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ABSTRACT

In recent years, technological advancements in the field of computing have been lim-

ited by the slowing down of Moore’s law, which predicts the doubling of the number of

transistors on a microchip every two years. The limitations of traditional solid-state elec-

tronics have become increasingly evident, as it is becoming difficult to increase the number

of transistors while maintaining their reliability and performance. The breakdown of Den-

nard Scaling, which describes the power-density relationship in CMOS transistors, and the

von Neumann bottleneck, which refers to the limited bandwidth between the central pro-

cessing unit (CPU) and memory, have further exacerbated the situation. Moreover, the

ever-increasing computing demands have led researchers to explore alternative computing

mechanisms, such as neuromorphic computing.

In this context, there is a growing interest in developing novel memory devices that

possess non-linear current-voltage characteristics and inherent memory properties, such as

bio-inspired memory devices. These devices are inspired by the functioning of biological

synapses in the brain, which enable neurons to communicate with each other and form com-

plex networks. Bio-mem devices use biomolecules, such as proteins or DNA, as their active

material and can exhibit a range of non-linear behaviors, including hysteresis, threshold

switching, and negative differential resistance. Additionally, they have inherent memory

properties that allow them to retain their state even after the power is turned off.

The unique features of bio-mem devices make them a promising candidate for solv-

ing classification and temporal pattern recognition tasks. Unlike their solid-state counter-

parts, bio-mem devices feature a similar structure, switching mechanism, and ionic trans-

port modality as biological synapses, while consuming considerably lower power. The use of
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bio-mem devices in computing can lead to the development of more efficient and powerful

computing systems that can handle complex tasks more effectively.

One promising computing paradigm that has emerged in recent years is Reservoir

Computing (RC), which is a type of recurrent neural network that uses a fixed, random, and

sparse connectivity matrix called a ”reservoir.” The reservoir provides a non-linear mapping

of the input data, and the output is obtained by training a linear readout layer using a

simple learning algorithm, such as ridge regression or support vector regression. RC has

been shown to be effective in solving a range of classification and temporal problems, such

as speech recognition, time-series prediction, and image classification. This work aims to

explore the use of biomolecular devices in RC to solve classification and temporal problems,

which could lead to the development of more efficient and powerful computing systems.
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1 INTRODUCTION

1.1 Motivation

In recent years, traditional computing architectures have evolved into sophisticated

systems capable of large-scale parallel computation using billions of transistors. However,

the demand for higher speed and lower power consumption has presented challenges to these

multi-core architectures. One of the major challenges is the slowing down of Moore’s law,

which states that the number of transistors on a chip doubles approximately every two years,

increasing computing power [55].

The slowing down of Moore’s law has been attributed to several factors, including the

physical limitations of transistor miniaturization and the increasing difficulty of improving

the performance of multicore architectures. As a result, researchers have explored alternative

approaches to improving computing performance, such as developing new architectures and

using novel materials. For example, novel materials such as graphene and carbon nanotubes

have been proposed to improve computing performance by enabling faster switching speeds

and reducing power consumption [71] [154].

Moreover, researchers have also explored the use of neuromorphic computing, which

is inspired by the structure and function of the human brain. This approach involves the use

of artificial neural networks to perform computing tasks, which can be more energy-efficient

and capable of parallel processing compared to traditional computing architectures [1].

Despite these efforts, it remains a challenge to maintain the performance improvement

rate seen in earlier years. Nevertheless, the development of new computing architectures and

materials and the exploration of alternative approaches, such as neuromorphic computing,

1



may offer promising solutions to these challenges in the future. One promising technology

that has emerged in recent years is the field of nanotechnology, which involves the design and

manufacture of materials at the nanoscale level. Nanotechnology holds tremendous promise

for developing novel materials and architectures that can significantly improve computing

performance. For instance, researchers are exploring the use of nanophotonics, which uses

light instead of electricity to transmit data, to develop faster and more energy-efficient

computing systems.

To conclude, the slowing down of Moore’s law has presented significant challenges

to traditional computing architectures. However, researchers are exploring alternative ap-

proaches to enhance computing performance, such as developing new materials and archi-

tectures and exploring neuromorphic computing and quantum computing. Nanotechnology

also holds tremendous promise for developing novel materials and architectures that can sig-

nificantly improve computing performance. With these alternative approaches, it is possible

to overcome the limitations of traditional computing and pave the way for a new era of

computing.

1.2 Artificial Neural Network

Artificial intelligence (AI) and artificial neural networks (ANNs) are closely correlated

as ANNs are a key component of AI. ANNs are a subset of machine learning algorithms that

are inspired by the structure and function of the human brain. ANNs are a type of machine

learning algorithm that are inspired by the structure and function of the human brain. ANNs

are designed to learn patterns and relationships from data and use this knowledge to make

predictions or decisions.

A typical ANN consists of multiple layers of interconnected neurons, with each layer

performing a specific function. The input layer receives the input data, which is then passed

through one or more hidden layers, and finally to the output layer, which produces the final

2



Figure 1.1: Schematic of Feed Forward Network.

output [38]. The diagram below shows a simple feed-forward neural network, which is the

most common type of ANN.

In this diagram (1.1), the circles represent neurons, and the lines connecting them

represent the connections between the neurons. There are three layers: the input, hidden,

and output layers. Each neuron in the hidden layers and the output layer performs a weighted

sum of the inputs it receives and applies an activation function to the sum to produce its

output. The weights are learned during the training process, which involves adjusting the

weights to minimize the difference between the network’s output and the desired output.

Overall, the ANN learns to map input data to output data by adjusting the weights of

its connections in response to training data. Once trained, the ANN can be used to predict

new input data.

ANNs can be classified into different types based on their architecture, learning meth-

ods, and application areas. Below are the most common types of ANNs:
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Feedforward Neural Networks (FFNN): Feedforward neural networks [145] are the

simplest and most common type of neural network. They are also known as multilayer

perceptrons (MLPs). These networks consist of multiple layers of neurons, with each neuron

in one layer connected to all neurons in the next layer. The input data is fed into the first

layer, and the output is obtained from the last layer. FFNNs are used for both classification

and regression tasks.

Recurrent Neural Networks (RNN): Recurrent neural networks [151] are a type of

neural network where the output of one neuron is fed back into the network as input to

another neuron. These networks are particularly useful for processing sequential data, such

as time series data, natural language processing, and speech recognition.

Convolutional Neural Networks (CNN): Convolutional neural networks [178] are de-

signed to process data with a grid-like structure, such as images and videos. These networks

use convolutional layers to extract features from the input data, followed by pooling layers to

reduce the dimensionality of the data. CNNs are widely used in image classification, object

detection, and facial recognition.

Self-Organizing Maps (SOM): Self-organizing maps [72] are a type of unsupervised

neural network used for clustering and dimensionality reduction. SOMs use a grid of neurons

that are arranged in a two-dimensional space. Each neuron in the grid is connected to the

input data, and the neurons closer to each other are more likely to be activated together.

SOMs are widely used in data visualization, image compression, and feature extraction.

Radial Basis Function Networks (RBF): Radial basis function networks [112] are

neural networks that use radial basis functions as activation functions. These networks

consist of an input layer, a hidden layer with radial basis functions, and an output layer.

RBF networks are used for function approximation, classification, and regression tasks.

Deep Neural Networks (DNN): Deep neural networks [183] are neural networks with

many hidden layers. DNNs are used for complex tasks, such as speech recognition, image

4



recognition, and natural language processing. DNNs require a large amount of training data

and computational resources to achieve high accuracy.

In summary, artificial neural networks are versatile machine learning algorithms that

can be applied to a wide range of applications. The type of neural network used depends on

the nature of the problem, the type of input data, and the desired output.

A literature review on ANNs has been given in the following:

The history of artificial neural networks can be traced back to the 1940s, when War-

ren McCulloch and Walter Pitts proposed the first mathematical model of a neural network.

However, it was not until the 1980s and 1990s that ANNs gained popularity due to advance-

ments in computing power and the availability of large datasets. Since then, ANNs have

been used in a wide range of applications, from image and speech recognition to medical

diagnosis and financial forecasting.

Artificial neural networks consist of interconnected nodes, called neurons, which are

organized in layers. Each neuron receives input from other neurons and computes an output

using an activation function. The output of one layer of neurons is used as input to the next

layer until the final output layer produces a prediction or decision. The process of adjusting

the weights of the connections between neurons to optimize the network’s performance is

called training.

There are several types of ANNs, including feedforward neural networks, recurrent

neural networks, convolutional neural networks, and deep neural networks. Feedforward

neural networks are the simplest type of ANN, where information flows only in one direction

from input to output. On the other hand, Recurrent neural networks allow information to

be stored and processed over time, making them suitable for applications such as speech

recognition and natural language processing. Convolutional neural networks are commonly

used for image and video recognition, while deep neural networks are a type of neural network

with multiple hidden layers that are used for complex tasks such as autonomous driving.
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The applications of ANNs are numerous and varied. One of the most well-known

applications is image recognition, where ANNs are used to identify and classify objects in

images. ANNs are also used in speech recognition, natural language processing, and machine

translation. In the medical field, ANNs are used for medical diagnosis, drug discovery,

and personalized medicine. ANNs are also used in financial forecasting, fraud detection,

and predictive maintenance in various industries. Some scholarly work on ANNs has been

explored in the following:

Laith Alzubaidi et al. (2021) [5] describe a deep learning approach for image classifi-

cation using Convolutional Neural Networks (CNNs). Rodrigo Neves (2018) [108] provided

an overview of deep learning techniques for time series forecasting. The authors discussed

various deep learning models such as Recurrent Neural Networks (RNNs), Long Short-Term

Memory (LSTM) networks, and Convolutional Neural Networks (CNNs) for time series fore-

casting. The article also discussed the challenges and opportunities of using deep learning for

time series forecasting. Pan and Yang (2010) [116] provided a survey on transfer learning for

image classification. The authors discussed various transfer learning techniques such as fine-

tuning, feature extraction, and domain adaptation for image classification. The article also

discussed the advantages and limitations of transfer learning for image classification. Li et

al. [80] proposed an approach for anomaly detection in time series data using Autoencoders.

The authors tested their approach on the Yahoo Webscope dataset and achieved an accu-

racy of 99.63%. The results showed that their approach outperformed traditional machine

learning methods for anomaly detection in time series data. Zhang et al. [187] provided a

comprehensive survey of deep learning for sentiment analysis. The authors discussed various

deep learning models such as RNNs, LSTM networks, and CNNs for sentiment analysis. The

article also discussed the challenges and opportunities of using deep learning for sentiment

analysis. Zhao et al. [191] provided a review of deep learning techniques for object detec-

tion. The authors discussed various deep learning models such as Faster R-CNN, YOLO,

and SSD for object detection. The article also discussed the recent developments in deep
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learning techniques for object detection and their future directions. Zhang et al. (2019)

[188] provided an overview of deep learning models for recommendation systems. The au-

thors discussed various deep learning models such as Collaborative Filtering (CF), Matrix

Factorization (MF), and Neural Collaborative Filtering (NCF) for recommendation systems.

The article also discussed the challenges and opportunities.

1.3 Neuromorphic Computing

Neuromorphic computing is a rapidly emerging field that aims to develop computer

architectures and systems that simulate the structure and function of the human brain.

This type of computing is designed to provide a new way of processing information that can

potentially lead to better and more efficient computing systems. Neuromorphic computing

is based on the principles of neuroscience and is inspired by the workings of the brain. This

essay will explore the working principle of neuromorphic computing, its popularity, and its

applications.

Neuromorphic computing is based on the idea of developing computing systems that

are modeled after the human brain. This means that instead of using traditional computing

architectures that are based on binary digits, neuromorphic computing systems use networks

of artificial neurons that communicate with each other using electrical signals. These net-

works of artificial neurons are designed to simulate the function of biological neurons in

the brain, and the signals they use to communicate are similar to the electrical impulses

transmitted by neurons in the brain.

A biological neuron is the fundamental unit of the nervous system. It consists of three

main parts: the cell body, the dendrites, and the axon.

Cell body (Soma): The cell body, or soma, contains the nucleus and other organelles

that are essential for the neuron’s function. The soma processes incoming signals and pro-

duces the output signal that is transmitted to other neurons.
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Figure 1.2: Schematic of Biological Neuron. (Image source: Wikimedia Commons.)

Dendrites: Dendrites are branching structures that extend from the cell body. They

receive input signals from other neurons or sensory receptors and transmit them to the cell

body. Dendrites are covered with tiny projections called spines, which increase the surface

area of the dendrites and allow for more input signals to be received.

Axon: The axon is a long, thin projection that extends from the cell body. It carries

the output signal, or action potential, from the cell body to the axon terminals. The axon

is covered with a myelin sheath, increasing the action potential’s speed.

Synapse: The synapse is the junction between two neurons, where the axon terminal

of one neuron meets the dendrite or cell body of another neuron. The synapse allows for

communication between neurons through the release of chemical messengers called neuro-

transmitters.

The diagram 1.2 shows a simplified diagram of a biological neuron. In this diagram

(Figure 1.2), the cell body is located at the neuron’s center and connected to multiple

dendrites. The axon extends from the cell body and ends in axon terminals, which form

synapses with other neurons. The dendrites receive input signals, which are transmitted

to the cell body. If the input signals are strong enough, the cell body produces an output

signal, or action potential, which travels down the axon and is transmitted to other neurons

through synapses.
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Figure 1.3: Schematic of the equivalent electronic model of the neuromorphic system.

Figure 1.3 shows the electronic model of the neuromorphic system. Inputs are mul-

tiplied by synaptic weights and summed up in the neuron layer. After adding the bias, it’s

triggered by an activation function (sigmoid, relu, step, etc.), and we get the output signal.

Overall, the biological neuron works by receiving input signals, processing them, and

producing an output signal. The output signal is then transmitted to other neurons through

synapses, allowing for communication between neurons and the function of the nervous

system.

Neuromorphic computing can be classified into the following categories:

Spiking Neural Networks (SNNs): Spiking neural networks [40] are a type of

neural network that simulate the timing of spikes in biological neurons. These networks use

a ”pulse” or ”spike” to represent the activation of a neuron. SNNs are used for tasks that

require temporal processing, such as speech recognition, image processing, and robotics.

Liquid State Machines (LSMs): Liquid state machines [90] are a type of spiking

neural network that uses a pool of neurons, known as a ”liquid”, to process input data.

The neurons in the liquid are randomly connected, and their activation states represent the

system’s current state. LSMs are used for classification, prediction, and control tasks.
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Neural Engineering Frameworks (NEFs): Neural engineering frameworks [156]

are a type of neuromorphic computing that is designed to bridge the gap between neuro-

science and engineering. NEFs use mathematical models of neurons and synapses to design

and implement neural networks. NEFs are used for sensory processing, motor control, and

decision-making tasks.

Neuromorphic Hardware: Neuromorphic hardware [186] is a computing hardware

designed to implement neural networks using analog or digital circuits. Neuromorphic hard-

ware can be used for real-time processing of sensory data, such as vision and audition, and

for cognitive computing applications.

Neuroevolution: Neuroevolution [34] is a type of neuromorphic computing that

uses evolutionary algorithms to design and optimize neural networks. Neuroevolution is

used for game playing, robotics, and optimization tasks.

Memristive Networks: Memristive networks [26] [14] are a type of neuromorphic

computing that use memristors, which are resistive devices that can change their resistance

based on the history of the applied voltage. These networks are used for tasks such as pattern

recognition, signal processing, and memory storage.

Memristive networks have gained popularity in recent years due to their unique prop-

erties that make them well-suited for neuromorphic computing applications. Memristors are

resistive devices that can change their resistance based on the history of the applied voltage.

This allows for creating synapses that can learn and adapt to the input data, making them

similar to biological synapses in the human brain.

There are several advantages [180] [19] [85]to using memristive networks for neuro-

morphic computing:

Energy Efficiency: Memristive networks are highly energy-efficient, which is im-

portant for many neuromorphic computing applications. The devices have low power con-

sumption and can be integrated into compact circuits, making them suitable for mobile and

embedded systems.
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Scalability: Memristive networks can be scaled to large sizes, making them suitable

for complex neural network architectures. The devices can be fabricated using standard

semiconductor manufacturing processes, which makes them easy to integrate with other

electronic components.

Robustness: Memristive networks are robust and can withstand a wide range of op-

erating conditions. The devices are resistant to noise and can operate in harsh environments,

which makes them suitable for real-world applications.

Learning and Adaptation: Memristive networks can learn and adapt to input

data, making them suitable for pattern recognition and classification tasks. The devices can

be used to create synapses that can adjust their strength based on the history of the input

signals, which allows for the creation of adaptive networks.

Non-volatile Memory: Memristive networks can be used to create non-volatile

memory, which is the memory that retains its contents even when power is turned off. This

makes them suitable for applications such as data storage and retrieval.

In summary, memristive networks have gained popularity in recent years due to their

unique properties that make them well-suited for neuromorphic computing applications. The

devices are highly energy-efficient, scalable, robust, and can learn and adapt to input data,

making them suitable for various applications.

Neuromorphic computing systems are designed to be highly parallel, meaning they

can process multiple pieces of information simultaneously. This is different from traditional

computing systems that are designed to process information in a serial manner, one piece at

a time. Neuromorphic computing systems also have the ability to learn from the data that

they process, just like the human brain. This means they can adapt to new data and change

their behavior over time.

Neuromorphic computing has gained popularity in recent years due to the signifi-

cant advancements that have been made in the field. These advancements have led to the
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development of powerful computing systems that can simulate the behavior of biological neu-

rons with high accuracy. This can potentially revolutionize many fields, including artificial

intelligence, robotics, healthcare applications, [32] [31], and even medicine.

Neuromorphic computing is also becoming more popular because it offers a more

energy-efficient way of processing information. Traditional computing systems are known

for their high energy consumption, and this has become a major concern as the demand

for computing power continues to increase. Neuromorphic computing systems, on the other

hand, are designed to be more energy-efficient, which makes them an attractive alternative

to traditional computing systems.

Neuromorphic computing has a wide range of applications and is expected to signif-

icantly impact many fields in the coming years. One of the most promising applications of

neuromorphic computing is in the field of artificial intelligence [147]. Neuromorphic com-

puting systems can be used to train machine learning algorithms, which can then be used to

perform tasks such as image recognition, speech recognition, and natural language process-

ing.

Neuromorphic computing is also being used in the field of robotics [143]. Robots

that are designed to mimic the behavior of living organisms can benefit from the principles

of neuromorphic computing. By using networks of artificial neurons, robots can learn from

their environment and adapt to new situations in real time. Neuromorphic computing has

the potential to revolutionize the field of medicine. Researchers are currently exploring the

use of neuromorphic computing systems to develop better diagnostic tools and to improve

the treatment of neurological disorders such as Alzheimer’s disease and Parkinson’s disease.

Some literature reviews on neuromorphic computing has done in following

Indiveri et al. (2015) [60] provide a comprehensive overview of neuromorphic com-

puting and its applications. The authors discuss the various approaches to neuromorphic

computing, including neuromorphic hardware, neuromorphic algorithms, and neuromorphic

systems. They also provide examples of neuromorphic computing applications in areas such
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as image and speech recognition, robotics, and sensor networks. Schemmel et al. [146]

present a wafer-scale neuromorphic hardware system for large-scale neural modeling. The

authors describe the system’s architecture, which includes 384 analog circuits, each contain-

ing 256 neurons and 1024 synapses. The authors demonstrate the system’s ability to simulate

large-scale neural networks and provide examples of its application in areas such as image

recognition and robotics. Merolla et al. [100] describe the design and implementation of a

neuromorphic computing system that contains one million spiking neurons and is capable of

simulating large-scale neural networks. The system is based on an integrated circuit archi-

tecture that includes both digital and analog components and uses a communication network

to connect multiple chips. Furber [36] provides an overview of large-scale neuromorphic com-

puting systems, including the challenges and opportunities associated with developing such

systems. The author discusses various hardware and software platforms used in neuromor-

phic computing, such as spiking neural networks, memristors, and neuromorphic processors.

Zhang et.al. [189] describe the use of memristor crossbars in neuromorphic computing sys-

tems. The authors discuss the advantages and challenges associated with using memristors

and provide examples of their applications in spiking neural networks. They also discuss the

various modeling techniques used to simulate memristor-based systems. Hasler et. al. [51]

discusses the challenges and opportunities associated with developing large-scale neuromor-

phic hardware systems. The authors discuss various approaches to achieving such systems,

such as using hierarchical architectures and neuromorphic processors. They also discuss the

potential applications of large-scale neuromorphic systems in areas such as robotics and sen-

sor networks. Merolla et. al. [100] developed a million spiking-neuron integrated circuit with

a scalable communication network and interface. The authors demonstrated the scalability

of the system by simulating a model of 1 billion neurons with 10 trillion synapses. The

authors also highlighted the potential of neuromorphic computing for energy-efficient and

parallel computing applications.
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1.4 Memristors

Memristors are a relatively new addition to the field of electronics, and they have

quickly become an exciting area of research. A memristor is a passive two-terminal electrical

component that has the ability to remember the amount of charge that has flowed through

it in the past. This unique feature makes memristors different from other basic electrical

components like resistors, capacitors, and inductors.

Memristors were first theorized by Professor Leon Chua of the University of California,

Berkeley, in 1971. However, it wasn’t until 2008 that HP Labs announced that they had

created a physical memristor. Since then, researchers worldwide have been studying this

new component’s potential uses and applications.

One of the most promising applications of memristors is in the field of computing.

Memristors have the potential to revolutionize computer memory by providing an alternative

to traditional DRAM (Dynamic Random Access Memory) and flash memory. Memristors

are non-volatile, which means that they don’t require power to maintain their state. This

makes them ideal for use as long-term storage devices. In addition, memristors have much

faster read and write times than traditional memory technologies, which means that they

could lead to significant improvements in computer performance.

Another potential use for memristors is in artificial intelligence. Memristors can be

used to create neural networks modeled after the human brain’s structure. This is because

memristors can mimic the behavior of synapses, which are the connections between neurons

in the brain. Researchers hope to develop more efficient and powerful AI systems by using

memristors to create neural networks.

In addition to their potential applications in computing and AI, memristors also have

potential uses in other fields. For example, medical devices could use memristors to create

implantable sensors that can monitor and control various physiological processes. They could

also be used in energy storage systems to create more efficient and long-lasting batteries.
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Despite the potential of memristors, some challenges still need to be addressed. For

example, memristors are currently difficult and expensive to produce, which makes them

impractical for widespread use. In addition, there are still some questions about the reliability

and durability of memristors, which could limit their usefulness in certain applications. The

following includes a literature review that has been conducted on Memristors:

Strukov et al. [158] describe the first experimental realization of memristive devices

and their unique properties. The researchers demonstrate the use of memristors as electronic

synapses in neuromorphic circuits. Yang et al. [181] discuss the potential of memristive

devices in computing applications, including logic circuits and memory storage. Jo et al.

[64] describe the use of memristors as synapses in neuromorphic circuits and show that they

exhibit short-term and long-term plasticity, similar to biological synapses. Pershin et al. [127]

propose a memristive learning model inspired by amoeba behavior. The model demonstrates

the potential of memristors for implementing learning mechanisms in artificial systems. Wang

et al. [172] describe the development of flexible memristive devices based on nanocomposite

materials and their potential use in brain-inspired computing. Yang et al. [182] describe the

use of nanoscale metallic inclusions in dielectric materials to achieve resistive switching in

memristive devices. Kim et al. [70] describe the development of a memristive device that

exhibits intrinsic diode characteristics and long endurance, making it a promising candidate

for memory storage applications. Chua [20] proposed the existence of memristors as a fourth

fundamental circuit element, which can store information and exhibit non-linear behavior.

Struck et al. [158] describe the first experimental realization of memristive devices and

their unique properties. The researchers demonstrated the use of memristors as electronic

synapses in neuromorphic circuits. Alibart et al. [2] demonstrate the use of memristive

crossbar circuits for pattern classification tasks, using both ex situ and in situ training.

Kuzum et al. [74] describe using phase change materials in memristive devices to implement

programmable synapses in brain-inspired computing. Burr et al. [16] discuss the potential of
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memristive devices in neuromorphic computing applications, including pattern recognition

and machine learning, in the review article.

Memristors are a promising new component in the field of electronics. They have the

potential to revolutionize computing and AI, as well as a wide range of other areas. Although

some challenges still need to be overcome, researchers worldwide are working to improve the

performance and reliability of memristors, and we will likely see more widespread use of

these components in the coming years.

1.5 Memcapacitors

Memcapacitors, also known as memory capacitors, are passive electronic components

that can remember the amount of charge that has passed through them. They are similar to

memristors, which can remember the amount of control that has flowed through them, but

instead of changing resistance, they change the capacitance.

The concept of a memcapacitor was first theorized in 1971 by Leon Chua [135]. Chua

proposed that a memcapacitor could be created by taking two parallel plates and placing a

layer of suitable dielectric material between them. When a voltage is applied to the plates,

the dielectric material becomes polarized, causing a change in capacitance that depends on

the history of the voltage applied.

Like memristors, memcapacitors have the potential to revolutionize a number of dif-

ferent fields. One area where they could be particularly useful is in memory storage. Current

memory technologies, such as DRAM and flash memory, have speed, durability, and power

consumption limitations. Memcapacitors have the potential to overcome these limitations

by providing a more efficient and durable means of storing information.

Another potential application of memcapacitors is in the field of energy storage.

Capacitors are currently used in a number of energy storage applications, but they have

limitations in terms of the amount of energy they can store and the rate at which they
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can discharge. On the other hand, Memcapacitors have the potential to store much larger

amounts of energy and discharge that point much more quickly.

In addition to their potential applications in memory and energy storage, memcapac-

itors could be used in other fields. For example, they could be used in sensors to detect and

store changes in environmental conditions. They could also be used in medical devices to

store and release small amounts of medication over time.

Despite the potential of memcapacitors, some challenges still need to be addressed.

One challenge is developing a suitable dielectric material that can be used in memcapacitors.

The dielectric material needs to be able to withstand the high voltages that are typically used

in electronic circuits, and it needs to be able to maintain its properties over time. Another

challenge is developing a reliable and cost-effective method for manufacturing memcapacitors.

In recent years, the memcapacitive device, which operates on the capacitive principle,

has garnered attention alongside the memristive device [135]. Although various research

groups have proposed theoretical models for memcapacitive devices [28] [97] [101] [126] [68],

only a few practical implementations have been demonstrated thus far [174] [75] [185] [192].

While most neuromorphic functions are achieved through emulating electric pulse patterns

using solid-state devices, it is still a challenge to implement biological synapse-based devices,

which hold superior neuromorphic system functionality [179].

Memcapacitors are a promising new type of electronic component that has the po-

tential to revolutionize several different fields. They can store and remember information

more efficiently and durably than current memory technologies, and they have the potential

to store much more significant amounts of energy than current capacitors. While some chal-

lenges still need to be overcome, researchers are actively working to improve the properties

and manufacturing processes of memcapacitors, and we will likely see more widespread use

of these components in the coming years.
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1.6 Research Objective

The research objective of a biomolecular device-based (memristive/memcapacitive)

reservoir computing system is to investigate the potential of using biomolecular devices

to build efficient and high-performance reservoir computing systems. The main goal is to

develop a biomolecular device-based reservoir computing system to perform complex com-

putations with high accuracy and low power consumption. Specific research objectives may

include designing and implementing a biomolecular device-based reservoir computing system,

analyzing its precision and power consumption performance for solving temporal and classifi-

cation problems, optimizing its architecture and parameters, and comparing its performance

with other reservoir computing systems. The research also explores potential applications of

biomolecular device-based reservoir computing systems in fields such as chaotic signal pre-

diction, image classification, and temporal data recognition. Overall, this research aims to

contribute to developing more efficient and effective computing systems that can enable new

applications and advance the field of neuromorphic computing. I should emphasize that the

majority of my analysis was carried out utilizing RC systems based on biomolecular mem-

ristors, while for certain issues, I employed memcapacitor-based RC systems. Consequently,

I have used both memristors and memcapacitors to address some problems.

1.7 Organization of the Dissertation

The dissertation work has been organized into five chapters. Chapter One will intro-

duce the research problem, including a brief overview of the background, objectives, research

questions, and significance of the study. Chapter two will review the literature on biomolec-

ular devices, focusing on the theoretical framework and previous research studies. Chapter

three will describe the reservoir computing system, including the research design, sample

selection, data collection, and analysis procedures. Chapters four, five, and six will present
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Temporal and classification data analysis using biomolecular Memory based reservoir com-

puting system. Finally, chapter seven will summarize the study’s main findings, conclusions,

and recommendations for future research.
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2 BIOMOLECULAR DEVICES

A biomolecular device is a device that is based on biological molecules, such as DNA

or proteins, and uses their properties to perform specific functions. These devices can be

designed and engineered to perform various tasks, such as sensing, computation, and actu-

ation, and can be used in a wide range of applications, including biotechnology, medicine,

and environmental monitoring. Biomolecular devices can be made using techniques such as

genetic engineering, protein engineering, and self-assembly, and they can be integrated with

other devices and systems to create complex biomolecular systems. Examples of biomolec-

ular devices include DNA nanodevices, protein sensors, and biosensors. The development

of biomolecular devices has the potential to revolutionize many fields, as they offer unique

advantages such as high specificity, low cost, and compatibility with biological systems.

2.1 Biomolecular Memristor

The looming conclusion of Moore’s Law, the collapse of Dennard Scaling, and the lim-

ited bandwidth between the CPU and memory, known as the von Neumann bottleneck, along

with the continuous rise in computing requirements, are pushing researchers to investigate

alternative computing paradigms [79]. In recent years, neuromorphic computing has sur-

faced as a supplementary architecture to von Neumann systems. Neuromorphic computers,

consisting of artificial neurons and synapses, offer a more effective platform for implementing

neural network algorithms compared to conventional architectures.
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Despite substantial advancements in very-large-scale-integration (VLSI) circuits [100],

neuromorphic networks have yet to achieve the intricacy, neuronal density, and energy effi-

ciency of the human brain. The brain employs complex molecular mechanisms to constantly

modify connections between neurons, and the resulting synaptic plasticity [99] allows it to

retain patterns, adapt to new information, and execute a vast number of parallel operations

with remarkably low power consumption [165]. On the other hand, VLSI networks sim-

ulate synaptic activities using transistors, which bear little resemblance to their biological

counterparts in terms of mechanisms and necessitate sizable, power-intensive complementary

metal-oxide-semiconductor (CMOS) circuitry.

The majority of cutting-edge solid-state devices used in neuromorphic circuits have

been designed primarily for high integration density and energy-efficient computation, largely

ignoring biological realism in terms of structure and function. A potential alternative is to

develop systems that more closely resemble biological systems, which are energy-efficient,

flexible, probabilistic, fault-tolerant, and ideally biological in nature. To achieve this, soft-

matter biomolecular artificial synapses with memristive and memcapacitive behavior have

been explored for emulating the behavior of chemical and electrical synapses for neuromor-

phic computing and signal processing applications [107, 50, 73, 105, 11, 23, 95, 57, 56, 94].

Najem et al. [107] recently introduced a biomolecular memristor (memory + resistor) with a

composition, structure, switching mechanism, and ionic transport that closely resembles bio-

synapses. This device can mimic essential synaptic functions, such as paired-pulse facilitation

and depression, thanks to a generic memristive property, allowing for learning and computa-

tion with significantly reduced power consumption [107, 175]. Additionally, the synapse-like

dynamic features of the device enable streamlined learning circuit implementations [175, 50].

In this section, a brief introduction to bio synaptic memristor has been presented.
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Figure 2.1: Biomolecular memristors featuring alamethicin ion channels for voltage-regulated
signal transmission. (Figure from [50])

2.2 Characteristics of Biomimetic Memristive Device

Biological neurons and synapses function by concurrently storing and processing in-

formation while maintaining adaptability. These unique features of the brain, such as the

co-location of computing and memory along with plasticity, enable it to carry out massive

computational tasks while using as little as 20 watts [165]. Traditional silicon-based neuro-

morphic circuits fall short in replicating the fundamental transport properties of biological

synapses and neural networks, consequently necessitating more complex neural networks and

power to achieve comparable computational capabilities.

Gaining a profound understanding of how the brain processes and responds to in-

formation in intricate environments requires the development of easily configurable devices

that imitate nature’s biological neural design and the elaborate biomolecular processes re-

sponsible for brain memory and computing. To address this need, a soft, two-terminal

biomolecular memristor device that emulates the physical structure, switching mechanism,
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and ion transport of bio-synapses has been recently demonstrated [107, 106]. This device is

composed of an alamethicin-doped synthetic biomembrane that is 3-5 nm thick (Fig. 2.1).

In brief, the highly insulating (∼ 10GΩ) lipid membrane self-assembles at the interface of

two contacting, lipid-encased aqueous droplets placed in hexadecane oil. In the presence of

alm peptides and sufficient transmembrane voltage, conductive and memristive ionic path-

ways are formed through volatile, voltage-driven insertion of alamethicin peptides (alm) into

the insulating lipid membrane (Fig. 2.1). At low voltages, where alm peptides are surface-

bound, the device is considered to be in the resting state. However, the device suddenly

transitions into a voltage-dependent conductive state when voltages exceed a specific po-

tential, Vthreshold. This response closely mimics the voltage-modulated variable conductance

observed in biosynapses. The device’s current-voltage relationship in response to harmonic

voltage input displays pinched hysteresis, which demonstrates the memristive nature of the

two-terminal system.

Experiments and simulations have illustrated voltage-dependent threshold switching

and volatile memristive behavior governed by two voltage-dependent state variables: the

areal density of alamethicin channels and the increase in membrane area due to electrowet-

ting. These variables, in turn, dictate the total number of ion channels and, consequently,

the device’s net conductance. As a result, the two-terminal device exhibits switching dy-

namics comparable to depolarizing pulses in actual nerve cells, with short- and long-term

plasticity such as paired-pulse facilitation (PPF), paired-pulse depression (PPD), and, when

paired with a non-volatile memristor, spike timing-dependent plasticity (STDP) [107, 47].

In comparison to previous memristive devices, this biomolecular memristor consumes signif-

icantly less power (0.1-10 nW) and is easier to fabricate . Figure 2.2 shows the hysteresis

characteristics of the biomolecular memristor. The response is pinched off at 0mV .

Figure 2.3 displays the voltage-current response of the biomolecular memristor. Here

the voltage pulse train of 170mV has been applied to the memristor with on time of 10 ms

and off time of 5 ms.
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Figure 2.2: Hysteresis characteristics of Biomolecular memristor.

Figure 2.3: Voltage and Current response of Biomolecular memristor.
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2.3 Mathematical Expression of Biomimetic Memristive Device

The current-voltage relationship of a standard voltage-controlled memristor can be

expressed as:

I = G(x)V (2.3.1)

dx

dt
= f(x;V ) (2.3.2)

Here, G denotes the nominal memory conductance, and x represents one or more

voltage-controlled state variables that regulate the conductance. The conductance of this

biomolecular memristor depends on the total number of alm pores forming ion-channels

across the insulating membrane, which in turn is influenced by the areal density of alm

pores and the nominal size of the bilayer. Both these factors are voltage-controlled, giving

the device its voltage-controlled memristive nature. By selecting the number of open alm

pores per unit area, Na, and the fractional increase in bilayer area, Am, as two state variables,

Eq. 2.3.1 can be reformulated as:

I = G(Na, Am)V (2.3.3)

For an applied voltage V, the state equations for Na and Am, as derived in [107], are:

dNa

dt
=

1

τ0exp(|V |/Vt)
(N0exp(|V |/Ve)−Na) (2.3.4)

dAm

dt
=

1

τew
(αV 2 − Am) (2.3.5)

Here, Ve, N0, Vτ , and τ0 represent the voltage required to cause an e-fold increase in

the number of alm pores, a proportionality constant representing the number of alm pores

at zero volts, the voltage required to induce an e-fold increase in τ , and the time constant
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Figure 2.4: Spice Implementation Biomolecular Memristor [50].

for pore closure at zero volts, respectively. α and τew are voltage-sensitivity constant and

characteristic time constant describing the electrowetting process, respectively. Combining

these results, the overall conductance can be expressed as:

G(t) = Gu(t)Na(t)A0(1 + Am(t)) (2.3.6)

where A0 and Gu are the bilayer area at zero volts and the average unit conductance

of a single alm pore determined by both the structure of the alm pore and the conductivity of

the electrolyte solution within the droplets. τew and α were determined by fitting numerical

solutions of Eq. 2.3.5 to the measured change in membrane area during voltage sweeps,

and these, along with measured relaxation time constants (τ0), were used in another fitting

routine to estimate the parameters for alm insertion by fitting numerical solutions of Eq.

2.3.4 to measured I-V responses. The current response over time and I-V hysteresis curve of

DPhPC memristor for 0.17 Hz triangular wave of amplitude 160 mV is shown in Fig. 2. As

seen in this figure, and the model fits reasonably well with the experimental results. More

details on the analytical modeling of the device response for the pulse and sinusoidal inputs

can be found in [47].

A subcircuit, depicted in Fig 2.4, was developed to implement the model in SPICE.

Here, p and n represent the positive and negative terminals, which are arbitrary since this
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is a bidirectional symmetric device where the terminals can always be interchanged. The

node voltage vb and vd are not physical voltages. They represent Na and Am, respectively.

The primary underlying concept is to reformulate equations 2.3.1 and 2.3.2 in terms of RC

circuit. For a series RC circuit driven by a voltage source Vin, the equation describing the

voltage across the capacitor is:

dvc
dt

=
Vin

RC
− vc

RC
(2.3.7)

If we replace R, C, and Vin with exp(V/Vτ ), (τ0), and N0exp(V/Ve), we get back

Eq. 2.3.4, and if we replace those with 1, τew, and αV 2, we get back Eq. 2.3.5. We

use a voltage-controlled voltage source for Vin and a behavioral current source to implement

voltage-dependent resistance. Finally, we combine Eq. 2.3.6 and Eq. 2.3.3 using a behavioral

current source to obtain the current through the device.

2.4 Biomolecular Memcapacitor

The biomolecular memcapacitor is an innovative and groundbreaking development in

the realm of bioelectronic devices, harnessing the unique properties of biological molecules

to achieve advanced functionality. By mimicking the natural processes of living organisms,

biomolecular memcapacitors are designed to store and process electrical energy in a highly

efficient manner, much like how neurons store and transmit information in our brains. This

cutting-edge technology combines the advantages of capacitors and memory elements, re-

sulting in a device exhibiting non-linear, hysteretic, and adaptive behavior. Biomolecular

memcapacitors have the potential to revolutionize various fields, including medicine, biocom-

puting, and energy storage, by providing a new platform for designing smart, responsive,

and eco-friendly bioelectronic systems.

Najem et al. [105] evidenced that an artificial biomembrane, particularly a lipid bi-

layer embedded with voltage-activated ion channels, exhibits volatile memory resistance,
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Figure 2.5: Biomolecular memcapacitor assembly and electromechanical behavior. The
structural change of the memcapacitor for a) no voltage, vm = 0mV , b) with voltage,
vm = V mV . The figure has been taken from [105]

which is governed by two voltage-sensitive parameters: ion channel spatial density and

membrane area expansion due to electrowetting [107]. This seminal research prompted

us to hypothesize that a non-conductive lipid bilayer, void of ion channels, could display

capacitive memory solely influenced by voltage-mediated changes in dielectric dimensions,

predominantly steered by the hydrophobic core of the bilayer. Our research revealed that

lipid-coated aqueous droplets, upon adhering in oil, form a biomimetic membrane interface

(3-5nm in thickness) that showcases volatile, analog memcapacitance via voltage-controlled

geometric flexibility. A pinched hysteresis on the charge-voltage plane is attributable to dy-

namic alterations in the interfacial area and hydrophobic thickness, both of which are non-

linearly reliant on voltage. With the integration of experimental and theoretical approaches,

we demonstrate this structure operates as a volatile, second-order, universal memcapacitor

[21], capable of executing synapse-like temporal filtering and learning via short-term plas-

ticity. Our research predictions foresee the development of novel, low-power biomimetic

memelements, designed from soft, organic materials and biomolecules, that may further our

understanding of capacitive memory and susceptibility in neuronal membranes.
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Figure 2.5 shows the structural change of the memecapacitor for with/without voltage.

Further details has been demonstrated in the following sections.

2.5 Characteristics of Biomimetic Memcapacitor Device

The memcapacitor displays pinched hysteresis loops for its capacitance, bilayer in-

terfacial area (Electrowetting,EW), and hydrophobic thickness (Electrocompression, EC)

(figure 2.6. For each loop, the time constant of the memcapacitor along the increasing-

voltage trajectory differs from that along the decreasing-voltage trajectory. This indicates

that the EW and EC processes of the device are non-reversible as functions of sinusoidal

transmembrane potential, which serves as a hallmark of memory. Moreover, pinched Q− v

for this particular device can be referenced in prior research [105].

In figure 2.7, the device’s fading memory property has been demonstrated. The

memcapacitance decays in ∼ 2s when a 150mV voltage stimulation is removed.

2.6 Mathematical Expression of Biomimetic Memcapacitor Device

Memory capacitors, or memcapacitors in short, are two terminal nonlinear energy

storage elements that exhibit memory properties. The capacitance magnitude nonlinearly

depends on one or more internal states and can be regulated based on present and past

external stimulation. Like memristors, memcapacitors can be categorized as either non-

volatile if the memcapacitors’ states are maintained or volatile if their states are unmain-

tained upon removal of an electrical stimulus [181]. Herein, replicating a device developed

by Najem et al. [105] formerly, we constructed a lipid bilayer-based parallel-plate memca-

pacitor (∼ 0.1− 1)µF · cm−2 [144, 107] by interfacing two lipid monolayer-encased aqueous

droplets (∼ 200nL each) immersed in an oil phase. At the interface of the two droplets,

an elliptical, planar lipid bilayer (∼ 100µm in radius) spontaneously forms with a highly

insulative (> 100MΩ · cm2) core that is comprised of a mixture of hydrophobic lipid tails

and residual entrapped oil. Upon transmembrane voltage application, the ionically charged
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Figure 2.6: (a) Normalized dynamic capacitance as a function of a 150mV, 50mHz, sinusoidal
transmembrane potential. (b) A corresponding C − v curve, where a pinched hysteresis was
observed near 0mV transmembrane potential. (c) Normalized dynamic bilayer area as a
function of a 150mV, 50mHz, sinusoidal transmembrane potential. (d) A corresponding
A − v curve, where a pinched hysteresis was observed near 0mV transmembrane potential.
(e) Normalized dynamic hydrophobic thickness as a function of a 150mV, 50mHz, sinusoidal
transmembrane potential. (f) A corresponding W − v curve, where a pinched hysteresis was
observed near 0mV transmembrane potential.
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Figure 2.7: Measured restoration of initial capacitance upon voltage stimulus removal

lipid bilayer manifests geometrical changes due to electrowetting (EW) and electrocompres-

sion (EC), i.e., bilayer area increase and hydrophobic thickness decrease, respectively. EW is

mainly caused by the bilayer tension reduction [131, 161] due to charge-induced electrostatic

forces; meanwhile, the electrostatic force-driven entrapped oil expulsion is the main drive for

EC [33, 107]. Gradients with respect to time in the minor axis radius, R(t), of the bilayer

area A(t) and thickness, W (t), are modeled using the coupled state equations [105] below:

dR(t)

dt
=

1

ζew
((

aϵϵ0
2W (t)

)v(t)2 − kew(R(t)−R0)) (2.6.1)

dW (t)

dt
=

1

ζec
((
−aϵϵ0πR(t)2

2W (t)2
)v(t)2 + kec(W0 −W (t))) (2.6.2)

where a is the eccentricity of an ellipse, ϵ is the equivalent dielectric constant for the

hydrophobic tails and residual oil mixture, ϵ0 is the permittivity of free space, R0 (m) is the

zero-volt, interfacial area minor axis radius, W0 (m) is the zero-voltage hydrophobic thick-

ness, ζew and kew are the EW effective damping (Nsm−2) and stiffness (Nm−2) coefficients in

the tangential direction, respectively, and ζec and kec are the EC effective damping (Nsm−1)
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and stiffness (Nm−1) coefficients in the normal direction, respectively. Similar to a standard

parallel-plate capacitor, the dynamic capacitance, C(R(t),W (t)), can be expressed as:

C(R(t),W (t)) =
εε0A(t)

W (t)
=

εε0(aπR(t)2)

W (t)
(2.6.3)

The aforementioned voltage-induced area and thickness changes correspond to an

analog, nonlinear 2-3 times increase in capacitance. In addition to the nonlinear dependence

on absolute voltage, the corresponding capacitance variations exhibit short-term plasticity,

particularly paired-pulse facilitation (PPF) [86]. we have found that the memcapacitor’s

monotonic increase in normalized capacitance to an initial train of four 200mV pulses, in-

sinuating short-term plasticity, where the memcapacitance was computed at the end of each

pulse. Following the first four pulses, the device was left unstimulated for 6.5 seconds, which

restored the initial capacitance state, conveying memory loss in the device. In fact, it takes

approximately (∼ 2s) for the device’s capacitance to fully decay. It is also important to note

that the device is slightly stochastic with native cycle-to-cycle variations. The cycle-to-cycle

variation can be observed in our device as a subtle difference in magnitude between the first

recorded capacitance and restored state capacitance. This relatively short-term memory loss

in an unstimulated device implies short-term memory and device volatility [181].
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3 RESERVOIR COMPUTING

3.1 Recurrent Neural Networks

Unlike feedforward networks, Recurrent Neural Networks (RNNs) allow data to flow

in loops, making it possible to process sequences of data, such as time series or natural

language text. The output of a neuron in one-time step becomes the input to the same

neuron in the next time step, allowing information to persist and be processed. RNNs are

commonly used for tasks such as language translation and speech recognition.

(RNNs) are a type of artificial neural network that are specifically designed to handle

sequential data with temporal dependencies. Unlike feedforward neural networks, where the

data flows in one direction from input to output, RNNs allow the data to flow in loops,

making it possible to process sequences of data such as time series, natural language text,

or speech signals.

The key idea behind RNNs is that the output of a neuron at one time step is fed

back as input to the same neuron at the next time step, allowing information to persist and

be processed over time. This is achieved by introducing a recurrent connection from each

neuron back to itself, in addition to the normal feedforward connections from the inputs to

the hidden layer. The hidden layer in an RNN is also organized into time steps, so that each

time step has its own set of neurons, and the inputs from the previous time step are fed into

the neurons of the current time step.

RNNs can be trained using various optimization algorithms, such as gradient descent,

to minimize the error between the predicted and actual outputs. During the training process,

the weights of the recurrent connections are adjusted to capture the temporal dependencies
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in the data, while the weights of the feedforward connections are adjusted to extract relevant

features from the input data.

RNNs have been used in a wide range of tasks, such as language translation, speech

recognition, image captioning, and sequential decision making. For example, in language

translation, an RNN can be trained to translate a sentence from one language to another

by processing the words one at a time and generating the translated words in sequence.

In speech recognition, an RNN can be trained to transcribe speech signals into text by

processing the audio signals one time step at a time and generating the transcribed text in

sequence.

One of the challenges in training RNNs is the vanishing gradient problem, which oc-

curs when the gradients of the weights become very small during backpropagation, making

it difficult to update the weights effectively. This problem is particularly pronounced in

deep RNNs, where the gradients have to be backpropagated through many time steps. Sev-

eral variants of RNNs have been developed to address this issue, such as Long Short-Term

Memory (LSTM) networks and Gated Recurrent Units (GRUs), which incorporate gating

mechanisms to control the flow of information and prevent the vanishing gradient problem.

Types of RNNs: There are several variants of RNNs, each with their own strengths

and weaknesses. Some of the most commonly used variants are: Vanilla RNNs are the

simplest form of RNNs, where the hidden state is updated at each time step based on the

input and the previous hidden state. However, they suffer from the vanishing gradient

problem and are unsuitable for processing long sequences.

Long Short-Term Memory (LSTM) Networks: These RNNs incorporate gating mech-

anisms to control the flow of information and prevent the vanishing gradient problem. LSTMs

are particularly well-suited for processing long sequences and have been used for language

translation and speech recognition tasks.

Gated Recurrent Units (GRUs): These are another type of RNNs that incorporate

gating mechanisms to control the flow of information. GRUs are computationally more
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efficient than LSTMs and have been used for various tasks such as language modeling and

sentiment analysis.

Bidirectional RNNs: In some cases, processing the input sequence in both forward

and backward directions may be useful to capture the dependencies in both directions.

Bidirectional RNNs are a type of RNN that do exactly this by processing the input sequence

in both directions and concatenating the hidden states to form the final output.

Stacking RNNs: Another way to improve the performance of RNNs is to stack multi-

ple RNN layers on top of each other, to form a deep RNN. This allows the network to learn

more complex representations of the data and can improve performance on tasks such as

language modeling and speech recognition.

RNNs have been used in a wide range of applications, such as:

Natural language processing: RNNs have been used for tasks such as language

translation, text classification, sentiment analysis, and language generation [184].

Speech processing: RNNs have been used for speech recognition, speech synthesis,

and speaker identification tasks [67].

Computer vision: RNNs have been used for image captioning and video classifica-

tion tasks [170].

Sequential decision making: RNNs have been used for tasks such as reinforcement

learning, where the agent has to make sequential decisions based on the current state of the

environment [190].

In conclusion, Recurrent Neural Networks are a powerful type of artificial neural

network that are designed to handle sequential data with temporal dependencies. They

have been successfully applied to a wide range of tasks and continue to be an active area of

research and development. With the increasing availability of large amounts of sequential

data, RNNs will likely play an increasingly important role in solving a wide range of problems

in various fields.
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3.2 Reservoir Computing

Reservoir Computing is a type of recurrent neural network that is designed for online

and real-time processing of sequential data. It is based on the idea of using a fixed and

untrained hidden layer, called the reservoir, to provide a rich and nonlinear representation

of the input data, and then using a trained output layer to make predictions based on this

representation.

The hidden layer, or the reservoir, is created using a recurrent network, such as an

Echo State Network (ESN) or a Liquid State Machine (LSM), and is designed to capture the

short-term dependencies in the data. The reservoir is fixed and not trained, and the only

part of the network that is trained is the output layer, which is trained to make predictions

based on the representation provided by the reservoir.

One of the key benefits of Reservoir Computing is its computational efficiency, as only

the output layer needs to be trained, while the reservoir is fixed. This makes it well-suited

for real-time and online processing of sequential data, where the computational resources

are limited. Additionally, Reservoir Computing is less prone to overfitting than traditional

recurrent neural networks, as the fixed reservoir provides a rich and nonlinear representation

of the input data, which can be used by the output layer to make predictions without

overfitting to the training data.

The performance of Reservoir Computing depends on several hyperparameters, such

as the size of the reservoir, the connectivity of the reservoir, the type of activation function

used, and the type of output layer. These hyperparameters need to be tuned to obtain the

best performance on the specific problem. The input data is projected into the reservoir,

and the projection matrix is typically trained to maximize the performance of the network.

Reservoir Computing has been used in a wide range of applications, such as time

series prediction, speech recognition, and chaotic time series analysis. For example, in time

series prediction, a Reservoir Computing network can be trained to predict the future values
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of a time series based on the past values. In speech recognition, a Reservoir Computing

network can be trained to transcribe speech signals into text based on the audio signals.

Reservoir Computing is a powerful and efficient approach to processing sequential

data, with several advantages over traditional recurrent neural networks. Its simplicity,

flexibility, and robustness to overfitting make it well-suited for a wide range of applications,

and it continues to be an active area of research and development. With the increasing

availability of sequential data, Reservoir Computing will likely play an increasingly important

role in solving a wide range of problems in various fields.

3.3 Comparison between RNNs and RC network

RNNs are a type of artificial neural network that are designed to handle sequential

data with temporal dependencies. They allow the data to flow in loops, making it possible

to process data sequences such as time series, natural language text, or speech signals. The

hidden state in an RNN is updated at each time step based on the input and the previous

hidden state, and the weights are adjusted during the training process to minimize the error

between the predicted and actual outputs.

Reservoir Computing, on the other hand, is a type of recurrent neural network that is

designed for online and real-time processing of sequential data. In Reservoir Computing, the

hidden layer, called the reservoir, is fixed and not trained, and the only part of the network

that is trained is the output layer. The idea behind this approach is to use the reservoir to

provide a rich and nonlinear representation of the input data, and then use the output layer

to make predictions based on this representation.

One of the key benefits of Reservoir Computing is that it is computationally efficient,

as only the output layer needs to be trained. This makes it well-suited for real-time and on-

line processing of sequential data, where computational resources are limited. Additionally,

Reservoir Computing has been shown to be effective in various tasks, such as time series

prediction, speech recognition, and chaotic time series analysis.
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While Recurrent Neural Networks (RNNs) and Reservoir Computing are both ap-

proaches to processing sequential data, Reservoir Computing has several advantages over

RNNs in certain scenarios. Here are some of the reasons why Reservoir Computing is con-

sidered better than RNNs in some cases:

Computational Efficiency: One of the key benefits of Reservoir Computing is that

it is computationally efficient, as only the output layer needs to be trained. This makes it

well-suited for real-time and online processing of sequential data, where the computational

resources are limited. In contrast, RNNs require training of all the weights in the network,

which can be computationally expensive, especially for deep RNNs with many layers.

Robustness to Overfitting: Another advantage of Reservoir Computing is that it is

less prone to overfitting than RNNs. This is because the hidden layer, or the reservoir, is

fixed and not trained, and the only part of the network that is trained is the output layer.

This means that the reservoir provides a rich and nonlinear representation of the input data,

which can be used by the output layer to make predictions without overfitting to the training

data.

Simplicity: Reservoir Computing is also considered to be simpler than RNNs, as it

only requires training of the output layer, while the reservoir is fixed. This makes it easier

to implement and faster to train, especially for real-time and online processing of sequential

data.

Flexibility: The fixed and untrained reservoir in Reservoir Computing provides a rich

and nonlinear representation of the input data, which can be used by the output layer to

make predictions. This allows for more flexibility in choosing the reservoir structure, and

makes it possible to use Reservoir Computing for a wide range of tasks, such as time series

prediction, speech recognition, and chaotic time series analysis.

It’s important to note that while Reservoir Computing has several advantages over

RNNs in certain scenarios, RNNs are a more general and flexible approach to processing

sequential data, and are well-suited for a wide range of tasks. The choice between RNNs
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and Reservoir Computing depends on the specific problem and the computational resources

available.

3.4 Basic Reservoir Computing Network

The basic three layers of a Reservoir Computing network are the input layer, the

reservoir layer, and the output layer.

Input Layer: The input layer feeds the input data into the network. The input data

is typically a sequence of vectors, such as time series data or speech signals. The input layer

projects the input data into the reservoir, and the projection matrix is typically trained to

maximize the performance of the network.

Reservoir Layer: The reservoir layer is the fixed and untrained hidden layer in the

Reservoir Computing network. It is created using a recurrent network, such as an Echo State

Network (ESN) or a Liquid State Machine (LSM), and is designed to capture the short-term

dependencies in the data. The reservoir provides a rich and nonlinear representation of the

input data, which can be used by the output layer to make predictions.

Output Layer: The output layer is the trained part of the Reservoir Computing

network and is responsible for making predictions based on the representation provided by

the reservoir. The output layer can be a simple linear layer, or a more complex nonlinear

layer, such as a multi-layer perceptron. The output layer weights are adjusted during the

training process to minimize the error between the predicted and actual outputs.

Each of these three layers plays an important role in the overall performance of the

Reservoir Computing network. The input layer projects the input data into the reservoir,

the reservoir layer provides a rich and nonlinear representation of the input data, and the

output layer makes predictions based on this representation. By understanding the basic

three layers of a Reservoir Computing network, one can design and train more effective

Reservoir Computing networks for various problems.
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Figure 3.1: Conventional Reservoir Computing architecture.

Figure 3.1 shows a conventional reservoir computing system [160, 62, 166]. The input

weights and reservoir weights remain fixed (Win,Wres), and the output weights (Wout) are

trained using the regression model.

The general input and output mathematical model for Reservoir Computing can be

represented as:

x(t+ 1) = f(Winu(t) +Wresx(t)) (3.4.1)

y(t) = Woutx(t) (3.4.2)

Here x(t) is the state of the reservoir at time step t, u(t) is the input signal at time

step t, y(t) is the output signal at time step t, Win is the input weight matrix, Wres is the

recurrent weight matrix of the reservoir,Wout is the output weight matrix, and f is a non-linear

activation function. The state of the reservoir, x(t), is a high-dimensional representation of

the input signal that can be used for various tasks such as time series prediction, classification,
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and pattern recognition. The output signal, y(t), is obtained by training a linear readout

layer on the state of the reservoir.

3.5 Masked Based RC network

Masked-based Reservoir Computing is a relatively new computational paradigm that

combines the strengths of both traditional recurrent neural networks (RNNs) and Echo State

Networks (ESNs). It is a machine learning model designed to process sequential data and

has been used for various tasks such as time series prediction, natural language processing,

and speech recognition.

In traditional RNNs, the model learns to process sequential data by updating its

hidden state with each time step. The hidden state is updated based on both the previous

hidden state and the current input. However, the training process in traditional RNNs can

be challenging due to the vanishing or exploding gradient problem, preventing the model

from learning long-term dependencies in the data.

On the other hand, ESNs have been designed to overcome the training difficulties of

traditional RNNs by using a fixed, randomly generated recurrent weight matrix. The fixed

weights in ESNs allow the model to store information about the long-term dependencies in

the data while the readout layer is trained to perform the desired task. However, ESNs can

struggle with the curse of dimensionality, as the number of neurons in the reservoir needs to

be large enough to capture the necessary information from the input data.

Masked-based Reservoir Computing aims to overcome the limitations of both tradi-

tional RNNs and ESNs by using a fixed, randomly generated recurrent weight matrix that is

masked in a specific way. The masking process in Masked-based Reservoir Computing con-

trols the number of non-zero entries in the weight matrix, which helps reduce the number of

neurons required in the reservoir. This, in turn, helps to reduce the curse of dimensionality

and make the model more computationally efficient.
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Figure 3.2: Masked-based Reservoir Computing architecture.

In Masked-based Reservoir Computing, the recurrent weight matrix is generated by

randomly selecting a small number of neurons to be connected to each other. This creates a

sparse matrix with a low density of connections, which helps reduce the model’s computa-

tional cost. Additionally, the masked recurrent weight matrix allows the model to capture the

necessary information from the input data without requiring many neurons in the reservoir.

Masked-based Reservoir Computing is a promising computational paradigm combin-

ing the strengths of traditional RNNs and ESNs to provide a more efficient and effective way

to process sequential data. Its use of masked recurrent weight matrices helps to overcome

the limitations of both traditional RNNs and ESNs, making it a valuable tool for various

tasks such as time series prediction, natural language processing, and speech recognition.

With its potential for improved performance and reduced computational cost, MRC is an

exciting research area worth exploring further.

Figure 3.2 shows masked based reservoir computing system.

The masking technique (also known as time division multiplexing) serves a dual pur-

pose: it sequences the input and maximizes the utilization of the system’s dimensionality. In

traditional network approaches, nodes in the reservoir can be directly accessed through direct
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Figure 3.3: Input data process using the binary mask.

connections from the input layer to the reservoir layer. However, in the delayed feedback

approach, the input signal is first subjected to nonlinear transformation at a nonlinear node

before propagating through the delay line to the virtual nodes. The proper input scaling is

imprinted on the input signal before its injection, and time multiplexing is used to provide

the input signal to the corresponding virtual node. This results in a piecewise constant input

series, with constant intervals corresponding to the separation between virtual nodes in the

delay line [8].

The delayed coupling in the system provides an infinite-dimensional state space. How-

ever, the available dimensions are not utilized optimally without applying different scaling

factors to each node. Similar inputs would result in similar outputs, limiting the span of

the high-dimensional state space. The mask containing the scaling factors can be chosen

randomly for many nodes, but this approach may not yield desirable results for a smaller set

of nodes. Therefore, a reliable method for assigning mask values that maximize diversity in

the reservoir states is highly desirable [8].
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Figure 3.3 shows masked based reservoir computing system. The input signal (0 to

0.5) is sent to the masking layer. The binary mask (-1,1) processes the input with many

nonlinear nodes, eventually incorporating the reservoir to process the data.

3.6 Memristive RC network

Memristive Reservoir Computing (MRC) is a type of Reservoir Computing network

that uses memristive devices, such as memristors, as the building blocks of the reservoir layer.

Memristors are nanoscale devices that can change their resistance based on the amount

of current that has flowed through them, making them well-suited for use in Reservoir

Computing networks.

The main advantage of using memristors in Reservoir Computing is that they provide

a rich and nonlinear representation of the input data, which the output layer can use to

make predictions. Memristors are also highly scalable and can be integrated into extensive

networks, making it possible to create large and complex Reservoir Computing networks.

Additionally, memristors are low-power and can be integrated into portable and wearable

devices. MRC is well-suited for real-time and online sequential data processing in resource-

constrained environments.

Another advantage of MRC is that the memristive devices can be used to store the

state of the reservoir, making it possible to create stateful Reservoir Computing networks.

This allows MRC networks to have a memory of past inputs, which can be used to make

predictions based on the history of the input data.

Memristive Reservoir Computing (MRC) is a type of Reservoir Computing network

that uses memristive devices as the building blocks of the reservoir layer. MRC has several

advantages, such as scalability, low power, and statefulness, making it well-suited for real-

time and online processing of sequential data in resource-constrained environments. Despite

its limitations, MRC is an active area of research and development and has the potential to

play an essential role in solving a wide range of problems in various fields.
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Figure 3.4: Memristive Reservoir Computing architecture.

Figure 3.4 shows the Memristive based reservoir computing system. The input signals

are fed into the encoding layer. The input signals can be in voltage, current, or any other

suitable form that can modulate the memristor’s state. Since the memristor needs voltage

for operation, the input signals are encoded within a specific voltage range and made ready

for the reservoir layer. The system’s core component is the memristive reservoir, a network

of interconnected memristors. The memristors are connected in a random, sparse topology

to create a complex dynamical system. This reservoir exhibits rich and diverse transient

responses to input signals. It has a unique ability to adapt to input signals due to its inherent

memory, enabling the system to learn and process information over time. The output layer

collects the responses from the memristive reservoir and generates a desired output signal.

This layer consists of output nodes connected to the reservoir nodes through readout weights.

The output layer can be trained using various learning algorithms to optimize the readout

weights, thereby improving the performance of the system. Since the memcapacitor and

memristor network architecture is identical, I have explained the principle of only using

biomolecular memristor in the reservoir [57, 58].
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4 CHAOTIC TIME SERIES PREDICTION

4.1 Chaos

In a world that is inherently unpredictable and complex, the concept of chaos has

long captivated the minds of scientists, mathematicians, and philosophers alike. Chaos,

a seemingly disordered and random phenomenon, emerges in various disciplines, from the

natural sciences to social systems. The enigmatic nature of chaos offers a unique opportunity

to delve into the intricate patterns that underlie disorder and unveil the hidden harmony

within. This thesis aims to comprehensively understand chaos theory, its applications, and

its implications for future research and technology.

Chaos theory, a dynamical systems theory subfield, explores systems’ behavior highly

sensitive to initial conditions, leading to unpredictable and disorderly outcomes [111]. The

interdisciplinary nature of chaos has contributed to its wide-ranging impact, from meteo-

rology and ecology to finance and social sciences. Understanding the complexities of chaos

has enhanced our comprehension of natural systems. Still, it has also enabled us to develop

advanced technologies and models that can harness the power of chaos for the benefit of

society.

The concept of a chaotic system holds a significant position in the realm of complex

systems, as it challenges the deterministic notion of predictability and order. Chaotic sys-

tems [130, 128] are characterized by their inherent sensitivity to initial conditions, which

leads to seemingly unpredictable and erratic behavior over time. Despite the apparent ran-

domness, these systems exhibit an underlying deterministic nature governed by nonlinear
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equations that dictate their evolution. This paradoxical blend of order and chaos has cap-

tivated researchers across various disciplines, including physics, mathematics, and biology,

driving them to explore its implications and potential applications. Unraveling the intri-

cate dynamics of chaotic systems furthers our understanding of the mechanisms that govern

natural phenomena and paves the way for harnessing chaos to solve complex problems and

develop innovative technologies.

Chaotic systems exhibit defining characteristics that differentiate them from other

dynamic systems. Understanding these characteristics [52, 162] is essential for studying

chaos theory and analyzing complex, nonlinear phenomena. Some of the key characteristics

of chaotic systems include:

1. Nonlinearity: Chaotic systems are inherently nonlinear, meaning that their behav-

ior cannot be described by linear equations or models. Nonlinearity often leads to complex

and unpredictable interactions between system components, which is a primary reason for

the chaotic behavior observed in these systems.

2. Sensitivity to Initial Conditions: A hallmark of chaotic systems is their extreme

sensitivity to initial conditions, often called the ”butterfly effect”[152, 115]. Even the smallest

variation in the initial state of a chaotic system can lead to drastically different outcomes,

making it difficult to predict the system’s behavior over time.

3. Deterministic yet Unpredictable: Despite being deterministic in nature, chaotic

systems exhibit highly unpredictable behavior. Although the equations governing their dy-

namics are deterministic, the extreme sensitivity to initial conditions makes it nearly impos-

sible to accurately predict the system’s long-term behavior.

4. Strange Attractors: Many chaotic systems exhibit a phenomenon known as strange

attractors. These are points in the system’s state space toward which the system’s trajectory

converges over time. Strange attractors have a fractal structure, and their intricate patterns

provide insights into the complex dynamics of chaotic systems.
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5. Fractal Geometry: Chaotic systems often exhibit self-similar patterns and struc-

tures that can be described using fractal geometry. Fractals are mathematical constructs

characterized by their non-integer dimensions and scale-invariant properties, which help

quantify the complexity of chaotic systems and their strange attractors.

6. Mixing and Ergodicity: Chaotic systems display mixing behavior, meaning that

trajectories in the system’s state space become increasingly intertwined. This leads to er-

godicity, which implies that the system’s long-term behavior is determined solely by the

underlying dynamics and not by the initial conditions.

7. Boundedness: Although chaotic systems exhibit unpredictable behavior, their

dynamics are typically confined within a bounded region of the state space. This means

that chaotic systems do not diverge to infinity but instead remain within a certain range of

values, often characterized by the strange attractor.

8. Lyapunov Exponents: These are numerical measures used to quantify the sensi-

tivity of a chaotic system to initial conditions. Positive Lyapunov exponents indicate the

presence of chaos, as they signify that nearby trajectories in the system’s state space diverge

exponentially over time.

Understanding these characteristics is crucial for studying chaotic systems and their

applications across various fields, including physics, engineering, biology, and economics.

Chaotic systems have numerous applications [173, 171, 164] across various fields,

offering valuable insights into complex, nonlinear phenomena. Some of the key applications

of chaotic systems include:

1. Weather and Climate Modeling: The earth’s atmosphere is highly complex and

nonlinear, making it difficult to accurately predict weather patterns and climate changes.

Chaos theory has been instrumental in understanding the inherent unpredictability of atmo-

spheric dynamics, leading to improvements in weather forecasting and climate models.
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2. Ecology and Population Dynamics: Chaotic systems can be used to model the

dynamics of interacting populations in ecosystems. These models can help predict fluctua-

tions in population sizes and the potential for sudden shifts in population dynamics due to

changes in environmental factors.

3. Neuroscience and Brain Dynamics: The human brain is a complex network of

interconnected neurons that exhibit nonlinear behavior. Chaotic systems have been used to

model brain dynamics, providing insights into the mechanisms underlying various cognitive

functions and brain disorders.

4. Engineering and Control Systems: Chaotic behavior can be found in numerous

engineering systems, such as electronic circuits, fluid dynamics, and mechanical systems.

Understanding chaotic dynamics helps engineers design more robust and efficient control

systems and enhances the performance and stability of these systems.

5. Finance and Economics: The financial markets and economic systems often exhibit

chaotic behavior, characterized by unpredictable fluctuations and sudden changes. Chaos

theory has been applied to model the dynamics of financial markets, leading to better risk

management strategies and improved decision-making processes.

6. Secure Communications: Chaotic systems can be employed to design secure com-

munication systems, as they can generate complex, random-like signals that are difficult

to intercept or decode. The unpredictability of chaotic systems makes them suitable for

creating encryption schemes and secure communication protocols.

7. Biological Systems: Various biological systems, such as gene regulatory networks,

cellular signaling pathways, and cardiac dynamics, exhibit chaotic behavior. Analyzing these

systems using chaos theory can provide insights into their underlying mechanisms and help

develop novel therapeutic strategies for diseases.

These applications demonstrate the wide-ranging impact of chaotic systems. They

provide valuable insights into the dynamics of complex systems and help develop novel

solutions to various real-world problems.
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4.2 Chaotic Maps

Chaotic maps are a class of discrete-time dynamical systems that exhibit chaotic

behavior. These mathematical models are characterized by a simple transformation rule or

mapping function that governs the system’s evolution from one state to the next. Chaotic

maps often possess key characteristics of chaotic systems, such as nonlinearity, sensitivity

to initial conditions, and unpredictability. Examples of well-known chaotic maps include

the logistic, Hénon, and Arnold’s cat maps. These maps have been extensively studied

in the context of chaos theory and have provided valuable insights into the fundamental

principles of chaotic dynamics. Moreover, chaotic maps have applications in various fields,

such as secure communications, image encryption, and pseudorandom number generation.

By analyzing the behavior of chaotic maps, researchers can gain a deeper understanding of

the mechanisms that drive chaos and complexity in discrete and continuous-time dynamical

systems.

Chaotic maps can be categorized into different types based on various criteria, such

as the number of variables involved, the mathematical structure of the mapping function, or

the specific properties they exhibit. Here are some common types of chaotic maps:

One-dimensional Chaotic Maps: These maps involve a single variable and are often

used as introductory models for understanding chaotic behavior. Examples include: a.

Logistic Map: A simple one-dimensional map defined by the equation,

xn+1 = r ∗ xn ∗ (1− xn) (4.2.1)

where xn represents the current state, xn+1 the next state, and r is a parameter. Despite its

simplicity, the logistic map can exhibit complex behavior for specific values of r.

b. Tent Map: Another one-dimensional map characterized by the equation,

xn+1 = r ∗min(xn, 1− xn) (4.2.2)
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where xn is the current state, xn+1 the next state, and r is a parameter. The tent map

derives its name from the tent-like shape of its graph.

Multidimensional Chaotic Maps: These maps involve multiple variables, often mod-

eled as vectors in higher-dimensional state spaces. Examples include: a. Hénon Map: A

two-dimensional chaotic map defined by the equations

xn+1 = 1− a ∗ x2
n + yn (4.2.3)

yn+1 = b ∗ xn (4.2.4)

where a and b are parameters. The Hénon map is known for its strange attractor, which has

a fractal structure.

b. Arnold’s Cat Map: A two-dimensional, area-preserving chaotic map representing

a toral automorphism. It is defined by the matrix transformation

(xn+1, yn+1) = (xn + yn, xn + 2 ∗ yn)mod1 (4.2.5)

where (xn, yn) is the current state and (xn+1, yn+1) is the next state. The map is named after

Vladimir Arnold, who used it to illustrate the properties of dynamical systems.

Continuous Maps: Although chaotic maps are typically discrete-time systems, there

are continuous counterparts that can exhibit chaotic behavior, such as: a. Circle Map: A

continuous map defined on the unit circle, given by the equation

θn+1 = θn + Ω− (K/2π) ∗ sin(2π ∗ θn)(mod1) (4.2.6)

Here, θn is the current angle, θn+1 is the next angle, and Ω and K are parameters. The circle

map is used to study phase locking and mode-locking in coupled oscillators.

51



Chaotic Maps with Special Properties: Some chaotic maps exhibit specific properties

that make them particularly interesting for certain applications:

a. Baker’s Map: A piecewise-linear chaotic map that preserves the area and volume

of the state space. It is defined on the unit square and involves stretching, folding, and re-

assembling the square in each iteration. Baker’s map is often used to demonstrate ergodicity

and mixing in chaotic systems.

These examples illustrate the diversity of chaotic maps and their potential appli-

cations in various fields, including secure communications, image encryption, and complex

system modeling. A list of literature has been reviewed in the following paragraph:

In this article [87], Lorenz, E. N. introduced the Lorenz system, a system of ordi-

nary differential equations that exhibit chaotic behavior. The Lorenz system is a significant

chaotic map that has been extensively studied and applied in various fields. Li et al. [83]

have presented a theorem stating that if a continuous one-dimensional map has a period-three

orbit, it must also have orbits of every other period and exhibit chaotic behavior. The book

[27] provides an accessible introduction to chaotic maps and dynamical systems. It covers the

fundamentals of one-dimensional dynamics and the concept of chaos in mathematical sys-

tems. May’s [98] paper discusses how simple mathematical models, including chaotic maps,

can exhibit complex dynamics. It highlights the importance of studying chaotic behavior

in diverse fields, including ecology, economics, and biology. This comprehensive textbook

[113] covers the theory and applications of chaotic maps and dynamical systems. It discusses

different types of chaotic maps, their properties, and their relevance to various scientific dis-

ciplines. Pecora et al. [124] investigate the synchronization of chaotic systems, including

chaotic maps, and demonstrate how they can be used for secure communication and other

applications. Brown et al. use a compact analog discrete-time chaotic circuit [150] for ex-

ploring stochasticity in neuromorphic computing [15]. This book [136] explores the concept

of synchronization in chaotic maps and other nonlinear systems, presenting various methods

and applications in diverse fields. This book [164] offers an overview of recent advances in
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chaotic systems and their applications, focusing on chaotic maps, synchronization, control,

and secure communications. Energy and area efficient analog map, leveraging the intrin-

sic nonlinearity of transistors, has attracted a lot of attention [65, 120, 139, 69, 121, 122]

since it offers an alternate paradigm for chaotic system implementation in stark contrast

to conventional digital replication of mathematical maps. Gong et al. [42] introduces a

new four-dimensional chaotic map and demonstrates its application in image encryption,

highlighting the practical uses of chaotic maps in secure communication. This science book

[41] offers a comprehensive and accessible introduction to chaos theory, discussing chaotic

maps and other examples of chaotic systems in various scientific fields. This book [157]

provides a detailed introduction to nonlinear dynamics and chaos, including the analysis of

chaotic maps and other chaotic systems, with applications in diverse disciplines. Baptista

[10] explores the use of chaotic maps in cryptography, demonstrating the potential for secure

communication using chaotic systems. Compact analog maps have been used for mitiga-

tion of side-channel attack [92, 91, 46]. Chaos-based reconfigurable logic [150, 138, 141] has

been explored in numerous implementations and has potential logic obfuscation and PUF

(Physical Unclonable Function) [149]. Wolf et al. [177] introduce a method for estimating

the Lyapunov exponents of chaotic maps and other dynamical systems, a key indicator of

chaos, using time-series data. Casdagli et al. [17] discuss techniques for reconstructing the

state space of chaotic maps and other dynamical systems from noisy data, a critical step

in analyzing real-world chaotic phenomena. Compact analog 1D and 2D maps have been

explored as promising candidates for low-cost RNG (Random Number Generator) design

[123, 119, 148, 118] specially geared towards resource-constrained IoT (Internet of Things)

applications. Robert L Devaney [66] provides an in-depth introduction to nonlinear time

series analysis, focusing on chaotic maps and other chaotic systems, including techniques

for detecting chaos and estimating system parameters. This book presents [167] a thorough

treatment of Lyapunov exponents, a key concept in studying chaotic maps and other dy-

namical systems, including their computation, properties, and applications. Rulkov et al.
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[137] investigate the concept of generalized synchronization in chaotic maps and other non-

linear systems, exploring the relationship between synchronization and directed dynamical

influence.

4.3 Lyapunov exponent

The Lyapunov exponent (LE) [49] is a key concept in studying dynamic systems and

chaos theory. It quantitatively measures the rate at which nearby trajectories in phase space

diverge or converge. Hence, it can be used to assess the predictability and sensitivity to

the initial conditions of a given system. In the context of chaotic systems, the Lyapunov

exponent helps us understand the nature and degree of instability within the system.

The Lyapunov exponent (denoted by λ) quantifies the rate of separation or conver-

gence of two infinitesimally close trajectories in the phase space of a dynamical system. A

positive Lyapunov exponent indicates that the trajectories diverge exponentially with time,

suggesting chaos and sensitivity to initial conditions. Conversely, a negative Lyapunov ex-

ponent indicates that the trajectories converge, suggesting stability and predictability in the

system’s behavior.

Multiple Lyapunov exponents can be associated with different directions in the phase

space for a given system. The largest Lyapunov exponent (LLE) is of particular interest,

as it determines the overall predictability of the system. If the LLE is positive, the system

is generally considered chaotic. Calculating the Lyapunov exponent involves linearizing the

system’s equations of motion and analyzing the perturbations’ behavior. The exponent is

obtained by taking the average logarithm of the divergence rate of nearby trajectories over

time.

Let us consider a simple example of a one-dimensional discrete-time dynamical sys-

tem, the logistic map, to illustrate the concept of the Lyapunov exponent. The logistic map

is reformatted and expressed in following
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xn+1 = 4axn(1− xn) (4.3.1)

where a is a bifurcation parameter ranging from 0 to 1. xn is the system’s state at

time step n, xn + 1 is the state at the next time step n+1, and r is a parameter controlling

the system’s behavior. The value of xn lies between 0 and 1, representing the population of

a species as a fraction of the maximum possible population.

The logistic map exhibits various behaviors, including periodicity, quasi-periodicity,

and chaos, depending on the value of r. The system becomes chaotic for certain values of r,

meaning that it displays sensitivity to initial conditions and seemingly random behavior.

To compute the Lyapunov exponent for the logistic map, we first linearize the equation

by considering a small perturbation δ(xn) in the state xn:

δ(xn+1) = (r − 2 ∗ r ∗ xn) ∗ δ(xn) = f(x)δ(xn) (4.3.2)

Now, we track the evolution of the perturbation δ(xn) over time. We initialize two

nearby points in the phase space, xn and xn + δ(xn), and observe how their difference (the

perturbation) evolves as the system iterates. We then calculate the Lyapunov exponent as

follows [139]:

λ = lim
n→∞

1

n

n−1∑
i=0

ln|f(xi)| (4.3.3)

where the sum runs from i=0 to n-1, and xi represents the system’s state at each

iteration.

A positive Lyapunov exponent indicates that the perturbation δ(xn) grows exponen-

tially over time, meaning that nearby points in the phase space diverge and the system is

chaotic. Conversely, a negative exponent implies that the perturbation decreases and the

system is stable.
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Figure 4.1: Lyapunov exponent of Logistic map.

For the logistic map, the Lyapunov exponent depends on a value. When a is between

0 and 1, the Lyapunov exponent is negative, and the system converges to a fixed point.

The Lyapunov exponent becomes positive for a greater than approximately 0.89, indicating

chaotic behavior.

Figure 4.1 shows the LE of the logistic map. The LE is positive for the bifurcation

parameter between 0 to approximately 0.85, i.e., the region is a periodic region. On the other

hand, for bifurcation parameters greater than 0.85, the LE is positive, which determines the

chaotic region.

To conclude, the Lyapunov exponent offers a quantitative measure of a system’s

sensitivity to initial conditions, as illustrated by the logistic map example. By analyzing the

Lyapunov exponent, we can gain insights into dynamical systems’ stability, periodicity, and

chaotic nature.

4.4 Bifurcation Diagram

A bifurcation diagram [139] is a graphical representation used to illustrate the long-

term behavior of a dynamical system as a function of a control parameter. In the context of

chaotic systems, bifurcation diagrams are particularly useful for understanding the onset of
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chaos and the transitions between different dynamical behaviors. This section will explain

bifurcation diagrams, focusing on the features, construction, interpretation, and importance

of studying chaotic systems. Key features of bifurcation diagrams include:

1. Fixed points: Represented as horizontal lines, fixed points are points in the phase

space where the system remains stationary.

2. Periodic orbits: Represented by discrete points or line segments, periodic orbits

are closed trajectories in the phase space where the system returns to its initial state after

a certain period.

3. Bifurcation points: These are points where the system undergoes a qualitative

change in behavior, such as a change in the number of fixed points or the onset of chaos.

4. Chaotic regions: These are areas in the diagram where the system exhibits chaotic

behavior, often indicated by a dense distribution of points.

Interpreting a bifurcation diagram involves analyzing the various fixed points, periodic

orbits, bifurcation points, and chaotic regions to understand the system’s behavior as the

control parameter changes. The diagram can reveal:

1. The onset of chaos: This is typically marked by a transition from periodic orbits

to a chaotic region, which often occurs through a period-doubling bifurcation route.

2. Windows of periodicity: These are regions within a chaotic region where the system

exhibits periodic behavior.

3. Hysteresis and multistability: Bifurcation diagrams can reveal situations where

multiple stable states coexist for a single control parameter value.

Bifurcation diagrams are essential tools for studying chaotic systems for several rea-

sons:

They visually represent the system’s behavior, making it easier to identify transitions

and different dynamical regimes. They allow researchers to identify the onset of chaos

and the mechanisms responsible for the transition to chaos. They can reveal the existence
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Figure 4.2: Bifurcation Diagram of Logistic map.

of multistable states, helping to understand the sensitivity of chaotic systems to initial

conditions and parameter changes.

Figure 4.2 shows a bifurcation diagram of the logistic map. The dense region focuses

on the chaotic region with positive LE.

To conclude, bifurcation diagrams are powerful tools for understanding the complex

behavior of chaotic systems. By analyzing the different features and transitions in a bi-

furcation diagram, researchers can gain valuable insights into the long-term behavior of a

chaotic system and the underlying mechanisms responsible for the onset of chaos. Including

a bifurcation diagram and its interpretation in a thesis will provide a solid foundation for

discussing the system’s dynamical behavior under investigation.

4.5 Logistic Map

The Logistic map has various applications [194] and is a one-dimensional chaotic

map. When the initial input value falls within the range of [0,1], this map generates an

output sequence within the same range. The formula [48] for the Logistic map is expressed

mathematically as follows:
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Figure 4.3: Logistic map characteristics analysis.

xn+1 = 4axn(1− xn) (4.5.1)

In this context, the bifurcation parameter a varies from 0 to 1. The bifurcation

diagram is displayed in Fig. 4.3 [140], along with the Lyapunov exponent (LE) plot for

the logistic map [123]. Bifurcation diagrams involve creating and plotting multiple steady-

state sequence sets with respect to the controlled parameter (a). The dark green area in

Fig. 4.3(a) signifies the chaotic region corresponding to specific control parameter values

[139]. In a chaotic sequence, a minor alteration in the initial condition causes two adjacent

trajectories to diverge exponentially. The Lyapunov exponent, represented by λ, is a widely

utilized metric to measure the sensitivity of the chaotic circuit to initial conditions. Periodic

regions are indicated by negative LE values, while positive values denote chaotic regions

[122]. The bifurcation diagram and positive LE values reveal that the logistic map exhibits

chaos when the controlled parameter value lies between 0.89 and 1. For this study, we choose

a = 1.

4.6 Hénon Map

Hénon map is a discrete-time 2D chaotic map that shows excellent chaotic behavior.

It transforms a point (xn, yn) on the plan into a new point (xn+1, yn+1). The mathematical

equation of the Hénon map is defined as follows:
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Figure 4.4: Hénon Map characteristics analysis.

xn+1 = yn − a(xn)
2 (4.6.1)

yn+1 = bxn (4.6.2)

Fig. 4.4 shows bifurcation and LE plots of the Hénon map. Steady-state values of xn

are shown in the bifurcation plot of fig. 4.4(a), whereas the maximum LE of the 2-D system

is shown in Fig. 4.4(b) for b = 0.3. In this work, we select a = 1.4 and b = 0.3 [193].

4.7 Chaotic Time Series prediction using memristive RC system

This section showcased the prediction of 1D Logistic and 2D Hénon chaotic maps using

a memristive reservoir computing (RC) system. By employing a controllable mask process

(section 3.5), we enhanced the reservoir states within the network. The mask parameters

allow us to fine-tune both the states’ richness and the feedback’s strength [7]. We have

explored masking and nonmasking techniques in our analysis [58]. We have used four different

types of memristors to build the reservoir. A brief description of those memristors has been

given in table 4.1.

In this study, I generate a sequence of 2001 data points for both maps. The RC system

for the training section predicts the first 1 to 1000 data points to predict the subsequent 2

to 1001 data points (with a one-step lag). This means that each data point is employed for

the next step of data prediction. After the training section, I obtain readout weights that
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Table 4.1: Introduction to different type of memristors.
Device Memristor Type Device Materials Operate Volt.(V)
Memristor 1 [193] Solid State Device Ti/TiOx / TaOy / Pt 2.5
Memristor 2 [102] Solid State Device WOx 1.8
Memristor 3 [195] Solid State Device SiO2 3.5
Memristor 4 [107] Biomolecular Device Alamethicin 0.15

are then used to test the following 1000 sequences. To construct a network of 100 reservoir

states, we select 25 memristors and a mask length of 4 for all memristors. Conversely, we

employ 100 memristors for the network without masking.

For comparison purposes, NRMSE (Normalized Root Mean Square Error) has been

used to measure the goodness of fit between the actual and the predicted signal [133], [53],

which is described as:

NRMSE =

√
mean {(y(t)predicted − y(t)actual)2}

variance {y(t)actual}
(4.7.1)

where y(t)actual and y(t)predicted are the original and predicted signal of the chaotic

map, respectively. Table ?? shows the prediction results for all different RC architectures.

The NRMSE values are calculated based on the 1000 data points of the actual and predicted

signal for both maps.

Figure 4.5,4.6,4.7,4.8 shows the predicted results obtained by the RC system for 1D

Logistic map and 2D Hénon map for 50-100 time steps. The NRMSE value is higher for

the Hénon map as it is a 2D map with more complex chaotic dynamics than the 1D logistic

map.

The results show that the RC system utilizing the mask process demonstrates a strong

ability to predict chaotic time series. This can be attributed to the controllable mask pro-

cess, which generates rich reservoir states by introducing added nonlinearity. Additionally,

the masking process contributes to the input’s sequentialization and optimizes the system’s

dimensionality usage [8]. Furthermore, the memristor possesses the capability to remember
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Figure 4.5: The predicted results obtained by RC system for 1D Logistic map (Without
Mask).

Figure 4.6: The predicted results obtained by RC system for 1D Logistic map (With Mask)

previous and current states. As a result, combining these techniques enhances non-linearity,

which aids in predicting chaotic time series.

Furthermore, the efficiency of the memristor-based RC system varies with the mask

length and memristors. Fig.4.9 4.10 show the performance of RC network variation with

the mask length and the number of memristors. From Fig.4.9 4.10, it is clear that the

performance of the memristor-based RC system varies with mask length and the number of

memristors. In addition, as an example, we have explored more masked-based RC networks

(mask length 5 and 7, number of memristors 30 and 40 for logistic map and Hénon map,

respectively) with biomolecular memristor devices [107], where we varied operating voltage,

pulse width time with duty cycle.

Fig. 4.11 4.12 shows a 3D scatter plot for 1D logistic map and 2D Hénon map

prediction. We have found an optimum combination that gives the lowest NRMSE value

of 6.21×10−6 for the logistic map and 5.31×10−3 for the Hénon map. Fig. 4.13 shows the

final optimized results for both maps using a masked-based biomolecular memristive device.
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Figure 4.7: The predicted results obtained by RC system for 2D Hénon map (Without Mask)

Figure 4.8: The predicted results obtained by RC system for 2D Hénon map (With Mask)

It is clear from the figure that the prediction matches very closely with the target output.

Moreover, our future endeavor will be to explore different types of complex maps by changing

different properties of the memristors.

As chaotic systems are very sensitive to initial conditions and aperiodic in nature,

it is hard to predict the system for more delayed time steps. On [58] has shown that the

performance worsens with the increasing delayed time steps. Even though the performance

worsens with increased delay, the masked-based memristive RC system performs better than

the non-mask system in most cases.

4.8 Cascaded Chaotic Maps

Cascaded chaotic maps are a mathematical concept used in studying chaos theory, a

branch of applied mathematics that deals with nonlinear dynamic systems. These cascaded

chaotic maps are formed by the composition of multiple individual chaotic maps applied

in a sequential manner. The primary purpose of cascaded chaotic maps is to create more
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Figure 4.9: The NRMSE changes with the reservoir size in different masked memristive RC
systems for predicting Logistic map

Figure 4.10: The NRMSE changes with the reservoir size in different masked memristive RC
systems for predicting the Hénon map.
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Figure 4.11: 1D Logistic map further exploration using biomolecular memristor-based RC
system. The prediction error varies with the pulse width’s voltage on and off time.

Figure 4.12: 2D Hénon map further exploration using biomolecular memristor-based RC
system. The prediction error varies with the pulse width’s voltage on and off time.
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Figure 4.13: (a) 1D Logistic map and 2D Hénon map prediction with improved parameters
using biomolecular memristor-based RC system. (b)2D display of predicted results of Hénon
map.

complex and intricate chaotic behavior, which can be employed in various fields, such as

cryptography, secure communication, and engineering.

A chaotic map is a discrete-time dynamical system that exhibits chaotic behavior

characterized by high sensitivity to initial conditions and unpredictable long-term behavior.

It is typically represented by a nonlinear function applied iteratively to an initial state. Some

well-known examples of chaotic maps are the logistics, Hénon, and Arnold’s cat maps.

In a cascaded chaotic map, the output of one chaotic map is fed as input to another

chaotic map, creating a more complex transformation. This process can be repeated multiple

times, forming a cascade of chaotic maps. The resulting cascaded chaotic map can be

represented as:

xn+1 = fk(...f2(f1(xn))) (4.8.1)

where xn is the system’s state at time n, and fi, i = 1, 2, ..., k are the individual

chaotic maps in the cascade.

The main advantage of cascaded chaotic maps is that they generate richer and more

diverse chaotic behavior than individual maps. By carefully selecting and combining different

chaotic maps, researchers can create customized systems that exhibit desired properties, such

as improved security and robustness.
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Cascaded chaotic maps have been applied in various domains, including:

a) Cryptography: Due to their high sensitivity to initial conditions and unpredictable

behavior, cascaded chaotic maps can be used to design secure encryption algorithms and

pseudorandom number generators.

b) Secure communication: Cascaded chaotic maps can be employed in designing

schemes for the secure transmission of information by exploiting their complex behavior to

create robust and hard-to-predict communication signals.

c) Image processing and watermarking: The unpredictable nature of cascaded chaotic

maps can be utilized for image encryption, steganography, and digital watermarking, pro-

viding a means for secure storage and transmission of images.

d) Engineering and control systems: The rich dynamics of cascaded chaotic maps can

be harnessed in designing advanced control systems, such as adaptive controllers and chaotic

synchronization systems.

Cascaded chaotic maps are an essential tool in studying chaos theory, providing a

means to generate more complex and intricate chaotic behavior. Their application extends

across multiple domains, including cryptography, secure communication, and engineering,

with the potential to contribute significantly to the advancement of these fields.

Cascaded chaotic maps have been extensively researched due to their potential appli-

cations in various fields, including secure communication, image encryption, and optimiza-

tion algorithms. The literature review highlights key contributions to understanding and

developing cascaded chaotic map-based systems:

Chen et al. [82] investigates the dynamical degradation of digital piecewise linear

chaotic maps and lays the groundwork for understanding the behavior of cascaded chaotic

maps. Alvarez et al. [4] discusses the necessary cryptographic requirements for chaos-

based cryptosystems, providing essential insights into developing cascaded chaotic map-based

applications. Pareek et al. [117] explore the use of chaotic logistic maps for image encryption,

setting the stage for further research into cascaded chaotic maps in this area. Li et al. [81]

67



Figure 4.14: Schematic of cascading scheme

analyze the security of a chaos-noise-based secure communication scheme, providing insights

into potential vulnerabilities in cascaded chaotic map-based communication systems. Lu et

al. [81] introduce a new generalized Lorenz-like chaotic system, which can be a potential

building block for cascaded chaotic maps and related applications. Lu et al. [13] propose a

new image encryption scheme based on substitution-permutation networks and chaos, which

can inform future research on cascaded chaotic map-based encryption techniques.

Figure 4.14 shows the seed and cascaded maps. For 1D and 2D seed maps, each seed

map is connected to another to build the cascaded map.

4.9 Hierarchical RC architecture

To improve prediction performance, we have explored hierarchical reservoir architec-

ture inspired by the article.[103] Several works have been proposed[37, 93, 89] to increase

the richness of the reservoir. This work used wide reservoirs (independent sub-reservoirs

connected parallel) and deep reservoirs (sub-reservoirs stacked in series). Figure 4.15 gives

a schematic of wide RC architecture.
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Figure 4.15: The schematic of the wide RC system, where two reservoirs are parallelly
connected to the readout layer.

Figure 4.16: The schematic of the Deep RC system, where two reservoirs are series connected
and reservoir 2 depends on the output of reservoir 1.
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Figure 4.17: The target vs. output signal results obtained by biomolecular memristive RC
network for cascaded 1D Logistic map. (a) Shallow Reservoir (b) Wide Reservoir (c) Deep
Reservoir

In this architecture, different voltage encoding has been done for two parallel connec-

tions while keeping the mask parameters the same. In the readout layer, weights from both

reservoirs are concatenated before performing the linear regression.

Figure 4.16 gives a schematic of deep RC architecture. Here the data has passed

through the reservoir1 after the first voltage encoding. The second voltage encoding has been

done based on the output of the first reservoir, and both reservoirs are connected with the

readout layer. One point to note is that we have used half the number of memristors in each

reservoir in the hierarchical reservoir to make a fair comparison between all architectures.

4.10 Cascaded Chaotic maps prediction using Hierarchical memristive RC architecture

We have conducted training and testing for 1D seed and cascaded logistic map and

2D seed and cascaded Hénon map using three RC architectures with two types of memristors

[193, 107]. For the sake of comparison purposes, NRMSE (Normalized Root Mean Square

Error) has been used in our analysis to measure the goodness of fit between the actual target

signal and the predicted output signal.

Figure 4.17 to Figure 4.20 shows predicted results obtained by three RC architectures

with two different types of memristors. From the figures, it is clear that the hierarchical reser-

voir shows better performance compared to the shallow reservoir architecture. It’s because a
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Figure 4.18: The target vs. output signal results obtained by biomolecular memristive RC
network for cascaded 2D Hénon map. (a) Shallow Reservoir (b) Wide Reservoir (c) Deep
Reservoir

Figure 4.19: The target vs. output signal results obtained by solid-state memristive RC
network for cascaded 1D Logistic map. (a) Shallow Reservoir (b) Wide Reservoir (c) Deep
Reservoir.

Figure 4.20: The target vs. output signal results obtained by solid-state memristive RC
network for 2D cascaded Hénon map. (a) Shallow Reservoir (b) Wide Reservoir (c) Deep
Reservoir.

71



Figure 4.21: The target vs. output signal results obtained by the linear network for cascaded
1D Logistic map and cascaded 2D Hénon map.

Figure 4.22: The target vs. output signal results obtained by Echo State Network for
cascaded 1D Logistic map and cascaded 2D Hénon map.

hierarchical reservoir captures more diverse temporal dynamics than the conventional reser-

voir [103].

To investigate the nonlinear transformation required for the task, I have explored our

work with a linear network to check the network’s capability to predict chaotic time series.

Here we have multiplied our original inputs with the following randomly scaling factors:

Xlinear = rand(0, 1) (4.10.1)

In the case of a linear network, no nonlinear transform is provided by the reservoir.

Figure 4.21 shows the prediction of the 1D cascaded logistic map and the 2D cascaded Hénon

map using a linear network. From the figures, it is clear that nonlinear transformation and

memory property is necessary, provided by the memristive RC network, to solve the chaotic

time series problem. Moreover, we have also conducted the chaotic time series prediction
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Figure 4.23: Limitations on Chaotic time series predictions.

with the Echo State Network (ESN)[133, 25]. Here we have taken the same number of

reservoir nodes as the conventional physical reservoir. Figure 4.22 shows the prediction of

the 1D cascaded logistic map and the 2D cascaded Hénon map using a linear network.

4.11 Limitations

The illustration found in Figure 4.23 expounds on the boundaries of the research

conducted. It demonstrates one-step delayed prediction for two types of maps: the Logistic

and Hénon maps. However, an intriguing phenomenon is observed when the time step

delay is extended beyond a single step. It results in a considerable elevation in the NMSE

(Normalized Mean Square Error) value, which can be mainly attributed to the amplified

error rate. This substantial error rate is primarily due to the chaotic system’s inherently

aperiodic nature and extreme sensitivity.

Delving into the specifics, this research presents the NMSE margin escalation as the

time steps increment from 2 to 10. This progression is exclusively depicted for the 1D Logistic

map and the 2D Hénon map in the context of a biomolecular memristor-based RC (Reservoir

Computing) system. The amplification of the error rate is of particular interest, as it poses

a formidable challenge to the predictive ability of the system. It’s worth noting that the
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data and insights presented here are constrained to the biomolecular memristor-based RC

system.

For additional perspective, other devices are subjected to the same analysis. However,

the outcomes and discussions related to these devices are beyond the scope of this document.

Readers interested in a broader understanding of the NMSE margin increases across different

devices are referred to the detailed report in [58]. This referenced work provides further

insights and contributes to a more holistic comprehension of the performance and limitations

of various systems in this domain.
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5 STATIC DATASET CLASSIFICATION

5.1 IRIS dataset Classification

The IRIS dataset is a widely recognized, versatile, and easy-to-use benchmark dataset

in the field of machine learning and data science. Introduced by the British statistician and

biologist Ronald A. Fisher in 1936, the dataset comprises 150 instances with four key features:

sepal length, sepal width, petal length, and petal width, all measured in centimeters. These

features correspond to three distinct species of the iris flower: Iris setosa, Iris versicolor, and

Iris virginica, each represented by 50 instances in the dataset [63]. As a result, the IRIS

dataset serves as an excellent starting point for beginners to learn classification algorithms,

data visualization techniques, and exploratory data analysis. The dataset’s simplicity and

well-documented history have cemented its position as a cornerstone for the initial steps of

machine learning education and experimentation.

Figure 5.1 illustrates the various species within the iris dataset, comprising 150 data

points. I allocated 60% of the data for training and the remaining 40% for testing. The

analysis was conducted using biomolecular memristors and memcapacitors to construct the

reservoir. Initially, the attributes were transformed into voltage pulse trains through the

voltage encoding block. The conversion of voltage for biomolecular memristors ranged from

100 mV to 170 mV with a 15ms pulse period. In addition, for biomolecular memcapacitors,

the voltage conversion spanned from 100 mV to 200 mV , featuring a 2.5s pulse period.

Four weights were obtained simultaneously from the reservoir for every data sample and

subsequently fed through a 4x3 readout layer. This readout layer was trained using logistic

regression techniques. The process flow of the iris dataset utilizing a memcapacitive-based
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Figure 5.1: Iris dataset; train and test data separation.

Figure 5.2: The process flow of Iris Dataset classification using a memcapacitor-based RC
system.
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Table 5.1: Comparitive analysis between biomolecular memristors and memcapacitors for
classifying Iris dataset.

Devices Vol. Range, (mV) Pulse Width Test Accuracy,%
Bio. Memristor 100 to 170 15 ms 96.67

Bio. Memcapacitor 100 to 200 2.5 s 98.33

RC system is depicted in Figure 5.2. The testing accuracy for biomolecular memristors and

memcapacitors reservoirs are 96.67% and 98.33%, respectively 5.1.

5.2 MNIST Image Classification

MNIST Image Classification is a fundamental task in the field of computer vision

and machine learning, designed to recognize handwritten digits (0 to 9) using the Modified

National Institute of Standards and Technology (MNIST) dataset. The dataset comprises a

collection of 70,000 grayscale images, each 28x28 pixels in size, which are split into 60,000

training and 10,000 testing samples. As a benchmark problem, MNIST image classification

has served as a stepping stone for researchers and practitioners, enabling them to test,

validate, and fine-tune a variety of algorithms, such as deep learning models like convolutional

neural networks (CNNs), as well as classical machine learning approaches like support vector

machines (SVMs) and k-nearest neighbors (k-NN). The widespread adoption and success of

the MNIST dataset has fueled advances in pattern recognition, laying the foundation for

more complex real-world applications in areas such as object detection, facial recognition,

and autonomous driving.

LeCun et al. [77] introduced the LeNet-5 architecture, an early example of a convolu-

tional neural network (CNN), which achieved a 0.95% error rate on the MNIST dataset. The

authors presented the backpropagation algorithm as an effective means for training the net-

work and provided insights into how gradient-based learning could be applied to document

recognition tasks. Cortes and Vapnik [24] proposed the Support Vector Machine (SVM)

as a powerful classification method. The paper demonstrated the effectiveness of SVMs in

separating data into distinct classes, including its application to the MNIST dataset. SVMs
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have since become a popular approach for tackling image classification problems. Simard et

al. [153] presented best practices for applying CNNs to visual document analysis, focusing

on the MNIST dataset. The authors introduced elastic distortion as a data augmentation

technique, which significantly improved the performance of CNNs on the dataset, achiev-

ing a 0.7% error rate. This paper by Hinton and Salakhutdinov [54] demonstrated the

efficacy of deep learning techniques in dimensionality reduction. The authors used a deep

autoencoder to learn a compact representation of the MNIST dataset and showed that this

approach could be effectively combined with other classification methods, such as SVMs or

k-nearest neighbors, to improve overall performance. Cireşan et al. [22] proposed multi-

column deep neural networks (MCDNNs) for image classification, which combined multiple

CNNs to produce an ensemble model. The authors demonstrated that MCDNNs achieved

state-of-the-art results on the MNIST dataset, with an error rate as low as 0.23%. Wan

et al. [168] introduced DropConnect, a novel regularization technique for neural networks,

extending the idea of dropout. The authors applied DropConnect to the MNIST dataset

and observed improved performance, suggesting that it could be useful for preventing over-

fitting in deep learning models. Goodfellow et al. are [43] work is relevant to MNIST image

classification as it demonstrated how deep convolutional neural networks could be used for

recognizing multi-digit numbers. The authors leveraged their experience with the MNIST

dataset to develop a model that performed well on the more complex SVHN dataset. Sri-

vastava et al. [155] proposed dropout, a widely-used regularization technique for neural

networks. The authors demonstrated the effectiveness of dropout by applying it to various

datasets, including MNIST. The technique proved valuable for mitigating overfitting in deep

learning models, particularly in image classification tasks. Ioffe and Szegedy introduced [61]

batch normalization, a technique for improving deep neural networks’ training speed and

performance. The authors demonstrated the effectiveness of batch normalization on several

datasets, including MNIST, and showed that it could significantly accelerate training while

improving classification accuracy. Li et al. [78] presented an in-situ learning approach for
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Figure 5.3: Schematic of MNIST digits. Each digit is 28*28 pixels.

multilayer memristor neural networks. The authors demonstrated their method’s effective-

ness on the MNIST dataset and highlighted the potential for memristor-based hardware

implementations in deep learning tasks. Du et al. [30] explored the implementation of

synaptic functions using oxide memristors, simulating various synaptic behaviors. Although

not directly addressing MNIST image classification, this work provided insights into how

memristor-based reservoir computing could be developed in the future. Pedretti et al. [125]

presented a memristive neural network based on spike-timing-dependent plasticity (STDP),

showcasing the network’s ability for online learning and tracking. While not explicitly ap-

plied to the MNIST dataset, this research demonstrates the potential of memristor-based

neural networks for pattern recognition tasks.

Figure 5.3 shows the schematic of MNIST images from 0 to 9. Initially, these grayscale

images (28x28 pixels) undergo a conversion to binary format, simplifying the data and fa-

cilitating further processing. To enhance computational efficiency, redundant borders sur-

rounding the digits are eliminated, effectively reducing the dimensions of each image to 22x20

binary pixels, with 22 rows and 20 pixels per row.

Following this preprocessing, each row of 20 pixels is segmented into four distinct

sections, each containing 5 pixels. To effectively encode these sections, we generate four

pulse trains for every image row, with each pulse train corresponding to one of the four

79



Figure 5.4: Training process of MNIST dataset using biomolecular memristive based RC
system.

Figure 5.5: Testing process of MNIST dataset using biomolecular memristive based RC
system.
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sections. Within each pulse train, five pulses directly represent the five binary pixels in the

corresponding section.

These pulse trains are subsequently input into a memristor-based reservoir comprising

88 memristors, where each memristor is associated with one of the four sections for each of

the 22 rows. It is crucial to ensure that the time frame (i.e., the period of the pulses) is not

excessively large relative to the time constant of the dominant state variable. This ensures

that the increased conductance caused by each pulse does not undergo significant decay

before the arrival of the subsequent pulse. As a result of this design, the final conductance

of each memristor is influenced by the unique sequence of pulses in its input, effectively

leveraging the inherent memory properties of memristors.

Figure 5.4 illustrates the comprehensive procedure for handwritten digit classifica-

tion employing a memristor-based reservoir computing (RC) system (The MNIST image of

digit eight has been taken from [29]. Prior to inputting the image data into the reservoir,

a preprocessing stage is conducted to prepare the data for efficient processing. The prepro-

cessed image data is divided into 5-pixel sections, which are then converted into input pulse

streams and supplied to the reservoir at various rates. These rates are determined based on

the pulse’s on-time and off-time durations.

Once the data undergoes processing within the reservoir layer, it is subsequently

directed to the readout network. Logistic regression is applied to analyze and classify the

processed data in this stage. In our primary investigation, we utilized pulse streams with

identical timeframe widths for application to the corresponding memristors. As a result, we

obtained 88 synaptic weights, which are defined as the conductance end values subsequent to

each time frame. An 88x10 readout layer is employed to perform the classification task, which

leverages the synaptic weights to effectively distinguish between the various handwritten

digits.

The digit with the highest probability is subsequently displayed as the final output.

As illustrated in Figure 5.5, the probability for a specific image is higher compared to other
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Figure 5.6: Feature modification of the image by row and column scanning.

cases, and thus, it is selected for display in the output. This demonstrates the effectiveness of

the memristor-based reservoir computing system in accurately classifying handwritten digit

images from the MNIST dataset.

Further Improvement:

In an effort to enhance the prediction accuracy, I expanded the feature size through

raw data modification. As illustrated in Figure 5.6, the image undergoes feature alteration.

Initially, I utilized one data set (88 features) and generated a second set by doubling the

first features. I employed a column-by-column left-to-right scanning approach for the third

set, resulting in an additional 66 features. Subsequently, I scanned the image row by row,

from top to bottom, yielding 84 more features. Consequently, I incorporated a total of 326

features from a single dataset for classification purposes.

Results:

Table 5.2 presents the MNIST image classification results, detailing the system’s

performance for each case. In these cases, a test dataset comprising 10,000 images was

employed for classification. As evidenced by the table, employing feature size in the context

of a biomolecular memristor-based reservoir computing system contributes to improved data

classification compared to other cases. This observation highlights the importance of feature
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Table 5.2: MNIST Test accuracy for different models.
Model Name Test Accuracy,%
Decision Tree 91.99
Support Vector Machine 92.97
Näıve Bayes 56.5
K-nearest neighbors algorithm 94.24
Logistic Regnression 90.89
Biomolecular Memristor (Simulation) 88.66
Biomolecular Memristor (Experiment) 88.02
Biomolecular Memristor (Simulation,extended features) 94.46
Solid State Memristor (Simulation) [29] 88.2

size selection in enhancing the performance of neuromorphic computing systems for image

classification tasks.
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6 TEMPORAL DATA PREDICTION AND CLASSIFICATION

6.1 Solving a second-order nonlinear dynamic task

Nonlinear dynamical systems are mathematical models that describe the complex

behavior of natural and engineered systems characterized by time-dependent interactions

among their constituent elements. Studying these nonlinear systems has proven invaluable

in elucidating various phenomena in various disciplines, such as fluid dynamics, engineering,

population biology, climatic systems, and neural networks. Governing equations of second-

order nonlinear dynamical systems incorporate second-order time derivatives. Some promi-

nent examples of second-order nonlinear dynamics within these domains include electrical

system inverters and spring and damping properties in mechanical systems, among others.

This section has selected a second-order dynamic nonlinear transfer function documented in

[29]. The transfer function is shown below:

y(t) = 0.4y(t− 1) + 0.4y(t− 1)y(t− 2) + 0.6u3(t) + 0.1 (6.1.1)

The output of the signal y(t) depends on the present input u(t) as well as on the

previous two inputs y(t−1) and y(t−2)(time lag of two-time steps) as shown in Eq. (6.1.1).

This study aims to train a biomolecular memcapacitor-based RC system to map the hidden

nonlinear transfer function, thereby enabling the generation of accurate output from the

input after training without prior knowledge of the underlying mathematical relationship

between input and output.
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Figure 6.1: Process flow of solving second order nonlinear dynamic task.

This study aims to train a biomolecular memristor-based RC system to identify the

concealed nonlinear transfer function, enabling accurate output derivation from the input

after training without knowing the original mathematical correlation between input and

output. Figure 6.1 demonstrate solving second-order nonlinear dynamic task. We employed

a random input signal sequence within a 0 to 0.5 range and transformed it into voltage

amplitudes. A random sequence of 300 timeframes is used to train the memristor-based

RC system. The reservoir comprises 90 memristive states, divided into ten groups with

nine devices each. Input voltages are provided through pulse streams with ten distinct

timeframe widths (1 ms, 3 ms, 5 ms, 7 ms, 9 ms, 11 ms, 13 ms, 15 ms, 17 ms, and 19

ms) respectively, applied to the ten groups during testing. We discovered that having nine

devices per group with slightly varying properties enhances reservoir performance due to

inherent device variations, which aid in making the reservoir output more distinguishable.

A similar performance improvement was observed with inputs having 10 different timeframe

widths. In this instance, the readout layer is a 90 × 1 feedforward layer, which converts the

reservoir state into a single output. A straightforward linear regression training algorithm

based on batch gradient descent is employed to train the readout layer weights.

Initially, the input signal is transformed to a voltage range between 120 mV and 160

mV . These altered voltage signals serve as the amplitude for the pulse sequence applied
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Figure 6.2: Solving a second-order nonlinear dynamic task. Actual signal vs predicted signal
for training and testing data.

to the memristor. A 90% duty cycle is employed for each time frame. A linear regression

model featuring least-squares learners is utilized in the readout layer. The signal error value

is calculated using the Normalized Mean Squared Error (NMSE) method 6.1.2, [29].

NMSE =
∑

i(zi(t)−yi(t))
2∑

i yi
2(t)

(6.1.2)

Where, z(t) is the predicted signal and y(t) is the actual signal. As the actual signal

normalizes the result, the error is unitless. The NMSE values for training and testing are

0.0010 and 0.0011, respectively. Figure 6.2 compares the actual signal and the predicted

signal outcomes for both training and testing datasets, using 90 memristive reservoir states.

Now, we present a comparative analysis between the memristor-based reservoir com-

puting (RC) network and the traditional linear network, highlighting the influence of the

memristor device’s inherent nonlinear physics. We substitute the memristor reservoir layer

with a linear hidden layer, generating 90 random signals derived from the original input, in

accordance with the subsequent equation:

x(k) = rand(1, 100) ∗ u(k) (6.1.3)
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Figure 6.3: Simulating the prediction of a second-order nonlinear dynamic task using the
conventional linear network. Actual signals vs. predicted signals for both training and
testing datasets.

Table 6.1: Comparison work of solving second order nonlinear dynamic task problem.
Devices/Network Train (NMSE) Test (NMSE) Reservoir States
Biomolecular Memristor 0.001 0.0011 90

Biomolecular Memcapacitor 0.00052 0.00063 50
Linear Network 0.0040 0.0043 90

where x(k) is the scaled output from the linear resistor instead of the memristor, and

u(k) is the input vector. In this particular case, no nonlinear transformation is done by the

reservoir.

Figure 6.3 illustrates the performance plot of a conventional linear network when

tackling a second-order nonlinear dynamic task. The signal fitting is suboptimal, with el-

evated error levels, particularly in the testing dataset. The NMSE values for training and

testing datasets, calculated using Equation 6.1.2, are 0.0051 and 0.0071, respectively. This

comparison underscores the significance of the memcapacitor device’s inherent nonlinear

physics for effectively performing nonlinear transformations. A comprehensive overview of

the calculated NMSE values in simulation is reported in Table 6.1. In our attempt to address

this issue utilizing an experimental platform with a biomolecular memcapacitor-based RC

system, we obtained NMSE values of 0.00057 during the training phase and 0.00078 during

the testing phase.
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6.2 Autonomous Prediction of Mackey Glass time series

Nowadays, predicting time series in chaotic systems is a difficult task due to the

presence of positive Lyapunov exponents in these systems. This leads to an exponential

increase in the separation of nearby trajectories, causing even slight inaccuracies in the

initial state to result in a considerable deviation between the forecast and the actual signal

after just a few time steps. In this experiment, we employed a biomolecular memristor-based

RC system to predict the well-known Mackey-Glass time series [102], which follows a specific

equation;

dx

dt
= β

x(t− τ)

1 + (x(t− τ))n
− γx(t) (6.2.1)

In our experiment, we set n= 10, γ= 0.1, β= 0.2, τ= 18 in Eq. (6.2.1) to obtain chaotic

dynamics. Though the chaotic system exhibits a deterministic structure, its highly sensitive

nature to minor disturbances in the initial condition makes the prediction task extremely

difficult. The objective is to train the memristor-based RC system to represent the concealed

nonlinear transfer function. This enables the accurate derivation of output from input after

training without knowledge of the original relationship between them. Initially, we generated

a signal for 650 timeframes using a specific initial condition and normalized the signal values

to a range between -0.5 and 0.5.

Figure6.4 illustrates the training phase data process employed to address the problem.

The initial fifty data points are utilized to predict the subsequent value, and this pattern

continues. As a result, the first 500 time steps are dedicated to training. Once the signal is

converted into an appropriate voltage range, voltage pulses are applied to a memristor, and

its conductance after each timeframe serves as a reservoir weight. This approach presumes

that each data point relies on the preceding 50 weights. The 20 memristors used in this

experiment exhibit slight property variations inspired by the unavoidable device-to-device

discrepancies found in real-world implementations, which enhance the system’s nonlinearity.
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Figure 6.4: Schematic of data process for autonomous Mackey Glass time series problem
prediction.

Figure 6.5: Actual signal vs. predicted signal from memristive RC system for Mackey Glass
time series autonomous prediction both the training and testing sets.

89



In effect, 1000 weights are available for predicting each successive data point, accomplished

by training the readout layer using linear regression. Testing occurs from the 501th to the

650th time step. The model autonomously predicts data for future time steps based on

training weights.

In the Mackey-Glass time series forecasting, the signal is transformed into a voltage

ranging from 110 mV to 130 mV . The time frame is 15 ms with an 80% duty cycle. This

simulation employs 20 distinct memristors. Fig. 6.5 reveals that the actual and predicted

signals nearly align perfectly for the training set, encompassing the first 500 time frames.

Fig. 6.5 also displays the testing outcomes for autonomous prediction between the 501th and

650th time frames. Our model can accurately predict the signal for up to 30-40 steps beyond

the 500-time steps. However, due to the exponential growth of minor errors, the autonomous

prediction diverges from the ground truth.

6.3 EEG Signal Classification

Electroencephalogram (EEG) signals are a non-invasive method of measuring the elec-

trical activity generated by the brain. These signals are detected by placing small electrodes

on the scalp that capture the brain’s electrical oscillations. EEG signals have been widely

used in clinical and research settings to understand the complex dynamics of brain function,

diagnose neurological disorders, and study cognitive processes. The advantages of using EEG

signals include high temporal resolution, which allows researchers to capture fast-changing

brain processes. Additionally, EEG equipment is relatively affordable and portable, making

it a widely accessible tool for brain research. However, the spatial resolution of EEG is

limited due to the nature of scalp-recorded signals, which can be affected by the skull and

scalp tissues. EEG signals have various applications, including diagnosing epilepsy, sleep

disorders, and coma. They are also utilized in brain-computer interfaces (BCIs) to enable

communication and control for individuals with severe motor disabilities. Furthermore, EEG

signals have been employed to study neural correlates of cognition, memory, and attention,
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providing valuable insights into the workings of the human brain. EEG signal classification

based on a machine learning system has been described as a literature review in the following;

Lotte et al. [88] paper overviews classification algorithms used in EEG-based brain-

computer interfaces. The authors discuss the advantages and drawbacks of various tech-

niques, including linear discriminant analysis, support vector machines, and neural net-

works. They also provide guidelines for selecting and evaluating classifiers for specific BCI

applications. Bashashati et al. [12] paper focuses on the signal processing algorithms used

in EEG-based brain-computer interfaces. The authors discuss various preprocessing, feature

extraction, and classification techniques, highlighting their suitability for different BCI appli-

cations. They also provide insights into future research directions in this field. Murugappan

et al. [104] propose a method for classifying human emotions using EEG signals and dis-

crete wavelet transform. They employ machine learning algorithms to classify the extracted

features, including k-Nearest Neighbors, linear discriminant analysis, and support vector

machines. The results demonstrate the potential of using machine learning techniques for

emotion recognition based on EEG signals. The survey paper [3] provides a comprehensive

overview of seizure detection and prediction algorithms based on EEG signals. The authors

discuss various techniques, including time-domain, frequency-domain, and time-frequency-

domain methods. They also review different machine learning algorithms employed in seizure

classification, such as support vector machines, artificial neural networks, and fuzzy logic

systems. Cecotti et al. [18] propose using convolutional neural networks (CNNs) to detect

P300 components in EEG signals, commonly used in brain-computer interfaces. The re-

sults show that CNNs can achieve high classification accuracy and outperform traditional

machine-learning techniques in this application. Tzallas et al. [163] present a novel ap-

proach to epileptic seizure detection using time-frequency analysis of EEG signals. They

employ wavelet transform and machine learning techniques, such as artificial neural net-

works and support vector machines, to classify seizure and non-seizure EEG epochs. The

results demonstrate the effectiveness of the proposed method for seizure detection. Lawhern
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Figure 6.6: Example time series plots of two EEG signals: Healthy and Epileptic.

et al. [76] introduce EEGNet, a compact convolutional neural network (CNN) architecture

designed specifically for EEG-based brain-computer interfaces. The authors demonstrate

that EEGNet achieves competitive performance with other state-of-the-art classifiers while

maintaining a smaller model size and lower computational complexity. The results high-

light the potential of using tailored deep-learning architectures for EEG signal classification.

Huang et al. [59] present the extreme learning machine (ELM) algorithm, a type of single-

layer feedforward neural network with a fast learning speed. The authors demonstrate the

effectiveness of ELM in various applications, including EEG signal classification. The ELM

algorithm has since been widely adopted in EEG data analysis for its efficiency and accuracy.

The work aims to demonstrate a memristor-based RC system to classify epileptic

and healthy EEG signals. The proposed method is general and can be implemented us-

ing any volatile memristor with fading memory and nonlinearity. I have shown reservoir

implementation using only biomolecular memristor and later compared it with other works.

EEG Dataset: EEG serves to record brain activation signals over time. Valuable

information about the brain can be gleaned from these signals, as noted by [132]. In this

study, we utilized a dataset from the University of Bonn, Germany [6]. The dataset comprises

five classes of EEG signals: F, N, S, Z, and O, each containing 100 EEG signals lasting 23.6
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Figure 6.7: Proportion of data used in our analysis.

seconds and sampled at a frequency of 173.67 Hz. Seizure activity is captured in class S

EEG signals, while healthy patient data is represented in class Z EEG signals [110]. My

work focuses solely on classifying class Z and S EEG signals. Figure 6.6 illustrates examples

of healthy (class Z) and epileptic (class S) EEG signals, and 6.7 demonstrates the distribution

of data used for training and testing in our analysis.

In a memristor-based reservoir computing (RC) system, there are three distinct layers:

the input layer, the reservoir layer, and the output layer,[57] [39]. The input layer introduces

the input signals to the encoding layer, which transforms these signals into voltage amplitude

pulses. These pulses are then transmitted to the memristive reservoir. The reservoir’s

dynamics are altered based on the input of pulse trains, while the output layer houses a

readout function where linear or logistic regressions are executed [57]. Unlike traditional

recurrent networks, only the weights from the readout layer need to be trained in the RC

system, significantly reducing training costs.

In order to enhance the performance of the RC system, we have incorporated an

additional layer (the feature modification layer) following the reservoir layer, which reduces

feature dimensions. The benefit of decreasing feature size lies in memory conservation and

increased system performance accuracy.
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Figure 6.8: Proposed RC framework to reduce feature size in the network.

Figure 6.8 shows the proposed RC framework. At first, the raw data is preprocessed,

taking absolute value and then clipping at a maximum of 500 µV . Then the data is linearly

encoded into a suitable voltage range depending on the particular memristor’s functionality.

These amplitude-encoded values are the on-voltages of a pulse train sent to the memristive

reservoir. Memristors use these voltage inputs to change their conductance non-linearly;

also, the conductance depends on the present and the past inputs. Thereby, memristor

conductance can be treated reservoir state. The distinct characteristic of the volatile mem-

ristive element compared to other passive elements is that its resistance changes nonlinearly

with time depending on the sequence of past applied voltages [20] [176]. We have used

both solid-state memristors [193] and biomolecular memristors [50] separately to build the

reservoir model for simulation. The solid-state memristors operate at 2.5 V , whereas the

biomolecular memristors operate between 10 to 200 mV .

The feature modification layers take weights w(t) from the reservoir and produce a

reduced set of features for the readout layer. Here, we have shown two techniques. The

first is the virtual node technique, where instead of taking the conductance at each input

time step, we take the conductance at the nth time step. The second technique is a new one

we propose in this work called ’the integration method.’ Instead of taking just the nth step

conductance, we sum all the conductances between 1 and nth step and treat that as a single

feature to be used in the readout layer. In the feature modification layer, we summed up the

first 60 weights to get the first feature, then calculated the sum of the following 60 weights to

get the second feature, and so on. Thereby, we have reduced the feature size, which reduces
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Figure 6.9: Maximum voltage clipping of raw EEG signals.

the readout layer size and consequently optimizes network complexity. In addition, each

specific time point does not have any intrinsic meaning in this EEG signal. Hence, treating

each time step response as a feature can be misleading when it comes to classifying signals

with a phased difference. Summing over a significant number of time steps mitigates this

issue.

Logistic regression is a supervised machine learning algorithm to classify the input

signals [134]. In the proposed RC network, the logistic regression is performed after the

feature modification to train the network and use the trained weights in the testing phase

for classification.

Figure 6.9 shows the reason behind choosing the maximum clipping voltage level of

500 µV . We have achieved maximum accuracy with up to 500 µV raw data. We have used

two techniques for both solid-state and biomolecular memristor-based RC systems in this

work. Figure 6.10 shows another reason for choosing 60-time steps in our analysis. The

virtual node is the point where we collect the data, and in this analysis, we have chosen

60-time steps. The selection of the virtual nodes also impacts the accuracy. The number

of virtual nodes increases the feature size more than the dataset size, which creates poor

accuracy. On the other hand, the large number of virtual nodes drastically reduces feature
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Figure 6.10: Selection of Virtual Nodes for EEG classification.

size and accuracy. In addition, in the integration method, the network sustains better

properties than traditional memristive RC networks as the 60 weights are summed up to

create one feature. In contrast, the traditional memristive RC network only gets the 60th

position weights having less past information. A linear network consisting of resistors has

been used in a separate work to understand the significance of the memory property of the

memristor to solve the EEG classification task.

A list of EEG data classification results and our work has been reported in table

6.2. From the table, it is clear that using the feature modification layer, memristor-based

RC system can classify EEG signals with 100% accuracy and reduce the feature size of the

readout layer. In addition, I have conducted an experiment for memcapacitor-based RC

system to classify EEG signal classification and get 100% test accuracy in simulation and

experiment.

6.4 Spoken digit classification

In this section, we conduct a speech recognition experiment utilizing a memristor-

based reservoir computing (RC) system. The dataset employed is the NIST TI45 [39],
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Table 6.2: Comparison of performance of the proposed method with other methods in healthy
vs. epileptic EEG signal classification problem.

Authors Description Accuracy,%

Nigam et al.[109]
Non-linear preprocessing filter, artificial
neural network

97.2

Polat et al.[129] Fast Fourier transform, decision tree 98.72

Subasi [159]
Discrete wavelet transform, mixture of expert
model

95

Guo et al. [45]
Discrete wavelet transform -relative wavelet
energy

95.2

Oweis et al.[114]
Hilbert–Huang transform, weighted
frequencies

94

Wang et al. [169] Wavelet transform, Shannon entropy, k-NN 99-100
Kai et al. [35] Hilbert–Huang transform, SVM 99.12

Bajaj et al. [9]
Time–frequency image-based features,
least squares SVM

99.5

Guo et al. [44]
Preprocessed by Genetic Algorithm,
Feature: curve length, standard deviation,
KNN classifier

99.20

Siuly et al. [84]
Preprocessed by Clustering, Feature:
9 temporal features, LS-SVM classifier

99.90

Samiee et al. [142]
Preprocessed by Rational DSTFT,
Feature: 5 time-frequency features,
MLP classifier

99.80

Rincon et al. [96]
Preprocessed by wavelet transform,
Feature: bag of words, SVM classifier

99.85

Reynolds et al. [132] Perceptron model 54.05
Reynolds et al. [132] Multi-Layer Perceptron model 48.25
Reynolds et al. [132] Convolutional Deep Learning network model 99.00
Reynolds et al. [132] Long Short-Term Memory model 45.00

Reynolds et al. [132]
Evolutionary Optimization of
Neuromorphic System

99.00

Reynolds et al. [132] Reservoir Computing model 98.00
This Work Linear Network 56.25

This Work
Solid state memristor-based RC
network with virtual node

99.75

This Work
Solid state memristor-based RC
network with integration method

100

This Work
Biomolecular memristor-based
RC network with virtual node

93.12

This Work
Biomolecular memristor-based RC
network with integration method

100
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Figure 6.11: Spoken Digit Classification. a) Process flow for Spoken Digit Classification. b)
Digitized spike for spoken digit ”8” explored for 25%,50%,75%,100%. c) memristor conduc-
tance change for the digitized spike. d) simulation results for 40-time steps of the cochlea-
gram.
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consisting of isolated spoken digit waveforms (0-9 in English). Initially, the dataset un-

dergoes preprocessing via Lyon’s passive ear model, converting the sound waveforms into

50-dimensional vectors (representing frequency channels) with a maximum of 40-time steps.

The dataset we used, NIST TI46, comprises binary cochleograms of isolated spoken digit

waveforms, 0-9 in spoken English. The dataset was provided to us as a courtesy by the au-

thors of Moonetal.[102]. Each data point in the cochleagram signifies the firing probability

of a hair cell sensitive to a specific frequency (channel) at a particular time.

Figure 6.11a presents an illustration of the process flow for tackling the EEG classifi-

cation issue. A dataset consisting of 450 training samples and 50 test samples is employed to

do this. Initially, the cochleagram data is transformed into a digitized spike representation,

where white areas are designated as 0, while black areas containing voice data are denoted

as 1. Subsequently, the digitized data is converted into a voltage pulse train, which is then

transmitted to the memristive reservoir.

The data is processed in a high-dimensional space within the memristive reservoir

before being sent to the output layer for training purposes. A straightforward logistic re-

gression is conducted to determine the weights during the training phase, which will later

be used in the testing phase. Figure 6.11b demonstrates the observations made at various

time steps to ascertain if the device can detect the digit before processing the entire data

segment.

Figure 6.11c depicts the relationship between the memristive conductance changes

and the spike data. It becomes evident that the conductance increases when spike data (or

pulse train) is present and decreases for non-spike positions. Lastly, Figure 6.11d presents

the results obtained for a 40-time step dataset, where a 100% recognition rate accuracy

was achieved. This extended description of the EEG classification process offers a more

comprehensive understanding for dissertation purposes.
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Figure 6.12: The encoding process flow of the Spoken Digit classification problem. The
binary 2-D cochleogram (top-left corner) represents neural spike trains in different human
cochlear channels. Each input was converted into voltage pulses (bottom-left corner), where
10 mV and 200 mV correspond to a ‘0’ (resting neuron) bit and a ‘1’ (firing neuron) bit,
respectively. The input voltage train was fed to the memcapacitor-based reservoir, where the
normalized capacitance response is recorded (bottom-right corner). The dynamic normalized
capacitance was then mapped to a 2-D matrix (top-right corner) and, for every channel or
row, one virtual node is selected for every 5 timesteps as depicted by the green circles on the
capacitance plot (bottom-right corner)
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The figure 6.12 under discussion depicts the encoding process flow involved in the

Spoken Digit classification problem, a task aimed at correctly identifying and categorizing

spoken numbers.

The process begins with a binary 2-D cochleogram (top-left corner). This graphi-

cal representation captures the auditory information as ’neural spike trains’ along different

human cochlear channels, essentially representing how the human ear processes the spoken

digit. Each point in the cochleogram signifies a specific firing neuron in a particular channel

at a certain point in time. This encapsulates the complexity of human auditory data in a

simple binary format.

This cochleogram data is then converted into voltage pulses (bottom-left corner). In

this system, the binary ’0’ and ’1’ data from the cochleogram corresponds to 10 mV and

200 mV, respectively. The ’0’ bit signifies a resting neuron, whereas a ’1’ bit symbolizes a

firing neuron. This transformation provides an electrical representation of the auditory data,

essentially serving as an input voltage train.

The next step involves feeding this input voltage train to a memcapacitor-based reser-

voir. A memcapacitor is a type of memory device that has the ability to remember its history

through the voltage and charge that has passed through it. The reservoir acts as a high-

dimensional space where the time-series data (input voltage train) is mixed and transformed

nonlinearly, allowing the system to detect and exploit patterns in the input.

The resultant normalized capacitance response from the memcapacitor is recorded

(bottom-right corner). Capacitance, in this context, refers to the capacity of the memca-

pacitor to store electrical charge. This recorded response displays the unique and dynamic

capacitance characteristics of the auditory data and serves as a distinctive fingerprint for

each spoken digit.

Finally, the dynamic normalized capacitance is mapped to a 2-D matrix (top-right

corner). For each channel (or row), a virtual node is selected for every 5 timesteps as

depicted by the green circles on the capacitance plot (bottom-right corner). This step allows
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Figure 6.13: Temporal response of memcapacitor to the spike trains in channel 1 for utterance
’0’.

Table 6.3: Comparison of Spoken digit classification work
Devices/Network Operating voltage Recognition rate, %
Biomolecular Memristor 170 mV 99.75

Biomolecular Memcapacitor 150 mV 99.6
Solid state Memristor [102] 1.8 99.2

the system to condense and interpret the data in a simpler form, enabling it to effectively

classify the spoken digits. Selecting a virtual node every 5 timesteps, it ensures that the

system gets a diverse and representative sampling of the unique auditory data for each digit,

thus boosting the accuracy and reliability of the classification process.

In this case, the device’s memcapacitance is sampled at intervals of 5-time steps,

following the pattern n, 2n, 3n, 4n, ... 8n, with n equating to 5. The red dots in Figure

6.13 signify virtual nodes. These virtual nodes, as referenced in [102], represent the states of

the memcapacitor where memcapacitance values are stored. For each channel, eight virtual

nodes have been utilized. Ultimately, the states of these virtual nodes are relayed to the

readout layer. A list of comparison work for spoken digit classification for 40-time steps
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Figure 6.14: Recognition rate of spoken digit classification problem using memcapacitor
based RC system.

has been presented in table 6.3. The outcomes for spoken digit classification are displayed

in both simulation and experimental settings for biomolecular memcapacitor-based RC sys-

tems in figure 6.14. The performance is evaluated at various input completion percentages,

specifically for 25%, 50%, 62.5%, 75%, and 100% (i.e., 10, 20, 25, 30, 40 time steps) of the

test dataset.
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7 CONCLUSION and FUTURE WORK

Several promising avenues for future research have been identified as a result of this

dissertation. Firstly, the development of novel bio-mem devices with enhanced performance

and functionality should be explored, focusing on the integration of various biomolecules and

optimization of their switching mechanisms. This would contribute to the creation of more

sophisticated and reliable bio-mem devices, which could enable further breakthroughs in the

field.

Secondly, the scalability of bio-mem devices in larger RC networks should be inves-

tigated, in order to determine their suitability for real-world applications that demand even

greater computational power. This would involve the development of novel architectures and

algorithms to efficiently incorporate bio-mem devices into large-scale systems.

Additionally, further exploration of alternative learning algorithms for RC systems

should be conducted to improve performance and enable more complex tasks to be solved.

It would be worthwhile to investigate the use of unsupervised and reinforcement learning

algorithms in conjunction with bio-mem devices, as well as the development of novel hybrid

approaches that combine the strengths of various learning paradigms.

Finally, as the field of neuromorphic computing continues to evolve, it would be

beneficial to explore the integration of bio-mem devices with other emerging technologies,

such as optical computing and quantum computing. This interdisciplinary approach could

lead to the development of unprecedented computing capabilities, pushing the boundaries of

what is currently achievable in the field of computing.
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In conclusion, this dissertation has demonstrated the potential of bio-inspired mem-

ory devices as a promising alternative to traditional solid-state electronics for tackling the

limitations imposed by the slowing down of Moore’s law, the breakdown of Dennard Scal-

ing, and the von Neumann bottleneck. By leveraging the unique properties of biomolecular

devices, such as non-linear current-voltage characteristics and inherent memory, we have

successfully integrated them into Reservoir Computing (RC) systems to solve classification

and temporal problems.

Our results show that bio-mem devices not only offer a more energy-efficient and

biologically plausible computing solution but also exhibit remarkable performance in various

tasks, including speech recognition, time-series prediction, and image classification. This

work paves the way for the development of more efficient and powerful computing systems

that can handle complex tasks more effectively while also reducing power consumption and

mitigating the limitations faced by traditional computing paradigms.
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