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Abstract—Radiology report generation aims to generate medi-
cal reports based on given medical images, which can alleviate the
workload of radiologists and has attracted significant research
interest in recent years. However, existing studies have struggled
to bridge the gap between the two different modalities (i.e.
image and text) and generate clinically accurate reports. This
is primarily due to the challenges in modelling the cross-
modal mappings and the inefficiency of transferring knowledge
across modalities. To address these challenges, in this paper,
we propose to leverage a pre-constructed knowledge graph as
a shared matrix that bridges the gap between visual and textual
information, facilitating cross-modal knowledge transfer. This
shared knowledge matrix effectively captures cross-modal map-
pings and aligns information between images and texts, thereby
bridging the gap between modalities. Specifically, we propose
a new module for knowledge distillation and preservation that
integrates relevant knowledge representations into both visual
and textual inputs, facilitating intuitive cross-modal knowledge
interaction and enhancing the clinical accuracy of the generated
reports. Experimental results on two benchmark datasets show
the effectiveness of our method, outperforming state-of-the-arts
in report generation.

Index Terms—Radiology Report Generation, Multimodal,
Graph, Medical Data Mining

I. INTRODUCTION

Radiology report writing and medical image interpretation
(e.g., chest X-rays) are essential in clinical practice and often
involve a substantial manual workload. Thus, there is a strong
desire for radiology report generation, which automates the
generation of textual descriptions using radiology images, to
alleviate the heavy workload of radiologists while ensuring
healthcare quality.

Automatic radiology report generation has attracted sig-
nificant research attention in recent years [1]–[8]. Radiology
report generation is a cross-modal task, with the majority of
existing methods relying on the standard image captioning
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                             CMN [4]
the heart size appear within normal 
limits.…  small to moderate sized bilateral 
pleural effusions. no acute bony 
abnormality. no atelectasis.
                          Our method
there is stable cardiomegaly.  no visible 
pneumothorax. bilateral pleural effusions 
identified. no suspicious pulmonary mass 
or nodule is seen. mild edema is seen. 

Disease Tags: cardiomegaly, 
edema, pleural effusion

Cardiomegaly

Heart Lung

Edema

Fig. 1. An example of a report generated by state-of-the-art method CMN
[4] and our method. The tokens marked in blue indicate the abnormalities
detected by our method but missed in CMN.

paradigm [9], [10], which employs a conventional encoder-
decoder architecture. Although these methods have achieved
remarkable performance, they primarily focus on text gen-
eration side and do not fully exploit the information across
radiology images and reports. As a result, the findings may
remain unsatisfactory, posing challenges in identifying certain
diseases and resulting in low clinical accuracy in the generated
reports.

There have been several works [3], [4], [11] focusing on
addressing cross-modal challenges. AlignTransformer [3] pre-
dicted the disease tags from the input image and then aligned
these tags with the corresponding visual regions, thereby
supplying semantic-related visual features to the decoder.
CMN [4] proposed using memory networks to record cross-
modal alignment and facilitate generation across modalities.
However, the memory matrix is randomly initialized and lacks
knowledge or useful information, which significantly impacts
the clinical accuracy of report generation. Fig. 1 shows a
comparison of the reports generated by the state-of-the-art
method CMN [4] and our approach, showing the effective
detection of interrelated diseases like cardiomegaly and edema
by our proposed cross-modal knowledge-driven network.

Given the intricate and interconnected nature of abnormal
regions in radiology images, disease identification becomes
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challenging without prior medical knowledge. Thus, incorpo-
rating prior medical knowledge as complementary information
is crucial for accurately reporting findings. Several studies [2],
[12]–[14] have employed medical knowledge graphs to depict
relationships between abnormalities, allowing the model to
leverage prior knowledge and produce reports with enhanced
clinical accuracy. Nevertheless, previous methods encounter
challenges when integrating medical knowledge into multi-
modal networks, particularly in terms of inefficient knowledge
transfer across different modalities. These methods predom-
inantly concentrate on learning single-modal features and
only integrate knowledge at the encoding or decoding stage,
resulting in the oversight of critical findings during report
generation. Consequently, there is a lack of a method that
can effectively incorporate medical knowledge and facilitate
simultaneous knowledge acquisition between images and text,
impeding direct and efficient cross-modal knowledge exchange
while generating clinically accurate reports.

To address these concerns, in this paper, we propose an
intuitive and effective strategy to enhance the clinical accuracy
of the generated reports by incorporating efficient medical
knowledge learning into cross-modal networks. We propose
a Cross-modal Knowledge driven Network (CKNet) to cap-
ture cross-modal mappings and facilitate knowledge transfer
across modalities. In particular, we utilize a pre-constructed
knowledge graph as a shared matrix that connects the visual
and textual domains. We propose a new module that consists of
two processes: knowledge distillation and preservation. These
processes enable the integration of the most relevant knowl-
edge into input images and texts, respectively. Furthermore,
the shared knowledge matrix serves as a bridge connecting
the two modalities, leading to enhanced efficiency in handling
cross-modal interactions and facilitating smoother and more
effective knowledge communication across modalities.

Our main contributions can be summarized as follows:
• We propose a new cross-modal knowledge-driven net-

work (CKNet) and utilize a pre-constructed knowledge
graph as a shared matrix to connect the two modalities.

• We propose a module comprising knowledge distillation
and preservation. This module enables the integration of
the most relevant knowledge into input images and texts,
respectively. It facilitates smoother and more effective
knowledge communication across modalities.

• Extensive experiments on two benchmarks (i.e., IU-Xray
[15] and MIMIC-CXR [16]) show that our model outper-
forms the state-of-the-art in radiology report generation.

II. RELATED WORK

A. Image Caption and Paragraph Generation

Image captioning involves generating a sentence that de-
scribes the input image in natural language. The prevailing
architecture for the caption task is based on the encoder-
decoder framework proposed by Show-Tell [9]. Building upon
this framework, numerous attention mechanisms have been
proposed to focus on salient visual or language signals [10],

[17], [18]. Given the limited ability to describe an image in
a single sentence, the task of paragraph generation has been
introduced to generate a lengthy and semantically coherent
paragraph based on an input image. For this purpose, the
hierarchical RNN structure is commonly employed [19], [20].
Due to the limited capability of RNNs in capturing long-range
dependencies, recent studies have introduced Transformer-
based models [21], [22].

B. Cross-modal Radiology Report Generation

Radiology report generation, as an application and extension
of image captioning to the medical domain, where most
existing report generation methods follow the encoder-decoder
paradigm [1], [2], [6]–[8], [12], [14], [23], [24]. Several
approaches have been proposed to tackle the challenges posed
by cross-modal problems and improve the clinical accuracy
of generated reports. Xue et al. [23] introduced a multimodal
report generation model that incorporates an iterative decoder
with visual and semantic attention, aiming to enhance coher-
ence between sentences in a recurrent manner. TieNet [25]
presented an attention-encoded text embedding and saliency-
weighted global average pooling approach, enabling joint
learning of textual and image information and enhancing the
model’s capacity in describing abnormalities. To explicitly
record the mappings between visual and textual modalities to
facilitate report generation, R2GenCMN [4] proposed using
memory networks to enhance and smooth such mapping.
XPRONet [11] introduced a prototype matrix to record cross-
modal prototypes and embed cross-modal information into
visual and textual features, resulting in further improvements.

C. Knowledge Based Radiology Report Generation

Numerous studies have explored incorporating prior knowl-
edge into the generation model to improve the quality of
report generation. Li et al. [2] developed a report generation
system incorporating knowledge-driven encoding, retrieval,
and paragraphing modules. Liu et al. [14] modeled previous
work experience and prior medical knowledge by emulat-
ing the working patterns of radiologists, leveraging retrieved
reports and a medical knowledge graph. Zhang et al. [12]
constructed a medical knowledge graph to discover abnormal-
ity relationships in report generation. PPKED [14] utilized
global representations derived from pre-retrieved reports in
the training corpus to model domain-specific knowledge. In
contrast, our objective is to directly employ the knowledge
graph as a shared matrix, bridging the gap between visual and
textual modalities and addressing the challenge of inefficient
knowledge transfer in cross-modal problems.

III. METHODOLOGY

A. Problem Formulation

Before introducing the cross-modal knowledge-driven net-
work (CKNet), we present the problem formulation. Our aim
is to generate a detailed radiology report R̂ = {ŷ1, ŷ2, . . .}
that describes the observations in terms of what and where
based on a given radiology image I .
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Fig. 2. The overall architecture of CKNet, where the cross-modal knowledge-driven network is illustrated in orange dash boxes. After obtaining visual patch
features and textual features, they are sent to the Cross-modal Knowledge Matrix for knowledge distillation and preservation. This process incorporates relevant
knowledge representations into both inputs, bringing visual and textual modalities closer together. Subsequently, the preserved knowledge representations enrich
the single-modal features via a fully connected layer, serving as the source inputs for the Transformer encoder-decoder to generate the report.

The motivation for designing the cross-modal knowledge-
driven network is that medical reports often necessitate
specialized domain knowledge [26]. Therefore, we employ
a knowledge graph that captures the structure of domain-
specific knowledge to bridge the gap between visual and tex-
tual domains, facilitating effective knowledge transfer across
modalities. In particular, we construct an off-the-shelf medical
knowledge graph G = (V,E) that encompasses major clinical
diseases, following the approach of [12]. Subsequently, the
knowledge graph is embedded using GCN [27], taking images
as input and integrating a fully-connected layer for multi-label
classification. Consequently, we obtain a set of node embed-
dings G = {g1, g2, . . . , gi, . . . , gN}, where N represents the
number of nodes in the graph. Each node can focus on a
distinct region of the image corresponding to specific chest
abnormalities.

In the subsequent modules, the parameters in the graph
embeddings are fixed, and the node embeddings are utilized as
a shared knowledge matrix to bridge the gap between visual
and textual domains. The knowledge matrix vectors represent
the spatial positions and characteristics of clinical diseases,
facilitating efficient information capture across modalities and
enabling effective cross-modal knowledge transmission. Im-
portantly, the knowledge graph is trained solely on the training

set of each dataset, ensuring no label leakage.

B. Basic Architecture

A visual extractor is used to initially extract visual feature
maps v ∈ RH×W×C from radiology images. The visual
feature maps v are then flattened into a sequence vs ∈
R(H·W )×C . For frontal and lateral X-rays of a patient, the
visual features from these different views are concatenated to
obtain the final visual representation, which serves as the input
for all subsequent modules. This process is formulated as:

{vs1, vs2, . . . , vsi , . . . , vsNs
} = fimg(I), (1)

where Ns = H ×W = 49, vsi denotes image patch features
in the ith position, and fimg refers to the visual extractor.

Define T as a radiology report consisting of l words, T =
{w1, w2, . . . , wl}. Utilizing BioClinicalBERT [28], which is
pre-trained on medical texts from the MIMIC III dataset [29],
we extract text features vt = {vt1, vt2, . . . , vti , . . . , vtl} from
the hidden state of the last layer. Here, vti represents the word
embedding of the ith word in the report.

Then, the visual features vs and textual features vt are
separately inputted into the cross-modal knowledge-driven net-
work. And the obtained knowledge-aware features for visual
and textual features are fed into the encoder-decoder of the



Transformer to facilitate report generation. The core of the
Transformer is the Multi-Head Attention (MHA), defined as:

Attm(Q,K, V ) = softmax(
QWQ

m(KWK
m )T√

p/q
)VWV

m , (2)

MHA(G,V ) = [Att1(G,V, V ) ⊔ . . . ⊔Attq(G,V, V )]WO, (3)

where Q,K, V correspond to the query, key, and value,
respectively. The parameter matrices WQ

m ,WK
m ,WV

m ,WO are
associated with the mth head that needs to be learned. p
denotes the dimension of the input feature for each head,
and q represents the number of heads in the MHA. The
symbol ⊔ indicates the concatenation operation, and G refers
to the graph node embeddings, which are essential for bridging
the two modalities. Following each of the aforementioned
sub-layers, a residual connection and layer normalization are
applied. Finally, the last MHA in the decoder is followed by
the softmax operation.

C. Cross-modal Knowledge Driven Network

Fig. 2 illustrates the overall architecture of CKNet. We
utilize node embeddings as a shared knowledge matrix that
connects the visual and textual domains. This matrix effec-
tively captures the mappings between different modalities and
facilitates the transfer of knowledge across these modalities.
Specifically, we propose two processes: knowledge distillation
and preservation, to integrate the most relevant knowledge into
visual or textual inputs. This integration aligns information
from images and texts, facilitating effective knowledge trans-
mission and significantly reducing the modality gap. These
steps are executed during both the training and inference
stages. During inference, all textual features are acquired
through the generation process.

1) Knowledge Distillation: Given the input visual or tex-
tual features, our approach initially measures the similarity
between the input single-modal representation and the shared
knowledge matrix. By employing multi-head querying, we
distil visual- or textual-related knowledge representations from
the node embeddings.

Before feeding visual or textual features into the knowledge
matrix, we perform a linear transformation to project them into
the same dimension by:

qsi = vsi ·Wq, qti = vti ·Wq, ki = gi ·Wk, (4)

where Wq and Wk are two learnable weights. Then the
similarity between the input single-modal representation and
the knowledge matrix is computed by:

Dsi =
qsi · ki

⊤
√
d

, Dti =
qti · ki

⊤
√
d

, (5)

where Dsi and Dti represent the visual and textual distances,
respectively, between the input single-modal representation
and the knowledge matrix vectors.

Afterwards, we select γ most related vectors to be preserved
knowledge matrix vectors and calculate their weights wsi and

wti by normalizing the distances Dsi and Dti . This process
is calculated as follows:

wsi =
Dsi∑γ
j=1 Dsj

, wti =
Dti∑γ
j=1 Dtj

. (6)

2) Knowledge Preservation: Once we have obtained the
top γ similar knowledge matrix vectors and their weights, the
next step is to preserve the distilled knowledge representations
within the input single-modal representation. This process is
also conducted in a multi-head manner. For each head, we
first transform the queried knowledge matrix vectors to the
same representation space as the query vectors using a fully
connected layer:

gs = gsi ·Wg, gt = gti ·Wg, (7)

where gsi and gti represent the knowledge matrix vectors which
are most similar to the ith image patch and word features,
respectively. The transformed knowledge vectors for visual
and textual features are denoted as gs and gt. Then we obtain
the preserved knowledge vectors rs and rt as follows:

rs =

γ∑
j=1

ws · gs, rt =

γ∑
j=1

wt · gt, (8)

where ws and wt are weights obtained from knowledge
distillation, rs and rt are the preserved knowledge vectors for
visual and textual features.

The last step is to fuse the preserved knowledge vectors into
the input visual or textual features, respectively. This process
is as follows:

ks = FCN(Concat(vs, rs)),

kt = FCN(Concat(vt, rt)),
(9)

where FCN denotes the fully connected layer and Concat
is the concatenation operation. In conclusion, since the visual
and textual features query from the same knowledge matrix,
these processes narrow the gap between modalities and capture
cross-modal alignment. Furthermore, the shared knowledge
matrix provides prior knowledge to both the visual and textual
domains. These processes facilitate effective knowledge trans-
fer between the two modalities and encourage the decoder to
generate more accurate reports. The outputs of this module
serve as the source inputs for the Transformer encoder and
decoder to generate the reports.

D. Report Generation via Transformer

As previously mentioned, our encoder-decoder is built based
on a standard Transformer. At first, the preserved knowledge
for visual features ks is fed into the Encoder to generate
intermediate states. Then the intermediate states combined
with the preserved knowledge for textual features kt are fed
into Decoder to generate current output yT . This process can
be expressed as:

{m1,m2, . . . ,mNs} = fe(ks1 , ks2 , . . . , ksNs
), (10)

ŷT = fd(m1,m2, . . . ,mNs ; kt1 , kt2 , . . . , ktT−1
), (11)



TABLE I
THE STATISTICS OF IU X-RAY AND MIMIC-CXR. IMAGES, REPORTS,

PATIENTS AND AVG. LEN. REPRESENT THE NUMBER OF IMAGES,
REPORTS, PATIENTS, AND THE AVERAGE LENGTH OF REPORTS.

Dataset Split #Images #Reports #Patients Avg. Len.

Train 5,212 2,780 2,780 38.29
IU-Xray [15] Val 720 402 402 36.58

Test 1,534 800 800 37.63

Train 368,960 222,758 64,586 53.00
MIMIC-CXR [29] Val 2,991 1,808 500 53.05

Test 5,159 3,269 293 66.40

where fe and fd refers to the encoder and decoder, yT denotes
the word prediction for time step T . The above process is
repeated until the complete report is generated.

IV. EXPERIMENTS

A. Datasets

The experiments are performed on two publicly available
datasets IU-Xray [15] and MIMIC-CXR [16]. Following the
same data splits as [5], [11], [30], we divide the IU-Xray
dataset into train (70%), validation (10%) and test (20%)
sets and remove samples without both views of images. For
MIMIC-CXR, we adopt its official split [16]. There is no
overlap of patients across the train, validation and test sets.
Table I shows the statistics of the two datasets.

B. Evaluation Metrics

We evaluate the performance of models using both conven-
tional natural language generation (NLG) metrics and clinical
efficacy (CE) metrics. The NLG metrics used for evaluation
include BLEU [32], METEOR [33], ROUGE-L [34] and
CIDEr [35]. BLEU-1 to BLEU-4 scores are calculated based
on consecutive words in the prediction report. ROUGE-L
measures recall of consecutive word sequences, while BLEU-
n calculates accuracy. The CIDEr score evaluates the coverage
of essential information in the generated text compared to
the ground truth. The METEOR indicator primarily considers
word overlap and lexical abbreviation expansion, allowing for
the incorporation of additional syntactic and semantic infor-
mation. To evaluate how well the generated reports describe
abnormalities, we further report CE metrics following previous
work [5]. For the CE metrics, we use the CheXpert [36] labeler
to extract labels from the generated reports and compare the
results with ground truth for 14 different thoracic diseases
using accuracy, precision, recall, F1 and AUC. Since the IU-
Xray dataset lacks consistent labels, we only report CE metrics
for the MIMIC-CXR dataset.

C. Implementation Details

For each dataset, we first obtain the corresponding trained
knowledge graph embeddings following the approach in [12].
The knowledge graph consists of 40 nodes and a dimension of
512. The graph node embeddings serve as a shared knowledge

matrix, connecting two domains and facilitating the transmis-
sion of knowledge. Importantly, the graph weights are kept
frozen throughout the training and inference stages of report
generation.

To ensure consistency with the experiment settings of pre-
vious work [5], [11], we utilize both the frontal and lateral
radiology images of a patient on IU-Xray by concatenating
the visual features, and one image for MIMIC-CXR. We adopt
DenseNet-121 [37] pre-trained on CheXpert [36] as our visual
extractor. The extracted features are 2, 048 feature maps in the
shape of 7 × 7 which are further projected into 512 feature
maps, i.e., Ns is 49 and C is 512. For the text encoder, we use
BioClinicalBERT [28] pre-trained on medical texts from the
MIMIC-III dataset [29] to extract text features, and the global
textual representation has 768 dimensions.

For the encoder-decoder backbone, we use a Transformer
structure with 3 layers and 8 attention heads, and the di-
mension of hidden states is 512. According to the report
generation performance on the validation set, the number of
most related vectors γ is set to 8, meaning that only the top
8 knowledge matrix vectors are selected to merge with the
single-modal representations. We train our model under cross-
entropy loss with Adam optimizer [38]. The learning rates
are set to 1 × 10−3 and 5 × 10−4 for the visual extractor
and encoder-decoder on IU-Xray, while MIMIC-CXR has a
smaller learning rate with 5×10−5 and 1×10−4 respectively.
We decay them by 0.8 rate per epoch and the bath sizes are
16 for all datasets. To balance effectiveness and efficiency,
we adopt a beam size of 3 in the report generation process.
Note that the optimal hyper-parameters are determined by
estimating the models on the validation sets and we report
the results on the testing set when the validation set achieves
the best BLEU-4 score. Our model is implemented using the
PyTorch [39] deep learning framework.

D. Quantitative Results

1) Language Generation Performance: We compare our
proposed model with previous state-of-the-art methods,
i.e., CoATT [1], KERP [2], SentKG [12], R2Gen [5],
R2GenCMN [4], PPKED [14] and CMCL [31]. The NLG
results are shown in Table II. It is evident that our proposed
CKNet surpasses the baselines in nearly all metrics, suggesting
that our method emphasizes overall contextual information
and excels in capturing longer n-grams. Additionally, our
model achieves significantly higher CIDEr and ROUGE-L
scores compared to the baselines, signifying its ability to
generate more cognitively fluent sentences. Remarkably, our
method outperforms R2GenCMN by 14.5%, 15.7% and 14.1%
on the BLEU-2, BLEU-3 and BLEU-4 scores on IU-Sray
dataset, respectively. A similar improvement can be observed
on the MIMIC-CXR benchmark. Meanwhile, we notice that
our model’s improvement on MIMIC-CXR is not as substantial
as on IU-Xray, possibly due to the larger dataset posing
challenges for knowledge learning. Nonetheless, CKNet can
still achieve improvements on BLEU-2 to BLEU-4, indicating



TABLE II
THE PERFORMANCES OF OUR MODEL COMPARED WITH PREVIOUS STUDIES ON THE TEST SETS OF IU-XRAY AND MIMIC-CXR. THE BOLD SCORES

INDICATE THE BEST RESULTS FOR EACH METRIC.

Dataset Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

IU
-X

ra
y

[1
5]

CoATT [1] 0.455 0.288 0.205 0.154 - 0.369 0.277
SentKG [12] 0.441 0.291 0.203 0.147 - 0.367 0.304
KERP [2] 0.482 0.325 0.226 0.162 - 0.339 0.280
R2Gen [5] 0.470 0.304 0.219 0.165 0.187 0.371 -
PPKED [14] 0.483 0.315 0.224 0.168 - 0.376 0.351
R2GenCMN [4] 0.475 0.309 0.222 0.170 0.191 0.375 -

CKNet (ours) 0.515 0.354 0.257 0.194 0.213 0.402 0.392

M
IM

IC
-C

X
R

[1
6] CoATT [1] 0.331 0.220 0.147 0.117 - 0.276 -

R2Gen [5] 0.353 0.218 0.145 0.103 0.142 0.277 -
CMCL [31] 0.334 0.217 0.140 0.097 - 0.281
PPKED [14] 0.360 0.224 0.149 0.106 0.149 0.284 -
R2GenCMN [4] 0.353 0.218 0.148 0.106 0.142 0.278 -

CKNet (ours) 0.356 0.239 0.157 0.113 0.146 0.289 0.118

TABLE III
THE RESULTS OF CLINICAL EFFICACY METRICS ON THE TEST SET OF THE

MIMIC-CXR DATASET. FOR THE BASELINES MARKED BY *, WE
REPLICATE THE EXPERIMENTS BY RUNNING THEIR CODES.

Model Accuracy Precision Recall F1 score AUC

ST∗ [9] 0.204 0.244 0.197 0.190 0.685
AdaAtt∗ [40] 0.217 0.266 0.192 0.195 0.701
Att2In∗ [41] 0.232 0.310 0.225 0.234 0.732
TopDown∗ [10] 0.228 0.312 0.235 0.244 0.734
R2Gen [5] 0.297 0.333 0.273 0.276 0.763
R2GenCMN [4] 0.321 0.334 0.275 0.278 0.775

CKNet (Ours) 0.368 0.423 0.348 0.358 0.802

that the knowledge matrix used to bridge the gap between
modalities can improve knowledge learning efficiency.

2) Clinical Accuracy Performance: To further demonstrate
the effectiveness of our model on clinical efficacy (CE)
metrics, we compare it with conventional image captioning
works, e.g., ST [9], AdaAtt [40], Att2In [41], and TopDown
[10], as well as specific medical report generation methods
R2Gen [5] and R2GenCMN [4]. Since the IU-Xray dataset
does not provide consistent labels, we solely report CE metrics
on the MIMIC-CXR dataset. The CE metrics can help to
evaluate the accuracy of the generated reports in describing
abnormalities. The results in Table III reveal that our proposed
method exhibits a significant superiority over all prior models
in terms of CE metrics, leading to a 27.2% rise in precision,
26.5% in recall, and 28.8% in the F1 score. This implies that
from the clinical perspective, our model has produced more
accurate reports than other models. Two potential reasons can
be identified. Firstly, the adoption of a cross-modal knowledge
matrix bridges the gap between the two modalities, enabling
more intuitive and efficient knowledge transfer between texts

and images. Secondly, the proposed knowledge distillation and
preservation effectively capture medical knowledge and cross-
modal mappings, assisting in report generation.

E. Qualitative Results

We further conduct a qualitative analysis to gain a percep-
tual understanding of the improvements. Fig. 3 presents three
cases of ground-truth reports and reports generated by our
method CKNet and the state-of-the-art baselines. It is evident
that CKNet accurately generates descriptions of abnormalities
or diseases in all three cases. Notably, in the second column,
CKNet successfully identifies both opacity in the left lung
and spine, whereas other methods fail to detect either of them,
confirming its superiority in generating reports of higher qual-
ity. This suggests that the cross-modal knowledge interactions
proposed, based on the shared knowledge matrix, offer more
effective knowledge for report generation and enhance the
clinical accuracy of the generated reports.

F. Ablation Study

We conduct experiments to verify the effectiveness of the
proposed method components, as displayed in Table IV. For
the first setting (Base), we remove other modules and only
use the visual extractor (DenseNet-121) and encoder-decoder
(Transformer) backbone. For the second setting (+MEN),
we replace CKNet with a matrix of the same dimension
and initialize it randomly without knowledge. For the third
setting (+CKNet), we implement the full CKNet with all
proposed components. A noticeable decrease occurs in every
metric when the shared knowledge matrix is not employed,
showcasing its role in facilitating the learning of abnormality-
related knowledge and bridging the two modalities through
the alignment of cross-modal representations. Furthermore, we
observe a higher performance increase on IU-Xray compared



TABLE IV
THE EXPERIMENTAL RESULTS OF ABLATION STUDIES ON THE IU-XRAY AND MIMIC-CXR DATASETS. THE BEST VALUES ARE HIGHLIGHTED IN BOLD.

Dataset Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

IU-Xray [15]
Base 0.445 0.293 0.205 0.144 0.178 0.355 0.343
+MEN 0.472 0.323 0.229 0.168 0.192 0.376 0.366
+CKNet 0.515 0.354 0.257 0.194 0.213 0.402 0.392

MIMIC-CXR [16]
Base 0.307 0.199 0.119 0.088 0.113 0.253 0.089
+MEN 0.329 0.212 0.125 0.092 0.125 0.269 0.102
+CKNet 0.356 0.239 0.157 0.113 0.146 0.289 0.118

Two-view 
images

Ground
Truth 

CMN [4] 

the heart size and pulmonary vascularity 
appear within normal limits. there are 
small to moderate sized bilateral pleural 
effusions. no acute bony abnormality. 
no atelectasis.

CKNet

there is stable cardiomegaly.  no visible 
pneumothorax. bilateral pleural 
effusions identified.  no suspicious 
pulmonary mass or nodule is seen. there 
is mild edema. 

there is an marked interval increase in 
heart size. a small right pleural 
effusion the present. the lungs are 
otherwise clear without focal infiltrates. 
normal pulmonary vascularity. no 
pneumothorax.

there are opacities in the left lung, 
subsegmental atelectasis.  no focal 
airspace consolidation. no pleural or 
pneumothorax. heart size is at the upper 
limits of normal. there are diffuse 
degenerative changes of the spine.

heart size and aortic are within normal 
limits. the lungs are clear. no visible 
pneumothorax or large pleural effusion. 
no pulmonary vasculature. mild 
degenerative changes of the spine.

there are mild chronic opacities in left 
lung base with probable small residual 
effusion. the right lung is clear. the heart 
size is normal. no pleural effusion. mild 
thoracic spine degenerative change.

the heart size is mildly enlarged. 
the lungs are free of focal airspace 
disease.  no pneumothorax is seen.
there is no effusion or pneumothorax.

the heart is enlarged.  there is no 
pulmonary or vascularity. small pleural 
effusions are present. the lungs are clear 
without focal airspace opacity. the lungs 
are clear. no visible pneumothorax.

SentKG 
[12] 

lungs are clear and without areas of 
focal consolidation. stable cardiomegaly  
is seen. there is no pneumothorax.
there is no airspace opacity.

the heart is not significantly enlarged. no 
pleural effusions. degenerative changes 
thoracic spine.  no suspicious 
pulmonary mass or nodule is seen.

the heart size is within normal size. 
no pleural effusion or effusion 
identified.
there is no pleural effusion.
there are lungs without pneumothorax.

there is stable cardiomegaly and 
probable mild interstitial edema. There 
are bilateral pleural effusions with 
bibasilar airspace disease, right greater 
than left. There is no pneumothorax. 
There are no acute bony findings.

Fig. 3. Three cases of ground-truth reports and reports generated by our method CKNet and the state-of-the-art baselines. Tokens marked in blue indicate
the presence of abnormalities or diseases in the ground-truth reports, while those marked in red indicate the accurate detection of abnormalities or diseases
in the generated reports.

to MIMIC-CXR, signifying that different from scenes with
large labeled sample sizes, scenarios with small data amounts
require more assistance from knowledge.

V. CONCLUSION

In this paper, we presented CKNet, a new cross-modal
knowledge-driven network for radiology report generation.
We utilized a pre-constructed knowledge graph as a shared
matrix to bridge the gap between visual and textual modalities,
facilitating cross-modal knowledge transfer. On the one hand,
the shared knowledge matrix captures cross-modal mappings,
reducing the disparity between images and texts. On the other
hand, the proposed new module for knowledge distillation

and preservation integrates relevant knowledge representations
into both visual and textual inputs, enhancing the intuitive
cross-modal knowledge interaction and improving the clinical
accuracy of generated reports. Experimental results on two
benchmark datasets demonstrated the effectiveness of our
proposed CKNet, which outperforms state-of-the-art methods.
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