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ABSTRACT 

 

 This study sought to develop an understanding of the accuracy of the impact based yield 

monitor and characterize field performance.  The study evaluated yield monitor performance on 

the mass flow signal, individual load, field level, and season level.  An automated system 

utilizing pressure pads located in the combine grain tank combined with an algorithm was 

developed and implemented to calibrate the impact based yield monitor in harvesting of corn.  

The developed algorithm defined specific bounds for the calibration period and estimated partial 

tank load weight, replacing the operator entered load weights from the prescribed manual 

calibration process.  The automatic calibration system was integrated with the impact based yield 

monitor system, entirely removing operator interaction in the yield monitor calibration process.  

The complete yield monitor with integrated automatic calibration was field tested during the 

2015 corn harvest season and compared versus a manual calibration.  The automated system 

outperformed the manual calibration in long term studies, successfully compensating the yield 

monitor calibration for changing crop conditions. 
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CHAPTER 1: IMPACT BASED YIELD MONITOR PERFORMANCE 

Abstract 

 Since the initial introduction of the grain yield monitor, there have been evaluations of its 

performance.  Most evaluations have focused on lab scale tests of the sensor performance and its 

ability to be calibrated in field trials.  This study focused on the full spectrum of performance of 

the impact based grain yield monitor with observations and conclusions drawn on the mass flow 

signal, load to load variation, field accuracy, and full season performance.  The load variance 

expectation of the impact based yield monitor was characterized and the yield difference 

requirements for statistical significance were developed to aid in evaluation of yield monitor 

based evaluations of agronomic strip trials.  Expected field means for manufacturer 

recommended calibrations produced field mean errors of ±5% with full season evaluation with a 

single calibration producing less than 1% error.     

 

Introduction and Prior Art 

 The performance of grain production systems are most commonly benchmarked against 

the resulting yield.  Benchmarking can be achieved through physically weighing harvested grain, 

this however reduces the spatial resolution as grain is aggregated to a transport vehicle and in 

some cases benchmarking may be delayed until grain is marketed.  The yield monitor’s primary 

purpose on introduction was to serve as the source of information in the implementation of site-

specific cropping practices, and as of 2005, there was over a 44% adoption rate of yield monitors 

in the Corn Belt (Schimmelpfennig & Ebel, 2011).  The widespread adoption of yield monitoring 

technology enabled producers to estimate harvested grain mass that otherwise could only be 

achieved through weighing grain.  The accuracy of the yield monitor has been under 
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investigation since its introduction and is typically compared against the traditional benchmark 

methods of large aggregated weights by producers.   

 A variety of technologies are available for commercial yield monitoring with the impact 

based yield monitor being the most common in North America.  The impact based yield monitor 

is a system comprised of an impact plate mounted to a force transducer located at the discharge 

of the clean grain elevator and a controller or display that interprets information from the force 

transducer to estimate a grain mass flow rate.  The conversion of the force transducer output to 

mass flow is based on producer completed calibration processes that is required to ensure yield 

monitor accuracy. 

 The accuracy of the impact based yield monitor has been evaluated under a variety of 

conditions and formats.  Determining the accuracy of the impact based yield monitor defines the 

scope of which the resulting data can be used for agronomic and cropping practice decisions.  In 

recent years, calibrated yield monitors have been utilized for a range of agronomic purposes, 

business decisions, and government yield reporting (USDA, 2016).  Agronomic usage is better 

defined as hybrid test strips, split planter hybrid trials, and specific chemical application 

evaluation. 

 Test stand evaluations were completed by Burks (2003), evaluating mass flow variability 

and accumulated load weights, impact of varying flow rates (Burks, et al., 2004), field terrain 

(Fulton, et al., 2009), and crop property effects (Reinke, et al., 2011).    These studies focused on 

the impact based yield monitor’s ability to be calibrated to estimate mass flow and to compensate 

for other mechanical influences with the evaluation metric being average flow rate or 

accumulated mass.  This helps define load weight accuracy in controlled environments, but does 
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not characterize the performance of the yield monitor in normal field conditions that include 

moisture content variation and field dynamics.   

 Field test studies analyzing individual load errors, Grisso (2002) reported field 

evaluations of load errors of 4% on a load basis and higher errors in loads less than 1,800 kg.  

Missotten (1996) additionally reported larger load errors for small test plots.  Krill (1996) 

reported load weight errors of less than 5% for corn and as high as 15% for soybeans for 

calibrated yield monitors.  These studies observed smaller samples sizes of loads and do not 

observe complete field and season level yield monitor performance with performance in these 

areas being primarily cited from manufacturer claims. 

 Characterizing the impact based yield monitor performance across the full application 

spectrum will define the level of confidence yield data must be given when decision processes 

are driven by the yield monitor reported results. This defines the objectives of this research to 

characterize the performance of impact based yield monitoring systems on several levels of 

evaluation for harvesting corn.  The objectives of the research: 

• Determine instantaneous mass flow variability 

• Determine load to load variability of the impact based yield monitor 

• Evaluate field level performance of the grain yield monitor 

• Evaluate field to field performance of a calibrated yield monitor 

• Investigate yield data sample size effects on precision 
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Materials and Methods 

Impact based yield monitor system theory of operation 

 As previously described the impact based yield measurement system consists of a plate 

instrumented with a load cell located at the top of the clean grain elevator and is referred to 

commonly as the mass flow sensor.  The clean grain elevator moves grain that has successfully 

passed through the threshing and cleaning systems from an accumulation point to a grain storage 

tank located in the upper portion of the harvester.  The clean grain elevator consists of a metal 

chain equipped with rectangular paddles that operates in a metal tube to convey the grain 

primarily in the vertical direction (Figure 1).  The grain ascends the elevator riding on the 

paddles (35 of Figure 1), with centrifugal acceleration causing the grain to exit the elevator as the 

chain makes a 180° turn to return to the bottom of the harvester.  The paddles are typically 

produced from recycled tires with some manufacturers opting to use a hard plastic paddle to 

improve component consistency.  The top of the elevator is designed to discharge the grain from 

the paddles so the grain can be expelled further into the grain tank by a fountain auger (45 of 

Figure 1).  The impact plate is located perpendicular to the direction of grain discharge, placed 

directly in the path of grain exiting the top of the elevator.  The resulting force imparted on the 

impact plate by the grain is measured by the yield monitor system and a mathematical 

relationship of force to mass flow is used to estimate the grain mass flow rate.  The mathematical 

relationship is developed from the calibration process and is designed to reduce the non-linear 

relationship of the measured force to measured mass (Myers, 1996).   
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Figure 1: Impact based mass flow sensor mounted at the top of the clean grain elevator 
(Myers, 1996)  

 

 The sensor system relies on the physics of grain discharging from the elevator to transfer 

the momentum of the grain to the impact plate (11 of Figure 1).  The resulting force and duration 

imparted by the grain onto the impact plate is equal to the product of the mass and change in 

velocity of the grain from before and after impacting the force sensor (Equation( 1); (Zhou & 

Liu, 2014).  The change in velocity is only considered in the normal direction of the force sensor.  

This equation is considering a single particle only and is based on impulse momentum.  A more 

generalized observation considers the force measurement in time, the mass m(t) at the time of the 

measurement, Δt is the length of a sample period, v1 the mean velocity of the particles, and c is 

the coefficient of restitution of the grain particles (Equation( 2); (Zhou & Liu, 2014).  The 
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particle velocity is a function of the elevator speed and grain particle position on the paddle with 

respect to the rotational point as the paddle rotates around the top of the elevator (Reinke, et al., 

2011).   

 

  

 Observing the process, two primary factors affect the impact plate based system: the 

initial available energy of the grain as it leaves the elevator paddle and momentum transfer to the 

impact plate.  The first factor is related to the mass of the grain and its exit velocity with the exit 

velocity being affected by several factors.  The discharge velocity of the grain is influenced by 

the initial location of the grain particle on the paddle in reference to the pivot location and the 

frictional coefficient.  The friction and initial position influences the generated tangential 

velocity of the grain as it is expelled from the paddle as a higher coefficient of friction slows the 

transition of the grain particle to the outer tip of the paddle, decreasing its final release position 

on the paddle and reducing the velocity. This creates a gradient of particle velocities based on the 

radial location of the grain particles on the paddles (Strubbe, et al., 1996; Reinke, et al., 2011).  

The grain pattern once expelled from the elevator varies with the paddle shape and paddle tip 

clearance with the shape of the discharge pattern affected by the volume of grain and paddle size 

(Strubbe, et al., 1996).  The shape of the paddles concentrate the grain flow towards the outer 

rotational radius of the paddle which are typically worn at the corners.  The wear is best 

described by the permanent reduction in size of the paddle as the corners abrade from use and the 

permanent deformation of the paddle as the corners curl away from the direction of travel.  The 

𝐹𝐹 ∙ ∆𝑡𝑡 = 𝑚𝑚 ∙ (𝑣𝑣1 − 𝑣𝑣2) = 𝑚𝑚 ∙ (1 − 𝑐𝑐) ∙ 𝑣𝑣1 ( 1 ) 

𝐹𝐹(𝑡𝑡) =
𝑚𝑚(𝑡𝑡)
∆𝑡𝑡

(1 − 𝑐𝑐) ∙ 𝑣𝑣1 ( 2 ) 
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paddle tip clearance which is defined as the clearance from the outer tip of a paddle to the top of 

the elevator housing represented by T of Figure 1, influences the release point of the grain.  As 

the tolerance gap increases, the grain slips off of the paddle earlier as the paddle travels around 

the first 90° of the elevator top and travels closer to the top of the elevator relying on the 

deflector shown at 25 of Figure 1 to direct the grain towards the force sensor.  This reduces the 

velocity of the grain and modifies the impact angle of the grain to the force sensor.  Additional 

wear to the top of the elevator and the deflector can modify the grain trajectory and interaction 

with the force sensor over time.   

 Momentum transfer is affected by grain density and coefficient of restitution (Reinke, et 

al., 2011).  The crop properties are an unknown factor to the force sensor when calibrated during 

normal harvest, requiring re-calibration to compensate for large changes.  Previously 

demonstrated in a mathematical model applied to test stand data from the University of Kentucky 

Yield Monitor Test Stand, the surface frictional properties of grain increase with moisture 

content and momentum transfer decreases with the increasing moisture content (Reinke, et al., 

2011).  This analysis used a regression approach to estimate the crop properties from simplified 

models, but indicates the type of change in force sensor response based on a modification of the 

crop properties.  The study also indicated that if the crop properties could be estimated, a model 

may potentially be used to accurately estimate the grain mass flow across a wide range of crop 

variation.  This emphasizes the need for calibrations when crop properties change to maintain 

accuracy and is typically recommended by yield monitor manufacturers to re-calibrate for large 

changes in moisture content and individual calibrations for each crop (i.e.: corn, soybeans, 

wheat).   
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 The yield monitor is calibrated to correct the mathematical relationship of force to mass 

flow accounting for the specific mechanical and crop specific variation of the harvester.  The 

calibration process is completed by relating the accumulated measured force by the impact plate 

and the mass of grain harvested for the same time period.  A single calibration point is created by 

initiating a calibration through a user interface to the yield monitoring system with an empty 

grain tank.  The operator then harvests between 1,400 and 3,600 kg of grain at a consistent 

harvest speed.  The consistent harvest speed attempts to produce a consistent mass flow rate.  

Once an acceptable mass of grain has been collected, the operator stops harvesting and 

completes the calibration through the user interface.  The grain is then offloaded onto a cart 

equipped with calibrated scales and the resulting weight is entered back into the yield monitor 

which updates the relationship between measured force by the impact plate to grain mass.  This 

process is ideally replicated at four or more different harvest speeds to produce a multipoint 

calibration that represents the operational flow range of the harvester for the specific crop.  

 

Test fixture for instantaneous mass flow evaluation 

 A test fixture was used to estimate the variability of the 1 Hz yield monitor mass flow 

data in ideal controlled conditions.  The cause of the variability is not of interest with the 

emphasis of the work on understanding the expected variability under constant mass flow 

conditions.  The purpose was to observe the expected variation from a single yield point on a 

yield map.  This required a constant mass flow to be introduced to the clean grain system of a 

harvester.  The mass flow or load weight accuracy of the yield monitor was not investigated in 

this test based on the results of previous studies and was specifically focused on the variation in 

mass flow rate under constant conditions (Risius, 2014; Burks, et al., 2003). 
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 Five tests were completed with three different harvesters (Table 1). The flow ranges 

targeted were based on machine expected capacities for dry corn for the class size of the 

harvester.  Dry corn was sourced from the local grain elevator for all testing purposes with a 

different batch of grain used for each data set.  Paddle tip clearance was verified to be within 

manufacturer specification for all tests and all harvesters were configured with manufacturer 

installed yield monitors.  The yield monitors were calibrated per the manufacturer’s specification 

for each test. 

 

Table 1: Test stand produced data sets for 15% dry corn 
Data Set Machine ID Replicates Flow Rate (kg/s) Notes 

A 1 4 5 Class VII 
A 1 4 10 Class VII 
A 1 4 15 Class VII 
A 1 4 20 Class VII 
A 1 4 25 Class VII 
B 1 4 8 Class VII 
B 1 4 15 Class VII 
B 1 4 25 Class VII 
B 1 4 35 Class VII 
B 1 4 45 Class VII 
C 1 6 5 Class VII 
C 1 6 10 Class VII 
C 1 6 15 Class VII 
C 1 5 25 Class VII 
C 1 6 30 Class VII 
D 2 3 25 Class VIII 
D 2 3 30 Class VIII 
D 2 3 35 Class VIII 
D 2 2 50 Class VIII 
E 3 3 25 Class IX 
E 3 3 30 Class IX 
E 3 3 35 Class IX 
E 3 3 45 Class IX 
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 The test stand was constructed in 2013 to support yield sensor evaluation and 

development at the Iowa State Research Farm (Risius, 2014).  The yield test system was 

designed to convey grain into the clean grain pan of a combine harvester using a belt conveyor 

feeding grain from an instrumented gravity wagon (Figure 2).  Feed rate from the gravity wagon 

is controlled via four electrically driven, linear actuated gates equipped with closed loop 

feedback control (Figure 3).  The gravity wagon was instrumented with a commercial Avery 

Weigh-Tronix scale system and calibrated versus a certified scale.  The yield test stand is capable 

of supplying up to 10,000 kg to the harvester in a given test at flow rates of 0 to 55 kg/s.  A 

National Instruments CRIO 9038 was used to control the gravity wagon gate system and to 

record data at 1 Hz.   

 

 

Figure 2: Yield system test stand feeding grain into harvester clean grain system 
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Figure 3: Yield system test stand metering gate with positional feedback gate control 
 

 The induced yield monitor mass flow and corresponding gravity wagon weight was 

recorded at 1 Hz.  There was an approximate 10 second delay from when grain exits the gravity 

wagon until it reaches the harvester’s mass flow sensor located at the top of the clean grain 

elevator.  Tracking the gravity wagon’s weight throughout a test run allowed for verification of 

consistent mass flow introduced into the harvester clean grain system.  The consistency in flow 

rate removes any effects from the transfer delay from the feeding system to the impact based 

mass flow sensor error analysis.  Assessing the mass flow sensor performance under ideal flow 

conditions, the targeted region for analysis was determined to be 35 seconds after mass flow was 

established with the analysis occurring on the next 60 seconds of mass flow data (Figure 4). 

Actual test length varied by flow rate with the length driven by the target mass of approximately 

3600 kg in the grain tank at the conclusion of each test.   
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Figure 4: Time series mass flow estimates produced by calibrated yield monitor 
  

Methodology for dynamic in-field yield monitor error analysis 

 The natural operating state of a yield monitor can only be achieved through field testing.  

The exposure to natural field variation that induces flow rate changes, crop characteristics, and 

field dynamics cannot be achieved in a test stand.  The largest variation associated with field 

testing are caused by crop characteristics.  Testing with freshly harvested grain that has not been 

damaged or degraded from handling can only be completed through in-field harvest.  Field 

testing additionally allows the performance of the yield monitor to be quantified from a similar 

perspective of the producer.  Three specific metrics were used to focus on evaluating the season 

long and field level performance during corn harvest of a calibrated yield monitor: (1) the 

expected load to load variability under consistent crop conditions, (2) mean field error, and (3) 

the effects of load size on load variability (Table 2). 
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Table 2: Data set description for specific evaluations 
Evaluation Season Data Sets Machines Reps Definition 

Field Calibration 2010 - 2015 38 22 1376 Load to load variability 
and mean error 

Season Calibration 2015 22 1 651 Mean field error 

Load Size 2014-2015 24 13 804 Effects of load size on 
variability 

 

 Data for this study was collected beginning in the fall of 2010 and was completed in the 

fall of 2015 on various harvesters equipped with impact based grain yield monitors.  The yield 

monitors were calibrated using in-field scale carts and were evaluated on a load basis utilizing 

the same grain cart that was used to complete the calibration.  The data set was limited to normal 

corn harvest moisture content with all data less than 25% moisture content.    

 The yield monitor for each data set in the field calibration analysis was calibrated in the 

field that the data set was collected.  This method evaluated the field mean and load to load 

variability, providing an ideal scenario for yield monitor performance as the yield monitor is 

calibrated under the same conditions that it was evaluated.  The analysis was focused on yield 

monitor error and does not investigate the cross data set differences of moisture content and test 

weight.  These factors are excluded from the analysis because the yield monitor was calibrated in 

the specific conditions to appropriately compensate for the crop conditions. 

 The season calibration analysis was completed by calibrating the yield monitor at the 

start of the season in the first harvested field.  The analysis was completed on all data collected 

post calibration completion.  This approach provided observations of the yield monitor drift once 

calibrated and was evaluated with considerations for moisture change.  Average flow rates 

ranged between 8 and 30 kg/s with a mean of 18 kg/s for the loads included in the data set with 

moisture content ranging from 13% to 25% with a mean of 18%.  The yield monitor was 
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calibrated on September 22nd, 2015, at 22% MC with a multipoint calibration completed at 

approximately 7, 10, 14, 20, and 24 kg/s with the final data set harvested October 19th, 2015.  The 

flow rates of the calibrations were confirmed post-harvest to appropriately represent the 

operational flow range (Figure 5).   

 

 

Figure 5: Mean mass flow rate for individual test replicates for the season long single 
multipoint calibration study.  

 

 The final analysis on the field collected data was a comparison of the load size to 

measured variability.  General assumptions were that increasing load size will decrease the load 

to load variability error because the effect of random error associated with the impact based yield 

monitor would be reduced.  The process for evaluating the variation across multiple data sets 

required that they be adjusted for calibration bias.  Each data set was individually processed to 

subtract the data set mean error from all load weight error in the data set to produce a data set 

mean error of zero.  The variability within a data set was not changed through this process and 

makes all loads comparable across data sets.  Load weights ranged from 2 to 8 Mg and the 
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maximum load size was limited by harvester storage capacity.  Load weights were binned by 1 

Mg increments and evaluations completed on the distribution of error.   

 

Results and Discussion 

Mass flow sensor variability 

 The analysis of the mass flow sensor data focused on the variability during consistent 

flow conditions.  The standard deviation for each test replicate was calculated as a percentage of 

the mean mass flow for the same time period to evaluate the percentage of variation by flow rate.  

The mass flow rate was found not to be statistically significant to the normalized variation with 

no distinct trends in relation to mass flow.  Data set B covered the largest flow range with an 

increase in normalized variation trending to approximately 35 kg/s, but was reduced at the 

highest flow rates (Figure 6).   

 

 

Figure 6: Standard deviation of 60 seconds of mass flow normalized by the mean mass flow 
vs the mean mass flow rate. 
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 Further evaluation by flow rate indicates that flow rate was statistically significant to the 

normalized variation of data set D (Table 3).  The variation is separated by flow rates for data set 

D with the two higher flow rates being statistically different from the low flow rates.  All other 

data sets produced no statistical differences across the range of flow rates.   

 

Table 3: Comparison of statistical differences by specific flow rate range and data set for 
normalized variation 

Data 
Set 

Flow Rate 
(kg/s) Samples Mean  Tukey Grouping 

A 

5 4 3.85%  
 

B C D E F G H 
 

10 4 2.70%  
        

I 
15 4 2.90%  

      
G H I 

20 4 2.96%  
      

G H I 
25 4 3.26%   

     
F G H I 

B 

8 4 2.72%  
       

H I 
15 4 2.91%  

      
G H I 

25 4 3.42%  
    

E F G H I 
35 4 3.46%  

   
D E F G H I 

45 4 2.77%   
      

G H I 

C 

5 6 3.77%  
  

C D E F G 
  

10 6 4.31%  
 

B C D E 
    

15 6 4.03%  
 

B C D E F 
   

25 6 3.68%  
   

D E F G H I 
30 6 5.35%   A 

        

D 

25 3 4.99%  A B 
       

30 3 4.57%  A B C D E 
    

35 3 3.06%  
     

F G H I 
50 2 2.78%   

     
F G H I 

E 

25 3 4.81%  A B C 
      

30 3 4.83%  A B C 
      

35 3 5.01%  A B 
       

45 3 4.65%   A B C D 
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 The mean normalized variation is statistically different by data set and is even different 

among the same machine in the case of comparison of data sets A and B to data set C (Table 4).  

This indicates that the produced normalized variation is calibration dependent when comparing 

data sets A, B, and C.  It could also be stated that variation is machine dependent based on the 

results of comparing machine 1 and 3 (Data sets A, B, and C to data set E), but because of 

calibration differences of Machine 1, it cannot be proven with this data set. 

 

Table 4: Statistical difference by data set for normalized variation 
Data Set Samples Mean Tukey Grouping 

A 20 3.1% A   
B 20 3.1% A   
C 30 4.2%  B C 
D 11 3.9%  B  
E 12 4.8%   C 

 

 The mean variation produced in the study is 3.1% and is similar to the 4% (2003) and 

3.4% (2004) variation reported by Burks.  The produced variability is calibration dependent but 

cannot be defined as machine dependent in this study due to the variation produced from 

machine 1 in three separate calibrations of A, B, and C.   

 

Field level yield monitor calibration 

 A calibrated yield monitor is expected to produce a normal distribution of error on a load 

basis with ideally a mean error of zero and any deviation from zero being considered a bias in the 

calibration.  The analysis was completed in two parts by first evaluating the mean error of 

individual yield monitors, and the second evaluating the load to load variability of a calibrated 

yield monitor. 
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 Field level calibrations ideally compensate for the specific crop conditions and 

operational flow rates that induce error bias.  Evaluating individual calibrations can help draw 

conclusions about expected accuracy when a specific calibration is completed.  A total of 38 

individual calibrations were completed in this study with resulting field means ranging from -7% 

to 4.4%, total mean of -0.5%, and standard deviation of 2.1% for field means (Figure 7).  

Previous studies reported expected yield monitor mean absolute error of 0 to 4% (Missotten, et 

al., 1996; Grisso, et al., 2002).  The variation in mean accuracy of the calibration indicates that 

regardless of the calibration there is an expected range for mean error of the yield monitor.  

Specific field calibrations reduce bias error, but do not guarantee the removal of field level bias.  

Mean error by machine (Table 5) and specific calibration (Table 6) were found to be statistically 

significant to mean yield monitor error through one-way ANOVA’s.  Due to proving the 

calibrations are distinct however, it cannot be determined if mean error is distinct by machine.   

 

 

Figure 7: Distribution of field mean errors for individual field calibration data sets. 
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Table 5: One-way ANOVA of yield monitor error by machine 
Source DF SS MS F-Value P-Value 

Machine 21 0.3036 0.01446 11.58 0 
Error 1354 1.6897 0.00125   
Total 1375 1.9933    

 

 

Table 6: One-way ANOVA of yield monitor error by data set 
Source DF SS MS F-Value P-Value 

Data Set 37 0.5594 0.01512 14.11 0 
Error 1338 1.4339 0.00107   
Total 1375 1.9933    

 

 Considering that individual loads are part of a larger distribution of error with a mean and 

standard deviation, the calibration is made up of four loads that are drawn from the distribution 

when the calibration is created.  This is considering the effects of random error associated with 

the impact based mass flow sensor.  Testing the hypothesis that a larger standard deviation 

indicates the probability of a larger bias, a regression analysis of mean error predicted by 

standard deviation was found to have no statistical significance on mean field error or absolute 

mean field error.  This indicates that mean error at the field level is independent of the mass flow 

sensor variability.   

 Observing the error as a continuous density function (Figure 8), nearly 70% of the 

calibrated yield monitors resided within ±2.5% mean error.  Considering each yield monitor was 

subject to its own calibration, this is a reasonable performance.  Less than 5% of yield monitors 

resided outside of ±5% accuracy.  This performance generally agrees with many manufacturer 

claims of accuracy, but is also evaluated under ideal conditions with the evaluation occurring 

under the same conditions as the calibration.   
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Figure 8: Continuous density function for calibrated yield monitor error. 
 

 Individual load errors have been described in the range of 2 to 4% (Doerge, 1996), less 

than 5% (Krill, 1996), and greater than 10% for smaller loads (< 1,800 kg).   An investigation 

into the load to load variability of a yield monitor is of interest for the use of the estimated yield 

from two individual loads comparing specific agronomic treatment applications.  Knowing that 

load to load variability exists, characterizing the variability can be used to create evaluation 

guidelines for individual load weights produced by a yield monitor.  Variability of the yield 

monitor is best described by the standard deviation of load error distribution.   The aggregated 

standard deviations are normally distributed with a mean of 3.3% and standard deviation of 1.2% 

(Figure 9).  This describes the average expected variation within the 38 data sets and 1,376 loads 

collected within this study.   
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Figure 9: Distribution of standard deviation of yield monitor error for individual data sets. 
 

 The resulting distribution of calibration standard deviations, was used to develop 

recommendations for comparing individual loads.  Assuming that error was normally distributed 

for a single yield monitor and mean error of the yield monitor was considered negligible as 

comparison of two samples harvested by the same machine would be subject to the same bias a 

general recommendation was developed.  Observing a single load, consider that the load is a 

sample from the population with a mean of 𝑥̅𝑥1 and standard deviation 𝜎𝜎1.  Where the load error 

comes from within the distribution is unknown, 𝑥̅𝑥1 ± 2 ∙ 𝜎𝜎1 (95%), and the actual standard 

deviation of the specific yield monitor calibration is generally unknown to producers as this type 

of analysis is not completed by producers.  Application of a prediction interval to the distribution 

of standard deviations produced in this study was used with the upper prediction interval tail to 

estimate the maximum expected standard deviation of a yield monitor not in this study. 
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Application of a Chi squared distribution properties to the predicted standard deviation for a 

single load produced an estimated yield difference requirement to determine if samples are 

statistically different.  A range of confidence levels when applied to the highest yielding sample 

based on the Chi squared distribution and utilizing the maximum level of the standard deviation 

prediction interval for the specified confidence level, produces a required yield difference to 

determine statistical difference between two independent yield samples (Table 7).  For example, 

to determine statistical difference between two samples at the 95% confidence level with the 

highest yielding sample at 12.5 Mg/ha (200 bu/ac) would require a difference of 1.95 Mg/ha (31 

bu/ac).  

 

Table 7: Required Yield Difference between Yield Samples to Determine from Statistically 
Different Populations 

Confidence 
Level 

Std. Dev. 
Upper Tail 

Required Yield 
Difference 

50% 4.0% 3.9% 
68% 4.4% 6.2% 
90% 5.2% 12.1% 
95% 5.6% 15.5% 
99% 6.4% 23.3% 

 

 The required differences appear large when considering higher yield crops.  A reduction 

in the required yield difference can be achieved by increasing the number of sample loads.  This 

is achieved by increasing the number of treatment replicates to reduce the effects of the yield 

monitor load to load variability by central limit theorem with the assumption that yield replicates 

from a treatment are normally distributed.  A minimum of three replicates per treatment would 

allow for the application of a student’s t-test between two specific treatments.  Additional studies 
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have recommended multiple replications for on farm agronomic studies to raise confidence in the 

use of yield monitor technologies in evaluating smaller yield differences (Nelson, et al., 2015).   

  

Field to field accuracy from full season corn harvest 

 The season long study began with the calibration of the yield monitor with a multipoint 

calibration and was not re-calibrated for the remainder of the season.  The total harvest observed 

3,900 Mg (186,000 bu) with six specific field sites visited.  The overall season error for the yield 

monitor based on total grain mass was 0.6% versus the scale cart. Daily performance of the yield 

monitor varied early in the season as moisture conditions widely varied and more consistent 

daily performance was recognized later in the season when operating in lower and more stable 

moisture conditions (Table 8).  Field A on 9/25/2015 observed a large increase in error due to a 

rain event while harvesting.  This caused a change in moisture content of the grain and 

additionally applied a large amount of surface moisture to the grain that had adverse effects on 

the impact based mass flow sensor.  Field B produced statistically different mean error for the 

two dates associated with the field.  Inspection of the flow ranges indicated that 9/28/2015 

operated with a mean of 16 kg/s, 9/29/2015 operated with a mean flow rate of 10 kg/s.  This is at 

the lower end of the manual calibration points and was reflected in a 5% shift in error for the day.  

The reduction in flow rates was due to down corn from high winds produced overnight between 

the two harvest days causing the operators to reduce harvest speed to accommodate for the crop 

conditions.   
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Table 8: Daily performance of calibrated yield monitor 

Date Field Mean 
Error 

Std. Dev. 
Error 

Mean 
MC% Loads 

Grain 
Harvested 

(MT) 
9/22/2015 A 2.5% 2.8% 21.1% 14 43.2 
9/23/2015 A 5.4% 3.5% 19.5% 13 68.7 
9/24/2015 A 6.1% 6.1% 21.3% 35 186.0 
9/25/2015 A 17.6% 7.2% 25.1% 32 178.6 
9/28/2015 A 9.3% 6.7% 24.9% 9 54.3 
9/28/2015 B -0.7% 1.7% 20.5% 53 325.0 
9/29/2015 B -5.9% 5.1% 19.5% 24 122.3 
10/1/2015 A 2.9% 3.1% 22.3% 59 356.6 
10/2/2015 A 2.9% 6.0% 22.6% 89 491.4 
10/5/2015 C -3.7% 1.7% 17.2% 23 134.6 
10/5/2015 D -4.8% 3.2% 18.5% 19 106.7 
10/6/2015 D -1.6% 1.5% 18.7% 70 447.7 
10/7/2015 D -3.2% 2.7% 18.3% 18 115.4 
10/8/2015 D -3.3% 6.9% 17.5% 19 113.8 
10/9/2015 D -3.8% 1.8% 17.1% 37 225.8 
10/12/2015 E -2.4% 1.8% 19.1% 27 171.1 
10/13/2015 E -1.7% 1.7% 18.9% 48 299.0 
10/16/2015 E -3.9% 5.9% 18.9% 9 55.6 
10/16/2015 F -4.7% 1.4% 16.8% 4 19.8 
10/17/2015 F -3.2% 1.5% 18.7% 65 265.8 
10/19/2015 F -2.4% 1.7% 15.6% 34 186.4 

 

 Considering the results of the field B data set error when analyzed by flow rate, an 

evaluation of load errors versus the mean mass flow rate for individual loads as reported by the 

yield monitor was conducted (Figure 10).  Load weight error was determined dependent on mass 

flow rate, emphasis on the low flow rates considering a large increase in error for loads with flow 

rates less than 10 kg/s.  Recall that low flow calibration points were produced at approximately 7 

and 10 kg/s to provide calibration coverage in the lower flow rate ranges.  This behavior of 
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accuracy at the fringes of the calibration ranges can be expected and has been observed by Burks 

(2003).   

 

 

Figure 10: Load weight error versus average mass flow as reported by the yield monitor for 
the load period for seasonal evaluation. 

 

 Observations were made in relation to the calibration point flow rates and the accuracy of 

the specific flow ranges.  The application of the calibration was unknown for a multipoint 

calibration, but focusing on specific regions, there was a distinct shift in mean error for a range 

based on flow rate and was already proven that flow rate influenced error for this study.  This 

hypothesis observed if the error was possibly related to the calibration point flow rates.  No 

conclusions could be drawn if the error by flow range was influenced by the calibration points 
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specifically because of the unknown application method of the calibration, but it was distinctly 

observable that the flow rate ranges produced statistically different mean error (Figure 11). 

 

 

Figure 11: 95% Confidence interval for error by load mean flow rate binned by flow 
ranges. 

 

 Observing field mean errors for the season calibration harvester, Figure 12, there was a 

large difference from field A to the remainder of the harvest.  When considering the overall field 

mean error was 0.4%, field A pulled the overall average high for the remainder of the season and 

produced a statistically different mean than the remaining fields.  The final five fields produced 

an average of -2.5% error with little variation and the mean moisture content dropped below 20% 

where field A ranged from 19.5 to 25% moisture content.  The overall performance of the yield 

monitor for the season was good considering the calibration was completed in field A and no 

adjustment to the calibration was made throughout the season. 
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Figure 12: Confidence intervals (95%) on a field basis. 
 

 Considering the large shift in field error from field A to field B, the relationship between 

load weight error and moisture content were observed (Figure 13).    This was an expected 

variation due to the changes in crop properties induced by moisture content.  Also note that the 

error greater than 10% observed in the evaluation of error by mass flow rate (Figure 10), was 

associated with high moisture content observed in Figure 13.  Below 20% moisture content there 

appears to be no significant variation or trend in error and that yield monitor performance was 

not influenced by moisture content in these ranges. 
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Figure 13: Load weight error versus yield monitor reported grain moisture for seasonal 
evaluation. 

 

 Binning the loads by moisture content ranges, loads with greater than 22.5% moisture 

produced a mean error greater than 7.5% (Figure 14).  The mean error is less than 3.8% for loads 

with moisture content less than 22.5%.  All ranges except for 15-17.5% and 17.5% to 20% were 

observed to be statistically different with the mean error ranging from -0.5 to -3.75% for loads 

with less than 20% moisture content.  The level of difference is much smaller below 20% 

moisture content, but the ranges are still statistically different from each other.  This supports 

existing literature on the influence of crop properties on the performance of the impact based 

yield monitor (Reinke, et al., 2011). 
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Figure 14: 95% Confidence interval for error binned by average yield monitor reported 
moisture content for the loads. 

 

 The season performance of the yield monitor for a one time calibration performed within 

expectations for an impact based yield monitor.  The influence of mass flow rate on performance 

was larger than expected due to the range of flow rates encompassed by the calibration points.  

The effects of grain moisture agree with previous studies on the influence of crop properties and 

their interaction with the impact based mass flow sensor.  This study encompassed a data sets of 

several magnitudes larger than previously reported in any yield monitor study and provides the 

most complete analysis of full season performance of a yield monitor.    

 

Load size effects on load variation 

 The general hypothesis was that larger load weights reduce the variability of yield 

monitor reported load weights.  The assumption was based on longer sustained flow rates reduce 
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the transitional flow rates from entering and exiting crop that contribute to yield monitor error.  

Additionally longer sustained flow reduces random error associated with the yield monitor via 

central limit theorem.   

 Evaluating the variance by load size, a test for equal variances was completed to compare 

variances for load ranges (Table 9).  Variances were found to be unequal between the 1-2 Mg 

versus 2-3 Mg and the 2-3 versus 5-6 Mg load size ranges. Standard deviations ranged from 

2.6% to 3.6% with no statistically significant decrease in variance for the larger load sizes. 

 

Table 9: Resulting p-values for equal variance test for load weight error by load size ranges 
(P <0.05 reject Ho of equal means) 

  Load Size Range (Mg) Std. Dev. 
Error 

Load 
Count     1 - 2 2 - 3 3 - 4 4 – 5 5 - 6 6 - 7 7 - 8 

Lo
ad

 S
iz

e 
R

an
ge

 (M
g)

 1 - 2 - 0.01 0.70 0.31 0.18 0.41 0.53 3.1% 176 

2 - 3 - - 0.01 0.73 0.00 0.41 0.78 2.6% 356 

3 - 4 - - - 0.23 0.34 0.29 0.44 3.2% 102 

4 - 5 - - - - 0.07 0.78 0.96 2.7% 41 

5 - 6 - - - - - 0.08 0.21 3.6% 52 

6 - 7 - - - - - - 0.88 2.8% 59 

7 - 8 - - - - - - - 2.7% 17 
 

 No reduction in variance was found for the data set observed by increasing load size.  

Previous studies indicated a reduction in the maximum errors for increased load size or harvested 

area from 5% to 3% harvesting wheat (Missotten, et al., 1996).  Observing maximum errors, 

there is a decrease in the maximum errors produced from the smallest load sizes to the largest 

(Figure 15).  However the reduction in a few maximum error points does not provide any 

statistical evidence that variation is reduced by increasing load size.   
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Figure 15: Individual load weight error with data set mean bias removed versus load 
weight size. 

 

Conclusions 

 Variability in the accuracy of the impact based mass flow sensor was characterized on a 

real time and full load basis.  The impact based flow sensor produced 3.8% mean standard 

deviation on a 1 Hz basis between data sets and 3.3% mean standard deviation for load weights 

by data set.  The daily standard deviation of load weight error for full season evaluation was 

3.5% in comparison to the individual field calibrations.  The similarities in the variation indicate 

that an appropriate characterization for the impact based yield monitor was completed in this 

study.  

 Yield monitor mean error on a field level for accurately calibrated yield monitors can be 

expected to vary between ±5% error and ±2.5% error for 70% of calibrations based on results of 

this study.  Recommendations for agronomic sized test plots were developed to define required 
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yield differences for statistical confidence levels and it is recommended to use replicates if 

attempting to discern between smaller yield differences.   

 The full season long evaluation of the calibration confirmed that crop variation affects the 

impact based yield monitor accuracy.  Performance did stabilize for grain moisture less than 20% 

in this study.  The accuracy of the calibration was mass flow rate dependent, but no conclusions 

can be drawn about the quality of the calibration as its actual application to convert force 

measurement at the impact plate to mass flow is unknown.  Operating in flow ranges at the fringe 

of the calibration ranges can be expected to reduce load weight accuracy, but a characterized 

level of variation can be expected within the defined calibration flow ranges. 
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CHAPTER 2: AUTOMATIC CALIBRATION SYSTEM FIELD PERFORMANCE 

Abstract 

 The previously developed automatic calibration algorithm was successfully integrated 

with an impact based yield monitor in this research.  The integrated system successfully 

calibrated the yield monitor and invoked central limit theorem with the resulting yield monitor 

accuracy reflecting the accuracy of the partial tank weight estimates.  The automatic calibration 

yield monitor produced accuracies that were consistently better than a one-time multipoint 

manual calibration on full season performance analysis by producing lower mean error for over 

75% of fields harvested.  The season long calibrations exceeded the accuracy targets of ±3% for 

50% of data sets for the S690 automatic calibration yield monitor, but failed for the S670.  The 

S670 was determined to have a bias in the automatic calibration algorithm and updates for future 

field deployment were quantified.   

Introduction 

 The operator calibrated impact based yield monitor performance was characterized in 

corn to expect field mean errors of ±2.5% for 70% of calibrations and ±5% overall for field level 

calibrated yield monitors.  This produces a best case scenario for impact based yield monitor 

performance in corn as calibrations are specific for field conditions.  Seasonal performance 

observed field mean errors ranging from 7.5% to -2.5% for a yield monitor with a one-time 

multipoint calibration.  This range was increased from the field level calibration results and 

larger for seasonal calibrations that encompass larger crop moisture ranges or for harvesters that 

receive a single point calibration.     

 The automatic calibration algorithm developed in Chapter II was integrated into an 

impact based yield monitor for the 2015 field season.  Additional support systems were 



34 
 

 
 

integrated with the yield monitor and automatic calibration algorithm to support storage and 

management of the increased calibration points.  Testing and evaluation was completed in corn 

with the focus of the research based on the following objectives: 

 

• Determine the correlation of the automatic calibration yield monitor accuracy with the 

accuracy of the algorithm generated partial tank weights. 

• Quantify performance of the automatic calibration algorithm integrated with the impact 

based yield monitor across field and seasonal performance.   

• Determine sources of variation in the calibration algorithm based on estimation equation 

parameters 

 

 USDA crop yield reporting from a yield monitor requires the yield monitor to be 

calibrated and verified to within 3% accuracy in the field it is calibrated (USDA, 2016).  The 

implementation of an automatic calibration system, the yield monitor calibration is continually 

updated as calibration points are created.  Extending the USDA requirement, the target 

performance of the automatic calibration yield monitor was ±3% on a field level for a minimum 

of 50% of a seasonal harvest to provide a higher level of compliance with the USDA 

requirement.  Additionally, full season mean error on total mass harvested should not exceed 

±2.5% and field mean errors should remain bounded at ±5%.  These were the specific target 

performance levels of the automatic calibration algorithm for the 2015 field season. 
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Materials and Methods 

Implementation of automatic calibration algorithm with impact based yield monitor 

 The previous chapter described the development of the automatic calibration algorithm 

that produces a partial tank weight to calibrate the yield monitor.  The algorithm was integrated 

with the current production impact based yield monitor embedded controller.  The embedded 

hardware controlled CAN bus communication to provide needed signals to the algorithm and 

managed the storage of any calibration or buffered values that required long term memory 

through a power cycle of the controller (Figure 16).  The automatic calibration algorithm was 

executed at 1 Hz in consistency with the development process.   

 

Figure 16: System diagram of the automatic calibration algorithm integrated with the 
production impact based yield monitor. 
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 Integration required added communication between the calibration algorithm and the 

yield monitor software.  A calibration status was provided from the automatic calibration 

algorithm with four states to indicate the current process to the yield monitor.  This was required 

to indicate to the yield monitor when a calibration is occurring and when it was completed (Table 

10).   

 

Table 10: Calibration states used in process with the yield monitor and automatic 
calibration algorithm. 

State Calibration State Description 

0 Not in a calibration mode, the grain tank is filled past the calibration 
ranges and needs emptied. 

1 The grain tank has been emptied and the algorithm is ready to calibrate. 

2 Calibration is active, a load cell has exceeded the required start 
threshold. 

3 
Calibration is complete, the automatic calibration algorithm estimates a 
mass flow rate and calculates a partial tank weight that is passed to the 
yield monitor software. 

 

 The calibration process began with an empty grain tank and progressed through the states 

as criteria was met based on the level of the load cell responses (Figure 17).  State 1, determined 

by the load cell responses being lower than a predetermined threshold that define an empty grain 

tank, was completed when the front left or rear left load cells reached the start threshold.  This 

transitioned the calibration state to 2 and remained in this state until the front center load cell 

response reached the defined stop threshold.  During state 2, the automatic calibration algorithm 

buffered load cell, pitch, roll, and yield monitor reported mass flow data. Simultaneously, the 

impact based yield monitor operated in calibration mode buffering force sensor data required for 

creating the relationship of grain mass to measured force.  At the transition from state 2 to state 

3, the buffered data was processed by the automatic calibration algorithm described in Chapter 2 
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and a resulting partial tank weight estimated.  Rejection criteria for the calibration load was also 

assessed at this time to determine if a partial tank weight was potentially inaccurate and was 

rejected if specific criteria was not met.  Upon passing, the partial tank weight was transferred to 

the calibration management system and was applied to the yield monitor calibration 

 

 

Figure 17: Calibration process described as load cells respond with state definition 
 

Description of calibration management system 

 Multi-point manual calibrations generally consist of four calibration points completed at 

different flow rates to best characterize the operational grain mass flow range for the specific 

harvester and crop conditions.  Manual calibrations are completed with a ground truth that has a 

low expected error and variability.  The automatic calibration algorithm increased the ground 
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truth load weight variability with their replacement by the partial tank weight estimations.  The 

expectation as characterized in Chapter 2, was that the partial tank weight on a field level would 

a mean error with a standard deviation of approximately 5%.  This required multiple calibration 

points per designated flow range and relied on central limit theorem to produce a yield monitor 

calibration that is representative of the automatic calibration algorithm mean error.   

 Combatting the increased variability and the potential of a new calibration point for each 

fill of the grain tank, a proprietary calibration management system was developed and 

implemented by the yield monitor manufacturer.  The description of the system remains in 

general terms due to the proprietary nature of the system, but an understanding of its generic 

operation is further described to understand its potential impact on the merging of the automatic 

calibration algorithm and the yield monitor.   

 The primary goal of the system was to provide a calibration point buffering system to 

accurately calibrate the yield monitor through averaging multiple calibration points while 

maintaining an accurate calibration across a wide range of flow rates.  Five flow rate ranges were 

determined based on the potential capacity of a harvester for a given crop with the capability to 

store up to a total of 50 calibration points with individual limits set for each flow range.  The 

management system operated the flow ranges as first-in-first-out (FIFO) buffers. A feature was 

added that detected shifts in the calibration and removed calibration points from the buffers that 

were determined to be inaccurate to the current relationship of measured force at the impact plate 

to grain mass flow rate.  The process of removing calibration loads from a flow range buffer of 

the calibration management system is referred to as a flushing event.  This example occurred 

entering a new field and the flushing operation can be observed for flow ranges 3 and 4 at load 
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three where a large number of the loads were flushed from the flow range buffers.  The flow 

range buffers can be observed refilling with calibration points post the flushing event. 

 

 

Figure 18: Example of calibration management operation for single field harvesting 
 

 This was typical operation of the calibration management system when a change in the 

relationship of measured force by the impact sensor to the mass flow rate was detected.  Once a 

specific flow range was filled to its capacity with calibration points, the range acted as a FIFO as 

observed for most loads after load 15 for flow range 3 (Figure 18).  Investigation into the 

performance of the calibration management is out of scope due to its proprietary nature, but was 

considered in the evaluation to understand shifts in performance in long term data sets.    
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Methodology for dynamic in-field yield monitor error analysis 

 Testing the developed automatic calibration yield monitor began in 2015 following the 

algorithm development from the 2013 and 2014 field data sets discussed in Chapter 2.  Data was 

collected for S690 and S670 grain tank configurations for the 2015 field season by Iowa State 

University and the project sponsor collaborating field teams.  Focus of the data collection and 

verification work occurred for both the S690 and S670 automatic calibration yield monitors in 

corn harvest.  Over 5,040 Mg (198,000 bushels) of corn were harvested for the S690 

configuration on seven different harvesters and 2,700 Mg (106,000 bushels) of corn were 

harvested for the S670 configuration on four harvesters (Table 11).   

 

Table 11: 2015 summarized harvest totals for S690 and S670 grain tank configurations 

Machine 
ID 

Automatic 
Calibration 
Algorithm 

Load 
Count 

Grain Harvested 
(Mg (bushels)) 

Manual 
Calibration 
Frequency 

Mass Flow Rate 
(kg/s) 

Mean 
Std. 
Dev. 

S690-B S690 721 4,070.6  (160,252) Season 19.9 3.9 
S690-F S690 52 188.3  (7,414) Field  18.8 4.8 
S690-G S690 56 112.8  (4,440) Field  14.2 3.4 
S690-H S690 56 117.  (4,607) Field  14.3 3.7 
S690-I S690 14 154.8  (6,095) Field  26.6 4.8 
S690-J S690 17 177.9  (7,004) Field  30.0 4.4 
S690-K S690 33 164.9  (6,491) Field  18.2 2.7 
S670-A S670 347 1,857.1  (73,110) Season 16.9 4.3 
S670-B S670 103 386.  (15,196) Field  22.0 5.6 
S670-G S670 84 390.8  (15,386) Field  18.2 3.1 
S670-H S670 30 113.3  (4,460) Field  18.2 3.1 

 

 Larger volumes of data were produced from S690-B and S670-A as these machines were 

located at Iowa State University and also produced more season long evaluations of the 

automatic calibration algorithm.  Machine naming is matched with Chapter 2 to provide context 

from season to season.  Data from harvesters S690-B, S670-A, and S670-B pre-2015 were used 
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for model training for their respective automatic calibration algorithm.  Described in Chapter 2, 

the same process for field data collection and production of a calibrated 1 Hz mass flow signal 

by the yield monitor manufacturer were employed for the 2015 harvest season. 

 The machines were equipped to operate both the automatic calibration algorithm and an 

operator produced manual calibration, producing parallel mass estimates from each calibration 

method.  A minimum of a four point calibration was completed on all harvesters with the 

frequency of calibrations listed in Table 11.  Season calibration indicates the harvester was 

manually calibrated once for the corn harvest season with a one-time multi-point calibration.  

Field calibration indicates the harvester was calibrated with a multi-point calibration for the 

respective data set.   

 The automatic calibration yield monitor operated continuously and no modifications were 

made throughout the season to the algorithm or the calibration management buffers.  This 

induced some variability in the results of the automatic calibration yield monitor for field level 

manual calibration comparisons as the calibration buffers in many cases were comprised of 

multiple days of calibration points.  This occasionally resulted in the automatic calibration being 

adjusted during collection of a data set as flushing events occurred to update the automatic 

calibration yield monitor for the specific crop conditions.  The actual adjustment of the 

calibration cannot be quantified as the direct application is proprietary to the yield monitor 

manufacturer.  The change in number of calibration points can be observed through diagnostics 

to indicate a shift occurred and the resulting shift in produced yield monitor error, but 

conclusions about the calibration accuracy changes can only be generalized. 

 The distributions of mean mass flow rate of data replicates were similar for the S690 and 

S670 field testing with means of 18.5 and 19.4 kg/s for the S670 and S690 grain tank 
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configurations respectively (Figure 19).  The S670 distribution was slightly larger with a 0.5 kg/s 

larger standard deviation, but overall produced similar distributions of flow rate.  The 

expectation was that the S690 grain tank machines would produce higher flow rates due to the 

larger throughput capability. 

   

 

Figure 19: Mean mass flow rate from calibrated mass flow for individual loads collected 
during the 2015 harvest season in corn. 

 

 The S690 configured harvesters were exposed to a higher range of moisture versus the 

S670, observing a mean of 14.6% yield monitor reported moisture for the S670 and 19.7% for 

the S690 automatic calibration yield monitors.  Several of the S690 harvesters began data 

collection earlier in the harvest season, gaining exposure to higher moisture corn.  This provided 

a strong evaluation data set for the S690 with exposure to a wider range of crop variation that 
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may not have been well represented in the data sets used to develop the automatic calibration 

algorithm.   

 

 

Figure 20: Yield monitor reported mean moisture content for individual loads collected 
during the 2015 harvest season in corn. 

 

 Dynamics experienced during the calibration period of the automatic calibration 

algorithm present potential influence on the accuracy of the partial tank weights.  Assessment of 

the produced partial tank weight by the automatic calibration algorithm and complete yield 

monitor in correlation with the dynamic effects of pitch and roll are out of scope for this 

research.  There are potential effects of pitch and roll on the performance of the impact based 

mass flow sensor that are not quantified in relation to their effects and the potentially induced 

errors cannot be decoupled from the automatic calibration algorithm based on the data available 
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in this study.  The automatic calibration yield monitor was exposed to a range of pitch and roll 

during the calibration process at ±4° of roll and ±2.5° of pitch (Figure 21).  Both grain tank 

configurations were exposed to similar variations in pitch and roll.  

 

 

Figure 21: Average pitch and roll experienced during automatic calibration period for 
individual calibration loads. 

 

Rejection of partial tank weights 

 Part of the integration process of the automatic calibration algorithm into the yield 

monitor was the implementation of a decision support system to reject a partial tank weight if 

there was a potential large error in partial tank weight estimation.  Specific pass or fail criteria 

was defined in Table 12 with three forms of requirements to accept a partial tank weight to the 

yield monitor calibration.  A poor estimation value by the calibration algorithm of the mean mass 

flow rate resulted in a failed calibration and was bounded by the requirement of estimating a 

positive flow rate and a maximum allowable flow rate of 60 kg/s.  The maximum flow rate 
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bound was based on a maximum potential flow rate capacity of the largest class of harvester.  

Pile formation was expected to start on the left side of the grain tank and continue to the right, in 

the case that the front center load cell exceeded the calibration start threshold before the front left 

and front right load cells, the calibration was failed.  This was assumed that the grain pile was 

forming uncharacteristically and accurate estimations about mass flow rate cannot be made.  The 

last algorithm specific failure case was a bounding of the calibration to 400 seconds.  This was 

specified based on flow rates theoretically being greater than 3 kg/s as average partial tank 

weights are 1,200 kg.  Additionally the embedded hardware was bounded by memory capacity 

limiting calibration buffer sizes to support robust algorithm operation. 

 

Table 12: Specific exit criteria to fail adding automatic calibration algorithm generated 
partial tank weights to the yield monitor calibration 

Category Description 
Physical 
Bounds 

Algorithm Failure Criteria 

Mass flow estimation out of range 0-60 kg/s 
Front center load cell responds 
before front or rear left load cells 

NA 

Calibration time exceeds 400 
seconds 400 seconds 

Machine Dynamics 

Mean Pitch ±3° 
Mean Roll ±2° 
Pitch Standard Deviation 1.6° 
Roll Standard Deviation 1.6° 

Mass Flow Variability 
Standard deviation as a fraction of 
the mean mass flow reported by the 
yield monitor 

0.7 

Manual override Engagement of the unloading auger 
during a calibration. NA 

 

 

 The mean pitch, mean roll, standard deviation of pitch and roll are calculated over the 

calibration period of the automatic calibration algorithm.  The bounds were determined based on 
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reducing the variability in partial tank weight estimates that are added to the yield monitor 

calibration.  The determination of the bounds was out of scope for this research and serve as 

specification to acceptable calibration points.   

 Engagement of the unloading auger caused an exit of the calibration process and no 

partial tank weight was estimated.  Engagement of the unloading auger removes grain from the 

grain tank and interferes with the characteristic pile formation in the grain tank.  This 

interruption in the calibration process cannot be accounted for and resulted in immediate failure 

of the calibration load. 

 

Results and Discussion 

Automatic calibration algorithm performance for 2015 field season 

 Manually calibrating the yield monitor, ground truth for the calibration was produced by 

a grain cart.  The accuracy of the grain cart weight was generally treated as absolute.  Chapter 1 

characterized the accuracy of the impact based yield monitor when calibrated on a field level.  

The yield monitors were calibrated and evaluated with the same grain carts removing potential 

bias from the evaluation.  Despite the ideal calibration, the yield monitors produced a range of 

field level mean error.  This implied that the resulting yield monitor produced error was a 

function of the applied calibration and the inherent variability of the impact based mass flow 

sensor.  The implementation of the automatic calibration algorithm introduced a new potential 

error source within the yield monitor calibration as the calibration weights now had level of 

variability and potential bias in comparison to a grain cart. Grain carts additionally have 

variability, but appear to have less than half the variability of the automatic calibration generated 

partial tank weights.  
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 Observations were made on the accuracy of the automatic calibration algorithm to 

estimate the mean mass flow rate of the calibration period.  Application of the regression 

algorithm developed in Chapter 2 to the 2015 harvest data produced a range of errors within ±5% 

for a harvester’s specific mean error except S690-F (Figure 22).  S690-F mean error of the mass 

flow estimates was approximately -10% and was beyond the expected bounds of mean mass flow 

error.  Initial observations, only S690-B was part of the training data set for the calibration 

algorithm in Chapter 2, this indicates that the algorithm is transferable across harvesters with the 

same grain tank configuration. 

 

 

Figure 22: Field performance of the automatic calibration algorithm to estimate mass flow 
rate for the calibration period.  Fall 2015 corn harvest for the S690 grain harvest. 

 

 Performance of the S670 automatic calibration algorithm in corn exhibited a general 

positive mean error for all machines (Figure 23).  S670-A appeared to produce distinctly 

different results from the other three tested S670 harvesters.  S670-A was the largest contributor 

to the calibration algorithm training model and appears to have biased performance of the mean 
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mass flow rate estimations.  The automatic calibration algorithm successfully estimated mean 

mass flow rates for harvesters outside of the development data set, observing harvesters S670-F 

and S670-G.   

 

 

Figure 23: Field performance of the automatic calibration algorithm to estimate mean mass 
flow rate for the calibration period.  Fall 2015 corn harvest for the S670 grain harvest. 

 

 
 The season mean produced partial tank weight error resulted with all S690’s except for 

S690-F and S690-I were within ±3% (Table 13).  S690-I was a single data set with limited 

samples reducing its significance in assessing a larger span of performance.  Large standard 

deviations were observed for S690 harvesters F, I, and J.  S690-I and S690-J were both based on 

single data sets and were exposed to variable flow rates during calibrations contributing to a 

wider range of error with S690-J maintaining an acceptable mean error.    The S670 

configurations produced consistent standard deviations of error with S670-A producing the best 
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results based on mean partial tank weight error.  This is expected with the largest portion of the 

S670 algorithm training data produced by S670-A. 

Table 13: Automatic calibration algorithm partial tank weight produced error by machine 
for the 2015 harvest season in corn. 

Machine 
ID 

Automatic 
Calibration 
Algorithm 

Partial Tank Weight 
Error Calibration 

Loads Mean Std. Dev. 
S690-B S690 2.2% 4.3% 564 
S690-F S690 -6.2% 8.9% 59 
S690-G S690 -2.8% 2.8% 49 
S690-H S690 0.4% 5.1% 42 
S690-I S690 -6.1% 9.1% 9 
S690-J S690 0.8% 10.6% 14 
S690-K S690 1.3% 3.7% 32 
S670-A S670 1.3% 5.2% 268 
S670-B S670 7.8% 5.9% 79 
S670-F S670 7.8% 6.6% 66 
S670-G S670 1.8% 2.9% 20 

 

 Error by data set was tared by the mean error for the data set and grouped by flow rate 

bins to observe the effects of mass flow rate on the accuracy of the algorithm removing data set 

bias (Figure 24).  As observed in Chapter 2 in the development of the algorithm, the field 

performance exhibited non-linearity in estimating the mass flow rate with higher errors at lower 

flow rates.  This was true for both the S670 and S690 grain tank configurations for the 2015 field 

season, indicating that there is a fundamental change in the grain pile formation process or in the 

force distribution within a grain pile caused by flow rate.   
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Figure 24: Performance of the automatic calibration algorithm to linearize mass flow rate 
for both grain tank configurations. 

 

  The accuracy of the partial tank weight system was evaluated across flow ranges for data 

set level produced mean error.  The hypothesis was that the data set mean error of the complete 

automatic calibration yield monitor and the automatic calibration partial tank weights were 

statistically equal on a 95% confidence level.  This hypothesis was used in the development of 

the automatic calibration algorithm to estimate the field performance and determine if 

performance of the algorithm was acceptable.  The calibration management system adds an 

additional layer of complexity between the partial tank weight estimates and the resulting yield 

monitor output.   The unknown yield monitor application process and calibration point retention 

of the calibration management system when a calibration flush occurs created additional concern 

about the resulting automatic calibration yield monitor to track the performance of the calibration 
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algorithm.  This assessment focused on determining the differential in error produced by the 

partial tank weights and the yield monitor to determine if there was a statistical difference.   

 The hypothesis of equal means was tested by applying a t-test with 95% confidence level 

to each data set comparing the produced distribution of error of the partial tank weight 

estimations of the calibration algorithm and the resulting yield monitor produced load weight 

error.  Data sets with less than 20 loads were excluded from the analysis to ensure that the 

calibration management system had opportunity to appropriately adjust the calibration with no 

restrictions based on the flushing of calibration loads from the calibration buffer.  The null 

hypothesis of equal means was rejected for 28% of data sets in the evaluation.  This resulted in a 

72% acceptance rate of equal means and was acceptable considering the potential error variation 

produced by the yield monitor that was characterized in Chapter 1.  Under ideal circumstances 

with individual data set calibrations, the yield monitor still produced mean errors in the ±5% 

error range for data set level yield monitor calibrations.  Observing the differential between mean 

error of the partial tank weight estimates and the yield monitor load weights on a data set basis 

indicated a similar level of variation reported in Chapter 1 (Figure 25).  Over 80% of data sets 

observed a differential error between the partial tank weights and the yield monitor load weights 

of ±2.5% and correlated with previous results. 
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Figure 25: Distribution of the differential automatic calibration mean mass flow rate error 
and the mean automatic calibration yield monitor load weight error by data set 
 

 This evaluation concluded that the calibration management system was effectively 

invoking central limit theorem to produce a yield monitor calibration that was representative of 

the partial tank weights produced by the automatic calibration algorithm.  The range of 

differential errors between partial tank weights and the automatic calibration yield monitor was 

in agreement previous evaluations of ideally calibrated yield monitors (Figure 7 vs Figure 25).     

 

Performance of field level manual calibrations versus automatic calibration 

 Evaluation of the yield monitor as calibrated manually and by the automatic calibration 

algorithm was completed in parallel for the 2015 test season.  Field testing was completed with 
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11 machines with two machines receiving a seasonal level manual calibration of the yield 

monitor for corn.  The remaining machines received data set level calibrations and are considered 

best case scenario for yield monitor performance.  This evaluation focuses on the performance of 

the yield monitors calibrated by the automatic calibration algorithm in comparison to the 

manually calibrated.  Evaluations were completed on the data set mean error of load weights 

produced by both calibration methods.   

 Field level multi-point manual calibrations produce a best case scenario for manually 

calibrated yield monitors as determined in Chapter 1.  Expected field mean errors range from 

±5% to ±2.5% for 70% of calibrations.  The automatic calibration system was not expected to 

achieve the same level of accuracy and was hypothesized based on the resulting data set mean 

error produced by the partial tank weight estimations when the verification data sets were 

evaluated from the development of the automatic calibration algorithm at the end of Chapter 2. 

 The mean error by data set of the manual calibrated and automatic calibration yield 

monitors was compared testing the null hypothesis of equal mean errors using a t-test at the 95% 

confidence level.  The manual calibration yield monitor produced statistically equal or more 

accurate mean error than the automatic calibration yield monitor (Table 14).  This was an 

expected result as the manual calibration was specific for field conditions and was calibrated 

using the grain cart or scale system that served as the ground truth.   
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Table 14: Field level calibration comparison and performance of manual and automatic 
calibration algorithm (shaded indicates equal means, 95% CI). 

Machine 
ID 

Site 
ID 

Total 
Loads 

Mean Error 
Mean Mass 
Flow (kg/s) 

Std. Dev 
Mass Flow 

(kg/s) 

Mean 
Moisture 
Content 

Auto Manual  

S690-F 102 8 -9.90% -5.90% 15.9 3.8 15.0% 
S690-F 103 24 -8.70% -9.60% 20.2 4.6 16.7% 
S690-F 104 20 -10.20% -10.00% 20.6 6.4 16.3% 
S690-G 19 28 -6.60% 4.00% 15.2 3.7 19.1% 
S690-G 20 28 -2.20% 1.30% 14.1 3.5 41.9% 
S690-H 21 28 2.60% 0.20% 14.3 3.6 17.0% 
S690-H 22 28 -4.10% 0.50% 13.9 3.3 16.9% 
S690-I 73 14 -0.90% -1.10% 28.6 3.8 26.0% 
S690-J 74 17 1.00% -0.70% 30.6 1.0 24.8% 
S690-K 106 33 -0.40% -1.70% 18.0 2.9 14.4% 
S670-B 68 29 8.80% -0.20% 17.3 4.6 18.8% 
S670-B 83 22 10.90% -0.10% 21.3 4.0 14.0% 
S670-B 88 56 3.40% -0.40% 21.0 5.3 13.6% 
S670-F 93 28 9.70% 2.60% 17.1 3.8 17.8% 
S670-F 95 52 6.40% 1.20% 22.6 5.5 15.4% 
S670-G 71 30 5.10% -0.80% 17.4 2.8 15.9% 

 

 Considering the USDA crop reporting requirements of ±3% on a field level for the field 

the calibration was completed (USDA, 2016), combined with the desire to meet the requirement 

for 50% of fields, the automatic calibration yield monitor exhibited a 50% success rate for the 

S690 algorithm and no success for the S670 algorithm.  Comparing to the manual calibration, 

there was only a 10% increase in success rate among the S690 harvesters, but a 100% success 

rate for the S670 harvesters. 

 A win/loss comparison was made between the manual calibration and automatic 

calibration yield monitors by the differential of the absolute mean data set error of the respective 

calibration methods.  The results provides an indication of the winning calibration, positive result 
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indicates the automatic calibration was better, and the magnitude of the win.  The S690 

automatic calibration won 30% of comparisons and lost 30% others by less than 1% error 

magnitude (Figure 26).  Maximum losses for the S690 occurred with 4% differential error to the 

manual calibration.  The S670 automatically calibrated yield monitor lost all comparisons to the 

manual calibration with a minimum loss of 3% and a maximum loss of 11% (Figure 27).  The 

spread of differential error of the S670 is double that produced by the S690 calibration 

comparisons. 

 

 

Figure 26: Win/Loss of S690 automatic calibration algorithm versus the manual calibration 
yield monitor data set mean error. 
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Figure 27: Win/Loss of S670 automatic calibration algorithm versus the manual calibration 

yield monitor data set mean error. 
 

 
 The resulting comparison to the data set level manual calibration of the S690 automatic 

calibration algorithm was better than expected and indicates the transferability of the algorithm 

to machines outside of the training data set.  The 30% win rate of the automatically calibrated 

yield monitor for the S690 and at worst case scenario lost by 4% to an ideally applied manual 

calibration is considered excellent given the range of crop moistures and conditions covered.  

The S670 appeared affected by a calibration bias as all automatic calibration error was positive in 

the range of 3.4% to 10.9% with the manual calibration ranging from -0.8% to 2.6% (Table 14).  

 Comparing the overall performance of the manual and automatic calibration systems for 

summarized data set mean error, the manual calibrations for both the S690 and S670 grain tank 
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configurations produced more accurate means (Table 15).  A t-test applied at the 95% confidence 

level resulted in the S690 configuration having no statistical difference in the distributions of 

data set mean error for the manual and automatic calibration yield monitors with the S670 

automatic calibration algorithm failing the test of equal means to manual calibration.  

Application of a test of equal variances at the 95% confidence level revealed that the automatic 

calibration and manual calibration yield monitors produced equal variance for both automatic 

calibration algorithms. 

 

Table 15: Summary statistics of data set mean error for S670 and S690 yield monitors 

Model Data Sets 
Auto Calibration Manual Calibration 

Mean Std. Dev. Mean Std. Dev. 
S690 10 -4.0% 4.7% -2.3% 4.7% 
S670 6 7.4% 2.9% 0.4% 1.3% 

 

 If the overall bias error of the S670 calibration algorithm from Table 15 was eliminated 

from the mean error of each data set, removing the calibration algorithm bias, the S670 produced 

wins for 33% of the comparisons and a differential error of a max win by 0.3% and a max loss by 

3.6%.  Accordingly the S690 produced wins 40% of comparisons with the error ranges 

increasing to a maximum win of 5% and a maximum loss of 6%.  By this assessment it appeared 

that the S690 bias was limited and from observations of individual data sets, the bias error was 

driven primarily by the results of S690-F data sets.    

 

Full season performance of S690-B and S670-A 

 The manual calibration performance of S690-B was discussed in Chapter 1 as the full 

season evaluation of a manual calibration.  S690-B was manually calibrated on September 22nd, 
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2015, at 22% MC with a multipoint calibration completed at approximately 7, 10, 14, 20, and 24 

kg/s with the final data set harvested October 19th, 2015.  A manual calibration that is completed 

early in the harvest season and unchanged for the remainder of the season would be considered 

the most common operation of a grain yield monitor.  In many cases the calibration is completed 

with less calibration points than used in this study.  The automatic calibration system began the 

season operating with the calibration from the previous harvest season in the calibration 

management system.  This would be considered normal operation of the automatic calibration 

yield monitor at beginning of a harvest season as the calibration from the previous season would 

not be cleared from the yield monitor by the operator.   

 The automatic calibration yield monitor resulted in large errors at that start of the season 

as the calibration load buffer contained calibration points from the previous season.  

Approximately 15 loads into the season, the calibration management system flushed a large 

volume of calibration points from the flow ranges of 2, 3, and 4 of the calibration FIFO (Figure 

28).  The resulting error was corrected from an average of 18% to 2% error.  The initial flush was 

a result of the calibration management system recognizing a difference in the existing 

relationship of force at the impact sensor to the grain mass flow rate.  This type of flushing event 

was repeated regularly throughout the season, most notably in conjunction with grain moisture 

content changes.  
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Figure 28:  Load weight errors produced by the yield monitor for the automatic calibration 
and manual calibration by harvest date for S690-B. 

 

 S670-A was calibrated October 14th, 2015 at 14% MC with a multipoint calibration at 10, 

14, 18, and 24 kg/s with the final data set collected on October 30th 2015.  The automatic 

calibration algorithm started from the manufacturer’s defaulted calibration and the system was 

operated for approximately 20 loads before the manual calibration was completed.  The pre-

manual calibration yield monitor can be observed by the large errors on 10/12 and 10/13 (Figure 

29).  The automatic calibration began from the default calibration with no calibration loads in the 

calibration management system.  S670-A observed limited moisture changes throughout the 

season and the increase in moisture content can be observed in the final field of the season 

started on October 24th.  
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Figure 29: Load weight errors produced by the yield monitor for the automatic calibration 
and manual calibration by harvest date for S670-A. 

 

 S690-B error for the complete season based on total mass harvested resulted in 2.2% 

error and 0.6% for the automatic calibration algorithm and manual calibration respectively. 

Utilizing a t-test at the 95% confidence level, the automatic calibration yield monitor was 

compared to the manual calibration yield monitor with better accuracy defined as the yield 

monitor that produced the smallest absolute mean error for a given data set when the null 

hypothesis of equal means is rejected.  Observing data sets that produced statistically different 

means, the automatic calibration yield monitor produced higher accuracy results for 52% of data 

sets, 29% of data sets exhibited no statistical difference, and the manual calibration produced 

better accuracy for 19% of the data sets (Table 16).  The automatic calibration yield monitor 

produced better accuracy for 73% of data sets where data set means were determined to be 

unequal by the t-test.   
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Table 16: Performance comparison of the automatic calibration and manual calibration 
yield monitors for S690-B (shaded indicates equal means, 95% CI) 

Date Field Total 
Loads 

Mean Error Mass Flow (kg/s) Mean 
Moisture 
Content Auto Manual Mean Std. Dev. 

9/22/2015 A 31 10.4% 1.5% 17.1 4.1 21.2% 
9/23/2015 A 13 5.7% 5.4% 18.2 3.3 19.5% 
9/24/2015 A 35 5.8% 6.1% 22.3 3.0 21.3% 
9/25/2015 A 33 3.5% 17.7% 19.5 1.9 25.1% 
9/28/2015 A 9 2.4% 9.3% 17.1 3.2 24.9% 
9/28/2015 B 53 3.8% -0.7% 15.5 2.0 20.5% 
9/29/2015 B 24 12.4% -5.9% 9.1 1.2 19.5% 
10/1/2015 A 59 2.8% 2.9% 18.9 1.8 22.3% 
10/2/2015 A 89 0.8% 2.9% 20.5 3.7 22.6% 
10/5/2015 C 23 1.4% -3.7% 17.1 3.1 17.2% 
10/5/2015 D 19 2.2% -4.8% 14.7 2.9 18.5% 
10/6/2015 D 70 1.0% -1.6% 17.3 2.1 18.7% 
10/7/2015 D 18 -0.4% -3.2% 16.1 2.7 18.3% 
10/8/2015 D 19 1.3% -3.3% 16.1 3.9 17.5% 
10/9/2015 D 37 3.1% -3.8% 15.7 2.9 17.1% 
10/12/2015 E 28 -2.6% -2.4% 17.7 3.0 19.1% 
10/13/2015 E 49 0.9% -1.7% 16.9 2.7 18.9% 
10/16/2015 E 9 5.8% -3.9% 13.2 2.4 18.9% 
10/16/2015 F 4 -1.7% -4.7% 15.2 3.2 16.8% 
10/17/2015 F 65 -1.2% -3.2% 19.7 2.2 18.7% 
10/19/2015 F 34 -2.6% -2.4% 19.8 1.9 15.6% 

 

 Field B produced a large positive error on 9/29/2015, corresponding with a negative shift 

in the manual calibration.  This was caused by operating at lower flow rate conditions due to 

down corn that forced the operator to reduced harvest speeds.  The decrease in flow rate 

correlates with the expected increase in yield monitor error based on the results presented in 

Figure 24 where flow rates below 10 kg/s produced significantly higher partial tank weight 

errors.   
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 The results were observed on a data set basis as a win or loss comparison by subtracting 

the absolute error of the automatic calibration from the absolute mean error of the manual 

calibration yield monitor resulted in 63% win rate for the automatic calibration yield monitor 

(Figure 30).  The automatic calibration yield monitor lost by a maximum of 8.9% and won by a 

maximum of 14.2%.  The worst loss was produced from the first data set with the automatic 

calibration yield monitor requiring a number of loads to appropriately update the calibration 

through the management system.  The largest win was produced during a rain event on 9/25 

where the automatic calibration yield monitor compensated for the grain properties change and 

the manual calibration unable to compensate for the adverse effects produced by the excess 

surface moisture. 

 

 
Figure 30:  Win/Loss of the automatic calibration yield monitor versus the manual 

calibration yield monitor on a data set level for S690-B. 
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 Aggregating data sets and observing errors on the field level, the automatic calibration 

algorithm won 83% by a minimum magnitude of 1.3% (Figure 31).  Field means are a common 

level of comparison in production agriculture for accuracy and yield.  The superior performance 

of the automatic calibration yield monitor produced a single loss, occurring in field B that was 

largely driven by the single day of low grain mass flow harvesting (Table 17).  This comparison 

to the most common level of manual yield monitor calibration proves that the automatic 

calibration system functions in a desired manner by improving the accuracy of the yield monitor 

and requiring no interaction from the operator.   

 

 

Figure 31: Win/Loss of the automatic calibration yield monitor versus the manual 
calibration yield monitor on a field level for S690-B. 

 



64 
 

 
 

 Additionally, a t-test was applied to test for equal field mean error comparing the 

automatic and manual calibration yield monitors at the 95% confidence level.  All fields were 

determined to have unequal means for S690-B.  Field level performance, 33% fields failed to 

maintain ±3% accuracy as defined for bounds of the automatic calibration yield monitor for 

USDA crop yield reporting requirements, but met the stated passing criteria requiring a 50% 

success rate.  However the manual calibration failed at a 50% rate for the same set of fields. 

 

Table 17: Field level performance of the automatic and manual calibration yield monitors 
for S690-B. 

Field Loads Automatic Calibration Manual Calibration Differential 
Absolute Error Mean Std. Dev Mean Std. Dev 

A 269 3.6% 6.4% 5.3% 7.2% 1.7% 
B 77 6.4% 5.0% -2.3% 4.0% -4.1% 
C 23 1.4% 4.8% -3.7% 1.7% 2.3% 
D 163 1.5% 4.4% -2.9% 3.2% 1.4% 
E 86 0.3% 5.1% -2.1% 2.5% 1.9% 
F 103 -1.7% 3.3% -3.0% 1.7% 1.3% 

 

 Evaluating the S670-A following the same process as S690-B, based on total mass 

harvested, S670-A automatic calibration yield monitor produced 0.3% error.  The manual 

calibrated yield monitor for corn harvested after completion of the manual calibration of S670-A 

produced -2.0% error and -1.1% error for the full season.   

 A t-test for comparing equal mean error produced by the manual and automatic 

calibration yield monitors was completed on a data set basis at the 95% confidence level.  The 

automatic calibration and manual calibration percentages are derived from data sets with unequal 

means and the data set with smallest absolute error is determined as the more accurate 

calibration.  When considering equal means, the yield monitors produced equal error for 27% of 

data sets, automatic calibration was more accurate for 53% of data sets, and the manual 
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calibration 20% of data sets.  The first two days of harvesting 10/12 and 10/13, the manual 

calibration was not yet complete and was potentially not a fair comparison, but is realistic to 

regular harvesting conditions as a manual calibration may not be completed for several days into 

a season.  Some producers rely on a secondary service such as a seed dealer to provide a weigh 

wagon to support a calibration which may not be available on the first days harvesting, leaving a 

producer with potentially several days of inaccurate yield data.  Comparing this to the S690-B 

results, the automatic calibration converged within 15 loads due to flushing old calibrations and 

converged for S670-A within 7 loads.  Despite a potential convergence time, the operator was not 

reliant on a ground truth source to calibrate the yield monitor and emphasizes the advantages of 

the automated system.   

 

Table 18: Performance comparison of the automatic calibration and manual calibration 
yield monitors for the S670-A (shaded indicates equal means, 95% CI), (*) by manual 

calibration indicates calibration was not yet complete) 

Date  Field Total 
Loads 

Mean Error Mass Flow (kg/s) Mean 
Moisture 
Content Auto Manual Mean Std. Dev. 

10/12/2015 G 7 9.3% *23.6% 6.9 1.6 13.4% 
10/13/2015 G 13 2.1% *15.2% 8.6 2.2 13.4% 
10/14/2015 G 12 5.7% 1.2% 14.2 3.5 13.1% 
10/16/2015 G 25 3.6% -1.5% 12.4 3.0 13.1% 
10/17/2015 H 5 7.2% -0.1% 14.9 4.1 13.0% 
10/19/2015 H 24 0.7% -1.9% 16.5 3.5 12.3% 
10/19/2015 I 13 3.9% 1.5% 12.2 4.1 11.8% 
10/20/2015 I 46 -1.0% -2.0% 14.9 3.8 12.0% 
10/21/2015 I 38 0.0% -1.4% 14.1 3.0 12.4% 
10/22/2015 I 21 -2.5% -5.7% 17.1 4.1 12.5% 
10/24/2015 J 8 1.6% 1.0% 12.1 2.0 15.7% 
10/26/2015 J 52 0.2% -1.4% 15.9 4.9 15.7% 
10/27/2015 J 16 0.1% -2.9% 15.6 2.5 15.6% 
10/29/2015 J 32 -1.4% -2.7% 16.1 3.5 16.1% 
10/30/2015 J 35 0.1% -1.6% 17.0 3.9 16.3% 
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 Comparing performance as win/loss as previously completed for S690-B, the automatic 

calibration produced wins for 73% of data sets (Figure 32).  The large magnitude wins resulted 

from pre-manual calibration completion.  The worst loss occurred at a field change with a five 

load data set.  The large magnitude wins continue to emphasize the benefits of the calibration 

system reducing operator concern with organizing early season calibrations to ensure accurate 

yield data.   

 

 

Figure 32: Win/Loss of the automatic calibration yield monitor versus the manual 
calibration yield monitor on a data set level for S670-A. 

 
 Comparing wins and losses on a field level, the automatic calibration yield monitor won 

75% of comparisons, with the only loss occurring by less than 0.25% error (Figure 33).  The 

absolute differential error was small for the three data sets with the only manual calibration win 

from data set H with both yield monitor calibrations within ±2% error (Table 19).  The automatic 
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calibration produced acceptable results for the USDA crop reporting for 75% of data sets 

similarly to the manual calibration.  The performance of the automatic calibration yield monitor 

exceeded success requirements for the USDA crop reporting. 

 

Figure 33: Win/Loss of the automatic calibration yield monitor versus the manual 
calibration yield monitor on a field level for S670-A. 

 
 

Table 19: Field level performance of the automatic and manual calibration yield monitors 
for S670-A. 

Field Loads 
Automatic Calibration Error Manual Calibration Error Differential 

Absolute 
Error Mean Std. Dev Mean Std. Dev 

G 57 4.4% 3.9% 5.9% 11.4% 1.5% 
H 29 1.8% 3.7% -1.6% 4.6% -0.2% 
I 118 -0.9% 3.4% -2.1% 5.3% 1.2% 
J 143 -0.1% 2.8% -1.8% 3.6% 1.7% 
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Performance investigation of S690 configuration of automatic calibration algorithm 

 Field performance of S690-F produced an average of nearly -10% and appeared as 

statistically different to the remainder of S690 field level calibration results.  Investigating the 

cause of the large negative offset, the accuracy of the automatic calibration algorithm to estimate 

mean mass flow rates is observed to identify if the yield monitor performance was representative 

of the algorithm produced error.  The resulting S690-F estimated mean mass flow rates for the 

calibration period correlated with the field produced results (Figure 34).  I 

 

 

Figure 34: Field performance of the automatic calibration algorithm to estimate mass flow 
rate for fall 2015 corn harvest for the S690 grain harvest. 

 

 Investigating further, an analysis of specific regression parameters was completed on the 

S690-F data sets and compared to S690-B data set produced parameters chosen specifically from 

a data set with similar moisture content.  The chosen S690-B data set was collected on 

10/19/2015.  The yield monitor system reported a mean moisture content of 15 to 17% moisture 

content for the data sets harvested on 11/16/2015 – 11/18/2015 of S690-F.  Observing the ratio of 
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the load cell rate of change for the full calibration to the mean mass flow rate of the calibration 

period was produced and observed (Figure 35).   

 

 

Figure 35: Ratio of load cell rate of change (kg/s) to mass flow rate (kg/s) for the front 
center and front left load cells by date harvested for S690-F.   

  

 The expected ratio for the front center load cell was 8% lower than expected and the front 

left load cell ratio was 15% lower than expected.  The expectation was derived from the example 

S690-B data set.  This corresponds with the low mass flow rate estimations by the calibration 

algorithm with the front center load cell response being the most influential parameter in the 

estimation algorithm.  Some variation in load cell rates of change from data set to data set can be 

expected, but the magnitude of difference was outside an acceptable range.   
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 Determining the potential source of the bias, the load cell signals were assessed to 

observe if there was a visible difference in the fundamental load cell response.  The comparison 

was completed with the aforementioned data sets from S690-B and S690-F.  The observation 

process was completed by plotting load cell responses with the zero bias offset applied by the 

accumulated mass in the grain tank.  The grain tank mass was estimated by integrating the 

ground truth mass flow provided by yield monitor manufacturer.  Plotting by accumulated mass 

allowed for observation of all load cell responses regardless of flow rate as on the same x-axis. 

Observing as a time response, the load cells would have to be binned by flow rate to make any 

useful comparisons.   

 The front center load cell zero bias for S690-F was larger than required (Figure 36).  The 

incorrect bias caused the load cell response to be less than zero when there was no grain on the 

load cell.  The process for creating the load cell zero bias or tare value is completed only when 

the grain tank is emptied with the separator of the harvester disengaged and the grain tank is 

completely emptied.  During the last load cell zeroing event, a larger than necessary offset was 

created for the front center load cell.  The source of this large tare value was unknown and could 

have been caused by several options that are out of scope for this research.  However, the effects 

of an incorrect bias are evaluated.  It was found that the front center and front left load cells had 

larger than necessary load cell bias values that resulted in negative load cell values when tared 

during an empty grain tank.  The effects of the offset caused an increase in the length of the 

calibration by approximately 13% if constant mass flow was assumed.  Extending the calibration 

length reduced the load cell rate of change parameter specifically for the front center load cell.  

Additional effects in the embedded implementation, the load cell values are tared and stored as 

unsigned integers, flooring any values less than zero to zero.  This compounded the issue for the 
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front center and front left load cells as the time period of the calibration was extended and the 

load cell response was still limited to the tared response only greater than zero.   

 

Figure 36: Front Center load cell responses by accumulated grain mass for single data sets 
for separate machines operating in approximately 17% MC corn for the specified 

calibration period for the automatic calibration algorithm. 
 

 When a correction was applied to the load cell zero bias for S690-F, the ratio of load cell 

rate of change to mass flow correlated with the results from S690-B for the front center load cell 

rate of change (Figure 37).  This correction affected both the front left and front center load cell 

responses, but did not match the front left load cell response of S690-F and S690-B.  There was a 

larger variation in the load cell rate of change observed for the front left load cell in Chapter 2 

and the response was determined to be more dependent on grain properties. 
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Figure 37: Ratio of load cell rate of change (kg/s) to mass flow rate (kg/s) for the front 
center and front left load cells for S690-F with expected results based on S690-B.   

 

 
 The discovered issue with the S690-F load cell zero bias led to an assessment of the 

effects of the load cell zero bias on the relationship of load cell rate of change to mass flow for 

all S690 harvesters.  Observed in all S690 data, the load cell zero bias had a significant impact on 

the ratio of load cell rate of change to mass flow rate  for the front center load cell (Figure 38).  It 

was determined that the regression needed improvements minimize the effects of inaccurate load 

cell bias values.  An ANOVA was completed relating the ratio of load cell rate of change to mass 

flow rate and the zero bias of the load cells.  Results of the ANOVA indicated the zero bias of the 

front center and front left load cells was statistically significant to ratio of the load cell rate of 
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change to mass flow for all three load cells.  This enforced the importance of accurate zero bias 

on a machine or data set basis. 

 

Figure 38: Influence of the Front Center load cell tared value on the calculated front center 
load cell rate of change ratio to the mass flow rate for S690 harvesters.   

 

 The auto calibration algorithm was updated to adjust the load cell zero bias for each S690 

data set.  The 2015 data sets were reprocessed with same mass flow regression estimation to 

determine if there was a performance improvement for the correction.  A large decrease in partial 

tank weight error was observed for S690-F with slight changes for the other S690 harvesters 

(Table 20).  The overall mean error was increased, but the standard deviation of mass flow 

estimations was reduced by correction of the load cell bias.  A refactoring of the regression 

algorithm was recommended with active load cell bias correction.  Further analysis is out of 
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scope for this study but is considered for continuous improvement to the automatic calibration 

algorithm.   

 

Table 20: Partial tank weight performance adjustments post application of load cell zero 
bias correction 

Machine 
Mean Standard Deviation 

Fall 
2015 

Zero Bias 
Corrected 

Fall 
2015 

Zero Bias 
Corrected 

S690-B 1.7% 3.0% 5.2% 4.6% 
S690-F -10.3% -3.2% 2.7% 3.8% 
S690-G -2.5% -1.4% 3.0% 3.0% 
S690-H -1.3% 1.9% 5.8% 4.4% 
S690-I -5.9% -4.7% 2.9% 6.8% 
S690-J 1.6% 3.9% 9.1% 7.5% 
S690-K 1.4% 2.7% 3.5% 3.5% 
Overall 0.6% 2.2% 5.3% 4.8% 

     

 

Automatic calibration algorithm improvements 

 Following the 2015 harvest season the regression equation development process was 

evaluated and specific improvements were identified.  The S670 field testing results indicated 

that the calibration was heavily biased to S670-A.  Methods to reduce specific machine bias in 

the regression equation process were implemented and are feature option part of the Matlab 

LinearModel.fit regression object.  A weighting function was invoked that allowed for 

application of specific weighting for individual replicates when training the regression algorithm.  

Even weighting was then applied on a machine basis, giving equal contribution to the regression 

process for all harvesters. 

 There were additional concerns related to the randomized selection of data replicates and 

if the randomization selection process of specific data replicates to the algorithm training set 
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would produce select the same parameters for the mean mass flow estimations.  A simple set of 

repeated tests creating training data sets through the randomized selection process described in 

Chapter 2 and completing the regression training that produced mass flow estimation equation.  

The selected parameters revealed specific parameters were continually selected, but some 

parameters were selected depending on the training data set.  The regression process was updated 

to complete the randomization and regression training process 25 times.  The resulting unique 

combination of parameters selected most often was selected as the specific regression equation.  

For example, the unique combination of front center and front left load cell rate of change were 

selected as the best regression model 14 of 25 times, this combination of parameters would be 

selected as the regression equation.  The resulting 14 slightly different sets of equations were 

evaluated on the residuals and the final regression equation selected based on minimizing mean 

error and standard deviation on grain tank model and machine level.  The final calibration 

selection required a level of observational decisions based on resulting error to select the most 

robust regression equation. 

 This process was completed for the S690 and S670 corn calibration algorithms and the 

resulting error of the produced partial tank weights assessed to determining the level of 

improvement.  Data from the S670-A harvester was excluded from the S670 training data set.  

The decision to remove the S670-A data from the training set was based on the bias the machine 

was invoking onto the calibration and the resulting produced partial tank weights confirmed the 

machine as statistically different.  Updates improved the mean error of the majority of S670 

harvesters with little to no change to the S690 harvesters (Table 21).  S670-A’s exclusion from 

the regression resulted in a -5.4% mean error of the partial tank weights, but the improvements to 
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S670-B, F, and G were required.  Note that the correction for incorrect bias was not implemented 

in the observed update.   

 

Table 21: Partial tank weight error and resulting standard deviation on a machine level for 
updated automatic calibration algorithm 

Calibration 
Algorithm Machine 

2015 PTW Error FY2016 PTW Error 
Error Std. Dev Error Std. Dev. 

S690 S690-B 1.9% 5.2% 1.8% 5.2% 
S690 S690-F -10.6% 2.7% -10.7% 2.7% 
S690 S690-G -3.1% 3.0% -3.1% 3.0% 
S690 S690-H -1.1% 5.8% -1.1% 5.8% 
S690 S690-I -1.3% 2.9% -1.3% 2.8% 
S690 S690-J 2.2% 9.1% 2.1% 9.1% 
S690 S690-K 1.0% 3.5% 1.0% 3.5% 
S670 S670-A 0.2% 6.0% -5.4% 6.1% 
S670 S670-B 7.0% 6.3% -0.9% 5.8% 
S670 S670-F 7.4% 6.7% -0.9% 7.6% 
S670 S670-G 5.6% 3.3% -1.4% 3.0% 

 

 

Conclusions 

 Field deployment of the automatic calibration algorithm combined with a calibration 

management system observed that the completed system successfully invoked central limit 

theorem to the generated partial tank weights.  The resulting yield monitor calibration reflected 

the accuracy of the partial tank weights within the expected bounds of accuracy for an impact 

based yield monitor. 

 Field testing revealed that the automatic calibration algorithm successfully calibrated the 

impact based yield monitor.  Automatic versus manually calibrated yield monitors for data set 

level calibrations, produced automatic calibration wins for 30% of S690 data sets and 0% for the 

S670 calibration.  However when the automatic calibration yield monitor was compared to a 
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seasonal calibration, the automatic calibration yield monitor produced more accurate mean field 

error for 75% and 83% of fields for the S670 and S690 calibration algorithms respectively.  The 

automatic calibration algorithm improved the yield monitor calibration and removed otherwise 

required operator interaction for manual calibrations. 

 The USDA reporting accuracy goal was achieved for both season long calibrations and 

the S690 data set level calibration tests, but failed for the S670 data set level calibrations.  

Improvements implemented in the regression process improved partial tank weight error means 

to an acceptable for the S670 and removed the bias created by S670-A.  The application of the 

automatic calibration algorithm to harvesters outside of the training data was proved through the 

results of the 2015 field season. 
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CHAPTER 3: CONCLUSIONS  

 Serving as the primary source for site-specific farming benchmarking and USDA yield 

reporting, the yield monitor is a valuable tool for producers.  When accurate, it produces valuable 

spatial data that is otherwise unavailable and enables instant evaluation of cropping practice 

decisions.  Accuracy of the produced data drives better business decisions that operates on 

variable margins and deals with a constantly changing environment of hybrids and recommended 

practices that benefit from field evaluations to determine their value to a producer.  

Manufacturers are also pushing the limits of spatial placement of chemicals when application 

rates are determined and evaluated from spatial yield data.  This requires accuracy not only on 

larger aggregate weights, but also on a specific spatial point or load level. 

 Characterization of current impact based yield monitors in this research extended beyond 

previous published works to provide observations of the accuracy of well calibrated yield 

monitors.  The number of replications produced in this study allowed for strong conclusions to 

be drawn about impact based yield monitor accuracy that previously were limited by small 

samples sizes.  The analysis developed the boundaries for expected in field yield monitor 

performance from an unbiased research perspective that previously relied on manufacturer 

claims of accuracy.  The developed guidelines for yield comparisons for agronomic test plots 

provided yield differential bounds and recommendations that guide decision making processes in 

determining the importance of replicates when utilizing yield monitors for single load 

comparisons. 

 The season long evaluation of yield monitor performance developed knowledge of the 

effects of a seasonal multipoint calibration and the driving factors that determine if the 

calibration remains relevant and has no literature to compare against.  Test stand evaluations had 
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previously been completed in this area to determine some of the factors driving yield monitor 

shifts in accuracy, but the range of moisture contents, grain quality, flow rates, and number of 

replicates had not been produced in lab environments.  

 The development of the automatic calibration algorithm was proven to effectively 

estimate partial tank weights and successfully calibrate the impact based yield monitor.  This 

process removed the operator from the calibration, a process that has not changed since the 

introduction of the yield monitor and improved seasonal yield monitor calibration accuracy.  The 

process and algorithm developed in Chapter 2 provides the knowledge to extend the automatic 

calibration yield monitor to multiple crop types and machine configurations.  Additionally, the 

calibration algorithm can be coupled with any yield monitor system for calibration and is not 

reliant the impact based yield monitor.   

 The growth of data farming in recent years with services aggregating yield and 

agronomic data to provide recommendations rely on accurate yield data to produce founded 

recommendations to their customers.  The work presented provided a unique solution to a 

common issue presented in a continuously data driven environment.  Regardless of the 

variability of the calibration system, the automation removes operator error from the process and 

ensures that the harvesters are calibrated.  The known accuracy of the partial tank weight system 

coupled with the characterization of the impact based yield monitor error provides the 

knowledge needed to make decisions from yield data that is produced from different harvester if 

calibrated with the automatic calibration system. 
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