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 Newer defects in memories arising from shrinking manufacturing 

technologies demand improved memory testing methodologies. The 

percentage of memories on chips continues to rise. With shrinking 

technologies (10 nm up to 1.8 nm), the structure of memories is becoming 

denser. Due to the dense structure and significant portion of a chip, the 

nanometer memories are highly susceptible to defects. High-frequency 

specifications, the complexity of internal connections, and the process 

variation due to newer manufacturing technology further increased the 

probability of the physical failure of memories to a great extent. Memories 

need to be defect-free for the chip to operate successfully. Therefore, testing 

embedded memories has become crucial and is taking significant test costs. 

Researchers have proposed multiple approaches considering these factors to 

test the nanometer memories. They include using new fault models, march 

algorithms, memory built-in self-test (MBIST) architectures, and validation 

strategies. This paper surveys the methodologies presented in recent times. It 

discusses the core principles used in them, along with benefits. Finally, it 

discusses key opens in each and offers the scope for future research. 
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1. INTRODUCTION 

Semiconductor memories are widely used in every computing system, including sensors, desktops, 

and servers [1]. In the last decade, data-intensive applications started using huge amounts of memory. Since 

the number of I/O pins is limited, external testing of embedded memory cores is difficult. Memory built-in 

self-test (MBIST) has been proven to be a reliable and efficient method of testing these memories. They 

execute multiple algorithms to detect various types of defects. Memory tests are designed to check the 

functionality of memory cores, address uniqueness, decoder speed, cell coupling, and data sensitivity. 

Memory testing requires specific pattern sequences to exercise. 

Defects in memories are one of the primary defects found after fabrication. So, these defects in 

memories always necessitated to have repair capabilities to improve yield. Several techniques are being used 

to add repair and correction capabilities for memories. Our previous work [2] presents a comprehensive study 

of the techniques. 

The growing use of electronics in safety-critical applications increased demand for more reliable 

operation of system-on-chip (SOC). The need for higher safety and reliability specifications for automotive 

usage gave birth to the ISO 26262 standard [3]. It necessitates testing components not only during production 

but also in the field. A few acronyms are frequently used in the paper. Table 1 gives full forms of them. The 

table also contains full forms of a few abbreviations being used. 

https://creativecommons.org/licenses/by-sa/4.0/
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Table 1. Abbreviations and acronyms 
Abbreviation Full form  Abbreviation Full form 

MBIST Memory built-in self test  SOC System on chip 
PSF Pattern sensitive faults  IRF Incorrect read fault 

POST Power-on self test  IST In-system test 

WDF Write disturb faults  ATPG Automatic test pattern generation 
RDF Read disturb faults  ATE Automatic test equipment 

PVT Process, voltage, and temperature  MISR Multiple input signature register 

 

 

Academia and industry have proposed many techniques to test nanometer memories, including static 

random-access memory (SRAM), read only memory (ROM), and dynamic random-access memory (DRAM). 

This paper describes the principles, algorithms, and architecture details used in them. It classifies the 

techniques, discusses the advantages and disadvantages of each type of those techniques, and enables 

selection for particular usage.  

The organization of the remaining sections of this paper is as follows. Section 2 gives a background 

of memory testing. Then, section 3 classifies techniques based on the principle used and its application. 

Details of the techniques for memory testing are discussed in sections 4, 5, and 6. Finally, section 7 discusses 

the pros and cons of the techniques, while section 8 concludes the paper. 

 

 

2. BACKGROUND 

Metallization shorting and capacitive coupling are two common manufacturing defects in memories. 

These defects could result in a single cell or multiple cells of the memory array being faulty. Multiple cell 

faults could also be due to the operation of other cells. While single-cell faults are straightforward to detect, 

multiple-cell faults require a series of operations. Cell array, read-write logic, and address decoder should be 

tested for correct operation [4]. Following are a few commonly found faults: 

a. Stuck-at faults (SAF): This fault is like a fault for the logic cell. The cell value is either 0 or 1 and cannot 

be altered. Each cell should be written with 0 and 1 and read back to detect this fault. 

b. Transition faults (TF): This fails to change the value after writing the cell. The cells do not respond to 

rising (0 to 1) or falling (1 to 0) transition. The fault could be detected by writing and reading the cell 

successively with 0 and 1 (for rising fault detection) or with 1 and 0 (for falling fault detection). 

c. Coupling faults (CF): This fault results in a cell giving the wrong value due to the effect of other cells’ 

values or operations being performed on them. Two or more adjacent cells alter the value in a particular 

cell due to the fault. 

d. Data retention fault (DRF): This fault results in losing value in a cell after a while. The loss usually 

occurs when the pull-up circuit malfunctions and leakage current results in losing the capacitance value. 

A simple writing operation, followed by reading after a certain period, detects this fault. Adjacent cells 

are written with opposite values to exacerbate the effect,  

e. Address decoder fault (ADF): This fault results in wrong address decoding values. They are classified 

into four types: i) a cell is not accessible by any address, ii) multiple addresses access the same cell,  

iii) multiple cells are accessed by one address, and iv) some address accesses no cell. These faults are 

detected when the memory array is accessed simultaneously in ascending and descending address order 

for 0 and 1 [4]. 

 

2.1.  Testing algorithms 

In order to check if the memory array contains faults, a series of write and read operations need to 

be performed. The March algorithms are the most commonly used. They perform a sequence of write and 

read operations by traversing through the entire address space in ascending and descending address order. It 

completes operation on a cell before starting operation on the next cell in order. A march element (M) 

consists of a set of operations being performed on a cell. For example, the operation performed by the March 

B algorithm is described below. This algorithm performs 17 operations on each memory cell. 

 

Algorithm: March B 
{↕ (𝑊0); ↑ (𝑅0, 𝑊1, 𝑅1, 𝑊0, 𝑅0, 𝑊1); ↑ (𝑅1, 𝑊0, 𝑊1); ↓ (𝑅1, 𝑊0, 𝑊1, 𝑊0); ↓ (𝑅0, 𝑊1, 𝑊0)} 

𝑀0 𝑀1 𝑀2 𝑀3 𝑀4 

 

Notations: 

Up arrow (↑): traversing address space in ascending order 

Down arrow (↓): traversing address space in descending order 

W0: write 0, W1: write 1, R0: read 0, R1: read 1 
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The algorithm performs the operation by using different backgrounds of data to increase the 

coverage of faults [5]. First, the memory array is initialized with the background data. Then, a series of write-

read operations start. Backgrounds like solid 1 or 0, column stripe, row stripe, and checkboard are commonly 

used. These backgrounds are shown in Figure 1. 

Similar to data backgrounds, the operations are performed with different addressing schemes to 

excite defects in the address decoder or the cells. A few commonly used addressing schemes are: 

a. Fast row: Cells are accessed by incrementing/decrementing row address lines of the address decoder. 

b. Fast column: Cells are accessed by incrementing/decrementing column address lines of the address 

decoder. 

c. Gray code: Addresses are changed by keeping Hamming distance as 1. 

d. Address complement: Addresses are changed by keeping the maximum Hamming distance. 

Various data backgrounds and addressing schemes contribute to covering a variety of faults. For 

example, for performance improvements, memories have implemented banks. Due to this, two adjacent cells 

represented by logical address may not physically reside next to each other. So, the addressing and data 

schemes must be implemented considering the physical location.  
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Figure 1. Commonly used data and address backgrounds (a) data backgrounds and (b) address backgrounds 

 

 

2.2.  MBIST architecture 

A memory built-in self-test controller usually consists of an address generator, data generator, 

control logic, and comparator. Such a controller is shown in Figure 2. Muxes are added on address, data-in, 

read-write enable, and other control ports to enable paths from the built-in self-test (BIST) controller. The 

control block receives commands to perform read or write operations at a particular address. It controls 

overall operation and executes various algorithms. The comparator block checks output coming from 

memory with the expected value provided by the control block and asserts pass or fail signals. Various 

algorithms are implemented and selected during testing by configuring the control block. On a typical SOC, 

memories are grouped based on physical proximity. Separate controllers are used to check these groups of 

memories and operate in parallel to reduce test time. 

 

 

 
 

Figure 2. Memory built-in self-test controller block diagram [6] 
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2.3.  Previous surveys on memory testing 

Hamdioui et al. [7] presented a survey on testing embedded memories. It covered fault models for 

memories and various testing algorithms. It also discussed future challenges regarding reducing voltage, 

increasing operation frequency, and process, voltage, and temperature (PVT) variations. Another survey was 

presented in [8], which discussed a few MBIST architectures and algorithms. Both these surveys were 

presented in 2013. New generation memories have been used since then, and many new methodologies to test 

them were presented later. This paper presents a survey of those methodologies. 

 

 

3. CLASSIFICATION 

Over the years, researchers have presented various approaches to test memories. This survey covers 

the approaches published in recent times. They are divided into categories based on the critical parameters of 

testing. Tables 2, 3, and 4 present these categories. 

 

 

Table 2. Testing methodologies 
Sr. Technique References 

1 3D memories testing [9], [10] 

2 In-field testing [1], [9], [11]–[16] 
3 Test scheduling [17]–[20] 

4 Standardization efforts [21]–[23] 

5 Write-through testing [24], [25] 
6 DRAM/ROM/CAM testing [6], [16], [26]–[28] 

7 Low power MBIST [29]–[33] 

8 Pipelining interface [34]–[36] 
9 Reliability testing [37]–[39] 

10 FPGA implementation of MBIST [29], [35], [40]–[45] 

 

 

Table 3. Algorithmic approaches 
Sr. Technique References 

1 New algorithms [42], [46]–[53]  

2 Algorithms for pattern sensitive faults testing [54]–[58] 

3 MBIST controllers with configurable algorithms [34], [59], [60] 
4 Algorithms combining [61] 

 

 

Table 4. Validation strategies 
Sr. Technique References 

1 Collection of diagnostic data [62] 
2 Algorithm trimming [63] 
3 Algorithm verification [5] 

4 Reduced address verification [64] 

5 Physical failure analysis [65] 

 

 

4. TESTING METHODOLOGIES 

4.1.  In-field testing 

The use of electronics-controlled systems has increased in every industry. Safety is of utmost 

importance in these systems, especially in automotive, medical, space, and aviation. For the automotive 

industry, the ISO 26262 standard defines safety requirements. One inherent problem with using electronics in 

the automotive industry is using technology before it matures [1]. This problem necessitates the use of a 

robust testing methodology. In addition to production mode testing, systems must be checked before use to 

ensure error-free functioning. Also, periodic testing must be done while the system operates (i.e., mission 

mode) to detect and correct any spurious defects due to environmental conditions. To perform both these 

types of testing, testing must be enabled in the field. To support these two requirements, researchers 

presented a few architectures. This section summarizes them. 

Im et al. [13] presented an architecture for automotive SOC which supports in-field testing. The 

architecture includes power-on self-test (POST) and in-system test (IST) controller blocks that interface with 

advanced peripheral bus (APB), as shown in Figure 3. These blocks help perform memory tests, repair, and 

logic BIST operations.  

Figure 4 shows the sequence of operations being performed during in-field usage using architecture 

in [13]. First, the POST controller initiates a memory test during power-up and boot flow. Memories are 

tested in this step to ensure defect-free functional operation. The in-system test flow is later controlled by the 
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CPU, which runs memory built-in self-test (MBIST) and logic built-in self-test (LBIST) operations on 

targeted blocks. 

 

 

 
 

Figure 3. DFT architecture for automotive SOC [13] 

 

 

 
 

Figure 4. Testing steps during functional operation [13] 

 

 

Sargsyan et al. [1] presented an architecture that supports in-field memory testing. It uses Synopsys 

STAR Memory System (SMS) for memory testing and repair. It provides a short and efficient algorithm to 

run during power on to check faults like stuck-at, transition, stuck-open, and read-destructive. The power-on 

test aims to check memories for defects in a short period. The short yet efficient algorithm helps to perform 

this check. During mission mode, SMS provides a test access port to control operations for periodic memory 

tests. It continuously monitors which memories are busy and can be selected for testing. Reserve registers are 

provided, which are used to store memory contents temporarily. The contents are restored after the 

completion of the test. Testing is done by selecting a range of addresses at a time. It also incorporates multi-

bit error detection and correction codes. The correction codes handle soft errors during mission mode due to 

the emission of alpha particles and cosmic rays. Sargsyan [11] later presented a firmware generation 

methodology for systems employing SMS. He also presented a detailed structure of firmware C code for a 

case study.  
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Becker et al. [12] presented a methodology for online testing of memories in an ARM processor. It 

uses a short, 20-cycle transaction to test memories using the MBIST controller. The transactions are 

separated by 2,000 to 20,000 cycles apart. It temporarily stores memory content while testing and restores it 

after finishing testing. It locks memory during this period. The MBIST controller also compares data with an 

error correction code (ECC) and writes the correct value in case of an error.  

The methodology presented in [12] has a disadvantage. Locking of memory results in stalling if the 

processor needs access to it. Though the duration and probability are minimal, the system may experience a 

slight performance hit.  

Jagannadha et al. [15] presented another architecture to check field defects using in-system testing 

(IST). The architecture could be used in autonomous drive platforms. The IST supports key-on and key-off 

testing. The IST controller communicates through IEEE 1500 to execute MBIST operation. In case of failure, 

it unloads details for debugging using diagnostic software. 

Angione et al. presented details of the impact due to periodic in-field testing at the operating system 

(OS) layer [14]. OS stores data and instructions in embedded memories. Any defects in them result in non-

deterministic behavior. The paper proposes to perform concurrent memory testing without impacting the 

requirements of Real-time-operating-systems (RTOS). Since MBIST operation is destructive, it mandates 

creating a copy of data in temporary storage and restoring it after testing. In addition to MBIST testing, it 

also uses ECC circuitry for memories to detect and correct any latent errors. 

 

4.2.  3D memories testing 

On the three-dimensional (3D) package, dies are linked via through-silicon vias (TSVs). The TSVs 

are further connected to respective dies using micro-bumps. Then, the memory dies are connected with logic 

using such TSV interconnects [66]. For the memory dies, the TSVs and interconnects also need to be 

checked in addition to the memory array itself. This section summarizes approaches used for testing these 

memories. 

Harutyunyan and Zorian [9] presented a solution for testing memory dies in 3D packages. It adds 

memory BIST controller in the logic die and operates using a physical (PHY) interface, as shown in Figure 5. 

All operations on memory, including initialization, are done by the BIST controller, while the memory 

controller carries out PHY-initialization. The BIST controller implements a programmable test register that 

can be used to select different backgrounds and algorithms. For interconnects, it checks connectivity for 

single line and coupling faults for connections i) from the logic die to each memory die and ii) from each 

memory die to other memory die (intra-die).  

 

 

 
 

Figure 5. Testing of external memories using logic die [9] 

 

 

Jani et al. [10] presented a DFT architecture to test interconnects in 3D integrated circuits. Die 

wrapper register (DWR) could be inserted around a logic core to provide isolation, which could be used for 

internal testing (INTEST) of the individual dies and external testing (EXTEST) for interconnects connected 

to them [67]. The author uses this approach, which aligns with the IEEE P1838 standard. The architecture 

contains a local MBIST controller in the memory dies, as shown in Figure 6. The controller checks memory 

arrays for defects during both pre-bond and post-bond. Interconnects between the memory die and logic die 

are tested by the logic die, which performs a series of write and read operations. DWR cell is added on each 

such interconnect. These DWRs are connected in a chain and used for applying and checking data. This 

architecture contains a local MBIST controller, which is easier to implement and verify than the approach  

in [9]. 
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Figure 6. DFT architecture for 3D-IC [10] 

 

 

4.3.  Write-through testing 

MBIST designing adds mux on a path to memory, which selects a signal from the BIST controller or 

functional logic. In most cases, designers tend to select less timing critical paths to mux with BIST data to 

minimize the impact of the mux delay. While this approach helps to implement BIST testing at speed, it 

results in missing coverage on some shadow logic. This section presents approaches to improve their 

coverage. 

Gao et al. [25] presented a path delay testing methodology to test memory interface paths. It models 

memory with descriptions for synchronous write and asynchronous read operations. A pattern generator 

named CodeGen uses this model to generate tests covering paths to and from memories. Launching a 

transaction at memory output is achieved using preamble cycles, which initialize memory for the required 

value for launch. Observed values at memory inputs are taken to scan flops for checking by adding extra 

cycles after the capture event. 

Mohammad et al. [24] presented a scan-based methodology to improve the coverage of memory 

interface logic. First, it uses a memory model which defines read and write operations. Next, it adds logic on 

write-enable and read-enable and a clock port to facilitate control of the operation. Then, it uses the ATPG 

tool to generate patterns that exercise memory, which is similar to functional operation.    

 

4.4.  Pipelining interface 

A mux is traditionally added to access the MBIST controller's memory ports. In general, paths to 

and from memories are timing critical, and this mux further adds delay to it. Therefore, layout engineers must 

make a significant effort to meet such high-speed clock requirements. This section discusses the 

methodology which tries to solve this problem.   

McLaurin and Knoth [36] presented a methodology called MBIST interface to improve the quality 

of memory testing. It proposes to reuse functional paths during MBIST testing. Traditional MBIST design 

accesses memory ports by adding mux near the actual memory array. Though it tests the memory array for 

rated speed, the functional path remains untested. Moving the mux to the functional control generation point 

allows an actual functional path to be used, and BIST operation can be done at a functional-rated speed. 

Description of memories and control logic needs to be available to MBIST insertion tools. The author 

presented details about such standardization.  

Memory BIST with pipelines on memory interfaces is presented in [35]. It adds pipelines on input 

and output side ports of memory. In contrast, the design presented in [34] inserts the pipeline stage at the 

memory output signal, which goes to a comparator. The addition of a pipe stage improves the timing of the 

read operation. The authors showed an improved speed of BIST operation with these pipelines. 

 

4.5.  Standardization efforts 

4.5.1. IEEE 1500 compliant wrapper for memories 

An IEEE 1500-compliant wrapper for memories is presented in [21], which facilitates applying 

MBIST patterns. The wrapper does not have any finite state machine (FSM), which makes it area-efficient 
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and easier to implement. Instead, it contains design blocks for counting, test data generation, and shift 

registers. Despite not having FSM, the wrapper is fully programmable and supports the at-speed testing of 

memories. Wrappers presented in [68] and [69] use a serial mode of IEEE 1500 wrapper guidelines but incur 

high area overhead and slow testing due to their serial nature. In contrast, the wrapper proposed in [21] 

supports testing multiple memories in parallel.  

 

4.5.2. IEEE 1450.6.2-2014 based memory modeling 

This standard defines guidelines to describe memory functionality to assist MBIST flow. 

Developers from electronic design automation (EDA) tools, memory IP, and test engineering could use the 

models built using the guidelines. Using the same model ensures consistency among them. Arora et al. [22] 

presented details of using a core test language (CTL) description-based memory model for wrapper, MBIST 

controller, and pattern generation stages. It also points out challenges while using the standard guidelines. 

The author lists a few inconsistencies in defining error injection features and states how EDA companies are 

finding a workaround.  

Raval et al. presented a flow [23] to implement MBIST design, which is IEEE 1500 and IEEE 

1149.1 compliant. It uses a memory wrapper that follows IEEE 1500 standard. The BIST controller interfaces 

with wrapper test access port (WTAP), as shown in Figure 7. The WTAP is further controlled by a top-level 

test access port (TAP) controller that is IEEE 1149.1 compliant. Top-level TAP manages memory testing 

operations by controlling various WTAPs.  

 

 

 
 

Figure 7: Memory testing using IEEE 1500 compliant blocks [23] 

 

 

4.6.  Test scheduling 

Bhaskaran et al. [17] presented a design-for-test (DFT) architecture that reduces dynamic power 

during memory testing. Memory tests incur a lot of toggling and may lead to voltage droop and peak current 

limits crossing. It creates multiple groups of MBIST logic and scan logic. It adds clock gates for each of 

those groups. These clock gates are enabled using JTAG-controlled registers. The architecture disables the 

clock to all blocks except the block undergoing testing. 

A similar architecture to control power dissipation is presented in [20]. Here, the author creates a 

control chain with bits for each MBIST controller. The output of this chain controls the mbist_en port instead 

of the clock-gating cell as in [17]. The mbist_en port also drives logic to enable the clock to memory and 

MBIST controller. Various configurations of MBIST controllers are enabled by programming this control 

chain. 

Das and Prakash [18] presented another architecture to schedule MBIST tests considering dynamic 

voltage (IR) drop. As shown in Figure 8, it adds a scheduling block in the design, which runs MBIST 

controllers on automatic test equipment (ATE). It also finds a combination of controllers that can be run 

simultaneously across PVT corners. Finally, it uses a machine learning method that characterizes a few 

devices across various PVT corners and uses the findings to create groups of controllers that can be tested 

reliably during final production testing.  

Zeli et al. [19] presented a comparative study of testing memories in parallel and sequential. Logic 

is required to generate multiple sets of addresses and data to test memories in parallel. It also requires 

multiple sets of comparators. Parallel testing saves test time but incurs significant area overhead. The author 

analyzes the area and test time for a design with eight memory instances. It creates the following 

combinations of memories and controllers. Figure 9 shows the area and test time analysis for these 

combinations: i) a parallel MBIST with no gangs, ii) a sequential MBIST with no gangs, iii) a parallel 

MBIST with vertical gang, and iv) a sequential MBIST with a horizontal gang. 
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Figure 8. Architecture with automatic MBIST schedule engine [18] 

 

 

 
 

Figure 9. Area and test time with different combinations of memories [19] 

 

 

4.7.  DRAM/CAM/ROM testing 

4.7.1. DRAM testing 

Due to shrinking feature sizes, the effect of neighboring cells on the retention of data in memory bit 

cells is increasing. In addition, exposure to cosmic rays also affects retention capacity [70]. ECC was used 

historically to find weak cells prone to variable retention time (VRT). Park et al. [26] proposed g a BIST 

controller to DRAM itself. It is a direct method, and detection can be done within seconds compared to the 

ECC method, which takes hours to days. The author proposes a small-size BIST controller with a feature to 

configure retention time and implements a modified March algorithm. For 16 GB DDR4 DRAM, the area 

overhead due to this is only 0.051% of the total size of DRAM. Also, it saves 48% of the test time compared 

to other BIST controllers used for DRAM testing. 

 

4.7.2. CAM testing 

Yang et al. [28] presented a method to test a new 28 nm quaternary content addressable memory 

(CAM). Using the fault injection method, it analyzed new defect behavior and performed HSPICE simulations. 

The behaviors are then described in the form of the following fault models: i) stuck miss-state fault (SMSF),  

ii) partial-match data fault (PMDF), iii) specific data and specific compare mismatch fault (SDSCMMF),  

iv) pairwise search-line coupling fault (PSCF), and v) match-line under-charged fault (MLUCF). 

Wu et al. [71] derived a new algorithm based on the steps in their study to detect these faults. The 

complexity of the proposed algorithm is 12N+4B+5, which is quite lower than 15N+4B+6 of the original 

algorithm. At the same time, it maintained the same fault coverage as the original. 
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4.7.3. Parallel ROM testing 

ROMs were never tested in parallel as they incur significant area overhead due to the requirement of 

the additional backward data path and multiple input shift register (MISR) [72]. Mishra et al. [16] presented 

an MBIST architecture, as shown in Figure 10, to test multiple ROM instances in parallel. It generates one-

hot enable signals for each ROM instance in a ping-pong fashion, and the clock is enabled using it. Data from 

multiple ROMs are routed through mux, and a single-bit stream is formed and fed to MISR with respect to 

the original clock source. After reading data from all addresses, the MISR output is compared with the 

golden signature. 

 

 

 
 

Figure 10. Architecture to test ROMs in parallel [16] 

 

 

4.7.4. ROM in-field testing 

In safety-critical devices, the correct functioning of ROMs at boot-up is essential. Checking its 

contents is prohibited as the reading operation will also provide the values to boot flow and corrupt operation. 

So the cyclic redundancy check (CRC) method [73] is popularly used for ROM testing at boot flow. One 

drawback of using CRC check is a longer run time, which can also increase the boot-up time. Mishra et al. 

[16] presented a method to check ROM using MBIST during boot flow. It copies the contents of ROM into a 

temporary random-access memory (RAM). Then, multiple parallel MISRs are used to check the contents of 

this RAM. This method can finish contents checking quickly, and boot flow remains undisturbed during this 

checking. The author showed that, compared to CRC-based checks, parallel MISR-based checks saved 99% 

of test time. The author proposes to use the approach to check ROMs at start-up, during periodic testing, or at 

power-down. 

  

4.8.  Low power MBIST 

Many chips are designed for low-power applications like mobile phones, drones, and satellites. They 

use packages with small power rating specifications. Therefore, when test patterns are applied during testing, 

it becomes essential to limit the toggling of logic so that the resulting power consumption does not exceed the 

package rating and does not burn the chips and dies. Discrete logic gates and memories are the two main 

components of a typical chip. Many techniques have been presented to limit toggling during logic testing, 

and their study is presented in [74] and [75]. Since memories occupy a significant portion of the chip area, 

control of toggling during memory testing is also required. This section presents a summary of these 

techniques. 

Jamal and Srihari [76] presented a study of a low-power test pattern generator using different seed 

algorithms. The number of transitions in bit swapping linear feedback shift register (LFSR) is 2n-2, whereas, 

in standard LFSR, it is 2n-1 [77]. Another single-bit change sequence generator-based LFSR [78] has even 

lower transitions than these two LFSRs. Few architectures were presented that make use of such LFSRs to 

reduce power during MBIST operation.  

Saravanan et al. [31] presented an MBIST architecture that uses a gray code counter and Bit 

Swapping LFSR for address generation. The author showed an improvement of 92.28% in power 

consumption compared to address generators using traditional LFSR. Another low-power MBIST is 
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presented in [30]. It uses a combination of modulo-counter and gray code counter for address generation. It 

makes use of the counters to generate reversible patterns effectively. Using this method, the author showed a 

reduced switching power from 0.9203 to 0.8684 mW.  

A low transition address generator has been presented in [29]. It uses the March Y algorithm. For 

two steps: initialization (first step) and final-reading-data (last step), address ordering is unimportant. The 

author uses an LFSR-based address generator during these two steps. It further proposes to modify the RAM 

structure to use two address decoders – one for regular addressing and another for LFSR-based addresses. 

 

𝑀𝑎𝑟𝑐ℎ 𝑌 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚: ↕  (𝑊0); ↑  (𝑅0, 𝑊1, 𝑅1); ↓  (𝑅1, 𝑊0, 𝑅0); ↕  (𝑅0) 

 

4.9.  Reliability testing  

An overvoltage stress test (OVST) can help find latent defects due to imperfections in the insulating 

layer or weak gate oxide. It is done at the wafer level and helps identify defective parts before reaching an 

expensive burn-in test [79]. Agrawal et al. [37] presented a method to do such OVST testing, which increases 

supply voltage by 40% during the testing. First, the memories are prefilled with logic 0 or 1 value to avoid 

contention. Then, scan patterns are applied to test logic. These configurations test memories under static 

stress and logic under dynamic stress.  

Angione et al. [38] presented a method to generate a test for burn-in, which targets interconnection 

to embedded memories. The author developed functional tests to exercise memory as they provide more 

uniform stress than MBIST-generated tests. For effectiveness, the test needs to have maximum toggle 

coverage. Instead of checking for all addresses, the two locations where maximum address bits toggling 

happen are selected. For example, addresses: 0x4001_7FFF → 0x4001_8000 (refer to Figure 11). Address 

bits are stressed by repetitively performing write and read on these two locations. Analytical evaluation is 

done using these tests and March C-based MBIST. Execution time for them is 3.14 times better than the 

March C algorithm. 

 

 

 
 

Figure 11. Variable address toggling [38] 

 

 

SRAMs commonly employ assist circuits like word line underdrive (WLUD) to improve read 

stability. They are also provided with read-and-write time programmable self-timing controls. The self-

timing control can be used to shorten or lengthen read/write window time. Kinseher et al. [39] explores using 

these timing controls to exercise subtle memory delay defects without increasing voltage. It proposes to run 

MBIST with different configurations of self-timing and assist circuits in screening defects prone to long-term 

bias temperature instability (BTI) aging. 

 

4.10.  FPGA implementation of MBIST 

Field programmable gate array (FPGA) implementation is a great choice for chips requiring limited 

volume. Multiple memory testing architectures were presented to show their usage and efficiency when 

implemented on FPGA. An MBIST architecture contains a test pattern generator (TPG), a circuit-under-test 

(CUT) consisting of memories, and an output response analyzer (ORA). The architecture presented in [40] 

implements a modified March C- algorithm and uses separate TPG and ORA for every CUT. It maps one 

TPG, CUT, and ORA set onto one configurable logic block (CLB) of FPGA. This mapping eliminates 

dependency on interconnects. The architecture presented in [80] suffers from such dependency, limiting the 

tracing of faults in TPG. Further, the use of multiple TPGs eliminates fault aliasing when a single TPG is 

used and it contains a fault. The architecture improves CLB coverage to 54%, whereas it is 46% for [80].    
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Another FPGA-based MBIST architecture is presented in [43], which implemented the March 17N 

algorithm. It shows area efficiency by using only 158 slices of look-up table (LUT) to achieve 497.4 MHz 

clock speed. Kumari et al. [44] presented an FPGA implementation of MBIST. It performs memory testing 

using the FPGA kit's write and read mode. In addition, it uses an embedded software-based logic analyzer to 

monitor signals.  

 

 

5. ALGORITHMIC APPROACHES 

Emerging technologies and increasing density give rise to newer defects in memory. Though many 

algorithms have been presented in the past, detecting the newer defects needs a new algorithm. Multiple 

algorithms have been published recently, considering the defects as well as improving the efficiency of 

existing algorithms. This section summarizes them. 

 

5.1.  New algorithms 

March C algorithm has been the main algorithm being used over the years. Researchers kept 

optimizing this algorithm to cover newer defects and improve run time. This section presents algorithms that 

have been presented in recent times. 

a) CHECKERMARC [47]: Number of operations per cell = 10 

This algorithm combines steps from March C- and Checkerboard algorithms. While the checkerboard 

algorithm reads 0 and 1 from even and odd locations, March C- performs successive read and write 

operations. This algorithm writes and reads at even and odd locations. One major advantage of using 

this algorithm is that it covers transition, coupling, and bridging faults.  

b) March Y [49]: Number of operations per cell = 22 

The author uses the March C+ algorithm as a baseline and deduces the March Y algorithm through it. 

Next, it analyzes fault coverage by each step. It then analyzes fault sensitization conditions for WDF, 

CFdsxwx, and CFWd fault models and shows they can be covered using the proposed algorithm. 

c) Modified March 8N [48]: Number of operations per cell = 8 

The algorithm is based on the March Y algorithm. It can detect stuck-at, transition, and coupling faults. 

Additionally, it detects address decoder, retention, and most neighborhood pattern sensitive faults 

(NPSF). 

d) March 5N [52], [50]: Number of operations per cell = 8 

The algorithm covers stuck-at, transition, inversion coupling and address decoder faults. It is faster due 

to the reduced number of operations. Furthermore, the fault coverage achievable using it is higher than 

the MATS++ algorithm. 

e) March SS [51]: Number of operations per cell = 22N 

This algorithm is being developed for word-oriented memories. The authors start with a bit-oriented 

March SS algorithm and modify it for an 8-bit word-oriented algorithm. Applying word-oriented 

transactions saves huge test time compared to applying bit-oriented transactions. The algorithm covers 

stuck at, transition, coupling, read disturb, and address decoder faults 

f) Modified March Y [53]: Number of operations per cell = 8N 

This algorithm is developed with the intent of reducing power during memory testing. Since address 

generation incurs significant power consumption, the author tried to use the low-power address 

generation method based on LFSR for the algorithm steps where the order is immaterial. For example, 

in the March Y algorithm, the first step, W0, and the last step, R0, do not need to perform operations in 

a particular order of cell addresses. So, the architecture performs these steps using a low-power address 

generator. Operations in other steps are performed with the required order of addresses. 

g) March NS [46]: Number of operations per cell = 10N 

This algorithm is a variant of the March algorithm. It has added steps to detect the NPSF faults. Along 

with NPSF, it detects Struck-at, Transition, Coupling, and Addressing faults. 

 

5.2.  Algorithms for pattern sensitive faults testing 

Due to increased density, nanometer memories are more prone to faults due to the coupling effects 

from adjacent cells. Several algorithms are presented to detect such faults. This section summarizes those 

algorithms. Buslowska and Yarmolik [55] presented a study on detecting pattern-sensitive faults (PSFs) by 

various algorithms. The fault model detects value corruption in a cell due to particular values in other cells. 

The author presented a method to find fault coverage by an algorithm for PSF faults involving k cells as 

influencing cells. For the March test, the maximum fault coverage for different k values is shown in Table 5. 

Table 6 shows the fault coverage of PSF for various algorithms. The complexity of the algorithm 

indicates the number of march commands in it. March PS 18N shows maximum coverage among them, 

which is 66.6%. Further, MATS++, March C- and March PS 18N are studied for multi-run tests with random 
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backgrounds. With seven iterations, they achieved coverage of 89.0%, 99.9%, and 99.9 %, respectively. The 

achieved coverages help conclude that multi-run tests need to be run to increase coverage of PSF fault. 

 

 

Table 5. Maximum PSF fault coverage for the March test 
k 3 5 7 9 

FCmax 66.67% 20.00% 5.36% 1.39% 

 

 

Table 6. Fault coverage of PSF3 [55] 
Test Complexity FC(PSF3) 

MPS (3N) 3N 12.5% 
MATS+ 4N 12.5% 

MPS (5N) 5N 25.0% 

MATS++ 5N 25.0% 

March X 5N 25.0% 

March Y 7N 25.0% 

March A 14N 33.3% 
March B 16N 33.0% 

Algorithm B 16N 50.0% 

March C- 9N 50.0% 
March LA 21N 50.0% 

March PS (23N) 22N 66.6% 
March PS (18N) 17N 66.6% 

 

 

Cascaval et al. [54] presented an algorithm to detect unlinked static three-cell coupling faults. The 

first algorithm presented in [81] is long and needs 5.n.log2n+22.5n operations. The paper considers a reduced 

three-cell coupling model where only cells from physically neighboring regions form a three-cell coupling, as 

shown in Figure 12. The author presented an algorithm MT-SR3C along with analysis to show coverage of 

the faults. A read is not required between two consecutive writes if the second write is not transitioned. The 

algorithm eliminates a few operations for these cases. The algorithm is 18.5% shorter than the March SR3C 

algorithm.  

In paper [57], an analysis of two runs of March tests has been presented for the passive unrestricted 

neighborhood pattern sensitive faults (PUNPSF) fault model. Algorithm MATS++ and March C- have been 

run two times. Various address decimations were used for the second run. The study found that maximum 

fault coverage is obtained when second address sequences with address decimation as two are used. Later 

Khushi and Singh [58] compared March B and March M algorithms and showed the effectiveness of March 

M in covering coupling faults. 

 

 

  
 

Figure 12. Coupling patterns of three adjacent cells [54] 

 

 

5.3.  MBIST controller with configurable algorithms 

Many MBIST architectures implement multiple algorithms to detect modeled and unmodelled 

faults. However, there needs to be a provision to select a few for usage, like debugging. Implementations in 

[59], [60], and [34] implement multiple algorithms but provide control to select one for execution 

 

5.4.  Algorithms combining 

When used together, the March algorithms cover all types of neighborhood cells. However, this is 

not the case when the algorithms are executed stand-alone. Bui et al. [61] presented a combination of March 

C- and TLAPNPSF algorithms. It showed results that cover all types of faults related to SAF, TF, RDF, IRF, 

ADF, CFs, active NPSF (ANPSF), passive NPSF (PNPSF), and static NPSF (SNPSF) models using this new 

algorithm. 
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6. VALIDATION STRATEGIES 

6.1.  Collection of diagnostic data 

Koshy and Arun [62] presented a method to send out memory built-in self-test failure data for off-

chip analysis. It collects and compresses data on a march element basis. Whenever a failure is detected, the 

data is sent out for diagnosis. The compression reduces the data volume and saves time in shifting out data. 

 

6.2.  Algorithm trimming 

Wahab et al. [63] presented an algorithm trimming methodology for low-cost products with high 

defects per million (DPM) tolerance levels. Test time optimization starts after a product reaches production-

level testing and when sufficient sample size is available. The method uses three algorithms: MarchX, 

MarchC, and Hammer read for analysis. It removes a few march elements and reruns the test on ATE on 

sufficient units. The trimming is accepted if the failures are lower than the allowed DPM. It injects errors into 

memory and cross-checks the trimmed algorithm using simulation. The author achieved a 33% test time 

reduction using this method. 

 

6.3 Algorithm Verification 

The correctness of the operation must be checked whenever a new algorithm is developed.  

Kinseher et al. [5] presented a flow to perform this. First, the algorithm is specified in a higher-level 

language. Then, the code is simulated using a software method, and memory responses are noted. For 

verifying the algorithm on a design that implements it, the author suggests simulating to record values on the 

following signals: i) address bus of the memory, ii) data input and output bus, iii) clock signal, iv) circuit 

select signal, and v) read or write select signal. Values from circuit simulation and software-based runs must 

be compared. A parser is used later for this purpose. The author provided detailed steps to use the flow to 

verify Partial MOVI algorithm implementation. 

 

6.4.  Reduced address verification 

Multiple MBIST algorithms are implemented in a typical SOC. Few features like bitmapping or 

repair do not require checking for all memory locations during pre-silicon verification. Bagewadi et al. [64] 

presented a method to speed up simulations without compromising verification quality. The design is 

modified to make the address range configurable. During testbench generation, a smaller range of addresses 

is specified. The author performed experiments with a different number of addresses. It showed a 59% 

improvement in simulation time when 10% of addresses were used. 

 

6.5.  Physical failure analysis 

Xu et al. [65] proposed a defect analysis method. Parts from test escapes from a mass production 

test were analyzed. First, the flow injected defects by varying resistance values at the bit cell to model open 

defects. Next, it performed simulations with these circuits. Later, the flow did a physical failure analysis to 

confirm the observations with simulation results. The defect occurred when the access time of the word line 

was reduced at high temperature and high voltage conditions during continuous writing of reversed values. 

The analysis helped to debug the failure and improve memory yield. 

 

 

7. DISCUSSION 

After reviewing the recent advances in the related literature, this section discusses the benefits of 

various approaches to memory testing. Then, it highlights the main challenges that remain in key aspects. It 

also discusses a direction for future works. 

a. In-field testing: automotive electronic systems have traditionally utilized the well-established technology 

node for higher yield, reliability, and low cost. The earlier technology maturity period was counted to be 

about five years on average. However, this margin has significantly reduced in the last decade due to 

time-to-market pressure. Now, automotive companies have started using a technology that matures in two 

years. This trend is demanding a higher quality of testing. Chips need to be checked for many defect types 

to achieve low defective parts per million (DPPM). Test time and cost are becoming challenging due to 

these checks, and this is demanding more efficient algorithms.   

b. New algorithms: a newer semiconductor manufacturing process designs memory with highly dense 

structures, leading to various defects and causing malfunctions and performance impacts. The dense 

structures also increase pattern-sensitive faults (PSF). Therefore, precise fault models used to develop 

efficient test algorithms are crucial. Unfortunately, existing testing algorithms may not detect these 

defects, and new algorithms must be developed. In addition, user-defined operations are highly desirable 

to debug any new fault, especially related to smaller geometries. So, MBIST architectures need to have 

provisions to support such algorithms.  
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c. Write-through testing: combining conventional memory-BIST and ATPG tend to miss a few paths around 

memory. This is due to the muxes added to the interfaced collar. The write-through testing techniques 

reviewed in this paper help to test those paths and improve fault coverage.   

d. Test scheduling: applying test algorithms results in a huge amount of toggling around memory. The test 

scheduler needs to consider the size of memory, clock frequency of operation, and power rating of the 

package. Also, all other logic and memories, along with controllers, must be prevented from toggling by 

the disabling clock.  

e. Modeling standardization: as new memory technologies keep emerging; their prototyping is required to 

enable the development of new architectures and systems. IEEE 1450.6.2-2014 standard has been 

developed, which outlines the format in which details about memory need to be described. Along with 

interface details, it describes how a write and read operation is performed in the memory. The usage of 

such models enables consistency across various stages like MBIST insertion, verification, testing, and 

failure analysis.  

f. Validation strategies: design optimization may result in logically adjacent cells being physically apart. 

The effects of such address and data scrambling during pattern generation and verification need to be 

considered. Many algorithms are being proposed, and their verification remains a challenge. The usage of 

multiple data backgrounds and the non-linear traversal of address space need to be considered while 

developing test patterns.  

g. 3D test: the growing trend of building multi-die solutions necessitates finding methodologies to test 

interconnects between the dies. Popularly, memories are kept on separate dies and are accessed from logic 

dies. The interconnects consisting of micro-bumps and TSVs are prone to coupling faults. IEEE 1838 

defines the structure of wrapper cells to be added on such interconnects. DFT architectures in all these 

dies need to support testing the interconnects using such wrapper cells. Verification and testing of this 

infrastructure at the individual die level are crucial to enabling testing defects at the package level.  

 

 

8. CONCLUSION 

Embedded memories play an essential role in today’s SoCs. The smaller manufacturing geometries 

have allowed large memory on the chip. Embedded memories are a critical circuit due to no direct 

connections to external pins, complicating the test process. This paper presented a survey of various 

approaches being used for testing them. Built-in self-test is the best solution for testing and diagnosing 

embedded memories within SoCs. It offers a simple and low-cost means without compromising performance. 

New defects, fault models, algorithms, in-field, and 3D integrated circuit (IC) testing are reviewed for the 

principle being used in them. The need and benefits of using them are discussed. This paper is closed with a 

summary of challenges and future research directions. 
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