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ABSTRACT

In this paper, we present an efficient deep-learning hybrid model comprising an
extreme gradient boosting (XGBoost) supervised learning algorithm and convo-
lutional neural networks (CNN) for the automated detection of diseases. The
proposed model is implemented and tested to detect type-2 diabetes by measur-
ing the acetone concentration in the exhaled breath. Acetone will be present in
much higher concentrations in type-2 diabetic patients compared to non-diabetic
people. A novel sensing module is designed and implemented in our study to
measure the acetone concentration in exhaled breath. The proposed approach
delivered good results, with a classification accuracy of 97.14%. The findings of
this study show how effectively the proposed detection module functions in dis-
ease diagnosis applications. As the detection process is simple and non-invasive,
people can undergo routine checks for diabetes with the proposed detection
module.
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1. INTRODUCTION
Machine learning models are commonly used to analyze medical signals to detect disease automati-

cally. Since feature extraction and classification tasks are carried out using two different procedures, traditional
machine learning algorithms are unable to produce more reliable results in medical diagnostic applications. In
recent years, convolutional neural networks (CNN) have largely replaced conventional machine learning tech-
niques in medical diagnosis [1], [2]. The CNN itself executes both the feature extraction and the classification
tasks in the CNN learning network. As a result, a separate feature extraction module is no longer necessary.
For automated disease identification, CNN offers more reliable results as compared to conventional learning
models. The development of CNN models has been greatly influenced by the application of novel architectural
principles and parameter optimization strategies [3]. The CNN models have advanced significantly during
the last few years. The fundamental issue that researchers run into when developing new CNN models is the
gradient descent problem. The design issues were resolved by implementing cross-layer channel connections,
skipping connections and multiple-layer attachments. Researchers have suggested hybrid networks, which
incorporate several learning models, to improve classification performance [4].
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In this paper, we have designed and implemented an efficient convolutional neural network-extreme
gradient boosting (CNN-XGBoost) hybrid model that can automatically predict disease without the help of
medical experts. A novel sensing model that can identify diabetes from exhaled breath has been developed
to test and validate the proposed deep-learning model. One of the most effective non-invasive techniques for
disease identification is breath-based screening. Due to its advantages over conventional invasive approaches,
non-invasive disease detection techniques have been increasingly popular in recent years [5]. These methods
eliminate the need for intrusive sampling or surgical procedures in the detection, diagnosis and monitoring of
diseases. Exhaled breath has a lot of potential for clinical diagnostics, and it is possible that in the not-too-
distant future, it might end up becoming the most trustworthy and popular diagnostic tool for non-invasively
diagnosing many diseases. Exhaled breath contains a large number of biomarkers, according to medical re-
searchers [6]. numerous volatile organic compounds (VOCs) found in the breath can act as markers for differ-
ent physiological and pathological situations in the body. Analyzing a person’s breath composition can provide
important details about their health. VOCs are small compounds that are exhaled as byproducts of metabolism
or as a result of some disease processes. Since various medical conditions are connected to unique VOC pat-
terns, it is possible to identify many diseases by analyzing the concentrations of VOCs. Acetone, Isoprene,
ethanol, methanol and other alcohols are the main VOCs found in healthy people’s exhaled breath [7]. Table 1
displays the main VOCs and their concentrations in a healthy person. The concentration values are expressed
in parts per billion (ppb). Increased levels of these VOCs are indicative of systemic diseases and organ failures.
High amounts of blood-derived biomarkers passively migrate through the lung’s alveolar membrane and into a
person’s breath. Breath-based testing allows for the investigation of many medical conditions.

Table 1. VOCs and their concentrations in exhaled breath
VOCs in Breath Concentration Range (ppb) References

Acetone 656–836 [8]
Isoprene 70–580 [9]
Methanol 400–2000 [7]
Ethanol 37–207 [7]

Isopropanol 50–260 [9]
Butanone 6–26 [9]

Acetaldehyde 3–7 [10]

Blood glucose testing is the standard and medically recognized procedure for detecting diabetes. Dur-
ing the diabetes blood test, the patient’s blood glucose level is assessed after an overnight fast. When the blood
glucose reading of 126 mg/dL or higher is obtained, diabetes is considered to be present [8]. Blood-based
diagnosis has several limitations because it is an intrusive procedure. Additionally, if the approach is intrusive,
routine testing is impossible. Early detection and diagnosis of diabetes are necessary to enable rapid manage-
ment and intervention to avoid complications. For people with diabetes to maintain a good and healthy life,
regular blood glucose testing and continued medical care are essential. Monitoring acetone levels in breath is
a promising approach for diabetes detection and management. Acetone is one of the VOCs present in breath,
and its levels can be indicative of metabolic changes related to diabetes. Diabetes may cause insulin deficit or
resistance, which causes the body to break down fat for energy more often. Acetone is one of the ketone bodies
that are produced as a consequence of this activity. The generated acetone is expelled through the exhaled
breath. According to studies, type-2 diabetic patients have been reported to have higher breath acetone levels
[10]. Monitoring the concentrations of this ketone in exhaled breath can therefore be used to identify diabetes.
Very little acetone gas concentration is present in the exhaled breath. As a result, detection is challenging and
requires extremely sensitive sensors to determine the levels of breath acetone. There are not many devices
available for determining the level of acetone in breath. Metal oxide semiconductor (MOS) sensors are the
best sensors for monitoring gas concentrations [11]. Therefore, in the proposed work, we developed a MOS
sensor-based detection apparatus to measure acetone concentration in the exhaled breath.

2. ARCHITECTURE OF THE PROPOSED HYBRID MODEL
We have developed a CNN-XGBoost deep learning hybrid model that combines CNN with XGBoost,

an implementation of the gradient boosting method, to classify the breath samples to make predictions. This
hybrid model’s prediction performance and accuracy are increased since it combines the benefits of CNN and
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XGBoost [12].

2.1. Module for extracting features
Deep-learning models such as CNNs are frequently utilized for image and pattern recognition applica-

tions. They are made up of several layers, including fully connected, pooling and convolutional layers. CNNs
can be used for extracting features because they can automatically learn hierarchical representations of features
from the input data [13]. The first layer in the CNN module is the convolution layer. The sensor’s output signal
is directly provided to the CNN as an input. Since the input of our model is a one-dimensional (1-D) signal, we
have designed and applied a 1-D CNN model. Through the use of kernels, this layer extracts the various input
features. A two-function mathematical operation is used in the convolution process. It produces a result that
consists of multiplying one function and creating a shifted and reversed counterpart of the other function. The
convolution layer serves as the foundation of the CNN structure [14]. The 1-D CNN’s forward propagation is
performed as (1):

ykl = bkl +

Nk−1∑
i=1

Conv(wk−1
il , sk−1

i ) (1)

where ykl represents the input feature, bkl denotes the bias of the lth neuron, wk−1
il denotes the kernel from ith

neuron, and sk−1
i represents the output of the ith neuron.

From the output layer’s fully connected output, the error starts to back propagate. The mean square
error (MSE) for the output layer, or K layer, for the input vector q is represented as (1):

Er = MSE[tqi (x
K
1 , ..., xK

NK
)] =

NK∑
i=1

(xK
i − ti)

2 (2)

Here, Er is the MSE, NK is the number of classes, tqi is the target vector and (xK
1 , ..., xK

NK
) is the output vector.

Once the error has been determined, the gradient descent method can be used to update the relevant
weights and biases [15]. By estimating its sensitivity by learning factor γ, the weights and biases are updated
as (3) and (4):

wk−1
il (t+ 1) = wk−1

il (t)− γ
∂E

∂wk−1
il

(3)

bkl (t+ 1) = bkl (t)− γ
∂E

∂bkl
(4)

The multilayer perceptron (MLP) layer handles classification in conventional CNN [16]. By combin-
ing a more powerful classification method, the CNN model’s performance can be improved. Recent research
has shown that integrating CNN models with a better classifier, such as support vector machine (SVM), can en-
hance classification performance. In many research studies, integrated CNN-SVM models are used for various
applications [17].

2.2. Sample classification module
For the XGBoost to do the classification task, the features extracted by CNN are given as input.

The gradient boosting framework is implemented in XGBoost, which creates an ensemble of weak prediction
models successively, with each model fixing the flaws of the preceding models [18]. Decision trees serve as the
foundational learners in XGBoost, while it can also operate with other weak learner types. It greedily builds
shallow trees while continuously improving a user-defined objective function.

For the dataset with n features and m examples can be represented as D = (yi, xi)(D = n, yiR
m, xi ∈

R). Here y and x represent the eigenvalue and true value, respectively. The output of the bosting model with l
trees is expressed as (5):

x′
i =

l∑
l=1

fl(yi), fl ∈ S (5)
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where space for classification {S = f(x) = wp(x)}(p : Rm → F,w ∈ RF ). Here wp(x) corresponds to the
weight of the leaf nodes and f(x) represents the trees. Each tree’s structure, represented by p, and the number
of leaf nodes, represented by F , are what correlate to the sample’s matching leaf node.

Since the model’s objective is to learn these k trees, the following objective function is minimized:

T (t) =

n∑
l=1

k(xi, x
′
i) +

L∑
l=1

Ω(fl) (6)

where the loss function k represents the discrepancy between the estimated and true values. Ω corresponds to
the regularization parameter.

Regularization techniques are used in XGBoost to reduce overfitting and boost generalization. The
extracted features are fed into an XGBoost classifier during training. Based on the CNN-generated feature
representations, XGBoost will learn to predict outcomes. To enhance the performance of the model, the weak
models are combined using gradient boosting [19].

3. MODULE AND TESTING FOR DIABETES DETECTION
We have developed a test chamber in order to carry out the testing procedure. The process control flow

of the whole system is illustrated in Figure 1. MOS sensors are useful for detecting trace levels of chemicals
in breath samples since they can detect low concentrations of gases. In this study, we employed a TGS 1820
acetone gas sensor for detection. This sensor’s ability to detect acetone concentrations allows for a higher level
of analysis selectivity. The sensing element consists of a noble metal coil embedded in a small bead of sintered
metal oxide semiconductor material. MOS sensors enable the detection module to be portable, user-friendly
and deployable in a variety of scenarios, including point-of-care applications. The oxidation-reduction events
that happen between the gas molecules and the surface of the semiconductor serve as the foundation for the
sensing mechanism in MOS gas sensors. The conductivity of the TGS 1820 sensor changes as acetone in the
gas chamber interacts with the detecting component. To calculate the gas concentration, the electrical resistance
caused by a change in the semiconductor material’s conductivity is measured [20].

As the sensor interacts with the acetone gas in the gas chamber, the charge distribution in the semicon-
ductor material changes. The conductivity modulation causes a change in the output current that flows through
the sensor. The output current is calculated and analyzed to detect the presence of acetone gas. This is done
with the help of an electrical circuit. The sensors fundamental measurement circuit is a Wheatstone bridge
circuitry. The four arms of the bridge, which include the sensor heater, the load resistor for the output, and
two opposite side resistors for the reference voltage, are subjected to a circuit voltage of 2.30±0.05 V. The
difference between the reference voltage and the divided voltage is used to calculate the sensor output voltage.
Using a DHT11 sensor, temperature and humidity inside the chamber are measured [21]. Both temperature and
humidity are measured and analyzed to ensure a regulated and ideal environment for testing,

There is a mouthpiece for blowing exhaled breath in the front of the gas chamber. The TGS 1820
and DHT11 sensors are connected inside the gas chamber. The graphical model of the designed gas chamber
is shown in Figure 2. The signal variations are collected for 100 seconds to analyze and categorize the signal
values obtained from the sensors. Tests were conducted using the proposed sensing module on 112 non-diabetic
people and 98 diabetic patients with type 2 diabetes to evaluate the proposed model. The basic testing protocols
were followed before the testing phase, and the experimentation was carried out by following the Declaration of
Helsinki regulations. Prior to the analysis, oral health advice was given to all participants. Figure 3 shows the
voltage output signal of the sensor for a diabetic and non-diabetic test sample. The analog signals are acquired
using an Arduino board with an ATmega328P controller. The Arduino board is interfaced and communicated
using MATLAB support packages for Arduino hardware.

Figure 1. Block diagram of the overall system illustrating the process control flow
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Figure 2. An illustration of the designed gas chamber. The sensors are mounted within the gas chamber

Figure 3. Voltage output signals from the sensor module for a diabetic and non-diabetic test sample

4. RESULTS AND DISCUSSION
This study set out to create an automated method of detecting diabetes by analyzing exhaled breath.

This work uses machine learning techniques to generate automatic predictions for the tested samples. The
sensor output signal is fed into the learning models, which then automatically analyze and predict the output.
The best and the most accurate method to diagnose diabetes is by measuring blood glucose levels. In contrast,
we are identifying diabetes from the exhaled breath sample, to make the process non-invasive. Since breath-
based analysis is not used in medical diagnosis, we have done an investigation to examine the feasibility of
using breath acetone to detect type-2 diabetes. To determine the relationship between blood glucose levels and
the level of breath acetone in both diabetic patients and non-diabetic people, we used Pearson’s correlation
analysis [22]. The correlation coefficient from Pearson’s analysis is used to determine how closely these two
variables are related. While blood glucose levels are assessed using the conventional clinical analysis approach,
the proposed sensing module is used to quantify the acetone concentration in the breath. The values for breath
acetone and blood glucose were correlated with each other in our studies with a 0.916 correlation coefficient.
A strong positive correlation between these two variables is indicated by the high correlation value. It is
abundantly evident from this that as blood glucose levels rise in diabetic patients, their breath acetone levels
would increase.

The best features are extracted from the sensor signal by the CNN model. The integrated XGBoost
classifier is then used to classify the test samples based on these features. A k-fold validation technique is used
for validation. We have developed and evaluated traditional machine learning models and hybrid models with
the same test samples to compare the performance. The traditional network algorithms used for comparison
include CNN-SVM, CNN-MLP, SVM classifiers with singular value decomposition (SVD), K-nearest neigh-
bours (KNN) algorithm with principal component analysis (PCA) feature extraction, recurrent neural network
(RNN), long short-term memory (LSTM), and CNN-RF combined network [23]–[25]. The proposed deep-
learning network is built using CNN and the XGBoost classifier. For examining the effectiveness of each of
these models, a detailed performance comparison was carried out. Table 2 displays the performance values
obtained for each of these approaches. Features are extracted using the PCA and SVD algorithms, and the
features are then classified using the SVM and KNN algorithms. The K in KNN denotes the number of nearest
neighbours to take into account when making a prediction [26]. The goal of SVM is to define the hyperplane
that maximises the margin between the healthy and diabetic patient classes. The SVM classifier predicts the
class label of new, unseen data points based on which side of the hyperplane they fall on after determining the
ideal hyperplane during the training phase. The accuracy of the sample identification by the SVD-SVM and
PCA-KNN algorithms was 87.14% and 85.71%, respectively.
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Table 2. Comparison of performance metrics obtained for the proposed model and other models compared in
this study

Models Accuracy (%) Sensitivity Specificity Precision F1 Score Error Rate
SVD-SVM 87.14 0.891 0.857 0.826 0.857 0.128
PCA-KNN 85.71 0.869 0.847 0.816 0.842 0.143

RNN 90.48 0.924 0.889 0.867 0.895 0.095
LSTM 91.9 0.945 0.899 0.878 0.91 0.081

CNN-RF 95.24 0.989 0.925 0.908 0.945 0.047
CNN-MLP 95.71 0.989 0.932 0.918 0.952 0.043
CNN-SVM 96.19 0.979 0.948 0.939 0.958 0.038

CNN-XGBoost 97.14 0.979 0.965 0.959 0.969 0.028

The essential notion behind RNN is to use the outcome of the previous time step as input for the cur-
rent time step, effectively generating a temporal chain or sequence of computations. LSTM is a form of RNN
developed to address the issues of vanishing and bursting gradients and more efficiently capture long-term de-
pendencies. Traditional machine learning methods are outperformed by the CNN-based network because it can
identify the most effective features from the sensor response. The accuracy attained by CNN-RF combined
network is 95.24%. When the MLP layer was switched out for an SVM classifier, CNN’s prediction accuracy
increased. The CNN-MLP and CNN-SVM classifiers are found to be 95.71% and 96.19% accurate, respec-
tively, at predicting diabetes with the proposed sensing model. The proposed CNN-XGBoost network has the
highest accuracy of 97.14% when measured against the other algorithms looked at in the present study. This
network has an error rate of 0.028, which is quite low when compared to all other techniques. The proposed
approach correctly classified 110 samples as healthy and 94 samples as diabetes patients out of the 210 samples
tested. Only six samples were misclassified by this model.

To provide a graphical representation of the relationship between sensitivity and specificity for differ-
ent cut-off values for the tests, Receiver Operating Characteristic (ROC) curves are plotted for the proposed
model and CNN-SVM model. The ROC performance indicates how effectively breath acetone can identify a
person as a diabetic patient or not. The ROC plot is a graphical representation of sensitivity versus 1-specificity
for different test set cut-off values [27]. Figure 4 displays the ROC plot for the CNN-SVM and CNN-XGBoost
models. The Area Under the Curve (AUC) is calculated from this plot to verify the accuracy of the analysis.
For the CNN-XGBoost and CNN-SVM classification models, the AUC values obtained are 0.968 and 0.959,
respectively. This makes it very evident how much superior the proposed model is to the CNN-SVM hybrid
model.

Figure 4. ROC curves for CNN-XGBoost and CNN-SVM classifier models that were obtained for testing
samples

5. CONCLUSION
In this study, the CNN model and the XGBoost classifier were combined to build a hybrid deep-

learning model for medical diagnosis applications. The benefits of XGBoost and CNNs can be combined to
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improve performance using an ensemble technique. A strong hybrid model can be created by using CNNs
to extract features from sensor responses and then combining those features with tabular data for XGBoost
training. The deep learning model is applied to identify type-2 diabetes based on quantitative measurements
of acetone gas concentrations observed in breath signals. A novel sensor module is developed and deployed
in this study to measure and quantify the acetone concentration in exhaled breath. If the sensor is operated
outside of its normal operating conditions, we must account for humidity variations. The effect of humidity
can be compensated by employing humidity sensors and correcting the sensor response accordingly. Analysis
metrics were compared with traditional machine learning models to validate the performance of the system.
The best accuracy was achieved by the proposed CNN-XGBoost classifier, which was 97.14%. ROC analysis
and correlation analysis are carried out to validate the methodology and apparatus used in this research. The
proposed hybrid model effectively reduces the complexity involved in using two different models for feature
extraction and classification. The proposed method for breath analysis eliminates the need for blood sampling
or other invasive procedures. Patients are more likely to accept this detection technique because it is simple
and non-invasive, potentially leading to more regular testing.
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