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Abstract: Polydentate ligands are used for thermodynamic stabilization of tetrylenes—low-valent
derivatives of Group 14 elements (E = Si, Ge, Sn, Pb). This work shows by DFT calculations how
the structure (the presence or absence of substituents) and type (alcoholic, Alk, or phenolic, Ar)
of tridentate ligands 2,6-pyridinobis(1,2-ethanols) [AlkONOR]H2 and 2,6-pyridinobis(1,2-phenols)
[ArONOR]H2 (R = H, Me) may affect the reactivity or stabilization of tetrylene, indicating the un-
precedented behavior of Main Group elements. This enables the unique control of the type of the
occurring reaction. We found that unhindered [ONOH]H2 ligands predominantly led to hyperco-
ordinated bis-liganded {[ONOH]}2Ge complexes, where an E(+2) intermediate was inserted into
the ArO-H bond with subsequent H2 evolution. In contrast, substituted [ONOMe]H2 ligands gave
[ONOMe]Ge: germylenes, which may be regarded as kinetic stabilized products; their transformation
into E(+4) species is also thermodynamically favorable. The latter reaction is more probable for
phenolic [ArONO]H2 ligands than for alcoholic [AlkONO]H2. The thermodynamics and possible
intermediates of the reactions were also investigated.

Keywords: Group 14 elements; hypercoordinated compounds; ligand design; ONO ligands; tetrylenes;
tridentate ligands; DFT calculations

1. Introduction

In modern chemistry, selective synthesis of organometallic compounds in a determined
oxidation state is an important problem. For transition metal complexes, this problem has
been solved and is controlled by the oxidation state of the initial metal reagent [1,2]; for
Main Group elements, the influence of organic ligand has a special role.

Tetrylenes [3–7]—heavier carbene analogs—have recently attracted significant atten-
tion [8–20]), primarily due to their possible application as analogs of transition metals
in catalysis [21–23], in activation of small molecules [24–30], as ligands [31,32], in pos-
sible synthesis of derivatives with E-E bonds [33–35], reagents for synthesis [36–39] or
precursors [40–42] in material chemistry. These species are reactive and unstable; to stabi-
lize them, the introduction of bulky groups (kinetic stabilization) or polydentate ligands
(thermodynamic stabilization) is used.

Different types of alkanolamines are used as such ligands. Interestingly, germylenes
based on 2,6-bis(hydroxyalkyl)pyridines are monomeric, whereas stannylenes are dimeric [43]
(Scheme 1; type A). The aggregation degree (monomer or dimer) for the related tetrylenes
based on dialkanolamines is determined by the type of substituent at C and N atoms. In
this case (Scheme 1; type C), monomeric germylenes for the voluminous ligands containing
substituents at both C atoms in an α-position to O are formed; otherwise, the species formed
are dimeric [44]. Stannylenes are dimeric despite the presence of substituents. Tetrylenes
based on the related aminobis(methylenophenols) (type B) are monomeric [45]. All these
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data indicate that a special modification of organic structure ligand (variation of substituents
at C atom, change of the type of O atom) changes tetrylenes’ aggregation degree.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 2 of 12 
 

 

of substituents. Tetrylenes based on the related aminobis(methylenophenols) (type B) are 
monomeric [45]. All these data indicate that a special modification of organic structure 
ligand (variation of substituents at C atom, change of the type of O atom) changes tet-
rylenes’ aggregation degree. 

 
Scheme 1. Structures of tetrylenes based on various aminoalcohols: tetrylenes based on 
2,6-bis(hydroxyalkyl)pyridines (A); tetrylenes based on aminobis(methylenophenols) (B); tet-
rylenes based on dialkanolamines (C). 

2,6-Pyridinobis(phenols) as ligands (here and below ONO ligands, where O atoms 
are connected to the metal atom by covalent bonding, and the N atom is coordinated by 
donor bonding) have been previously used to synthesize complexes of various d- and 
f-transition metals (Y, Al; Ti, Zr, Hf; V etc.) [46–54], but data on their application to Group 
14 elements is scarce in the literature (see below). These phenolic ligands 2-H, 2-Me are 
analogs of alcoholic 2,6-bis(hydroxyalkyl)pyridines 1-H, 1-Me (Scheme 2); however, a 
significant modification of the donor O type is observed. Phenolic protons are more 
acidic, and phenolic oxygens are weaker Lewis donors. 
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Interaction of tetrylenes, R2E: (E = Si [55–57], Ge [58,59], Sn [60,61]; R = Alk, Ar, OR′ 
etc.), with alcohols, phenols or related compounds, R’OH, has been widely used previ-
ously to trap unstable species or investigate their reactivity, resulting in the usual 
R2E(H)OR′ insertion products; only for Ar2Sn, the products formed are [ArSnOR′]2 (sub-
stitution products) [61]. At the same time, research concerning the controlled balance 
between reactivity and stabilization governed by the polydentate ligand structure is 
missing, thus making our investigation unprecedented. As we have established earlier by 
synthetic experiments, in interaction with Lappert’s germylene, [(Me3Si)2N]2Ge: substi-
tuted 2,6-pyridinobis(phenols) (Scheme 3) form bis-liganded Ge(+4) complexes or mono-
liganded Ge(+2) (germylenes) species [62,63], where the steric size of the substituents in 
ligands determines the type of the product. Indeed, sterically unhindered ligands lead to 
Ge(+4) complexes, whereas voluminous ligands (containing bulky groups in α-positions 
in relation to donor atoms) lead to expected Ge(+2) complexes. 

Scheme 1. Structures of tetrylenes based on various aminoalcohols: tetrylenes based on 2,6-
bis(hydroxyalkyl)pyridines (A); tetrylenes based on aminobis(methylenophenols) (B); tetrylenes
based on dialkanolamines (C).

2,6-Pyridinobis(phenols) as ligands (here and below ONO ligands, where O atoms
are connected to the metal atom by covalent bonding, and the N atom is coordinated by
donor bonding) have been previously used to synthesize complexes of various d- and
f-transition metals (Y, Al; Ti, Zr, Hf; V etc.) [46–54], but data on their application to Group
14 elements is scarce in the literature (see below). These phenolic ligands 2-H, 2-Me are
analogs of alcoholic 2,6-bis(hydroxyalkyl)pyridines 1-H, 1-Me (Scheme 2); however, a
significant modification of the donor O type is observed. Phenolic protons are more acidic,
and phenolic oxygens are weaker Lewis donors.
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Interaction of tetrylenes, R2E: (E = Si [55–57], Ge [58,59], Sn [60,61]; R = Alk, Ar, OR′

etc.), with alcohols, phenols or related compounds, R’OH, has been widely used previously
to trap unstable species or investigate their reactivity, resulting in the usual R2E(H)OR′

insertion products; only for Ar2Sn, the products formed are [ArSnOR′]2 (substitution
products) [61]. At the same time, research concerning the controlled balance between
reactivity and stabilization governed by the polydentate ligand structure is missing, thus
making our investigation unprecedented. As we have established earlier by synthetic
experiments, in interaction with Lappert’s germylene, [(Me3Si)2N]2Ge: substituted 2,6-
pyridinobis(phenols) (Scheme 3) form bis-liganded Ge(+4) complexes or monoliganded
Ge(+2) (germylenes) species [62,63], where the steric size of the substituents in ligands
determines the type of the product. Indeed, sterically unhindered ligands lead to Ge(+4)
complexes, whereas voluminous ligands (containing bulky groups in α-positions in relation
to donor atoms) lead to expected Ge(+2) complexes.

In continuation of our research (see above, Schemes 1 and 3) into germylenes [33–35,42–44],
this work presents our theoretical results on their synthesis to understand how the oxidation
state of the central atom is regulated by the steric properties of organic ligands (1-H, 1-Me
vs. 2-H, 2-Me), the oxidation state of which remains unchanged.
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Scheme 3. Interaction of ONO ligands (2,6-pyridinobis(phenols)) with Lappert’s germylene.

2. Results

The mechanism of activation of O-H bonds by tetrylenes has been studied in detail; it
proceeds through the initial formation of adduct (R2E←O(H)R) followed by the migration
of H to the E(+2) atom from a coordinated molecule [64] or another ROH molecule [61,65].
In this work, to study the details of the interaction of ONO-coordinating polydentate ligands
with Ge(+2) species, we performed DFT calculations of the thermodynamic parameters of
model reactions in toluene (Schemes 4 and 5), including the interaction between Lappert’s
germylene and unsubstituted (R = H) or substituted (R = Me) ligands. It should be noted
that the parameters used for the calculations (B3LYP/DGDZVP for structure optimization)
are correct; the main calculated structural parameters correlate well with the XRD data.
Thus, for 4-H d(Ge-O) 1.859 Å, d(Ge-N) 2.057 Å, angles N-Ge-N 179.5◦ and O-Ge-O 178.0◦;
for 6-H d(Ge-O) 1.882 Å, d(Ge-N) 2.076 Å, angles O-Ge-O 94.8◦ and O-Ge-N 86.6◦ (cf. the
structural data for compound D [62,63], Scheme 6), which is indicative of a good correlation
and, thereby, of the accuracy and correctness of our calculations. The modeled reactions
represent a “classical” single-site O-H activation (cf. “cooperative” activation by boryl
substituted ylid tetrylenes [66]).
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According to these DFT data using PCM method in toluene, it is evident that the
substitution of N(SiMe3)2 ligands at a Ge atom is thermodynamically favorable, whereas
the interaction with phenolic derivatives is more preferable in comparison with alkanolic
derivatives. Indeed, the formation of 5-H/5-Me derivatives is one and a half times better
than that of 3-H/3-Me (−60−(−63) vs. −44−(−46) kcal/mol). The reaction with the
second equivalent of ONO ligand is twice less favorable. Interestingly, in the case of
alkanolamines 3-H, 3-Me, introduction of substituents to the OCR2 atom decreases the
possibility of this reaction, which fully corresponds to Jurkschat’s data and our results (see
Introduction). In contrast, for phenolic derivatives, this tendency is not so evident and,
apparently, it is necessary in this case to take into account the steric effects of the substituents.
However, it should be emphasized again that the reaction with phenolic derivatives is
significantly more energetically favorable in comparison with alcoholic derivatives; indeed,
formation of 4-H/4-Me is two times less preferable than that of 5-H/5-Me (−23 and −11
vs. −35 and −36 kcal/mol). Furthermore, for alcoholic ligands, the steric demands of the
substituents (H vs. Me) may have a critical impact on the low favorability of interaction of
the Ge(II) center with the second equivalent of the ligand.

It should be noted that the increase of the steric volume of the substituents R in ligand 1
(Me vs. H) diminishes the probability of the formation of compound 4. Apparently, this fact
may be explained by the fac-disposition of ligand frameworks in the coordination sphere
of Ge. In contrast, for phenolic ligands 2, the change of the steric size of substituents in α-
positions of phenol rings has almost no effect on the thermodynamics of the reaction; in this
case (see Schemes 3 and 6), the ligands’ cores are in a mer-disposition in the coordination
sphere of the central atom, i.e., are maximally separated in space.

Apparently, in the case of the model ligand 2 ([ArONOR]H2), the corresponding germy-
lene [{ArONOR}Ge:] obtained in situ at the first stage, due to the increased acidity of phe-
nolic groups in 2, participates in the further reaction with the ligand faster than Lappert’s
tetrylene to yield [{ArONOR}E(H){HArONOR}] with one O-H group as an intermediate.
Formation of related species has been proposed or observed previously in interaction of
Lappert’s germylene with silanols, R3SiOH or RSi(OH)3 and related species [67], giving
[R3SiO]3GeH [68] or [RsiO3GeH]4 [69]; a related result was observed only in interaction
with thiophenols, giving (ArS)3GeH [70]. Unlike the cases stated, in our case, the driving
force of this reaction, caused by the absence of a steric hindrance in the ligand, is the release
of gaseous hydrogen and the formation of a bis-liganded complex, where the Ge atom
is hexacoordinated. Such hypercoordinated derivatives are thermodynamically stable.
The method of their synthesis presented in our work is promising for hypercoordinated
compounds of Group 14 elements, which are widely used nowadays [71–73].
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Interestingly, among several possible intermediates in this reaction, the most stable
thermodynamically are species with pyridinyl coordinating bonding (II, where the co-
ordination number (C.N.) of the Ge atom is 6; Scheme 7); other possible intermediates,
including the O(H) bonding one, are less probable (I, with the C.N. of 6, and III, with the
C.N. of 7, Scheme 7). We should emphasize that the related structure has been studied by
XRD [74] (Scheme 7; E).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 12 
 

 

phenolic groups in 2, participates in the further reaction with the ligand faster than 
Lappert’s tetrylene to yield [{ArONOR}E(H){HArONOR}] with one O-H group as an inter-
mediate. Formation of related species has been proposed or observed previously in in-
teraction of Lappert’s germylene with silanols, R3SiOH or RSi(OH)3 and related species 
[67], giving [R3SiO]3GeH [68] or [RsiO3GeH]4 [69]; a related result was observed only in 
interaction with thiophenols, giving (ArS)3GeH [70]. Unlike the cases stated, in our case, 
the driving force of this reaction, caused by the absence of a steric hindrance in the lig-
and, is the release of gaseous hydrogen and the formation of a bis-liganded complex, 
where the Ge atom is hexacoordinated. Such hypercoordinated derivatives are thermo-
dynamically stable. The method of their synthesis presented in our work is promising for 
hypercoordinated compounds of Group 14 elements, which are widely used nowadays 
[71–73]. 

Interestingly, among several possible intermediates in this reaction, the most stable 
thermodynamically are species with pyridinyl coordinating bonding (II, where the co-
ordination number (C.N.) of the Ge atom is 6; Scheme 7); other possible intermediates, 
including the O(H) bonding one, are less probable (I, with the C.N. of 6, and III, with the 
C.N. of 7, Scheme 7). We should emphasize that the related structure has been studied by 
XRD [74] (Scheme 7; E). 

 
Scheme 7. (A) Transition states I, II, III for model reactions of interactions of Ge(II) species with 
tridentate ONO ligands; (B) chemical structure of complex E. 

We also studied the electronic structure of model germylenes 4-H (Figure 1) and 6-H 
(Figures S1 and S2, Supplementary Materials) and their UV absorption properties, which 
were obtained by the GaussView program; the spectra are presented in the form of Table 
1 with the assignment of transitions between molecular orbitals (Table 1; for details see 
[75]). Interestingly, for both compounds, the HOMO -> LUMO transition is the most 
probable; this can be confirmed by the visual distribution of frontier orbitals (see Figure 
1). As is evident, for the phenolic conjugated derivative 6-H, the UV bands are shifted 
into the red field. For 6-H, the UV bands correspond to the π-π transition. Interestingly, 
in intermediate II, the HOMO-LUMO transition (Figures S3 and S4, Supplementary Ma-
terials) corresponds to a n-π transition due to the O atom. 
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tridentate ONO ligands; (B) chemical structure of complex E.

We also studied the electronic structure of model germylenes 4-H (Figure 1) and 6-H
(Figures S1 and S2, Supplementary Materials) and their UV absorption properties, which
were obtained by the GaussView program; the spectra are presented in the form of Table 1
with the assignment of transitions between molecular orbitals (Table 1; for details see [75]).
Interestingly, for both compounds, the HOMO -> LUMO transition is the most probable;
this can be confirmed by the visual distribution of frontier orbitals (see Figure 1). As is
evident, for the phenolic conjugated derivative 6-H, the UV bands are shifted into the red
field. For 6-H, the UV bands correspond to the π-π transition. Interestingly, in intermediate
II, the HOMO-LUMO transition (Figures S3 and S4, Supplementary Materials) corresponds
to a n-π transition due to the O atom.

Table 1. UV/vis absorption emission data for compounds studied according to DFT calculations.

Compound λabs, nm Oscillator Strength Transition

4-H 248 0.18 HOMO -> LUMO (42%)
HOMO-1 -> LUMO+1 (38%)

233 0.03 HOMO-2 -> LUMO (33%)
HOMO -> LUMO+1 (27%)
HOMO-1 -> LUMO (21%)

6-H 331 0.33 HOMO -> LUMO (60%)
HOMO-1 -> LUMO (20%)

312 0.30 HOMO-1 -> LUMO+1 (60%)
HOMO -> LUMO+1 (36%)

278 0.26 HOMO -> LUMO+2 (17%)
HOMO -> LUMO+1 (15%)

273 0.17 HOMO -> LUMO+1 (27%)
HOMO-2 -> LUMO (22%)
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3. Discussion

As a rule, E(+4) species form only in trace amounts in reactions of E(+2) with polyden-
tate OH ligands like dialkanolamines [76]. A related process has been observed previously
by Tzschach, Jurkschat et al. [77] in the reaction of RN(CH2CH2SH)2 with: Sn(OBu-t)2 at a
controlled temperature to give E(+2) derivatives at ambient temperature or E(+4) species
on heating.

Thus, we may conclude that the structure of the ligand governs the stability of tetrylene
and determines the type of the products formed, which is unprecedented in the chemistry
of tetrylenes.

Another unique feature of the reactions under investigation consists in selective
intramolecular closing of the heterocycle in the intermediate [{ONOH}E(H){HONOH}] (II),
resulting in the formation of a new E-O bond with H2 evolution. In the literature, there
are only a few examples of related reactions [56], where the interaction of R2E with HOR’
yields R2E(OR’)2 in trace amounts. To the best of our knowledge, there is the single related
example, where MesSeH reacts with [(Me3Si)2N]Ge: giving (MesS)4Ge and hydrogen [78].
In our case, the high reactivity of the R’3E-H bond towards the interaction with O-H is
caused by hypercoordination in II [79].

Unlike the present case of ONO bis(phenolic) ligands, application of dialkanolamines
as ligands for tetrylene synthesis resulted in a successful process; the absence of voluminous
substituents at the C atom in an α-position to OH groups led only to dimeric, [GeO]2,
species. Furthermore, using 2,6-bis(hydroxyalkyl)pyridines in reactions with Lappert’s
tetrylenes resulted in stabilized substituted tetrylenes due to alkoxydeamination reactions.

When comparing two structural features of tridentate ONO ligands, i.e., the presence
of voluminous substituents near the donation atoms and the type of O atoms (alcoholic vs.
phenolic), we found that the structure of 2,6-pyridinobis(1,2-phenols), [ArONOR]H2 (R = H,
Me), unprecedentedly determined the character of the product formed in the interaction
with Lappert’s germylene. For the successful synthesis of substituted tetrylenes, it is
necessary to apply sterically voluminous substituents at positions close to the coordinating
atoms (i.e., in an ortho-position to the OH group), otherwise, the intermediate tetrylenes
formed in situ further react with a ligand faster, giving E(+4) species. At the same time, we
showed that the careful choice of a ligand structure also enabled determining the oligomeric
degree of the tetrylene. Thus, in comparison with alkyl amines, the presence of the Py
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donor group is critical for the formation of a monomeric structure, whereas the steric size
of substituents determines the direction of the reaction between Lappert’s tetrylene and
a ligand. It should be noted that wide application of Ge(+2) and even hypercoordinated
Ge(+4) complexes in chemistry and catalysis opens new prospects for these derivatives.

All model reactions studied (Schemes 4 and 5) are thermodynamically favorable, but
the effect of steric factors, i.e., the presence of bulky substituents, may slow down the
reactions, as observed in chemical experiments (see Scheme 3, right side). In this case, the
activation energy of the synthesis of the hexacoordinated complex increased significantly.

Furthermore, the non-covalent interaction between the benzene rings can be important
(dispersion interaction, D3 correction), but this effect is apparently weak and requires
additional more specialized investigation. Interestingly, our calculation shows that the
distances between hydrogen atoms of different ligands are about 3 Å. In principle, at such
a distance, dispersion interactions can be neglected. Moreover, the dispersion interactions
between phenyl rings can be significant at a distance between them up to 3.5 Å in the π-π
interaction. In our systems, the dihedral angle between the phenyl rings is approximately
126◦. At the same time, the distance between the nitrogen atoms of the pyridyl groups
is greater than 4 Å. Of course, dispersion interactions between hydroxyl and/or hydride
groups can have a certain effect on the thermodynamic parameters in our chemical reactions.
However, the difference between the calculated Gibbs energies in the reactions of systems
with methyl and phenyl substituents is quite large (about 30%) and, in our opinion, does
not affect the conclusions of the article.

4. Materials and Methods

DFT calculations details. The hybrid exchange-correlation functional (B3LYP) was used
throughout the study because previous calculations had shown the B3LYP approach [80,81]
to be a cost-effective method for studying metal-containing systems [82]; results obtained
using B3LYP functionality are compared well with a large number of functionals incorpo-
rated in G09 and G16. Even at calculations of the thermodynamic parameters, the B3LYP
results compare well with the highly exact G2MP2 method, as well as with the experi-
mental values [83]. We used the DGDZVP basis set for all atoms at the B3LYP level. The
DGDZVP is an all-electron, double-ζ valence polarized basis set optimized specifically for
DFT methods [84,85]. We used the time-dependent M0-62X [86] density functional with the
6-311+G(d,p) basis set implemented by Gaussian 09 (2010) to explore the excited manifold
and to compute the possible electronic transitions.

The calculations were performed with full geometry optimization; the Gaussian 09
program package was used [87]. The absence of imaginary vibration frequencies confirmed
the stationary character of all compounds studied. The molecular orbitals and UV/visible
spectra were visualized using the GaussView program. The UV spectra were calculated in
PCM approximation [88] in toluene.

5. Conclusions

Our DFT calculations indicate that the structural features of organic tridentate ligands
determine to a great extent the type of reactions observed at the interaction of tridentate
ONO ligands with Lappert’s germylene. Due to a higher O-H acidity, phenolic ligands
tend to form bis-liganded complexes. Similar reactions with alkyl alcohols favorably result
in germylenes. The intermediate of this reaction, a Ge-H-species, intramolecularly reacts
with the O-H group, resulting in hydrogen evolution. The results obtained are important
for understanding the chemistry of Group 14 elements, the design of novel polydentate
ligands and Main Group complexes based on them.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijms241210218/s1: atom coordinates for model compounds 4-H,
4-Me, 6-H, 6-Me, II; molecular orbitals of the model compounds 6-H, II (Figures S1–S4).

https://www.mdpi.com/article/10.3390/ijms241210218/s1
https://www.mdpi.com/article/10.3390/ijms241210218/s1
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