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Abstract

In this work, the electrostatic response of an electrolyte solution to a spherical ion is studied with a Gaus-

sian field theory. In order to capture the ionic correlation effect in concentrated solutions, the bulk dielectric

response function is described by a two-Yukawa response function. The modified response function of the

solution is solved analytically in the spherical geometry, from which the induced charge density and the

electrostatic energy are also derived analytically. Comparisons with results for small ions in electrolyte

solutions from the hyper-netted chain theory demonstrate the validity of the Gaussian field theory.
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I. INTRODUCTION

The dielectric continuum theory and its generalizations are useful tools to understand the

screening effect of polar species and ionic species to the charged objects, which has wide appli-

cations to colloidal suspension [1–3], electric double layer [4–8], solvation [9–12] and solvation

dynamics [13–16] in electrolyte solutions.

In general, there are two different approaches in the dielectric continuum theories. One ap-

proach is to consider the electric potential of a solute using a electrostatic model, where the electric

potential in the solution region satisfies various electrostatic models, such as the Born model [17–

19], Poisson-Boltzmann theory [20–22] or the modified Poisson-Boltzmann theory [23–25], the

linearized Poisson-Boltzmann theory or equivalently the Debye-Hückel(DH) theory [26–29] and

its extension with multi-DH response modes [30–33] or extra local dielectric response[34–36] or

nonlocal dielectric response[37–43]. Once the electric potential is determined, one can use it to

compute the induced charge density and electrostatic solvation energy.

The other approach is to use the linear response theory to directly determine the induced charge

density around a solute. As the linear response theory can take into account the excluded volume

effect of the solute, such as the Gaussian field theory, developed by Chandler for fluids with short-

range interactions [44], has been extended to polar fluid systems [14, 45, 46]. The Gaussian field

theory introduces a modified response function due to the excluded volume of a solute to evaluate

the induced charge density, which can be further used to compute the electric potential and the

electrostatic solvation energy.

In a previous work [47], the Gaussian field theory has been extended to electrolyte systems

with a planar geometry. In order to capture the ionic correlations in concentrated electrolytes, a

two-Yukawa(TY) function is used to describe the bulk dielectric response function, whereas the

single Yukawa model case leads to the conventional linearized Poisson-Boltzmann theory. The

modified response function in the planar geometry is determined analytically, from which the

planar electric double layer problem is solved analytically. When the Stillinger-Lovett second

moment condition [48] and the contact theorem [49–52] are used as constraints for the parameters

of the TY response function, our theory could capture the nonlinear response effect of the electric

double layer as well. This approach goes beyond the mean field theory such as the Poisson-

Boltzmann theory by incorporating multiple screening lengths of the electrolyte solution and leads

to a different perspective to the electrostatic response of ionic fluids.
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In this work, the Gaussian field theory is further extended to the solvation of a spherical solute

in an electrolyte solution. Specifically, the Gaussian field theory is used to understand the solvation

of a spherical ion in electrolyte solutions. The bulk electrostatic response function of a concen-

trated solution is also described by a TY function. The modified response function in a spherical

symmetry is derived analytically and is further used to evaluate the induced charge density profile

and the electrostatic solvation energy. When the theory is applied to spherical ions in electrolyte

solutions, good agreements with the hyper-netted chain(HNC) theory demonstrate the validity of

our approach.

This paper is organized as following. In section II, the induced charge density around a spher-

ical ion is presented with the Gaussian field theory combined with a TY response function. In

section III, applications to ions in electrolyte solutions are presented to demonstrate the utility of

our approach. A brief summary of our findings is given in section IV.

II. A GAUSSIAN FIELD APPROACH TO THE SOLVATION OF SPHERICAL IONS IN ELEC-

TROLYTE SOLUTIONS

A. Model of an ion in a restricted primitive model (RPM) of electrolyte solutions

The electrolyte solvent is described by an RPM for the simplicity of our presentation. An ion

is characterized by a charged hard sphere. The cations and anions of the electrolyte have the same

diameter σs but opposite charges. The solute ion has a charge qo and a hard sphere diameter

σo and then a = (σs + σo)/2 is the radius of solute-solvent hard sphere interaction. Both the

solvent ions and the solute ion are immersed in a dielectric background with a relative dielectric

constant ǫr. The electrostatic interaction potential between two ions, tagged as i and j, is qiq j

ǫsr
,

with ǫs = 4πǫ0ǫr and ǫ0 the permittivity in vacuum. Denote qi = ±qs the charge of cation and

anion species (i = 1, 2), ns the total particle number density, β = 1/(kBT ) the reduced inverse

temperature. The molar fraction of solvent ionic species is x1,2 = 1/2. The inverse Debye length

of the bulk solution reads kD =
√

4πβq2
sns/ǫs. The electrostatic coupling parameter is defined as

Γ = q2
s/(ǫsσskBT ).

This work focuses on the charge distribution around a dilute solute rather than an electrolyte

ion, namely the interactions between solute ions are neglected. The solute is located at the origin
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and generates an external electric potential

ψ(r) =
qo

ǫsr
, (1)

where r = (x, y, z) being the coordinate and r =
√

x2 + y2 + z2. When qo is nonzero, the free ions

will form a spherical double layer around the solute. Considering the exclude volume effect of the

solute, the induced charge density can be determined from the linear response theory [14, 53]

ρind(r) =
∫

χ(m)(r, r′)ψ(r′)dr′, (2)

where χ(m)(r, r′) is the modified response function of the bulk solvent in the presence of the solute.

In general, χ(m)(r, r′) is determined by the bulk response function χ(|r − r′|) and the boundary

condition due to the solute. In the limit a → 0, χ(m)(r, r′) reduces to the bulk response function

χ(|r − r′|). More details about the modified response function and the Gaussian field theory are

presented in the Appendix A.

Due to the spherical symmetry of the system, it would be convenient to expand a function

F(r, r′) with its spherical harmonics component Fn(r, r′) [37]

F(r, r′) =
1

4πrr′

∞
∑

n=0

Fn(r, r′)Pn(cos γ)

=
1

rr′

∞
∑

n=0

n
∑

m=−n

Fn(r, r′)Ynm(θ, φ)Y∗nm(θ′, φ′),

(3)

where cos γ = r·r′
rr′

, Pn(x) the Legendre polynomials and Ynm(θ, φ) the spherical harmonics function.

The electric potential ψ(r) can also be expanded with its spherical harmonics component ψn(r),

i.e., ψ(r) = 1
r

∑∞
n=0

∑n
m=−n ψn(r)Ynm(θ, φ). As the solute charge is located at the origin of a spherical

cavity, there is no high order multipole contribution to the electric potential. The nonzero spherical

harmonics component of ψn(r) is

ψ0(r) =
qo

ǫs

, (4)

while other components vanish, i.e., ψn(r) = 0 for n ≥ 1.

The induced charge density depends only on variable r such that ρind(r) = ρind(r) due to the

spherical symmetry of the solute. Denote gio(r) (i=1,2) as the radial distribution function between

the free solvent ion species i and the solute o. According to the theory of simple liquids, the

induced charge density is related to a linear combination of the solute-solvent radial distribution

function, i.e., ρind(r) =
∑

i=1,2 qinsxigio(r). Using the spherical harmonics component χ(m)
n (r, r′) of
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χ(m)(r, r′), the induced charge density can be rewritten as

ρind(r) =
1
r

∫ ∞

a

ψ0(r′)χ(m)
0 (r, r′)dr′. (5)

The electric potential φ(r) in the solution region is related to ρind(r) via the Poisson equation

∇2φ(r) = −4π
ǫs

ρind(r), r > a. (6)

Note that there is no induced charge in the core region r < a, the Poisson equation reduces to

∇2φ(r) = −
4π
ǫs

qoδ
(3)(r), r < a, (7)

where δ(3)(r) is the three dimensional delta function. As long as the induced charge density ρind(r)

is known, Eqs.(6) and (7) can be used to determine the electric potential φ(r).

Denote χ(k) =
∫

χ(r)e−ik·rdr as the three-dimensional Fourier transform of χ(r). The con-

ventional DH theory can be obtained using a bulk response function χ(k)DH = − ǫs

4π
k2k2

D

k2+k2
D

=

− k2
D
ǫs

4π

(

1 − k2
D

k2+k2
D

)

. Namely, using this response function, the Gaussian field theory leads to

φ(r > a)DH =
qo

ǫs

e−kD (r−a)

(1+kDa)r , which is exactly the same as that from the linearized Poisson-Boltzmann

theory for the spherical symmetry [54]. Without breaking the presentation of our main results,

details of these results are summarized in Appendix B.

B. Solvation of a spherical ion in an electrolyte solution with a TY response function

In our previous study of the planar electric double layer problem, a TY response function is

used to capture the correlated response in concentrated electrolytes [47]. The TY response function

reads χ(k)TY = − κ
2ǫs

4π

(

1 −
∑

i=1,2
Cik

2
i

k2+k2
i

)

in k-space, with C1 + C2 = 1 due to the charge neutrality

condition and κ2 = k2
1k2

2/(C2k2
1 +C1k2

2) due to the Stillinger-Lovett second moment condition [48].

The TY response reads χ(r−r′)TY = − κ
2ǫs

4π

[

δ(3)(r − r′) −
∑

i=1,2
Cik

2
i

4π
e−ki |r−r′ |

|r−r′ |

]

in r-space. The spherical

harmonics component of χ(r − r′) is [55]

χn(r, r′)TY = −
κ2ǫs

4π

















δ(r − r′) −
∑

i=1,2

Cik
2
i gn(r, r′; ki)

















, (8)

where gn(r, r′; k) =
√

rr′In+ 1
2
(kr)Kn+ 1

2
(kr′) for r < r′ and gn(r, r′; k) =

√
rr′In+ 1

2
(kr′)Kn+ 1

2
(kr) for

r > r′. δ(x) is the one dimensional delta function, In(x) and Kn(x) are the modified Bessel functions

of the first and second kind.
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The modified response function χ(m)
n (r, r′)TY can be evaluated analytically as shown in the Ap-

pendix C. The final result reads

χ(m)
n (r, r′)TY = −

κ2ǫs

4π

















δ(r − r′) −
∑

i=1,2

Cik
2
i gn(r, r′; ki) −

∑

i, j=1,2

αi jKn+ 1
2
(kir)Kn+ 1

2
(k jr

′)

















, (9)

where the coefficients αi j are defined in Eq.(C6) of the Appendix C.

The analytical form of χ(m)
n (r, r′) is used to determine the induced charge density ρind(r). It is

noted that only the n = 0 component has net contribution as the point charge is located at the

center of the hard sphere, otherwise other n−components will be needed for off-centered charges.

After some straightforward calculations, it is found that the induced charge density reads

ρind(r) = −
qo

4π

∑

i=1,2

Dik
2
i e−ki(r−a)

(1 + kia)r
. (10)

with the coefficient Di defined in Eq.(C8) of the Appendix C. In the k-space, the induced charge

density reads

ρind(k) =
∫

ρind(r)
sin(kr)

kr
4πr2dr = −qo

∑

i=1,2

Dik
2
i [cos(ka) + ki sin(ka)/k]

(k2
i
+ k2)(1 + kia)

. (11)

The integrated induced charge reads

Qind = ρind(k = 0) = −qo(D1 + D2). (12)

One can check that D1+D2 = 1, so that the local charge neutrality condition Qind = −qo is fulfilled.

The electrostatic energy ue of the solute ion can be evaluated directly using the induced charge

density

βue =
1
2

∫ ∞

a

βqoρind(r)
ǫsr

4πr2dr = −
βq2

o

2ǫs

∑

i=1,2

Diki

1 + kia
. (13)

Due to the linear response, ue also equals to the electrostatic solvation free energy [30].

Note that the electric potential has been widely used in studying charge solvation. With the

analytical form of ρind(r) in Eq.(10), the electric potential φ(r) can be determined from Eqs.(6) and

(7). Note that the electric potential satisfies φ(r → ∞) = 0 and dφ(r→∞)
dr

= 0. It is found that

φ(r) =
qo

ǫs

∑

i=1,2

Di

1 + kia

e−ki(r−a)

r
, r ≥ a. (14)

The electric potential φ(r) in the range r < a reads

φ(r) =
qo

ǫsr
+ A, r < a, (15)
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with A = −qo

ǫs

∑

i=1,2
Diki

1+kia
the induced potential at the origin. The electrostatic energy ue can also

be evaluated as [30]

βue =
βqoA

2
= −

βq2
o

2ǫs

∑

i=1,2

Diki

1 + kia
, (16)

which is the same as Eq.(13).

To test the validity of our approach a procedure is needed to determine the parameters κ,C1,2

of the solvent. The parameters κ,C1,2 are chosen in such a way that the Gaussian field theory

reproduces the same linear coefficients Ds
1,2 for solvent species in a self-consistent manner, which

can be done with the following two steps given k1,2 is known.

Step 1: Ds
1,2 for solvent species are determined. Note that the Stillinger-Lovett second mo-

ment condition leads to Ds
1 fs(k1) + Ds

2 fs(k2) = 1 with fs(ki) =
κ2

D

k2
i

1+kiσs+k2
i
σ2

s/2+k3
i
σ3

s/6
1+kiσs

for the solvent

species [30]. One can solve Ds
1 + Ds

2 = 1 and Ds
1 fs(k1) + Ds

2 fs(k2) = 1 to determine Ds
1,2.

Step 2: we apply the Gaussian field model to solvent species by taking a = σs and qo = qs,

namely the solute ion being the same as a solvent ion. Then the Gaussian field theory leads

to coefficient Di|a=σs
= Vi(C1, 1 − C1, k1, k2, σs) for the solvent species(see eq.(C8)). The self-

consistency condition requires that Di|a=σs
= Ds

i
and hence one can solve V1(C1, 1−C1, k1, k2, σs) =

Ds
1 numerically to find the coefficient C1. The other parameters are evaluated with C2 = 1 − C1

and κ = k1k2√
C1k2

2+C2k2
1

.

It is noted that the Gaussian field theory has been used as an alternative approach to derive

the Born model of ion solvation in polar fluids [14, 19]. Based on the linear response theory,

a generalized Stillinger-Lovett second moment condition of the polar fluids has been used by

Remsing and Weeks to derive the induced charge density and the electrostatic energy of a spherical

solute ion [19]. Remsing and Weeks also considered the charge solvation in electrolyte solutions

and adopt a generalized DH theory to account for the higher order moments. Their results are

similar in spirit to our work, i.e., multiple screening lengths are needed to give a good description

of the dielectric response function of electrolytes.

III. APPLICATIONS TO SPHERICAL IONS IN RPM IONIC FLUIDS

In this section, the Gaussian field theory is applied to spherical ions in two RPM ionic fluids.

The hyper-netted chain (HNC) theory is known to be very accurate for simple electrolytes over

a very large range of parameter space [56, 57] and is chosen as the benchmark of this study.

Note that the HNC theory uses reduced dimensionless parameters to characterize the electrolyte
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system [58]. For the sake of simplicity, symbols for real parameters of the ionic fluids are adopted

for the reduced parameters.

Denote gi j(r) as the radial distribution function between two ion species i and j (i,j=1,2). The

total correlation functions hi j(r) = gi j(r) − 1 of the ionic species are evaluated from the HNC

theory, which is further used to compute the dielectric function ǫl(k) of the bulk system as well

as the induced charge density of a solute. Denote hi j(k) =
∫

hi j(r) sin(kr)
kr

4πr2dr as the Fourier

transform of hi j(r). The function Y(k) ≡ 1 − ǫs

ǫl(k) =
4πβns

k2 [
∑

i=1,2 q2
i xi + ns

∑

i, j=1,2 qiq jxix jhi j(k)] is

further fitted to a half-empirical formula Y(k) = a0k2

k4+(a1k2−a2) cos(kb)+a3 sin(kb)+a2
. The first two roots of

ǫl(k) are determined by numerically solving k4 + (a1k2 − a2) cos(kb) + a3 sin(kb) + a2 = 0 with

k = ikn (n=1,2) and Re(kn) > 0 [43]. k1,2 are combined with the two-step procedure to determine

the parameters {C1,2, κ} used in the TY response function. Using these parameters, the coefficients

{Di = Vi(C1,C2, k1, k2, (σo + σs)/2)} are further calculated for various solute parameters, namely

the dielectric response of the solute is linear even some nonlinear response is captured through a

charge renormalization parameter κ in a self-consistent manner. The induced charge density ρind(k)

and electrostatic energy βue from the Gaussian field theory are evaluated with Eq.(11) and Eq.(16).

For the first ionic fluid, the reduced parameters for the solvent are chosen as qs = 1, σs =

1, ns = 0.22, β = 2.15, ǫs = 1. The inverse Debye length is kD =
√

4πβq2
sns/ǫs ≃ 2.44. The

electrostatic coupling parameter is Γ = βq2
s/(ǫsσs) = 2.15. This system is used to mimic a NaCl-

like aqueous solution with molar concentration of 2 M and mean diameter of 4.5Å, for which

the relative dielectric constant is about 58 at temperature T = 298K due to dielectric decrement

effect [59]. The first two roots of ǫl(k) are a pair of conjugate complex numbers k1,2 ≃ 1.896 ±

2.304i. Using the two-step procedure, the parameters in the TY model are κ ≃ 2.051,C1,2 ≃

0.5 ± 1.177i.

As the first test, our theory is used to predict the induced charge density ρind(k). The solute

charge is fixed at qo = 1 and the solute diameterσo is taken as the control parameter. It is noted that

D1,2 = 0.5 ∓ 0.1706i, 0.5 ∓ 0.1422i, 0.5 ∓ 0.0927i for σo = 0.5, 1, 3, respectively. One can see that

the linear coefficients have a weak dependence on the solute size parameter σo. ρind(k) for solutes

with diameters σo = 0.5, 1, 3 are shown in Figs.1(a),1(b) and 1(c), respectively. The conventional

DH theory leads to ρind(k) = −qo
k2

D
[cos(ka)+kD sin(ka)/k]

(k2
D
+k2)(1+kDa)

[60], which is also used for comparison. As

one can see, the Gaussian field theory leads to accurate induced charge densities for these three

solutes, while the DH theory is a bit less accurate than the Gaussian field theory. We also test

our theory for other solute size parameters in the range of 0.5 ≤ σo ≤ 8, where similar good
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agreements between our theory and HNC theory are found.

As the second test, our theory is used to predict the electrostatic energy βue . The DH theory

leads to βue = −βq2
o

2ǫs

kD

1+kDa
[60], which is also used as a comparison. As one can see, the Gaussian

field theory leads to very accurate electrostatic energy while the DH theory is much less accurate.

βue as a function of solute size σo for solutes with fixed charge qo = 1 is shown in Fig.2(a). In the

range of 0.35 ≤ σo ≤ 9, the relative energy difference between the Gaussian field theory and the

HNC theory is no more than 3 percent, while the relative energy difference between the DH theory

and the HNC theory is about 5 to 22 percent. βue as a function of solute charge qo for solutes with

fixed diameter σo = 1 is shown in Fig.2(b). In the range of qo ≤ 5, the relative energy difference

between the Gaussian field theory and the HNC theory is no more than 5 percent, while the relative

energy difference between the DH theory and the HNC theory is about 17 to 20 percent. It is also

noted that the Gaussian field theory becomes less accurate for solute with smaller sizes and larger

charges, i.e., the relative energy differences between the Gaussian field theory and the HNC is

about 2 percent, 3 percent and 5 percent for solute with size and charge parameter (σo, qo) = (1,1),

(1,3) and (1,5), respectively. This is most probability due to the fact that linear response becomes

less accurate for a solute with smaller size and larger charge, where the charge renormalization in

the solution becomes different from the pure solvent.

For the second ionic fluid system, the parameters for the solvent are chosen as qs = 1, σs =

1, ns = 0.55, β = 2.6, ǫs = 1. The inverse Debye length is kD =
√

4πβq2
sns/ǫs ≃ 4.24. The

electrostatic coupling parameter is Γ = βq2
s/(ǫsσs) = 2.6. This system is used to mimic a NaCl-like

aqueous solution with molar concentration of 5 M and relative dielectric constant 48 at temperature

T = 298K [59]. The first two roots of ǫl(k) are a pair of conjugate complex numbers k1,2 ≃

1.503±3.257i, Using the two-step procedure, the parameters in the TY model are κ ≃ 3.304,C1,2 ≃

0.5 ± 1.201i.

As the third test, our theory is used to predict the induced charge density. The solute charge

is fixed at qo = 1 and the solute diameter σo is taken as the control parameter. It is noted that

D1,2 = 0.5 ∓ 0.5019i, 0.5 ∓ 0.4454i, 0.5 ∓ 0.3432i for σo = 0.5, 1, 4, respectively. The results

from the DH theory are also shown. ρind(k) for solutes with diameters σo = 0.5, 1, 4 are shown

in Figs.3(a),3(b) and 3(c), respectively. As one can see, the Gaussian field theory leads to a good

prediction of the location and height of the first peak and valley of induced charge densities, while

the discrepancy between the DH theory and the HNC theory is evident. For the small solute with

σo = 0.5 and qo = 1, both the HNC theory and the Gaussian field theory leads to ρind(k)+qo < 0 in
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the range of 0.1 < k < 1, which reveals the existence of charge inversion. This observation implies

that the Gaussian field theory combined with the TY response function can be applied to study the

phenomenon of charge inversion. When compared with results for the first test system, it is noted

that both the DH theory and the Gaussian field theory becomes less accurate in electrolyte systems

with larger electrostatic coupling parameter Γ = q2
s/(ǫsσskBT ). We also test our theory for other

solute size parameters in the range of 0.5 ≤ σo ≤ 7, where similar results are found.

As the fourth test, our theory is used to predict the electrostatic energy. The conventional DH

theory is also used as a comparison. βue as a function of solute size σo for solutes with fixed

charge qo = 1 is shown in Fig.4(a). In the range of 0.5 ≤ σo ≤ 7, the relative energy differences

between our theory and the HNC theory is about 3 to 5 percent, while the relative energy difference

between the DH theory and the HNC theory is about 9 to 29 percent. βue as a function of solute

charge qo for solutes with fixed diameter σo = 1 is shown in Fig.4(b). In the range of qo ≤ 5,

the relative energy differences between our theory and the HNC theory is no more than 6 percent,

while the relative energy differences between the DH theory and the HNC theory is about 22 to 25

percent. So one can see that the Gaussian field theory also leads to accurate electrostatic energy

for this system.

As a brief summary, our theory is applicable to spherical ions in 1:1 electrolyte solutions with

moderate electrostatic coupling as long as the solute charge number is not very large. However,

it is also worth to point out that our theory could fail for the problem of spherical double layers

with larger surface charge density. Denote Cs =
σe

ζ
as the capacitance of a spherical double layer,

where ζ = φ(r = a) is the zeta potential and σe =
qo

4πa2 the surface charge density. Previous

studies show that Cs is a nonlinear function of the surface charge density as long as the cavity

radius a is fixed [61, 62]. However, the Gaussian field theory used in this study is a simple linear

response theory and predicts that Cs is a constant for fixed cavity radius a no matter how large the

charge density is. This means that our theory can not be used to understand the nonlinear response

of the spherical double layers especially for the case of large surface charge density. Then the

exact contact theorems may be used as constraints to improve the accuracy of the Gaussian field

theory just as in the case of the planar electric double layer [47]. Extension of the Gaussian field

theory to a spherical electric double layer with large charge density is underway. Note that in this

work we focus on RPM electrolytes with valency symmetric ions. When the cations and anions of

the electrolyte have different sizes, previous studies show that the size-asymmetry leads to an extra

effective charge density around a neutral solute [63, 64]. It is also noted that the nonlinear response
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effects in electrolytes with higher valency and/or asymmetric valency will be stronger [65–67].

These effects are not included in the present Gaussian field model and deserve further studies.
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FIG. 1. The induced charge density around a spherical cation with qo = 1 in an RPM electrolyte solution

with κD ≃ 2.44, from the HNC theory(filled square), the DH theory(hollow circle) and the Gaussian field

theory(hollow star). The lines are guides to the eye.
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FIG. 2. The electrostatic energy of a spherical cation in an RPM electrolyte solution with κD ≃ 2.44, from

the HNC theory(filled square) , the DH theory(hollow circle) and the Gaussian field theory(hollow star).

The lines are guides to the eye.

IV. CONCLUDING REMARKS

In summary, the solvation of a spherical ion in electrolyte solutions is studied using a Gaussian

field theory. In order to capture the ionic correlation effect in concentrated solutions, the bulk

dielectric response function is described by a two-Yukawa response function. The modified re-

sponse function in the spherical symmetry is derived analytically, which is further used to evaluate

the induced charge density and electrostatic energy. Applications to spherical ions demonstrate

the validity of the Gaussian field theory by comparing with the numerical HNC theory.
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FIG. 3. The induced charge density around a spherical cation with qo = 1 in an RPM electrolyte solution

with κD ≃ 4.24, from the HNC theory(filled square), the DH theory(hollow circle) and the Gaussian field

theory(hollow star). The lines are guides to the eye.
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FIG. 4. The electrostatic energy of a spherical cation in an RPM electrolyte solution with κD ≃ 4.24, from

the HNC theory(filled square), the DH theory(hollow circle), and the Gaussian field theory(hollow star).

The lines are guides to the eye.

Appendix A: Modified response function from a Gaussian field approach

For the solvation problem with a spherical symmetry, the ”in” region is defined for the excluded

volume r < a while the ”out” region is defined for r > a. Denote χ(m)
n (r, r′), ∆χ(m)

n (r, r′) and

χ−1
in,n

(r, r′) as the expansion component of χ(m)(r, r′), ∆χ(m)(r, r′) and χ−1
in

(r, r′), respectively, then it

is found that

χ(m)
n (r, r′) = χn(r, r′) − ∆χn(r, r′), (A1)

with

∆χn(r, r′) =
∫ a

0
dr′′

∫ a

0
dr′′′χn(r, r′′)χ−1

in,n(r′′, r′′′)χn(r′′′, r′), (A2)

and the inverse function χ−1
in,n

(r, r′) is defined as
∫ a

0
χ−1

in,n(r, r′′)χn(r′′, r′)dr′′ = δ(r − r′), r < a and r′ < a. (A3)
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It is easy to check that

χ(m)
n (r, r′) ≡ 0, r < a or r′ < a, (A4)

which is related to the fact that solvent species can not enter the excluded volume. Given the

spherical harmonics component χn(r, r′) of the bulk response function, one can use these relations

to determine χ(m)
n (r, r′) in the ”out” region r, r′ > a.

Denote f (k) =
∫

f (r)e−ik·rdr as the three dimensional Fourier transform of f (r). Define t(k) =

1/χ(k) and t(r) the inverse Fourier transform of t(k). The relation t(k)χ(k) ≡ 1 leads to
∫

t(r −

r′′)χ(r′′ − r′)dr′′ = δ(3)(r − r′). Denote tn(r, r′) is the spherical harmonics component of function

t(|r − r′|). It is easy to check that
∫ ∞

0
χn(r, r′′)tn(r′′, r′)dr′′ = δ(r − r′). So χn(r, r′) is the inverse

function of tn(r, r′) in the space r, r′ < ∞. It is noted that the modified response function can also

be determined via
∫ ∞

a

χ(m)
n (r, r′′)tn(r′′, r′)dr′′ = δ(r − r′), r, r′ > a. (A5)

This equation implies that χm
n (r, r′) is the functional inversion of tn(r, r′) in the out region. Note that

the application of Eq.(A5) is a bit simpler than that of Eqs.(A1), (A2) and (A3)(more detailed dis-

cussion see [47]). In this work, Eq.(A5) will be used to determine the modified response function

χm
n (r, r′).

Appendix B: Modified response function χ
(m)
n (r, r′) and induced charge density from the DH re-

sponse function

Consider a dilute electrolyte solution, the DH theory leads to χ(k)DH = − ǫs

4π
k2k2

D

k2+k2
D

= − k2
D
ǫs

4π

(

1 − k2
D

k2+k2
D

)

and t(k)DH ≡ 1/χ(k)DH = − 4π
k2

D
ǫs

(

1 +
k2

D

k2

)

. In r-space, the DH response function leads to χ(r −

r′)DH = −
k2

D
ǫs

4π

[

δ(3)(r − r′) − k2
D

4π
e−kD |r−r′|

|r−r′ |

]

. The spherical harmonics component of χ(r − r′)DH is [55]

χn(r, r′)DH = −
k2

D
ǫs

4π

[

δ(r − r′) − k2
Dgn(r, r′; kD)

]

, (B1)

with

gn(r, r′; k) =
√

rr′In+ 1
2
(kr)Kn+ 1

2
(kr′) f or r < r′,

gn(r, r′; k) =
√

rr′In+ 1
2
(kr′)Kn+ 1

2
(kr) f or r > r′.

(B2)

As discussed in Appendix A, a different way to derive the modified response function is to

evaluate the functional inversion t−1
out(r, r

′) of the new response function tn(r, r′). In the r-space, the
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new response function t(r − r′)DH reads t(r − r′)DH = − 4π
k2

D
ǫs

[

δ(3)(r − r′) +
k2

D

4π
1
|r−r′ |

]

. The spherical

harmonics component tn(r, r′)DH of t(r − r′)DH is [55]

tn(r, r′)DH = −
4π

k2
D
ǫs

[

δ(r − r′) + k2
Dgn(r, r′)

]

. (B3)

with

gn(r, r′) =

√
rr′

2n + 1

(

r

r′

)n+ 1
2

f or r < r′,

gn(r, r′) =

√
rr′

2n + 1

(

r′

r

)n+ 1
2

f or r > r′.

(B4)

The trial solution of the modified response function χ
(m)
n (r, r′)DH in the range of r, r′ > a

reads [55]

χ(m)
n (r, r′)DH = −

k2
D
ǫs

4π

[

δ(r − r′) − k2
D

(

gn(r, r′; kD) − vn

gn(r, a; kD)gn(a, r′; kD)
gn(a, a; kD)

)]

. (B5)

Eq.(B5) is inserted to Eq.(A5). By matching the coefficient of Kn+ 1
2
(kDr)Kn+ 1

2
(kDr′) in the two

sides, it is found that

vn =
Kn− 1

2
(kDa)

Kn+ 3
2
(kDa)

. (B6)

χ
(m)
0 (r, r′) is used to determine the induced charge density, which reads

ρind(r) =
1
r

∫ ∞

a

ψ0(r′)χ(m)
0 (r, r′)DHdr′ = −

qk2
D

4π
e−kD(r−a)

(1 + kDa)r
. (B7)

These results from the Gaussian field theory are also exactly the same as that from the linearized

Poisson-Boltzmann theory in the spherical symmetry [54].

Appendix C: Details for χ
(m)
n (r, r′) for a TY response function

Consider an electrolyte solution with a TY response function χ(k)TY = − κ
2ǫs

4π

(

1 − C1k2
1

k2+k2
1
− C2k2

2

k2+k2
2

)

.

The new response function defined as t(k)TY ≡ 1/χ(k)TY can be rewritten as [47]

t(k)TY = −
4π
κ2ǫs

(

1 +
C3

k2 + k2
3

+
C4

k2 + k2
4

)

(C1)

with k3 =

√

C2k2
1 + C1k2

2, k4 = 0, C3 = C1k2
1 + C2k2

2 − κ2 and C4 = κ
2.

The response function and the new response function in r-space reads [55]

χ(r − r′)TY = −
κ2ǫs

4π

[

δ(3)(r − r′) −
C1k2

1

4π
e−k1 |r−r′ |

|r − r′|
−

C2k2
2

4π
e−k2 |r−r′ |

|r − r′|

]

.

t(r − r′)TY = −
4π
κ2ǫs

[

δ(3)(r − r′) +
C3

4π
e−k3 |r−r′ |

|r − r′|
+

C4

4π
1

|r − r′|

]

.

(C2)
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The spherical harmonics component of χ(r − r′)TY and t(r − r′)TY reads [55]

χn(r, r′)TY = −
κ2ǫs

4π

















δ(r − r′) −
∑

i=1,2

Cik
2
i gn(r, r′; ki)

















,

tn(r, r′)TY = −
4π
κ2ǫs

[

δ(r − r′) +C3gn(r, r′; k3) + C4gn(r, r′)
]

,

(C3)

with gn(r, r′; k) and gn(r, r′) defined in Eq.(B2) and Eq.(B4).

Note that χn(r, r′)TY is the inverse function of tn(r, r′)TY in the whole space. The trial solution

of χ(m)
n (r, r′)TY can be constructed by adding terms proportional to Kn+ 1

2
(kir)Kn+ 1

2
(k jr) to χn(r, r′)TY

χ(m)
n (r, r′)TY = −

κ2ǫs

4π

















δ(r − r′) −
∑

i=1,2

Cik
2
i gn(r, r′; ki) +

∑

i, j=1,2

αi jKn+ 1
2
(kir)Kn+ 1

2
(k jr

′)

















, r, r′ > a.

(C4)

When the trial solution Eq.(C4) is inserted into Eq.(A5), both side of the equation are lin-

ear combinations of exponential terms. By matching the coefficients of Kn+ 1
2
(kir)Kn+ 1

2
(k jr) to

tn(r, r′)TY , the constraints for the parameters {αi j} are derived. After some lengthy calculations, it

is found that
αi j = Cik

2
i Ti j/T,

T = f3(a; k1, k3) f4(a; k2) − f3(a; k2, k3) f4(a; k1),

T11 = f1(a; k1, k3) f4(a; k2) − f3(a; k2, k3) f2(a; k1),

T12 = f3(a; k1, k3) f2(a; k1) − f1(a; k1, k3) f4(a; k1),

T21 = f1(a; k2, k3) f4(a; k2) − f3(a; k2, k3) f2(a; k2),

T22 = f3(a; k1, k3) f2(a; k2) − f1(a; k2, k3) f4(a; k1)),

(C5)

with

f1(r; ki, k3) =
1

k2
3 − k2

i

[k3rIn+ 1
2
(kir)In+ 3

2
(k3r) − kirIn+ 1

2
(k3r)In+ 3

2
(kir)],

f2(r; ki) =
1
ki

rn+ 3
2 In+ 3

2
(kir),

f3(r; ki, k3) =
1

k2
3 − k2

i

[k3rIn+ 3
2
(k3r)Kn+ 1

2
(kir) + kirIn+ 1

2
(k3r)Kn+ 3

2
(kir)],

f4(r; ki) = −
1
ki

rn+ 3
2 Kn+ 3

2
(kir).

(C6)

One can check that α12 = α21 so that the symmetry condition χ−1
in,n

(r, r′)TY = χ
−1
in,n

(r′, r)TY is fulfilled.

The term χ
(m)
0 (r, r′) is used to determine the induced charge density in the solvent region

ρind(r) =
1
r

∫ ∞

a

ψ0(r′)χ(m)
0 (r, r′)TYdr′ = −qκ2

4π

∑

i=1,2

wie
−kir

r
= − q

4π

∑

i=1,2

Dik
2
i
e−ki(r−a)

(1 + kia)r
, r > a (C7)
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with

wi = Ci cosh(kia) +
∑

j=1,2

παi je
−k ja

2k j

√

kik j

,

Di = Vi(C1,C2, k1, k2, a) ≡ κ2

k2
i

1 + kia

ekia

















Ci cosh(kia) +
∑

j=1,2

παi je
−k ja

2k j

√

kik j

















.

(C8)
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