vocabularies and were

not strictly limited to a list of traits to comment on.

Supplemental to spoken descriptions of plant phenotypes and the text derived from these

observations, measurements and scores for traits of interest were also collected as ground truth.

Field layout and weather data are reported, along with images of the rows in the field and aerial

images from a drone. Consequently, this dataset may be useful to investigators interested in data
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collected from diversity panels and to those interested in processing natural language and its use

in describing scientific phenomena.

Additional computational work on this dataset is unpublished, but a manuscript is in

preparation that demonstrates the use of the dataset for investigating biological relevance and

utility, including developed tools to assist in the use of spoken descriptions for field-based plant

phenotype analytics.

4.4 Data description

This dataset (Yanarella et al. (2023)) was collected and derived from observations of an

experimental field at Iowa State University’s Agricultural Engineering and Agronomy Research

Farms in Boone, Iowa. The Wisconsin Diversity panel (686 accessions), an environmental control

line (B73, the maize reference line used for genetics and genomics), and 25 positive control

accessions were planted in two replicates, and observations were generated over the summer of

2021. This dataset includes the following elements (Table 4.1).

• Audio text processing data contains the spoken data collected by the volunteers (WAV files)

and descriptions of the recordings generated by student participants using Sony ICD-UX570

recorders. Additionally included are metadata (summary statistics) derived from the

recordings and code to generate these statistics. Further, all intermediate files (JSON, TXT,

and EXCEL files) and code to generate the final cleaned transcripts for all student

participant recordings and a subset of the volunteer’s recordings are included. These files

provide a resource to investigators to utilize field-collected spoken natural language

descriptions of maize plants.

• Methods selection data includes data and code for generating transcriptions using various

Amazon Web Services (AWS) Transcribe methods. These methods include using an

individualized custom vocabulary for each student participant and an example of the

process using volunteer Whiskey’s data, a generalized custom vocabulary for each student
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participant and volunteer Whiskey’s data, and no custom vocabulary. A subset of data was

selected to process and compare to a gold standard transcription manually generated to

calculate a similarity score to determine the method for transcribing all spoken descriptions

collected during the summer of 2021.

• A Canon EOS Rebel T7 camera and Cannon EF-S 18-55mm Image Stabilizer Macro

0.25m/0.8ft set to 18mm with AF Stabilizer ON were used to capture images of each row in

the field.

• A Mavic 2 Pro drone by DJI was used to capture aerial still images and footage of the

experimental field.

• The field data information layout demonstrates the randomizations of the accessions planted

and positive controls used. Additionally, seeds planted per row and the Iowa Phytosanitary

Corn Field Inspection report conducted on the experimental field are included.

• Field prompting data includes the cards provided to student participants to prompt their

behavior while collecting spoken observations in the field, information about the assigned

card for each day, and logs for worker data collection. Volunteer field guide cards and logs

for data collection are present. Each student participant was instructed to make three

complete passes of the field, and volunteers were instructed to make one complete pass of

the field. Volunteer India completed observations for replicate one only.

• Measurement and scoring data were collected through manual measuring and scoring by

student participants and a volunteer. Plastic measuring sticks with hash marks every 10 cm

were used to measure plant height.

• Weather information was collected and reported by The Iowa Environmental Mesonet

through Iowa State University (Herzmann (2023)). Data for the weather stations nearest

the Agricultural Engineering and Agronomy Research Farms for March 2021 to September

2021 and September 2020 to September 2021 are provided.
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4.5 Limitations

Some audio observations were incomplete due to technical difficulties, including microphone

disengagement from the recording devices or observers recording observations for the incorrect

row. Also, speech-to-text pipelines and post-process cleaning steps are fallible, leading to

transcription inaccuracies. These data were taken over approximately seven weeks, and there were

apparent growth and developmental changes throughout the duration of the study. Additionally,

the observations within this dataset are for two replicates in the same environment, and

additional years, plots, and environments could supplement these available speech data for a more

robust dataset.

4.6 Abbreviations

AWS : Amazon Web Services

NLP : Natural Language Processing

4.7 Availability of data and materials

The data described in this Data Note can be freely and openly accessed on CyVerse under

Digital Object Identifiers (DOI) https://doi.org/10.25739/pvx4-5j31. Please see Table 4.1

and the references list for details and links to the data.
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4.13 Figures and Tables

Table 4.1 Overview of data files/data sets.

Label
Name of data file

/data set
File types

(file extension)

Data repository
and identifier (DOI
or accession number)

2021 Wisconsin

Diversity Panel

Dataset

Carolyn Lawrence Dill

Maize WiDiv Summer

2021 Dataset June 2023

Directory

CyVerse

(Yanarella et al. (2023))

(https://doi.org

/10.25739/pvx4-5j31)

/README.txt

A file with

file type: .txt

Provides details regarding

the subdirectories.

CyVerse

(Yanarella et al. (2023))

(https://doi.org

/10.25739/pvx4-5j31)

/audio text

processing data

A subdirectory containing

file types: .csv, .json, .py,

.tar.gz, .txt, .xlsx,

and .yaml

Demonstrates processing

of spoken observations

to text files.

CyVerse

(Yanarella et al. (2023))

(https://doi.org

/10.25739/pvx4-5j31)

/aws method

selection

A subdirectory containing

file types: .csv, .json, .out,

.py, .R, .txt,.wav, .xlsx,

and .yaml

Demonstrates methods for

transcribing speech-to-text

using AWS.

CyVerse

(Yanarella et al. (2023))

(https://doi.org

/10.25739/pvx4-5j31)
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Table 4.1 Overview of data files/data sets continued (1).

Label
Name of data file

/data set
File types

(file extension)

Data repository
and identifier (DOI
or accession number)

/camera images

A subdirectory containing

file types: .pptx, .tar.gz,

.txt, and .xlsx

Contains images of the

experimental field rows.

CyVerse

(Yanarella et al. (2023))

(https://doi.org

/10.25739/pvx4-5j31)

/drone images

A subdirectory containing

file types: .jpg, .mp4,

and .txt

Consists of drone-captured still

images and videos of the

experimental field.

CyVerse

(Yanarella et al. (2023))

(https://doi.org

/10.25739/pvx4-5j31)

/field layout and seed

information

A subdirectory containing

file types: .pdf, .txt, and .xlsx

Includes information about taxa

planted and location of taxa in

the experimental field.

CyVerse

(Yanarella et al. (2023))

(https://doi.org

/10.25739/pvx4-5j31)

/field prompting

cards information

A subdirectory containing file

types: .png, .psd, .txt, and .xlsx

Demonstrates field prompting

cards and directions provided

to observers.

CyVerse

(Yanarella et al. (2023))

(https://doi.org

/10.25739/pvx4-5j31)
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Table 4.1 Overview of data files/data sets continued (2).

Label
Name of data file

/data set
File types

(file extension)

Data repository
and identifier (DOI
or accession number)

/measurement and

scoring data

A subdirectory containing file

types: .txt and .xlsx

Records of measurement and

scoring data of the experimental

field.

CyVerse

(Yanarella et al. (2023))

(https://doi.org

/10.25739/pvx4-5j31)

/weather data

A subdirectory containing file

types: .txt and .xlsx

Reports weather data collected

from stations in close proximity

to the experimental field.

CyVerse

(Yanarella et al. (2023))

(https://doi.org

/10.25739/pvx4-5j31)
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Modified from a manuscript to be submitted to G3: Genes|Genomes|Genetics

5.1 Abstract

Speech-derived phenotypic descriptions analyzed using existing Genome-Wide Association

Study (GWAS) methods recover genomic regions involved in the maize plant height trait,

demonstrating that non-structured, spoken descriptions of phenotypes can be used for association

genetics. We collected phenotypes of Zea mays by recording spoken descriptions of plant traits

such as height, color, leaf width, and feel of the texture of the leaves. To examine the relevance of

spoken phenotypic descriptions for association genetics, we phenotyped the Wisconsin Diversity

panel and developed two methods to process these spoken descriptions. To measure semantic

similarity, we generated a score that indicates how alike each observation is in meaning to the

query ”tall”. For the second method, we binned manually scored phrases related to plant height,

then assigned scores to each observation. These were compared to published genomic locations

associated with plant height (and with data we manually collected). Both methods recover known

plant height associations.
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5.2 Keywords

Spoken Descriptions, Association Studies, Phenotyping, Maize, Genes, Plant Height

5.3 Introduction

Collecting phenotype data can be slow, which limits the speed of association genetics and

genomic studies for trait improvement. High-throughput phenotyping methods are an area of

development that concentrates on engineering sensors and unmanned vehicles to collect (mainly

visual) data about traits of various crop species (reviewed in Yang et al. (2020)). These methods

are beneficial for collecting large amounts of data in an automated fashion, but there are

difficulties in deploying these tools in a field environment, and some traits are not detectable by

images alone. Additionally, manually collecting phenotypes with pen-and-paper or

tablet-and-stylus is time-consuming and generally requires predefined traits of interest. Sensors,

imaging, and barcodes make data organization easier for large quantities of data (Yao et al.

(2021), Sarić et al. (2022), Kazic (2020)). An underdeveloped area of in-field phenotyping ripe for

exploration is using natural language descriptions of plants. Platforms exist where audio

descriptions are recorded (Kazic (2020)). However, the biologically relevant data in spoken

phenotypes thus far has remained inaccessible for association studies and other applications.

Natural language datasets for plant species are beneficial tools for investigating plant

phenotypes; the development of these datasets was demonstrated by Oellrich et al. (2015). Using

structured language data, such as ontologies or entity quality (EQ) statements (Mungall et al.

(2010)) (where an entity is a feature, e.g., whole plant, and quality is a describer, e.g., dwarf-like)

results in less intensive computations. Semantic or word-meaning similarity methods have also

shown promise in ascertaining biologically meaningful genetic associations (Braun et al. (2020),

Braun and Lawrence-Dill (2020)). Additionally, pre-trained models have enabled free-text

descriptions of plant phenotypes for association studies based on semantics (Braun et al. (2021)).

These developments in the computational processing of natural language plant phenotypes in an
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unstructured text format contribute to conceptualizing methods for recording spoken descriptions

of phenotypes.

We reasoned that a well-characterized diversity panel would be required to perform

Genome-Wide Association Studies (GWAS) with field-collected natural language phenotype data,

so we chose the Wisconsin Diversity (WiDiv) panel. WiDiv was developed to grow in the upper

midwestern states of the United States, have a restricted phenology for flowering, and have

genetic and phenotypic diversity (Hansey et al. (2011)). Research using the WiDiv panel have

increased the included accessions, investigated flowering time and biomass yield traits, and

generated genetic marker data for the panel (Hansey et al. (2011), Hirsch et al. (2014), Mazaheri

et al. (2019), Mural et al. (2022b)).

Because the WiDiv panel data has expansive genotypic and phenotypic trait data available,

we collected spoken descriptions of phenotypes for numerous traits (height, leaf width, color, etc.)

during the summer of 2021 (Yanarella et al. (2023)). The objectives of this research were to (1)

detect phenotype descriptions from spoken descriptions, (2) demonstrate techniques for extracting

phenotype data for a proof of concept analysis involving the plant height trait for GWAS, (3)

perform GWAS with phenotypes derived from speech, and (4) use available gene function data to

review and assess known and novel gene trait associations.

5.4 Materials and Methods

We used a genotypic dataset that includes WiDiv panel taxa (lines). A dataset of 18 million

SNP markers (Mural et al. (2022a)) obtained from RNA-Seq and resequencing techniques for

1,051 taxa (described in (Mural et al. (2022b))). Phenotypic datasets, described in a Data Note

currently under reveiw at BMC Data Notes, which contain 686 unique WiDiv panel taxa

(Yanarella et al. (2023)), hereafter referred to as the Yanarella et al. dataset. This dataset

contains an additional 25 taxa (Supplementary Table 1) that were positive controls for the

analysis of spoken descriptions of phenotypes, as these plants were expected to have noticeable

and describable phenotypes, though these taxa are not members of the WiDiv panel. Informed
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consent for the spoken data from participants was collected per Iowa State University’s

Institutional Review Board’s (IRB) Exempt Project status, and volunteers provided informed

consent for using their spoken observations. Phenotypic data obtained from these data include

measurements for plant height and spoken descriptions of plants grown in a field environment.

The Mural et al. and Yanarella et al. datasets have an intersection of 653 taxa (Figure 5.1),

which were used for further analyses.

5.4.1 Spoken Phenotype Collection Summary

Phenotype descriptions recorded by de-identified student workers in the Yanarella et al.

dataset were analyzed. The field in which the recordings were taken included two replicates

planted in a randomized incomplete block design. The first block consisted of 31 WiDiv panel

taxa for a seed increase, and the second block consisted of 8 B73 experimental control rows, 25

positive control taxa, and 655 unique WiDiv panel taxa. The second block contained two rows of

the WiDiv panel line MEF156-55-2. Therefore, the recordings were taken over 720 rows in each

replicate.

Each of the de-identified student workers selected NATO code names. The students who were

undergraduate Agronomy, Biology, and Genetics Majors at Iowa State University are known as

”Delta,” ”Golf,” ”Kilo,” ”Lima,” ”Mike,” ”Quebec,” ”Victor,” ”Yankee,” and ”Zulu.” Each

participant was instructed to state their NATO code name and the row tag number before

observing the plants in each row (Figure 5.2 (a)). This procedure ensured the participant’s

de-identified connection to the row number and spoken observation while enabling the parsing of

each observation so that multiple row observations could be recorded in the same file.

5.4.2 Phenotype Detection and Descriptions

A subset of spoken observation transcripts containing the positive control accessions were

parsed. 4-6 terms from the description and phenotype records for each accession drawn from

MaizeGDB (Woodhouse et al. (2021)). One term from these lists was used to collect synonyms
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from Marriam-Webster (Merriam-Webster (2023)) and WordHippo (Kat IP Pty Ltd (2008))

thesaurus services (Table 5.1). The number of rows containing at least one synonym related to

each accession’s descriptions and phenotype records was calculated as a proportion to the number

of observations for that accession.

5.4.3 Preprocessing Genotypic Dataset

Trait Analysis by aSSociation, Evolution and Linkage (TASSEL) Version 5.0 Standalone

(Bradbury et al. (2007)) was used to convert the Mural et al. genotypic data from a variant call

format (vcf) formatted file to a HapMap (hmp) formatted file. The data was then processed to

contain marker information for the 653 taxa shared with the Yanarella et al. dataset, these data

were grouped by chromosome, and HapMap files were generated for each chromosome. The

chromosome files were sorted by maker position from lowest position to highest position.

The sorted chromosome files were reformatted to vcf files using TASSEL Version 5.0

Standalone, then vcftools v.0.1.14 (Danecek et al. (2011)) concatenated these files, and the

resulting file was zipped. PopLDdecay v3.42 (Zhang et al. (2018)) was used to analyze and

visualize Linkage Disequilibrium (LD) Decay of the Mural et al. genotypic data.

5.4.4 Preprocessing Phenotypic Datasets

5.4.4.1 Plant Height Measurement Data

R Scripts (v.4.2.2 and v.4.3.1) (R Core Team (2023)) were developed to process the measuring

and scoring data from Yanarella et al. dataset such that only plant height observations were

retained for each of the three observation groups. Replicate number was programmatically added

to these data, and positive control were removed. The 653 taxa shared between the datasets were

retained.

Best Linear Unbiased Estimators (BLUE) values were calculated for each taxa using R’s

built-in lm function to perform linear regressions and the emmeans v.1.8.7 package (Lenth

(2023)), where taxa and replicate were fit as fixed effects. Best Linear Unbiased Prediction
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(BLUP) values were calculated for each taxa with the lmer function of the lme4 v.1.1-34 package

(Bates et al. (2015)) where taxa, replicate, and row number were fit as random effects.

Visualization of diagnostics plots of the models (Supplementary Figure 1, Supplementary Figure

2) were generated using the ggResidpanel v.0.3.0 package (Goode and Rey (2022)).

5.4.4.2 Semantic Similarity for Plant Height Spoken Data

Text transcripts of spoken data from the Yanarella et al. dataset were processed using Python

v.3.8.2 (Van Rossum and Drake (2009)). The spaCy v.3.5.1 package (Honnibal and Montani

(2023)) and the TensorFlow v.2.12.0 (Abadi et al. (2016)) spaCy Universal Sentence Encoder

v.0.4.6 (Mensio (2023)) were used to process the transcripts to obtain semantic similarity scores.

Three phrases, ”tall,” ”tall plant,” and ”tall height,” were compared to each row observation

through spaCy’s similarity function using the pre-trained large English universal sentence encoder

(en use lg) from TensorFlow. A dataset of similarity scores in the form of values from 0 to 1 was

generated (Figure 5.2 (b)).

Similarity scores for the 653 taxa shared by both datasets were retained, encompassing 35,709

rows or 91.92% of the original rows observed (Table 5.2). The similarity scores for the ”tall”

query were used as input to calculate BLUEs and BLUPs in the same manner as described in the

Plant Height Measurement Data section, and visualizations of diagnostics plots of the models

(Supplementary Figure 3, Supplementary Figure 4) were generated.

5.4.4.3 Binning for Plant Height Spoken Data

The transcripts of spoken plant descriptions were reviewed for phrases directly related to

narrations about plant height. A set of 797 plant height phrases were manually curated and

binned from 0 to 7, where 0: no growth, 1: very short plants, 2: short plants, 3: short-medium

height plants, 4: medium height plants, 5: medium-tall height plants, 6: tall plants, 7: very tall

plants. Bin values were assigned to observations for the 653 taxa shared by both datasets (Figure
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5.2 (b)). Of the total text transcripts, there were 34,209 or 88.06% row observations that were

retained and binned (Table 5.2).

BLUEs and BLUPs were calculated as described in the Plant Height Measurement Data

Section, and visualizations of diagnostics plots of the models (Supplementary Figure 5,

Supplementary Figure 6) were generated. Additionally, the R nnet v.7.3-19 package (Venables

and Ripley (2002)) was used to perform multinomial logistic regression to predict height phrase

bins, where taxa and replicate were fit as fixed effects.

5.4.5 Genome-Wide Association Studies

Genome Association and Prediction Integrated Tool (GAPIT) 3 v.3.1, 2022.4.16 (Lipka et al.

(2012), Tang et al. (2016), Wang and Zhang (2021)) was used to perform Fixed and random

model Circulating Probability Unification (FarmCPU) (Liu et al. (2016)) and Mixed Linear

Model (MLM) (Yu et al. (2005)) on each of the phenotypic datasets using the Mural et al. marker

dataset for genotypic input. Each chromosome was run individually, and PCA.total parameter

was set to 3 for all analyses (Figure 5.2 (c)). This manuscript focuses on the FarmCPU analyses,

the MLM processing and results are available as described in Web Resources section.

5.4.6 Genome-Wide Association Study Analyses

Manhattan plots from the resulting GAPIT analyses were generated using the ggplot2 v.3.4.3

package (Wickham (2016)). We used the RAINBOWR v.0.1.29 package’s (Hamazaki and Iwata

(2020)) CalcThreshold to determine the Bonferroni threshold for each analysis with a sig.level of

0.05. SNPs that were identified as above the Bonferroni threshold for each analysis were viewed

on MaizeGDB’s implementation of GBrowse2 (Generic Genome Browser v.2.55) (Stein (2013))

using Maize B73 RefGen v4; gene IDs were collected within +/- 300 kilobases (kb), based on the

LD decay curve generated by PopLDdecay, of the identified SNPs (Supplementary Figure 7).

We collected a list of genes shown to influence plant height (Table 5.3, Supplementary Table

2) and compared the gene IDs from the GWAS analyses using a web-based intersection and Venn
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diagram tool (Sterck (2021)) to determine if these previously published plant height genes were

identified within the +/- 300 kb region indicated by the LD decay curve for each of our analyses.

Additionally, Gene Ontology (GO) terms for the gene IDs within +/- 300 kb of SNPs identified as

significant were obtained using the B73 RefGen V4 Zm00001d.2 annotations generated by Maize

Go Annotation - Methods, Evaluation, and Review (maize-GAMER) tool (Wimalanathan and

Lawrence-Dill (2017), Wimalanathan et al. (2018)) and the R package GO.db v.3.17.0 (Carlson

(2023)) was used to collect terms associated to the GO IDs (Supplementary Table 3).

5.5 Results and Discussion

5.5.1 Detecting Phenotypes from Spoken Descriptions

Student participants made three complete passes of the field (∼4,320 observations per student

participant (Table 5.2, Total Rows Observed Count) and used their individual wording and

phraseology to describe the phenotypes in the field. Student participants recorded observations

between 2 and 241 words in length (Figure 5.3). To explore the ability of the student participants

to identify and describe phenotypes for traits of interest, 25 positive control accessions that, if

grown in the appropriate environmental conditions, would show visually ”dramatic” phenotypes.

The 25 positive control accessions were observed 53-55 times over all nine student participants

(Table 5.1). We utilized Merriam-Webster (Merriam-Webster (2023)) and WordHippo (Kat IP

Pty Ltd (2008)) thesaurus services to determine the participant’s ability to identify words

synonymous with descriptors that describe the positive control phenotypes as demonstated in

Figure 5.4 (a-c). For example, accessions M241C A1 A2 B1 C1 C2 Pl1 Pr1 R1-r and 219L B1-S;

R1-r pl1-McClintock (gene name colored1 and colored plant1, Supplementary Table 1) had at

least one synonym in each of the observations made by the student participants as indicated in

Table 5.1 by the proportion of 1.000 for both Marriam-Webster and WordHippo synonyms. While

accessions U740G Fbr1-N1602 (gene name, few branched1 ), 703J Rs1-O 1, and 703K Rs1-Z

(rough sheath, Supplementary Table 1) had low proportions of observations having at least one

synonym for each observation as indicated in Table 5.1.
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Our findings indicate that participants, unaware of expected phenotypes, can identify and

describe them in their own words. These results are limited in the number of synonyms identified

for phenotype descriptions and the environment in which the plants were grown. The thesaurus

services could deflate the proportion of observations with at least one synonym if the participants

used informal descriptors. Additionally, the student participants would only have described our

intended positive control phenotypes if the field environment and weather conditions were

conducive to displaying the expected phenotypes.

5.5.2 Extracting Phenotype Data for Plant Height from Spoken Descriptions

Two methods were employed to preprocess text transcriptions of spoken descriptions of

plants. The semantic similarity method of comparing the term ”tall” to each row observation

retained 91.92% of the full set of row recordings captured (including the 25 positive controls and

33 accessions unique to the Yanarella et al. dataset) by the student participants, demonstrating

that 35,709 row observations were made with taxa in both datasets (Table 5.2). The manual bin

method of identifying phrases related to plant height and binning them based on apparent

semantic similarity retained 86.06% of the full set of row recordings captured by the student

participants and 95.80% of the observations with plant height phrases made with taxa in both

datasets, which results in 34,209 row observations for manually binned data (Table 5.2).

Both methods parse information about the plant height traits and process the data into a

format appropriate as input into available GWAS tools and models. Using a query term for plant

height and semantic similarity requires less manual curation and was implemented on a larger

subset of data. The benefit of the binning method is that it reduces the noise; only observations

with plant height-related terms were considered.

A limitation of the query term and semantic similarity method is retaining noisy data because

this method compares the ”tall” query to each observation and relies on pre-trained models. An

example of noise comes from the participant whose NATO code name ”Victor’s” recording for

row 1,456 on 07/16/2021, tall and height green all the way to the bottom ... super short hairs on
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top that are quite prickly ... in general there are the brace roots are short fat and light green in

color, in which the similarity function of spaCy University Sentence Encoder (Mensio (2023))

when compared to the ”tall” query string determine the semantic similarity score as 0.0848. The

shortcomings of the binning method are the time-consuming nature of curating lists of phrases

relevant to the trait of interest and the loss of data where phrases directly related to plant height

were not specified.

5.5.3 Association Studies using Phenotypes Derived from Speech

We performed association studies using FarmCPU (Liu et al. (2016)) on three categories of

phenotype data. The first phenotype category was ground truth (measured) plant height data

using BLUEs (Figure 5.5 (a)) and BLUPs (Figure 5.5 (b)). For the BLUE analysis, 21 significant

SNPs above the Bonferroni threshold of 8.55 were identified, and of those SNPs, we discovered 10

(Supplementary Table 3) in which at least one plant height gene was detected in the literature

within +/- 300 kb (Supplementary Table 2). The BLUP analysis identified 29 significant SNPs, 9

(Supplementary Table 3) where at least one plant height gene was discovered in the literature

within +/- 300 kb (Table 5.3, Supplementary Table 2).

The second phenotype category used BLUEs (Figure 5.6 (a)) and BLUPs (Figure 5.6 (b)) for

tall query and semantic similarity of spoken phenotype descriptions. These analyses identified 27

and 23, respectively, significant SNPs (Supplementary Table 3), respectively, above the Bonferroni

threshold of 8.55. Of these, 9 and 8 genes, respectively, were formerly detected for plant height

within +/- 300 kb of the SNP (Table 5.3, Supplementary Table 2).

The third phenotype category used BLUEs (Figure 5.7 (a)) and BLUPs (Figure 5.7 (b)) for

manual binning of spoken phenotype descriptions with plant height terms. These analyses

identified 32 and 33, respectively, significant SNPs (Supplementary Table 3), above the Bonferroni

threshold of 8.55 respectively. Of these, 13 and 12 have genes formerly reported within +/- 300

kb of the SNP (Table 5.3, Supplementary Table 2). An additional analysis was completed using

predicted values from a multinomial regression (Supplemental Figure 8, Supplementary Table 2)
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in which 21 SNPs were significant, and 3 had genes detected within +/- 300 kb of the SNP in the

literature (Table 5.3, Supplementary Table 2).

Having demonstrated that transcripts of spoken descriptions of plants can be computationally

processed and applied as phenotypic input for existing GWAS tools, we further sought to

determine whether the data collected in this experiment are practical for association studies. To

do this, we utilized ground truth measurements of plant height and identified SNPs associated

with plant height that have been reported in other publications.

The semantic similarity method with the tall query to generate phenotype values for each

spoken observation using spaCy’s similarity function (Honnibal and Montani (2023)) and the

Universal Sentence Encoder (Mensio (2023)) was successful. We were able to perform GWAS, and

there were significant SNPs from regions associated with plant height. As this is a proof of

concept study, we acknowledge that other pre-trained models exist capable of calculating

semantic similarity or models that can be adapted to generate similarity scores related to plant

height such as BioBERT (Lee et al. (2019)), those implemented by the Python gensim package

(Řeh̊uřek and Sojka (2010)), or others reviewed in Koroleva et al. (2019). Further, additional

queries could be employed for relating the text observations to a height value.

The binning method for plant height phrases appears to be a promising method for

association studies with phenotype data extracted from spoken descriptions. This method reduces

the noisiness of the transcription data and scores observations on only phrases detailing features

of plant height. Additionally, the GWAS performed with BLUE and BLUP values generated from

the binning method detected more known regions associated with plant height formerly reported

than the manually measured and semantic similarity query methods.

We demonstrate our use of a multinomial regression to generate phenotypic input with binned

data, although we recognize that FarmCPU is not optimized for multinomial input. GWAS tools

that utilize an ordered multinomial regression model to predict multinomial values for association

studies were developed in the medical research field (German et al. (2019)). Regardless,
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FarmCPU with multinomial binned input for plant height detected regions of the genome

associated with plant height.

While participant language was not constrained, input that is less noisy and with lower data

loss could be attainable if an emphasis were placed on stating specific aspects of the plant

accompanied by a descriptor and reducing literary descriptive comments. An example of

describing a specific aspect of a plant is ”tall, green, and long” compared to ”this row has tall

plants.” The former statement is unclear whether the whole plant is described or a specific aspect

of the plant, while the latter makes it clearer that the total plant height is described. Literary

language descriptions are more difficult to compute because context is necessary to determine the

meaning behind a phrase, an example, candy cane stripe. While candy cane stripe may induce a

mental image of a candy cane, unless a computation model is trained to identify the literary

description, the model would not be able to discern the spoken description of phenotype as a

particular striped pattern.

5.5.4 Investigating GO Terms from GWAS Results

After identifying the gene IDs associated with the regions +/- 300 kb of the significant SNPs,

we investigated the GO terms annotated to these genes. The full list of GO terms for each model

discussed above is available in Supplementary Table 3 and Supplementary Table 4. To examine

how these terms align with plant height terms, we queried the dataset for the words auxin,

brassinosteroid, and gibberellin because of their known functions in plant height regulation (Li

et al. (2020) reviews the importance of these hormones). The term ”auxin” was more frequently

present in these datasets when compared to brassinosteroid or gibberellin (Table 5.4).

Additionally, other GO annotations identified in our analyses have functions that may affect

plant height. Examples of these GO terms include developmental growth (GO:0048589),

anatomical structure formation involved in morphogenesis (GO:0048646), and shoot system

development (GO:0048367). Further, using GWAS, we found genomic regions with functional
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annotations related to plant hormone functions that were not identified by the literature in Table

5.3. These regions can be of potential interest for the plant height trait.

While examining GO terms, descriptions that do not relate to plant functions but were

annotated to gene IDs occurred. Errant assignments of GO terms for plant-specific tasks has been

described in Fattel et al. (2022). An example is the gene ID Zm00001d008201 being assigned the

term animal organ development (GO:0048513). Interestingly, this ID was also assigned the terms

auxin-activated signaling pathway (GO:0009734) and post-embryonic development (GO:0009791).

These results demonstrate a compelling argument for reviewing GO terms produced by

plant-specific annotation tools to remove non-plant terms.

5.6 Conclusion

We developed methods to process recordings of spoken observations of plants in a field

environment as phenotypic input for commonly used GWAS tools. Here, we report that two

methods for generating phenotypic data from transcripts of spoken observations recovered known

genomic regions of interest for plant height. Additionally, novel regions were identified and could

be investigated for their role in the plant height trait. These methods provide a framework for

further exploratory research, including expanding the methods employed to obtain biologically

relevant information from spoken data and expanding the number of traits in which spoken

descriptions are the basis of phenotypic data for GWAS. Additional traits were collected for this

WiDiv dataset by speech and manual scoring to contribute to these prospective research

undertakings and are publicly available (Yanarella et al., 2023).

Beyond these demonstrations that spoken, unstructured phenotypic descriptions can be used

to recover known associations and to identify potentially new regions of the genome contributing

to well understood traits, there are two other conceptual benefits that should be considered.

Firstly, when people are describing what they see in the field rather than exclusively collecting

predefined traits, the potential to uncover novel phenomena is perhaps increased. Secondly, it is

the case that for many years we have used computers to analyzed structured data, so those
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collecting the data have limited themselves to documenting data in a structured,

computer-friendly format. This is, in effect, asking people to structure their thinking and

documentation like and for a computer. With the methods described here, the people collecting

the data are enabled to think and behave in a more naturally human way for data collection. This

has implications for the rate of data collection and for cognitive burden as follows. Over three

weeks of data collection, each participant made three complete passes of the field, recording

spoken observations. However, when the participants collected manual scoring and measurement

data, none were able to make a complete pass of the field. Our experimental design enabled the

student participants to speak and describe plant traits using their unique vocabulary and speech

patterns. Participant ”Zulu” reported that recording spoken observations was simpler and easier

than measuring and scoring because they could make more detailed observations about different

parts of the plants because recording spoken observations was both less strenuous and less

mentally taxing.

Some may wonder why having a person describe phenotypes matters at all given that

image-based data collection is improving all the time, and seems to be a great way to collect data

for image-based machine learning analytics of phentypes and traits (reviewed in Xiao et al.

(2022)). Clearly image analysis can be useful for many traits, but for those traits that involve

tactile, odor, or other sensory observations, image-based data collection cannot collect relevant

data. Coupled with image-based data collection and analysis, it is becoming clear that

language-based annotations, both spoken and written, are poised to both allow and enable the

human perception to fill nuanced understanding of phenotypes and traits.

5.7 Web Resources

Code to recreate the analysis in this manuscript will be available on CyVerse, and is currently

pending a DOI.
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5.8 Data Availability

The de-identified spoken data described in this manuscript is exempted by Iowa State

University’s Institutional Review Board (IRB ID: 21-179-00). Phenotypic data was obtained from

(Yanarella et al. (2023)) and is available from:

https://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/

Carolyn_Lawrence_Dill_Maize_WiDiv_Summer_2021_Dataset_June_2023. Genotypic data was

obtained from (Mural et al. (2022b), Mural et al. (2022a)) and can be accessed from:

https://figshare.com/articles/dataset/Maize_WiDiv_SAM_1051Genotype_vcf_gz_

genotype_file/19175888/1. Gene Ontology data was obtained from (Wimalanathan and

Lawrence-Dill (2017)) and is available from

https://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/

Carolyn_Lawrence-Dill_maize-GAMER_maize.B73_RefGen_v4_Zm00001d.2_Oct_2017.r1.

Supplementary material will be available at G3 online.
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5.14 Figures and Tables

Figure 5.1 Comparison of intersections of Mural et al. and Yanarella et al. WiDiv dataset

taxa (positive controls not included), where n is the number of unique taxa in

each dataset. Mural et al. dataset (in blue), and Yanarella et al. dataset (in

orange).
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Figure 5.2 Spoken phenotype process overview. (a) In field spoken phenotype descrip-

tions collection, (b) Spoken phenotype data processing, including transcript

production and methods for generating numeric representations of phenotypes

for traits, and (c) GWAS using data derived from spoken observations.

Figure 5.3 Distributions for each student participants word count per observation. A

boxplot is included in each of the violin plots, individual outlier points not

represented.
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Figure 5.4 Example of detecting phenotypes from positive control accession descriptions.

(a) Transcript of a spoken description for positive control accession M241C A1

A2 B1 C1 C2 PI1 Pr1 R1-r, (b) Image of positive control accession M241C A1

A2 B1 C1 C2 PI1 Pr1 R1-r, (c) Example of phenotype description terms, and

synonyms from Marriam-Webster and WordHippo, to demonstrate a descrip-

tion having at least one instance of a synonymous word for the phenotype of

interest.



96

Figure 5.5 Manhattan plot of measured height phenotypic data. Plot generated using

GAPIT and FarmCPU using measured height data (a) BLUEs and (b) BLUPs

using Mural et al. genotypic data. The red dashed line indicates the Bonferroni

threshold ((a) -log 10(p) = 8.55; (b) -log 10(p) = 8.55), orange points indicate

identified SNPs with known plant height genes within +/- 300 kb, and orange

vertical lines indicate positions +/- 300 kb identified SNPs with known plant

height genes.
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Figure 5.6 Manhattan plot of tall query semantic similarity phenotypic data. Plot gen-

erated using GAPIT and FarmCPU using semantic similarity score data (a)

BLUEs and (b) BLUPs using Mural et al. genotypic data. The red dashed

line indicates the Bonferroni threshold ((a) -log 10(p) = 8.55; (b) -log 10(p)

= 8.55), orange points indicate identified SNPs with known plant height genes

within +/- 300 kb, and orange vertical lines indicate positions +/- 300 kb iden-

tified SNPs with known plant height genes.
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Figure 5.7 Manhattan plot of binned plant height phrases phenotypic data. Plot generated

using GAPIT and FarmCPU using binned plant height data (a) BLUEs and

(b) BLUPs using Mural et al. genotypic data. The red dashed line indicates

the Bonferroni threshold ((a) -log 10(p) = 8.55; (b) -log 10(p) = 8.55), orange

points indicate identified SNPs with known plant height genes within +/- 300

kb, and orange vertical lines indicate positions +/- 300 kb identified SNPs with

known plant height genes.
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Table 5.2 Observation retention by spoken phenotype method.

Spoken Phenotype Processing Method

Participant Total Rows Observed Count1 Tall Query2 Manual Bins3

Delta 4,326 3,974 (0.9186) 3,911 (0.9041; 0.9841)

Golf 4,317 3,969 (0.9194) 3,711 (0.8596; 0.9350)

Kilo 4,321 3,973 (0.9195) 3,960 (0.9165; 0.9967)

Lima 4,322 3,975 (0.9197) 3,747 (0.8670; 0.9426)

Mike 4,302 3,953 (0.9189) 3,937 (0.9152; 0.9960)

Quebec 4,308 3,959 (0.9190) 3,241 (0.7523; 0.8186)

Victor 4,329 3,980 (0.9194) 3,946 (0.9115; 0.9915)

Yankee 4,308 3,960 (0.9192) 3,943 (0.9153; 0.9957)

Zulu 4,314 3,966 (0.9193) 3,813 (0.8839; 0.9614)

Sum 38,847 35,709 (0.9192) 34,209 (0.8806; 0.9580)

1 Rows observed count includes data collected for all taxa within the Yanarella et al.

dataset, including 25 positive control taxa and 33 taxa not found in the Mural et

al. dataset.
2 The count of row observations utilized for semantic similarity for spoken data meth-

ods represents the data 653 intersecting taxa between Yanarella et al. and Mural et

al., and the data in parentheses is the proportion of data retained from total rows

observed.
3 The count of row observations utilized for binning for spoken data methods repre-

sents the data 653 intersecting taxa between Yanarella et al. and Mural et al., and

the data in parentheses is the proportion of data retained from total rows observed

(left) and the proportion of data retained from the 653 intersecting taxa which have

plant height terms (right).
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Table 5.3 Plant height gene models count identified from publications.

Publication Plant Height Related Gene Model Count1

Jansson (1994) 1

Winkler and Helentjaris (1995) 1

Austin and Lee (1996) 3

Multani et al. (2003) 2

Blakeslee et al. (2005) 1

Geisler and Murphy (2005) 1

Brooks et al. (2009) 1

Wu et al. (2009) 7

Bai et al. (2009) 6

Lawit et al. (2010) 2

Hartwig et al. (2011) 1

Salvi et al. (2011) 4

Weng et al. (2011) 1

Teng et al. (2012) 1

Gallavotti (2013) 1

Peiffer et al. (2014) 7

Wallace et al. (2016) 312

Mazaheri et al. (2019) 10

Azodi et al. (2019) 876

Mural et al. (2022b) 347

1 Count of gene model IDs identified for gene model set Zm00001d.2

gene model set and Zm-B73-REFERENCE-GRAMENE-4.0 assembly

version.



102

T
a
b

le
5.

4
A

p
p

ea
ra

n
ce

of
G

O
te

rm
s

b
y

p
la

n
t

h
or

m
on

e
fo

r
ea

ch
m

et
h

o
d

.

au
x
in

b
ra

ss
in

os
te

ro
id

gi
b

b
er

el
li

n

A
n

a
ly

si
s

L
it

er
at

u
re

1
T

h
is

S
tu

d
y
2

L
it

er
at

u
re

T
h

is
S

tu
d

y
L

it
er

at
u

re
T

h
is

S
tu

d
y

M
ea

su
re

d
B

L
U

E
s

G
O

T
er

m
s

2
15

0
3

0
4

M
ea

su
re

d
B

L
U

P
s

G
O

T
er

m
s

3
22

0
8

0
6

S
em

a
n
ti

c
S

im
il

ar
it

y
T

al
l

Q
u

er
y

B
L

U
E

s
G

O
T

er
m

s
12

5
0

5
0

7

S
em

a
n
ti

c
S

im
il

ar
it

y
T

al
l

Q
u

er
y

B
L

U
P

s
G

O
T

er
m

s
2

15
0

3
0

6

M
an

u
a
l

T
er

m
B

in
B

L
U

E
s

G
O

T
er

m
s

1
16

0
8

1
10

M
an

u
a
l

T
er

m
B

in
B

L
U

P
s

G
O

T
er

m
s

1
15

0
6

1
9

M
an

u
a
l

T
er

m
B

in
M

u
lt

in
om

ia
l

G
O

T
er

m
s

0
10

0
3

0
1

1
A

p
p

ea
ra

n
ce

co
u

n
t

fo
r

G
O

te
rm

s
o
f

p
ri

or
li

te
ra

tu
re

in
T

ab
le

5.
3.

2
A

p
p

ea
ra

n
ce

co
u

n
t

fo
r

G
O

te
rm

s
u

n
iq

u
e

to
th

is
st

u
d

y.



103

5.15 Appendix: Institutional Review Board Exemption Letter



104



105

CHAPTER 6. GENERAL CONCLUSION

6.1 Summary

The research described in the preceding chapters of this dissertation details the development

of bioinformatic procedures for processing and utilizing natural language descriptions of plants for

association studies. We proposed using natural language descriptions of plants for investigating

gene pair similarity based on semantic similarity and association studies with natural language

descriptions of plants. We utilized pre-trained language models to determine gene pair similarity

for descriptions with structure (ontologies) and unstructured free text. These models vary in

complexity from employing semantic similarity methods, syntactic similarity approaches, and

using a combination of semantic and syntactic similarity procedures to predict gene pair

similarity. Our results indicate we can recover known biological relationships from natural

language descriptions.

Additionally, we designed, performed, and disseminated the data associated with collecting

spoken descriptions of plants using the Wisconsin Diversity (WiDiv) panel in a field environment.

These data are available to guide others who want to collect spoken phenotypes or investigate the

descriptions recorded in our experiments. We performed association studies using the plant height

data collected during the summer of 2021. We demonstrated two methods for processing speech

for GWAS; these methods included using semantic similarity and a query term ”tall” to

determine a score for each observation, and the second method involved assigning a bin number

for observations that include plant height descriptions. We identified regions of the genome

previously reported as associated with plant height using data derived from spoken descriptions of

plants. Also, we identified regions not found in previously reported literature with GO terms

related to plant height. The code set to perform association studies using text transcriptions of

spoken phenotypes is publicly available and reproducible.
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6.2 Collaborative Project Outcomes

Throughout my graduate research and training, I participated in projects outside of the scope

of the research described in this dissertation. Below, two projects I contributed to are described,

and the publications associated with these are presented in Appendix 6.5 Table 6.1 and datasets

found in Appendix 6.5 Table 6.2.

6.2.1 Predicitive Plant Phenomics (P3) Research Trainee-ship Symposium Sessions

The P3 graduate student trainees organized and led a symposium session and workshop at the

American Society of Plant Biologists’s (ASPB) Phenome 2020 Conference with the support of

Corteva Agriscience’s Plant Sciences Symposia Series (PSSS). The sessions’ activities included

running a symposium session with four speakers and a workshop to present activities associated

with interdisciplinary plant-related research.

My contribution to these events included co-leading the preparation for the events, including

speaker selection, session schedule, and overseeing workshop development. Another contribution

was co-authoring a perspective, published on The Open Science Framework (OSF), manuscript

describing planning conference events as a graduate student (Yanarella et al. (2021)).

6.2.2 Gene Ontology Annotations for Plant Species

Gene Ontology Meta Annotator for Plants (GOMAP) is a pipeline for assigning functional

annotations to genome assemblies (Wimalanathan and Lawrence-Dill (2021)). The pipeline

produces high-coverage GO annotations for various plant species by aggregating sequence

similarity, protein domain presence, and mixed methods approaches developed for the Critical

Assessment of Functional Annotation (CAFA) Challenge (Zhou et al. (2019)). Annotations

generated by GOMAP are resources for the research community to perform comparative analyses,

to conduct enrichment analyses, and to locate functional annotations for genes identified in

association studies for traits of interest. Research that has stemmed from GOMAP annotations

includes generating parsimony and neighbor-joining trees using GO datasets for multiple plant
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species to determine how closely these trees resemble known phylogenetic relationships based on

an analysis of plant GO terms (Fattel et al. (2022)).

My contribution to the GOMAP project and work on comparative functional genomics was to

test the pipeline and suggest modifications for usability while annotating Hordeum vulgare

(Yanarella et al. (2019)) and Pinus lambertiana (Yanarella et al. (2020)). Additionally, I wrote

the code to generate a preliminary diagram of the process flow of the GOMAP pipeline

(DILL-PICL et al. (2022)) and assisted in training undergraduate and graduate students to

generate annotations using GOMAP for a wide range of plant species (Appendix 6.5, Table 6.2).

6.3 Future Work

The work described in this dissertation focuses on generating and processing natural language

descriptions of plant phenotypes. We utilized pre-trained models to determine gene pair similarity.

We disseminated transcripts of spoken descriptions of plants so that the research community

could continue to investigate the traits that we recorded spoken observations of phenotypes

during the summer of 2021. Further, the methods we utilized to gather speech as a phenotype can

be employed for various species. Additionally, we have demonstrated two methods for performing

GWAS from spoken descriptions. As natural language processing methods improve, new methods

can be developed for spoken descriptions of plants for association studies. Future research can be

performed to identify genomic regions of interest for traits using spoken descriptions.

While evaluating the identified regions on the genome for our GWAS methods, we used GO

annotations for genes within regions where linkage disequilibrium could occur. We uncovered

animal function GO terms assigned to our plant-specific data, a concern described by Fattel et al.

(2022). This research area of potential is the work of Leila Fattel (Lawrence-Dill Lab, Iowa State

University), who is investigating the best practices for ”trimming” the GO Directed Acyclic

Graph (DAG) to the most specific term relating to plant functions.

In the early phases of developing the spoken phenotyping protocol, a group of naysayers

adamantly defended their requirement of having only expert phenotypers collect data in the field.
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While the role and need for experts must be recognized, using crowd-sourced data for

phenotyping has been a valuable tool for performing science efficiently (see Zhou et al. (2018)).

Throughout this research, I have acquired an appreciation for investing in developing,

encouraging, and empowering undergraduate students to participate in research. Although our

undergraduate participants are not considered experts at phenotyping, their ability to detect and

vocalize plant phenotype descriptions has enabled us to perform association studies and identify

genomic regions of interest for our intended trait. I encourage the facilitation of collecting spoken

phenotypes so that we may work to uncover additional fascinating biological phenomena.
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T., Kihara, D., Jain, A., Šmuc, T., Altenhoff, A., Ben-Hur, A., Rost, B., Brenner, S. E.,
Orengo, C. A., Jeffery, C. J., Bosco, G., Hogan, D. A., Martin, M. J., O’Donovan, C., Mooney,
S. D., Greene, C. S., Radivojac, P., and Friedberg, I. (2019). The CAFA challenge reports
improved protein function prediction and new functional annotations for hundreds of genes
through experimental screens. Genome Biology, 20(1).

Zhou, N., Siegel, Z. D., Zarecor, S., Lee, N., Campbell, D. A., Andorf, C. M., Nettleton, D.,
Lawrence-Dill, C. J., Ganapathysubramanian, B., Kelly, J. W., and Friedberg, I. (2018).
Crowdsourcing image analysis for plant phenomics to generate ground truth data for machine
learning. PLOS Computational Biology, 14(7):e1006337.



114

6.5 Appendix: Manuscripts and Datasets From Collaborate Projects

6.5.1 Manuscripts

Table 6.1 Contributions to manuscripts out of the scope of the described research aims.

Manuscript Title Reference

Graduate Student Perspective on Organizing PSSS Events During

Phenome 2020
Yanarella et al. (2021)

Standardized genome-wide function prediction enables comparative

functional genomics: a new application area for Gene Ontologies

in plants

Fattel et al. (2022)

Gene Function Annotations for the Maize NAM Founder Lines
Under Review:

BMC Research Notes

6.5.2 Datasets

Table 6.2 Contributions to datasets out of the scope of the described research aims.

Dataset Title Contribution Type Reference

GOMAP Process Flowchart Main Contributor DILL-PICL et al. (2022)

Carolyn Lawrence Dill GOMAP Barley

IBSC PGSB-1.0 May 2019.r1
Main Contributor Yanarella et al. (2019)

Carolyn Lawrence Dill GOMAP SugarPine

TreeGenesDB-1.5 January 2020.r1
Main Contributor Yanarella et al. (2020)

Carolyn Lawrence Dill GOMAP Banana

NCBI ASM31385v2 December 2022 v2.r1
Contributor Idris et al. (2023a)

Carolyn Lawrence Dill GOMAP Banana

NCBI ASM31385v2 February 2021.r1
Contributor Fattel et al. (2021a)

Carolyn Lawrence Dill GOMAP Barley

IPK cv Morex V3 June 2023 v1.r1
Contributor Fattel et al. (2023a)

Carolyn Lawrence Dill GOMAP Barrel

Clover LIS A17.gnm5.ann1 6.L2RX

November 2022 v1.r1

Contributor Idris et al. (2023b)
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Table 6.2 Contributions to datasets out of the scope of the described research aims con-

tinued (1).

Dataset Title Contribution Type Reference
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November 2022 v1.r1

Contributor Idris et al. (2023c)

Carolyn Lawrence Dill GOMAP Blueberry

GigaDB Draper v1.0 May 2023 v2.r1
Contributor Fattel et al. (2023b)

Carolyn Lawrence Dill GOMAP Blueberry

GigaDB v1.0 June 2021.r1
Contributor Fattel et al. (2021b)

Carolyn Lawrence Dill GOMAP Cacao

NCBI CriolloV2 December 2022 v2.r1
Contributor Idris et al. (2023d)

Carolyn Lawrence Dill GOMAP Cacao

NCBI CriolloV2 March 2021.r1
Contributor Fattel et al. (2021c)

Carolyn Lawrence Dill GOMAP Cannabis

NCBI cs10 2.0 October 2022 v1.r1
Contributor Idris et al. (2023e)
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NCBI-cs10 January 2020.r1
Contributor Chiteri et al. (2020)
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BnPIR ZS11 March 2021.r1
Contributor Starr et al. (2021)

Carolyn Lawrence Dill GOMAP Coffee

CGH v1.0 June 2021.r1
Contributor Fattel et al. (2021d)
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CGH v1.0 May 2023 v2.r1
Contributor Fattel et al. (2023c)
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CommonBean LIS G19833 November

2022 v2.r1

Contributor Idris et al. (2023f)
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Contributor Joshi et al. (2020)
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Contributor Dostalik et al. (2021)
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Contributor Fattel et al. (2023f)
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Table 6.2 Contributions to datasets out of the scope of the described research aims con-

tinued (2).

Dataset Title Contribution Type Reference
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Contributor Fattel et al. (2023 CML228)
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Contributor Fattel et al. (2023 CML322)
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Contributor Fattel et al. (2023 CML333)

Carolyn Lawrence Dill GOMAP Maize

MaizeGDB CML52 NAM 1.0

November 2022.r1

Contributor Fattel et al. (2023 CML52)

Carolyn Lawrence Dill GOMAP Maize

MaizeGDB CML69 NAM 1.0

November 2022.r1

Contributor Fattel et al. (2023 CML69)
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Table 6.2 Contributions to datasets out of the scope of the described research aims con-

tinued (3).

Dataset Title Contribution Type Reference

Carolyn Lawrence Dill GOMAP Maize
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November 2022.r1

Contributor Fattel et al. (2023 HP301)

Carolyn Lawrence Dill GOMAP Maize
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November 2022.r1

Contributor Fattel et al. (2023 Il14H)

Carolyn Lawrence Dill GOMAP Maize

MaizeGDB Ki11 NAM 1.0

November 2022.r1

Contributor Fattel et al. (2023 Ki11)

Carolyn Lawrence Dill GOMAP Maize

MaizeGDB Ki3 NAM 1.0

November 2022.r1

Contributor Fattel et al. (2023 Ki3)

Carolyn Lawrence Dill GOMAP Maize

MaizeGDB Ky21 NAM 1.0

November 2022.r1

Contributor Fattel et al. (2023 Ky21)

Carolyn Lawrence Dill GOMAP Maize

MaizeGDB M162W NAM 1.0

November 2022.r1

Contributor Fattel et al. (2023 M162W)

Carolyn Lawrence Dill GOMAP Maize

MaizeGDB M37W NAM 1.0

November 2022.r1

Contributor Fattel et al. (2023 M37W)

Carolyn Lawrence Dill GOMAP Maize

MaizeGDB Mo17 CAU 1.0 May 2023 v2.r1
Contributor Ngara et al. (2023a)

Carolyn Lawrence Dill GOMAP Maize

MaizeGDB Mo18W NAM 1.0

November 2022.r1

Contributor Fattel et al. (2023 Mo18W)

Carolyn Lawrence Dill GOMAP Maize

MaizeGDB Ms71 NAM 1.0

November 2022.r1

Contributor Fattel et al. (2023 Ms71)

Carolyn Lawrence Dill GOMAP Maize

MaizeGDB NC350 NAM 1.0

November 2022.r1

Contributor Fattel et al. (2023 NC350)

Carolyn Lawrence Dill GOMAP Maize

MaizeGDB NC358 NAM 1.0

November 2022.r1

Contributor Fattel et al. (2023 NC358)



118

Table 6.2 Contributions to datasets out of the scope of the described research aims con-

tinued (4).

Dataset Title Contribution Type Reference

Carolyn Lawrence Dill GOMAP Maize

MaizeGDB Oh43 NAM 1.0

November 2022.r1
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Carolyn Lawrence Dill GOMAP Maize
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Contributor Fattel et al. (2023 Oh7B)
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November 2022.r1
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Carolyn Lawrence Dill GOMAP Maize

MaizeGDB PH207 NS-UIUC UMN 1.0
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Contributor Ngara et al. (2023b)

Carolyn Lawrence Dill GOMAP Maize

MaizeGDB Tx303 NAM 1.0
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Contributor Fattel et al. (2023 Tx303)

Carolyn Lawrence Dill GOMAP Maize

MaizeGDB Tzi8 NAM 1.0

November 2022.r1

Contributor Fattel et al. (2023 Tzi8)

Carolyn Lawrence Dill GOMAP Maize

MaizeGDB W22 NRGENE 2.0

May 2023 v2.r1

Contributor Ngara et al. (2023c)

Carolyn Lawrence Dill GOMAP Peanut

Tifrunner.IPGI.2.0 November 2022 v1.r1
Contributor Idris et al. (2023h)

Carolyn Lawrence Dill GOMAP Pepper

PGP cvCM334 June 2023 v2.r1
Contributor Fattel et al. (2023h)

Carolyn Lawrence Dill GOMAP Rapeseed

BnPIR ZS11 June 2023 v2.r1
Contributor Fattel et al. (2023i)

Carolyn Lawrence Dill GOMAP Rice

IRGSP 1.0 June 2023 v2.r1
Contributor Fattel et al. (2023j)

Carolyn Lawrence Dill GOMAP Sorghum

DOE-JGI v3.1.1 March 2023 v1.r1
Contributor Fattel et al. (2023k)

Carolyn Lawrence Dill GOMAP Soybean

LIS Wm82 IGA1008.gnm1.ann1.FGN6

May 2023 v1.r1

Contributor Fattel et al. (2023l)

Carolyn Lawrence Dill GOMAP Stiff brome

DOE-JGI Bd21 v3.2 May 2023 v1.r1
Contributor Fattel et al. (2023m)
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Table 6.2 Contributions to datasets out of the scope of the described research aims con-

tinued (5).

Dataset Title Contribution Type Reference

Carolyn Lawrence Dill GOMAP Sugar Pine

TreeGenes v1.5 June 2023 v2.r1
Contributor Fattel et al. (2023n)

Carolyn Lawrence Dill GOMAP Tea

Teabase CSS ChrLev 20200506

June 2023 v1.r1

Contributor Fattel et al. (2023o)

Carolyn Lawrence Dill GOMAP Tomato

SGN SL4.0 July 2023 v2.r1
Contributor Fattel et al. (2023p)

Carolyn Lawrence Dill GOMAP Wheat

URGI IWGSC RefSeq v2.1 May 2023 v1.r1
Contributor Fattel et al. (2023q)

Carolyn Lawrence Dill GOMAP Wild Tomato

SGN LA716 June 2023 v2.r1
Contributor Fattel et al. (2023r)
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