
Ateneo de Manila University Ateneo de Manila University 

Archīum Ateneo Arch um Ateneo 

Graduate School of Business Publications Graduate School of Business 

1-1-2023 

A Data-Driven Scheduling Approach for Integrated Electricity-A Data-Driven Scheduling Approach for Integrated Electricity-

Hydrogen System Based on Improved DDPG Hydrogen System Based on Improved DDPG 

Yaping Zhao 
Shenzhen University 

Jingsi Huang 
Peking University 

Endong Xu 
Shenzhen University 

Jianxiao Wang 
Peking University 

Xiaoyun Xu 
Ateneo de Manila University 

Follow this and additional works at: https://archium.ateneo.edu/gsb-pubs 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Zhao, Y., Huang, J., Xu, E., Wang, J., Xu, X.: A data-driven scheduling approach for integrated electricity-
hydrogen system based on improved DDPG. IET Renew. Power Gener. 00, 1–14 (2023). https://doi.org/
10.1049/rpg2.12693 

This Article is brought to you for free and open access by the Graduate School of Business at Archīum Ateneo. It 
has been accepted for inclusion in Graduate School of Business Publications by an authorized administrator of 
Archīum Ateneo. For more information, please contact oadrcw.ls@ateneo.edu. 

https://archium.ateneo.edu/
https://archium.ateneo.edu/gsb-pubs
https://archium.ateneo.edu/gsb
https://archium.ateneo.edu/gsb-pubs?utm_source=archium.ateneo.edu%2Fgsb-pubs%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=archium.ateneo.edu%2Fgsb-pubs%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:oadrcw.ls@ateneo.edu


Received: 13 November 2022 Revised: 6 January 2023 Accepted: 27 January 2023 IET Renewable Power Generation

DOI: 10.1049/rpg2.12693

ORIGINAL RESEARCH

A data-driven scheduling approach for integrated

electricity-hydrogen system based on improved DDPG

Yaping Zhao1 Jingsi Huang2 Endong Xu1 Jianxiao Wang3 Xiaoyun Xu4

1Department of Transportation Economics and
Logistics Management, College of Economics,
Shenzhen University, Shenzhen, China

2Department of Industrial Engineering and
Management, College of Engineering, Peking
University, Beijing, China

3National Engineering Laboratory for Big Data
Analysis and Applications, Peking University,
Beijing, China

4Department of Operations and Information
Technology, Graduate School of Business, Ateneo
de Manila University, Quezon City, Metro Manila,
Philippines

Correspondence

Jingsi Huang, Department of Industrial Engineering
and Management, College of Engineering, Peking
University, Beijing, China.
Email: hjsvivian1990@163.com

Funding information

National Natural Science Foundation of China,
Grant/Award Number: 72001145; Ministry of
Education Program in Humanities and Social
Sciences, Grant/Award Number: 20YJC630226;
Natural Science Foundation of Guangdong
Province, Grant/Award Number:
2022A1515011235

Abstract

The involvement of hydrogen energy systems has been recognised as a promising way to
mitigate climate problems. As a kind of efficient multi-energy complementary system, the
hydropower-photovoltaic-hydrogen (HPH) system could be an ideal approach to combin-
ing hydrogen with an installed renewable energy system to improve the flexibility of energy
management and reduce power curtailment. However, the intra-day scheduling of HPH
system brings challenges due to the time-related nonlinear hydropower generation process,
the complex energy conversion process and the uncertain natural resource supply. Faced
with these challenges, an improved deep deterministic policy gradient (DDPG)-based data-
driven scheduling algorithm is proposed. In contrast to the prevalent DDPG, two sets of
actor-critic networks are properly designed based on prior knowledge-based deep neural
networks for the considered complex uncertain system to search for near-optimal poli-
cies and approximate actor-value functions. In addition, customized reward functions are
proposed with the consideration of interactions among different energy supplies, which
helps to improve convergence speed and stability. Finally, the case study results demon-
strate that the proposed system model and the optimal energy management strategy based
on the improved DDPG algorithm can guide the electricity-hydrogen system to achieve
rapid response and more reasonable energy management.

1 INTRODUCTION

1.1 Background and literature review

The depletion of traditional fossil energy and the increasingly
prominent environmental problems perplex countries world-
wide and restrict the further development of human society.
Faced with this challenge, promoting energy transformation
and consumption revolution by building green, low-carbon, reli-
able and clean energy systems with renewable energy as the
main body is the strategic choice of China and most countries
around the world. According to the data from International
Energy Agency, in 2019, the global newly-installed generation
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capacity of renewable energy power was 190.9 GW, of which
China’s newly-installed capacity was 65.4 GW, accounting for
34.3% of the global new capacity [1]. By the end of 2019,
the installed capacity of renewable energy power generation in
China has reached 794 GW, accounting for 39.5% of the total
installed capacity, including 356 GW of hydropower, 210 GW of
wind power, and 204 GW of photovoltaic power. On the other
hand, the annual electricity curtailment of hydropower, wind
power, and photovoltaic is 30.0 TWh, 16.9 TWh, and 4.6 TWh,
respectively [2], which highlights the problem of renewable
energy curtailment.

With the development of non-polluting electrolysis tech-
nologies, hydrogen plays a vital role in environment protection
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2 ZHAO ET AL.

and industry application [3]. As a flexible and environmen-
tally friendly energy storage medium, hydrogen has the ability
to achieve both short- and long-term energy storage, which
can be used to compensate for the gap between energy sup-
ply and consumption [4] and decrease power curtailment. Given
its high energy density (2.5-3 times more than natural gas in
the same weight), hydrogen is regarded as one of the most
efficient fuels [5]. Hydrogen energy is widely used in tradi-
tional industries such as oil refining and iron smelting. Besides,
in the field of new energy vehicles, hydrogen energy has also
become one of the most promising power fuels [6]. Electrolyz-
ing water to produce hydrogen using electricity resources at
valley prices can effectively reduce the production cost of hydro-
gen energy and thus become one of the production methods
for the sustainable application of hydrogen energy. Therefore,
it is necessary to combine a hydrogen energy system with the
installed renewable energy system to improve the flexibility of
energy management and promote energy utilization efficiency
and system sustainability.

This paper considers an integrated hydropower-photovoltaic-
hydrogen (HPH) system, and focuses on its real-time scheduling
strategy. Abundant achievements have been accumulated in
hydro-photovoltaic (PV) complementary systems to determine
the optimal scheduling. In a recently published review article,
In [7], the theory and optimal scheduling results of hydro-PV
complementary systems are briefly analyzed. Given uncertain-
ties in renewable energy systems, especially wind power and
PV power, the study of [8] divides the scheduling methods into
three levels, namely prediction, day-ahead scheduling, and real-
time scheduling. However, most studies only focus on the first
two levels. For example, the long-term and short-term schedul-
ing strategies are considered simultaneously by [9] to decide
the optimal PV plant size. A general principle for short-term
scheduling of the hydro-PV complementary system is pro-
posed in [10]. The authors of [11] construct a multi-objective
optimization operation strategy for long-term hydro-PV sys-
tems. A three-layer nested framework is developed by [12] to
solve the generation planning problem of cascade hydropower
and PV systems considering the uncertainty from PV
generation.

Given the superior capability of hydrogen in energy storage
and conversion, extensive researches have been conducted on
the optimal energy operation of integrated hydrogen energy sys-
tems. Among the day-ahead operation researches, the authors
of [13] develop a multi-objective optimal operation model of
a combined cascade hydropower and hydrogen system. To
solve the model efficiently, an E-POA based algorithm is
adopted. The research of [14] studies the optimal capacity pro-
gramming and rule-based operation strategy of a combined
PV-hydrogen system. Genetic Algorithm is adopted to optimize
the storage component capacities and the operation parameters
simultaneously. In [15], a ten-day forecasting model is com-
bined with the operation model of cascade hydropower stations
considering electrolyzer and hydrogen storage tank. Although
there are some studies in the day-ahead optimal operation of
hydropower/PV combined hydrogen system, few study real-
time optimal operation of integrated hydrogen energy systems.

For real-time operation researches, model predictive control
(MPC) based optimal scheduling method is considered. A bi-
level MPC method of real-time optimal operation is proposed
in [16] for a renewable hydrogen based microgrid. With their
strategy, the system operational cost is reduced. MPC is also
adopted by [17] to improve the effect of real-time operation
with system uncertainties. Although the above researches can
help to guide the modeling and scheduling of HPH systems
from different angles, there are few studies based on data-
driven real-time scheduling methods which are more realistic
but more challenging.

As a kind of data-driven method, deep reinforcement learn-
ing (RL) algorithms relax the strict requirement on system
dynamics needed by modeling optimization methods. This
implies that RL algorithms possess obvious advantages with
regard to adaptability, high encapsulation, and time-scale flex-
ibility [18]. According to the review of [19], RL algorithms
are widely adopted in load and new energy generation pre-
diction, power market transaction decision, and load side
demand response problems. Based on the updating character-
istics, RL algorithms can be divided into value function-based
RL algorithm, strategy-based RL algorithm and Actor-Critic
(AC) algorithm. AC algorithm combines the advantages of value
function-based RL algorithms and strategy-based RL algo-
rithms. It uses two neural networks, namely actor network and
critical network, to make up for the disadvantages that value
function-based RL algorithm cannot deal with large or con-
tinuous action space and that strategy-based RL algorithm is
difficult to converge [20]. Based on the framework of AC, Deep
Deterministic Policy Gradient (DDPG) algorithm is proposed
to further recover the complexity of model construction and the
difficulty of algorithm convergence [20]. In recent researches
of multi-energy system scheduling, a three-layer nested frame-
work is proposed by [21] to maximize total energy production
for a large hydro–photovoltaic power plant. An economical
optimisation problem is explored by [22] via a CDLR-DDPG
algorithm for a combined wind power and natural-gas sys-
tem. Voltage deviation of a pumped storage hydro-wind-solar
system is minimized by [23] via the DDPG algorithm. The
authors of [24] use the DDPG framework to determine
self-adaptive control strategies for a hybrid energy system
with solid oxide fuel cells. The optimal operation strategy is
explored by [4] for underground space based integrated hydro-
gen energy systems using DDPG. In [25], the CPO algorithm
is used to study the optimal scheduling of microgrids. Policy
updates are constrained by Kullback-Leibler (KL) divergence
but suffer from disadvantages such as excessive computational
effort and long training time. Therefore, it is not suitable for
practical engineering. Additionally, a common problem with
existing research is the over-reliance on reward functions for
unconstrained exploration, which can easily lead to schedul-
ing decisions that violate the system’s operational feasibility
[26].

At present, the optimal scheduling of integrated HPH sys-
tems has the following problems to be further solved: The
real-time scheduling of HPH systems is seldom studied due
to the time-related non-linear even non-convex hydropower
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ZHAO ET AL. 3

generation functions, the complex multi-energy conversion pro-
cess, and the dynamic resource supply from the environment.
In addition, the intra-day optimal scheduling usually requires
fast and efficient optimization methods, which further increases
the complexity and difficulty of the problem. Compared with
the disadvantages of the existing studies, this paper formu-
lates the real-time scheduling problem of a HPH system under
a data-driven RL framework. By making full use of historical
data, this framework relaxes the strict requirement on system
dynamics needed by traditional optimization methods. That
is, it is able to learn the dynamics by itself. In addition, the
availability of more and more current data enables the pro-
posed data-driven framework to adaptively learn and optimize
the complex stochastic problem. This implies that the frame-
work is robust to system changes. To improve the convergence
speed and stability of the prevalent DDPG algorithm, the
properly designed actor-critic networks and the customized
reward functions are proposed with the consideration of system
dynamics.

1.2 Contribution

Through the review and discussion of the above studies,
the main contributions of this paper can be summarized as
following:

1. An integrated hydropower-photovoltaic-hydrogen system is
developed to maximize system revenues from the cooper-
ation of various natural resources. It properly involves in
the practical physical constraints including hydrogen and
hydropower production as well as the conversion among var-
ious forms of energy. Such a system is helpful for not only
the increase in revenue, but also the improvement of sustain-
able development by virtue of resource complementarity. As
shown by the case study of the Longyangxia hydro-PV plant,
after optimization, daily revenue of the system increases by
1000000 RMB and power adoption rate increases by 5% to
8%.

2. An improved DDPG real-time scheduling algorithm is
developed for the targeted system. Given the complexi-
ties incurred by real-time optimization, mutually coupled
non-linear energy conversion and uncertain natural resource
supply, it is challenging to make adaptive and stable poli-
cies. This study specifically designs value functions and deep
neural networks. Rather than hand-tune control policies,
the networks can flexibly generalize to different conditions
with the help of data. Besides, considering the instability
in decision-making caused by the influences of uncertain
external factors, the reward function of the Markov decision
process is customized based on the operations of the system.
It is jeopardized by the penalty functions so that the policy
update is always kept within a controllable range. This con-
tributes to the improvement in convergence and stability of
the proposed method.

3. After the training phase of the proposed algorithm is
finished offline, the system is capable of making online deci-

FIGURE 1 Typical system structure schematic of the integrated system.

sions, while interacting with the environment, to manage
real-time changes. By applying the proposed algorithm, the
negative effect of uncertainties can be curtailed and managed
by practitioners. The extensive comparison experiments with
other popular algorithms show that the improved DDPG
algorithm is capable of making full use of historical data to
yield effective and adaptive policies to maximize the revenue
of the targeted system.

The rest of the paper is organized as follows: Section 2 intro-
duces the system structure and the model; Section 3 describes
the proposed improved DDPG algorithm; Section 4 con-
ducts an empirical study using history data of the Longyangxia
hydro-PV plant to demonstrate the effectiveness of the pro-
posed algorithm; Section 5 summarizes and prospects this
study.

2 PROBLEM DESCRIPTION

2.1 Brief of the integrated HPH system

The targeted integrated HPH system is illustrated in Figure 1. It
mainly consists of a hydropower system, electric-hydrogen con-
version devices (electrolyzers and hydrogen fuel cells), hydrogen
energy storage tanks, photovoltaic devices, and a distribution
network. The integrated system supplies power and hydrogen
through renewable energy generation, various energy conver-
sions, and flexible energy storage. Hydropower-PV generation is
the main energy resource, while the hydrogen fuel cells (HFC)
serve as supplementaries. Besides, due to the uncertainty and
fluctuation in nature as well as demand, hydrogen storage is
adopted to achieve better utilization of natural resources and
match demand and supply.

Figure 2 displays the modelling framework which mainly
consists of three parts, namely objective functions, decision
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4 ZHAO ET AL.

FIGURE 2 Model framework of the considered problem.

variables and constraints. The numbers after the respective
objectives and constraints corresponding to the equa-
tions described in the following subsections. The optimization
objective concerns the maximization of system economic
benefit which is subjected to the benefits from on-grid power
and hydrogen sales. To effectively operate hydropower, PV-
power, and hydrogen, in each period t , one needs to decide the
variables including the power generation flow Qt , the power
that is used to produce hydrogen PH2t , the amount of sold
hydrogen Hsale,t , and the amount of hydrogen used to generate
power H ft .

2.2 Objective function

The goal of the integrated system is to optimize the
total system benefit. This mainly origins from two parts.
One is the revenue from the sold on-grid electricity,
denoted as Fw . The other comes from the sold hydrogen,
denoted as Fh. The total revenue F can be expressed as
follows:

Maximize F = Fw + Fh, (1)

Fw =

T∑
t=1

(pwt ⋅ Pwt ⋅ Δt ), (2)

Fh =

T∑
t=1

(ph ⋅ Hsale,t ). (3)

Here, for each period t , Pwt is the on-grid power, pwt is
the real-time on-grid power price, Hsale,t is the volume of
the sold hydrogen and ph is the unit price of the sold
hydrogen.

2.3 Constraints

2.3.1 Water balance constraint

The reservoir needs to satisfy the following balance equation:

Vt+1 = Vt + It − Qt ⋅ Δt − Pct . (4)

Here, Vt represents the initial storage capacities of the reservoir
in period t (or the final volume at the end of period t − 1). In
period t , It is the natural inflow, Qt is the water flow to generate
hydropower and Pct is the water curtailment volume.

2.3.2 Water storage capacity constraint

Considering the issues like safety and sustainability, the amount
of water stored in the reservoir for each period should be within
a pre-specified range.

V min
≤ Vt ≤ V max , (5)

where V min and V max represent the minimum and the
maximum capacity, respectively.

2.3.3 Relationship between hydropower and
generation flow

Reservoirs are helpful to reduce spatial and temporal imbalances
of runoff so as to meet direct and indirect needs better. Partic-
ularly, hydropower can be generated by converting mechanical
energy from water flow to electric energy. This mechanism
can be described via a function among generation water flow
rate, and net water head and output coefficient of the working
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ZHAO ET AL. 5

hydropower station [27], as shown below:

PHt = 𝜂t ⋅ Qt ⋅ Ht ⋅, (6)

where Qt is the flow rate to generate hydropower. 𝜂t and Ht

represent the output coefficient and the net water head of the
considered hydropower station, respectively. Net water head is
the difference between water level Lt

up and tail water elevation
Lt

down
, that is,

Ht = Lt
up − Lt

down
. (7)

2.3.4 Relationship between water storage and
water level/tail water elevation

Nonlinear functions f (x ) can be used to depict the relationship
between water storage of the reservoir Vt and water level Lt

up

which is closely related to the characteristics of the reservoir.
This can be conducted with the help of historical data.

Vt = f (Lt
up) ∪ Lt

up = f −1(Vt ). (8)

Similarly, tail water elevation Lt
down

can be calculated based on
discharge-elevation curve specified by nonlinear function g(x ).

Qt = g(Lt
down

) ∪ Lt
down

= g−1(Qt ). (9)

2.3.5 Generation flow constraint

Given the operating mechanism of the reservoir, the generation
flow should be within its lower and upper capacity limits.

Qmin
≤ Qt ≤ Qmax , (10)

where Qmin and Qmax are the lower and the upper water
generating flow limit, respectively.

2.3.6 Power-to-hydrogen constraint

As stated in [28], Faraday’s law manifests that the chemical
conversion relationship between the used electricity and the
generated hydrogen in an electrolyzer cell can be expressed as
follows.

Hpt = 𝜂e

PH2,t

Pmax
H2

CelΔt , (11)

where Hpt is the amount of hydrogen generated during period t ,
and it is proportionally related to the conversion rate 𝜂e , the used
hydropower PH2,t

, and the capacity of the electrolyzer Cel . Pmax
H2

is the upper value of the used hydropower. The thermodynamic
formula suggests that Cel ∕Pmax

H2
= 6.6 [29].

Besides, the amount of hydropower used to generate
hydrogen should be within a range as follows:

0 ≤ PH2,t
≤ Pmax

H2
, (12)

where Pmax
H2

is the upper bound of hydrogen production power.

2.3.7 Hydrogen-to-power constraint

The amount of power that is generated from hydrogen by
hydrogen fuel cells Pft can be obtained via the following
equation [30]:

Pft = 𝜂 f H ft∕Δt . (13)

Here, 𝜂 f represents the inversion rate, and H ft is the hydrogen
amount invested to produce electricity. The converted electricity
is confined by the capacity of the hydrogen fuel cells and the
stored hydrogen in the tanks, that is,

0 ≤ Pft ≤ C f , (14)

0 ≤ H ft ≤ Hs,t−1, (15)

where C f is the limit of the hydrogen fuel cells, and Hs,t−1 is the
stored hydrogen at the end of period t − 1.

2.3.8 Hydrogen balance constraint

For the hydrogen in the considered integrated system, the
following balance equation holds:

Hs,t−1 + Hpt = Hs,t + Hsale,t + H ft . (16)

This balance equation suggests that the total hydrogen comes
from two sources, namely the stored volume Hs,t−1 at the end of
period t − 1 and the produced volume from hydropower Hpt in
period t . They can be used to generate power H ft or sold Hsale,t

in period t . Then the leftover can be stored Hs,t . In addition, the
capacity of storage tanks is limited by Ch, and the sold volume
is constrained by the available amount.

0 ≤ Hst ≤ Ch, (17)

0 ≤ Hsale,t ≤ Hs,t−1 + Hpt . (18)

2.3.9 PV power generation

The uncertain PV power can be described by adding errors to
the forecasts of its output.

PPV ,t = PFt + e, (19)

where PFt is the forecast of photovoltaic power in period t ,
and e represents its forecast error. It is widely recognized that
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6 ZHAO ET AL.

forecast errors of an uncertain parameter can be characterized
via normal distributions [31–33], that is,

e ∼ N (𝜇, 𝜎2). (20)

Here, 𝜇 and 𝜎 represent the mean and the standard deviation of
the forecast error, respectively. Studies on the forecast of day-
ahead PV power [34, 35] suggest that 𝜎 usually ranges from
7.0% to 13.7% of the PV installed capacity.

2.3.10 Power balance constraint

In each period t , the amount of electricity generated should
equal the amount of electricity consumed. This implies that the
following dynamic power balance equation exists:

PHt + PPV ,t + Pft = PLt + PH2,t
+ Pwt . (21)

This equation suggests that available electricity comes from
hydropower PHt , photovoltaic power PPV ,t and hydrogen-
converted power Pft . These power will be used to meet local
load PLt , produce hydrogen PH2,t

or sell to markets Pwt .

2.3.11 On-grid power capacity constraint

The capacity of the on-grid power in the distribution network is
limited.

−Pmax
wt ≤ Pmax

wt ≤ Pmax
wt , (22)

where Pmax
wt is the maximum allowable capacity of on-grid power

in period t .

2.4 Markov decision process model of the
integrated system

In the considered integrated system, the entire operation pro-
cess is discretely partitioned in time. Besides, the storage states
of hydrogen tank and reservoir water at the next time slot
depend only on the storage states and decisions made at the cur-
rent time slot. This suggests that the targeted problem can be
transformed into a finite stochastic dynamic decision process,
which is then modeled as a Markov decision process (MDP).

MDP is commonly used to describe reinforcement learn-
ing methods, and it can be characterized by a five-tuple as
(S ,A, f ,R, 𝛾). Here, S represents the set of possible states, and
A denotes the set of actions that can be chosen from. f is
the transition probability function, that is, st+1 ∼ f (st , at ) rep-
resents the probability to reach state st+1 when action at is taken
at state st . R represents the instantaneous reward function, and
𝛾 ∈ [0, 1] is the discount factor of the accumulated reward and
it reflects the damping effect of future reward. For the con-
sidered system in this paper, it interacts intermittently with the
environment in all decision stages, and then dynamically makes
decisions regarding hydropower and hydrogen. In each period

t , the integrated system senses the environment state variable st ,
and takes action at in response to the interaction state variable
st based on the policy 𝜋(at |st ). At this time, the whole system
reaches a new state st+1 according to the transition probability
function f (st , at ), and generates a reward of rt as a feedback
of the decision. The MDP of the targeted problem is defined
as follows.

2.4.1 State

Local and global information of the integrated system is cru-
cial for decision-making, and can be described by defining state
variable st in period t . Generally speaking, it should be capable
of reflecting the major characteristics of the system, and track-
ing the variation of its status. Besides, the definition needs to be
concise to make the learning more efficient.

In the integrated system, state st includes period index t ,
reservoir water storage Vt , hydrogen storage Hst , natural inflow
of the reservoir It , local load PLt , PV-power PPV ,t , and on-grid
electricity price pwt . They drive the optimization of related deci-
sions on actions when changes happen to the environment of
the integrated system.

Therefore, the entire state at period t can be formulated as

st = [t ,Vt ,Hs,t−1, It , PLt , PPV ,t , pwt ]. (23)

2.4.2 Action

Actions are decisions made in each period. Through the opti-
mization of a series of actions, the integrated system is possible
to achieve optimal operation regarding the objective in Sec-
tion 2.2 under specified physical constraints. The action space
in this study can be expressed as

at = [Qt , PH2,t
,Hsale,t H ft ]. (24)

These actions are related to the regulation of water and
hydrogen in each period t .

A policy 𝜋 ∶ S ⟶ A denotes the mapping from each state
to a specific action. This suggests that under policy 𝜋, action
at is taken at state st and sequentially moves to state st+1 with
instantaneous reward rt as a result.

2.4.3 Reward

Reward function R is used as a feedback to evaluate the quality
of the applied policy at each step. Its design is key to the speed
and the optimality of the overall policies. Since the goal of the
considered system is to achieve the maximum total revenue, a
natural idea is to refer to Equations (1)–(3), the objective func-
tions, as the reward. Further more, since the revenue is obtained
mainly through the balance between water storage and hydro-
gen storage, it is crucial to ensure these two storages meet their
physical requirements. This, however, is significantly challenging
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ZHAO ET AL. 7

to achieve due to the uncertainties involved in the integrated
system and the coupling relationships of periods.

Given the above considerations, the reward of the MDP con-
sists of two parts. One is the revenue that results from the
objective function in Section 2.2, while the other is storage
penalties derived from the constraints in Section 2.3. This leads
to the following reward function.

rt = pw,t ⋅ Pw,t ⋅ Δt + ph ⋅ Hsale,t − 𝜆w ⋅ Penwt − 𝜆h ⋅ Penht . (25)

Here, Penwt and Penet are the penalties resulted from water
storage and hydrogen storage, respectively. Given their require-
ments on capacities, the penalties are defined as follows.

Penwt = |max{Vt ,Vmax} + min{Vt ,Vmin} −Vmax −Vmin|,
(26)

Penet = |max{Hst ,Ch} + min{Hst , 0} −Ch|, (27)

where 𝜆w and 𝜆h are penalty coefficients.
Considering the discount factor 𝛾 of future rewards, the accu-

mulated reward Rt from period t to the terminated period T can
be expressed as

Rt =

T∑
i=t

𝛾i−t ri . (28)

Given the uncertainties in the environment as well as deci-
sions, the total reward under a specific policy 𝜋 is defined as the
action-value function Q𝜋 (st , at ).

Q𝜋 (st , at ) = E [Rt |st , at , 𝜋]. (29)

The optimal policy 𝜋∗ leads to the largest reward feedback
Q∗(st , at ), namely the optimal action-value function. Q(st , at )
conforms to the following Bellman equation.

Q𝜋 (st , at ) = Ert ,st+1∼S [rt |st , at + 𝛾Eat+1∼𝜋
[Q𝜋 (st+1, at+1)]].

2.4.4 Transition probability function

System state transition probability function f is crucial for the
deduction of Q∗(st , at ). However, due to the complex coupling
relationships and uncertainties among and in various resources,
it is challenging to explicitly express f . To overcome this
challenge, DDPG method is adopted in this study.

DDPG is a model-free actor-critic reinforcement learning
algorithm. It takes advantage of deterministic policy gradient
and neural network function approximation. By approximately
representing the action-value function and the policy via
properly designed neural networks, this algorithm is able to
reduce the overhead of calculation and the difficulty in system
dynamic modeling.

FIGURE 3 Neutral network structure of (targeted) actor network.

3 IMPROVED DDPG DATA-DRIVEN
OPTIMIZATION ALGORITHM

For the problem described in Section 2, an improved DDPG
optimization algorithm is proposed in this section. DDPG
is a data-driven optimisation method under the actor-critic
mechanisms. It can update and optimise both the action-
value functions and the policy functions based on deterministic
policy gradients and deep function approximators in high-
dimensional, continuous action space. This enables DDPG
to deal with complex optimization problems with continuous
nonlinear decision variables.

To be specific, there are four neural networks existing in
the proposed improved DDPG data-driven optimization algo-
rithm: an actor network denoted by 𝜇 with parameters 𝜃𝜇, a
critic network denoted by Q with parameters 𝜃Q , and their
corresponding target networks denoted by 𝜇′ and Q′ (with
parameters 𝜃𝜇

′
and 𝜃Q′

, respectively). Actor networks map
states to actions to take, while critic networks yield value esti-
mates of the actions. The actor network is used to select the
preferable action at = 𝜇(st |𝜃Q ) given a specific state. The critic
network is used to evaluate the performance of the action
yielded by the actor network, namely, Q(st , at |𝜃Q ). The tar-
get networks 𝜇′ and Q′ leverage time-delayed updates, and
slowly track the learned networks 𝜇 and Q. Neural networks
are adopted as nonlinear function approximators to adaptively
learn policy functions and action-value functions. Figures 3 and
4 schematically illustrate the neural network structures of the
(targeted) actor and the (targeted) critic.

The actor-critic (AC) network architecture diagram applied in
this paper is further depicted in Figure 5. Given the considera-
tion of exploration, a noise Nt obtained from a certain noise
process is added to the actor neural network as well as the critic
neural network. For the actor neural network, the connection
layer makes st and Nt unified into one, and then go through
three fully connection layers. The first two activation functions
are leakRelu, and the last one is Sigmoid which finally leads to
at . For the critic neural network, the connection layer unifies
st , Nt and at . Then they are fully connected twice by activation
functions leakRelu, and once with no activation functions. This
finally leads to Q(st , at ).

The reduction in updating frequency is helpful to make the
learning process more stable. In addition, to address the issue
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8 ZHAO ET AL.

FIGURE 4 Neutral network structure of (targeted) critic network.

FIGURE 5 AC network architecture diagram.

that samples may not be independent identically distributed,
memory replay mechanism is applied. That is, when updating
the networks, a minibatch of N transitions are sampled ran-
domly from the replay buffer, (si

t , a
i
t , r

i
t , s

i
t+1), i = 1, 2, … ,N .

The loss function demonstrated below is then minimized to
update the critic network.

L =
1
N

∑
i

(
r i
t + 𝛾Q′

(
si
t+1, 𝜇

′
(
si
t+1|𝜃𝜇′) |𝜃Q′)

− Q
(
si
t , a

i
t |𝜃Q

)2

(30)

where 𝛾 is the discounting factor.
Similarly, the actor network is updated by maximising the

accumulation reward J (𝜃𝜇 ) using sampled policy gradient.

Δ𝜃𝜇 J =
1
N

∑
i

ΔaQ(s, a|𝜃Q )|s=si
t ,a=𝜇(si

t )Δ𝜃𝜇𝜇(s|𝜃𝜇 )|si
t (31)

Based on Equations (30) and (31), the networks of (Q, 𝜇) can
be updated. Given these results, the target networks (Q′, 𝜇′ ) is
softly updated, that is, they are updated slowly with the track-
ing on the learned networks (Q, 𝜇) via the following weighted
forms.

𝜃Q′
← 𝜏𝜃Q + (1 − 𝜏)𝜃Q′

, (32)

𝜃𝜇
′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′
, (33)

where 𝜏 is the updating smoothing coefficient.
Through iterative learning, the (near) optimal policy for the

considered integrated system can be obtained. The detailed
flowchart of the proposed algorithm is illustrated by Figure 6.
In contrast to the prevalent DDPG, we for the first time design
a customized prior knowledge-based deep neural networks for
the complex uncertain energy system. In addition, the elab-
orately designed reward function can help the algorithm to
converge to the (near) optimal policy.

4 CASE STUDY

4.1 Case description

Located in Qinghai province of north-west China, Longyangxia
hydropower station takes the role of a leading reservoir of the
upstream-Yellow River. It is a 1280 MW hydropower peaking
station with four 320 MW turbines. Beside, the intensive solar
radiation and long lighting time of Qinghai unable Longyangxia-
PV plant to be one of the largest hydro-PV plant in the world.
This PV system is connected directly to the hydropower station,
and has a capacity of 320 MW, as shown in Figure 7.

With the help of historical data of Longyangxia hydro-PV sta-
tion, daily natural inflow, daily PV power and daily local load in
April 2014 are collected and used in the following study. This
is because pre-statistical analysis indicates that the runoff and
PV-power of 2014 is typical. In addition, although the flood
season brings higher reservoir inflow, the analysis indicates that
there is not a significant difference. Therefore, we choose a typ-
ical day in April, and reduce the case study scenarios into high
and low solar intensities for the consideration of conciseness.
Related parameters are listed in Table 1.

According to the consumption characteristics of electricity,
one day of 24 h is divided into 3 kinds of period (i.e. peak period,
normal period, and valley period). The time-of-use electricity
price is used to regulate electricity consumption. Detailed price
information is shown in Table 2. In addition, it is assumed that
hydrogen sales price is 3.3 RMB/m3, and this equals the sales
price of industrial hydrogen [36].
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ZHAO ET AL. 9

FIGURE 6 Flowchart of the proposed algorithm.

FIGURE 7 Layout of Longyangxia hydro-PV plant.

TABLE 1 Basic parameter of HPH system.

Objective Parameter Value

Hydropower Hydropower output coefficient 𝜂t 85%

Reservoir lower bound Vmin 5.34×109 m3

Reservoir upper bound Vmax 2.47×1010 m3

Flow lower bound Qmin 50 m3/s

Flow upper bound Qmax 292 m3/s

Hydrogen Power-hydrogen coefficient 𝜂e 80%

Hydrogen-power coefficient 𝜂 f 60%

Hydrogen production volume Pmax
H2

200 MW

The capacity of HFC C f 100 MW

Hydrogen tank capacity Ch 5 ∗ 105 m3

TABLE 2 Adopted time-of-use electricity price.

Peak Normal Vallay

Time 9:00-12:00 13:00-17:00 1:00-8:00

18:00-23:00 24:00

Price(RMB/kWh) 0.89 0.58 0.21

TABLE 3 Key parameter of the proposed DDPG.

Parameter Value

Smoothing coefficient 𝜏 0.005

Discount factor 𝛾 0.99

Replay buffer capacity 1 ∗ 105

Minibatch size N 100

Exploration noise variance 0.10

4.2 Tested algorithm introduction

The neural networks of the (target) actor and critic of the pro-
posed algorithm are designed with two hidden layers, and they
has 350 and 300 neurons, respectively. Other key hyperparame-
ters are shown in Table 3. Given the novelty of the considered
problem, there is no existing baseline algorithms for compari-
son purposes to the knowledge of the authors. To validate the
effectiveness of the proposed algorithm, an myopic algorithm
(Myo) and a model predictive control (MPC) approach are intro-
duced and compared. Instead of mining all the historical data
when making decisions as in the proposed algorithm, theses two
algorithms only use a part of the data to optimize the system.

To be specific, Myo is very short-sighted, and it makes deci-
sions based only on the present system states and information,
and considers the benefit of only the present period. That is,
in each period t , this algorithm minimizes the economic bene-
fit of the system, pwt ⋅ Pwt ⋅ Δt + ph ⋅ Hsale,t , in this period. The
optimization is subject to the constraints in Section 2.3 given the
state of the system Vt ,Hs,t−1, and the information It , PLt , PPV ,t .
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10 ZHAO ET AL.

MPC is a well-established technique for controlling and opti-
mizing multi-variable systems. It can effectively deal with con-
straints on manipulated variables and outputs. Given a long his-
tory of success in the process industries, in recent years, this kind
of algorithm is also rapidly expanding in energy management
problems [16, 17]. Different from Myo, MPC utilizes the most
recent data to predict future unknown information, and then
optimizes the system considering the subsequent performance.
It contains the basic components of prediction, optimization
and receding horizon implementation. That is, in each period
t , it optimizes the economic benefit of several further periods

(5 periods in this case study),
∑t+4

t ′=t
(pwt ′ ⋅ Pwt ′ ⋅ Δt +

ph ⋅ Hsale,t ′ ) where the required further information
It ′ , PLt ′ , PPV ,t ′ , t

′ = t + 1, … , t + 4 is predicted by the average
of the k most recent data. To evaluate the effect of information
utilization degree, a series of k = 1, 5, 10 are examined. Then
the policy regarding period t is applied to the system, leading
to new system states. The process is repeated until the terminal
condition is met.

4.3 Scheduling result and discussion

Section 4.3.1 analyzes the convergence and relative perfor-
mances of the proposed algorithm first. Then, for instances
coupled and uncoupled with hydrogen systems, the outcomes
of intra-day real-time scheduling are further examined in Sec-
tion 4.3.2. In Section 4.3.3, to take into account the impact of
the uncertainties from input water, load demand and photo-
voltaic power, system operating results of the integrated HPH
system are described and analyzed.

4.3.1 Convergence analysis and algorithm
comparison

Since the setting of penalty parameters 𝜆w and 𝜆h in Equa-
tion (25) constitute the reward function and thus can impact
the convergence and performance of the proposed algorithm,
a series of experiments with different penalty parameters were
conducted first. The improved DDPG algorithm with a spe-
cific ratio of 𝜆w and 𝜆h was trained for 3000 episodes, and then
the algorithm was tested for 100,000 steps based on the envi-
ronment with the same local load, PV power and inflow water
under high solar intensity scenario. Besides, the performances
of the short-sighted Myo algorithm and a series of MPC algo-
rithms are summarized in Table 4. The comparative indicators
including system power generation, power adoption rate and
system revenue. Among the factors, the rate of power adoption
is calculated as:

Power adoption rate =

∑24
t=1(PLt + Pwt + PH2,t

)∑24
t=1(PHt + PPV ,t + Pft )

. (34)

Figure 8 shows the convergence curves obtained through
the proposed improved DDPG algorithm in solving the energy
scheduling optimization problem considering the uncertain-

ties of inflow water, load demand and PV power. In the
optimization process, after 1000 episodes, the system revenue
converges and the rewards are almost stable. Besides, the results

in Table 4 show that when
𝜆w

𝜆h

< 1, the system generation level

and power adoption level are higher. However, when
𝜆w

𝜆h

> 1,

in general, the system revenue tends to be larger. Consider-
ing both the power adoption rate and the system revenue,
the ratio of 𝜆w ∶ 𝜆h = 1.0 ∶ 0.9 is adopted is the following
experiments.

As for algorithm comparisons, the results in Table 4 show
that the proposed improved DDPG algorithm has the best
performance compared to the Myo and MPC algorithms. It
yields the most system revenue and the highest power adop-
tion rate. Combined with the results of system generation and
hydropower, this implies that the proposed algorithm is supe-
rior in resource utilization. The main reason is that the improved
DDPG algorithm is data-driven, and it fully uses the historical
data to implicitly model system dynamics (via the constructed
neutral networks) and learn the optimal decisions considering
the overall performance. On the contrary, Myo and MPC only
use the information in a relatively limited amount of data and
focus on the performance over a short period. Particularly, Myo
has the worst performance as it makes decisions only based
on the present information, and ignores the time series related
effects on the future. For MPC, when more information is con-
sidered via more data (increased k), the system performance
tends to be better. These evidences manifest the advantages of
the data-driven algorithm, that is, by making full use of historical
data and learning from past practices, it is possible to effectively
deal with the uncertainties in the complicated integrated system
and achieve sound performances.

4.3.2 System benefit comparison with and
without hydrogen devices

To verify the advantage of coupling hydrogen device access
to the system on reducing hydro-PV curtailment and increas-
ing system revenue, two cases are designed: Uncoupling the
hydrogen system, and coupling the hydrogen system.

(1) System daily scheduling when uncoupling a hydrogen sys-
tem

Here, we estimate the hydro-PV system’s power pro-
duction, power adoption rate, and revenue at its installed
capacity without using hydrogen devices.

(2) System daily scheduling when coupling a hydrogen sys-
tem. We assume that there are space to install electrolyzers,
HFCs and hydrogen storage tanks in this scenario. Table 1
specifies the corresponding parameters.

Table 5 provides the comparison results regarding power
generation, system revenue, and power curtailment under the
two cases. It can be observed that under the second case of cou-
pling a hydrogen system, the daily revenue rises by 1,000,000
RMB, and the power adoption rate increases by 5% to 8%.
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ZHAO ET AL. 11

TABLE 4 Results with different methods.

Method Parameter

System

generation

(MWh)

Hydropower

(MWh)

Power

adoption

rate

System

revenue

(RMB)

Improved
DDPG

𝜆w ∶ 𝜆h=1.0:1.2 14219 12047 0.371 6076924

𝜆w ∶ 𝜆h=1.0:1.1 14078 11906 0.368 6069084

𝜆w ∶ 𝜆h=1.0:1.0 14039 11867 0.366 6192985

𝜆w ∶ 𝜆h=1.0:0.9 13707 11534 0.357 6262954

𝜆w ∶ 𝜆h=1.0:0.8 13874 11702 0.361 6179911

Myo - 9711 7538 0.198 3285301

MPC k = 1 10200 8027 0.216 3822072

k = 5 11127 8954 0.233 3949811

k = 10 12231 10058 0.281 5319605

FIGURE 8 Convergence curves of proposed DDPG approach with different 𝜆h .

TABLE 5 Comparison results when coupling and uncoupling a hydrogen system.

Scenario

System

generation

(MWh)

PV generation

(MWh)

Hydropowerb

(MWh)

System

adoption

rate

System

revenue

(RMB)

Case 1 High solar intensity 11,179 2173 9006 0.28 5,039,121

Low solar intensity 11,026 649 10,377 0.29 5,123,754

Case 2 High solar intensity 13,707 2173 11,534 0.35 6,262,954

Low solar intensity 13,499 649 12,750 0.34 6,301,092

The experiment results implies that the coupling of hydrogen
devices can effectively increase the adoption of power and fur-
ther improve the system revenue. In addition, with the use
of hydrogen devices, the generation capacity of the hydro-PV
system is also increased.

4.3.3 System scheduling results and
corresponding analysis

This section, the optimal scheduling strategy and scheduling
results from the HPH system under the representative scenar-

ios of high solar intensity and low solar intensity are described.
Figures 9 and 10 display the hydropower, PV power and
HFC output process when applying the proposed algorithm
under high solar intensity and low solar intensity scenarios,
respectively. The results show that the hydropower and hydro-
gen can be ideal compensations for photovoltaic power. In
addition, Table 5 demonstrates that by coupling a hydrogen sys-
tem, the energy adoption rate is increased both in both solar
intensity scenarios.

On-grid power and the power adopted though electrolyz-
ers under high solar intensity and low solar intensity scenarios
are shown in Figures 11 and 12, respectively. It is interesting
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12 ZHAO ET AL.

FIGURE 9 System power generation under high solar intensity scenario.

FIGURE 10 System power generation under low solar intensity scenario.

FIGURE 11 Power adoption under high solar intensity scenario.

FIGURE 12 Power adoption under low solar intensity scenario.

FIGURE 13 Hydrogen scheduling results under high solar intensity
scenario.

FIGURE 14 Hydrogen scheduling results under low solar intensity
scenario.

that (1) the electrolyzers adopt more power under low solar
intensity scenario compared with that under high solar intensity
scenario. (2) The on-grid power in high solar intensity scenario
is more than that in low intensity scenario. A possible reason is
that hydropower station increases the output of the turbine by
increasing the water discharge. In this process, to make full use
of the discharged water resources and hydropower resources,
the output level of the electrolyzers has been correspondingly
increased, and the on-grid power is reduced. In high solar inten-
sity scenario, to absorb the PV power, the hydropower station
plays a more important role in energy storage and auxiliary
output during the day-time. Therefore, the discharge flow is
reduced, which affects the output level of the electrolyzers and
thereby increases the on-grid power.

The hydrogen energy operation results from hydrogen sales,
HFC adoption, and hydrogen storage under high solar intensity
and low solar intensity scenarios are shown in Figures 13 and
14, respectively. As shown in the figures, the electrolyzers turn
electric power to hydrogen, and hydrogen sales especially during
valley time. The hydrogen fuel cells start-up in peak periods.
As a result, the hydrogen system uses hydro-photovoltaic
curtailment to produce hydrogen during the valley periods
and gain the benefits of peak-valley arbitrage. In addition,
through the comparison of scheduling results under the two
scenarios, it can be observed that since the output level of the
electrolyzers is higher under the low solar intensity scenario,
the amount of hydrogen sales also increases along with the rise
of hydropower generation. Besides, the revenue under the low
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ZHAO ET AL. 13

solar intensity scenario is slightly higher than that under the
high solar intensity scenario.

In summary, hydrogen system is flexible and efficient. It does
not depend on terrain and environment. It can well assist hydro-
PV system to realize energy conversion and storage. Through
the coupling of hydrogen system, the power curtailment is
reduced with the increase of system revenue.

5 CONCLUSION

This paper proposes an improved DDPG algorithm for the
intra-day real-time scheduling of an integrated HPH system.
Uncertainties from inflow water, PV generation and load
demand are considered. The revenue of the system is opti-
mized via decisions on hydropower generation flow, power
used for hydrogen production, hydrogen sales amount and
hydrogen used to generate power. Based on the case study of
China’s Longyangxia hydro-PV power plant, the following main
conclusions can be made:

(1) The coupling of the hydrogen system can reduce power
curtailment of the original hydro-PV power plant along
with the increase in system revenue (by 5% to 8%) and
power adoption (by about 6%). In this respect, the hydro-
gen system can be applied as an ideal complementary of the
sustainable development of multi-energy systems.

(2) The improved DDPG algorithm that effectively optimizes
the system is data-driven to adaptively learn system dynam-
ics instead of requiring accurate models. In this way, the
historical data can be fully used to deal with the ’dimen-
sion disaster’ problem occurring in modeling, if possible,
the complex multi-energy system.

With the promotion and application of renewable energy
systems containing hydrogen energy in a wider range, man-
agers will make higher requests on the accuracy and speed of
optimization algorithms. There are still some issues that could
be addressed in the future work, and they are summarized
as follows: First, more detailed transformation mechanisms
between electricity and hydrogen could be involved, for exam-
ple, more power generation and energy storage technologies.
Second, more advanced data-driven algorithms for the electric-
hydrogen system including cascade hydropower stations should
be explored to solve the dimensional disaster problem in online
scheduling. Finally, other scheduling objectives such as carbon
emission level and system flexibility also deserve considerations.

NOMENCLATURE

Set

T set of decision time periods

Parameters

Δt period duration
𝜂e conversion efficiency of power-hydrogen

𝜂 f conversion efficiency of hydrogen-power
𝜂t output coefficient of hydropower station

Cel capacity of electrolyzer
C f maximum capacity of hydrogen fuel cells
Ch maximum capacity of hydrogen storage tank
It inflow water of reservoirs in period t

PL,t local load during period t

PPV ,t PV power generated in period t

Pmax
H2

maximum hydropower input
Pmax

w,t maximum on-grid power
ph unit sale price of hydrogen

pw ,t on-grid electricity price in period t

Qmax maximum power generation flow
Qmin minimum power generation flow

V max minimum water storage of reservoir
V min maximum water storage of reservoir

Variables

F economic benefit of the system
Fw income from the sale of on-grid electricity
Fh income from the sale of hydrogen

Ht net water head of hydropower station in period t

H ft volume of hydrogen inversed to power in period t

Hpt volume of hydrogen produced through electrolyzers
Hst volume of hydrogen storage at the end of period t

Hsale,t sales volume of hydrogen
Lt

up water level in period t
Lt

down
tailwater elevation in period t

Pft power generated from hydrogen fuel cells
Pct water curtailment of the reservoir in period t

PHt output hydropower during period t

PH2,t
power used for hydrogen production in period t

Pwt on-grid power during period t

Penwt penalty of water storage at the end of period t

Penet penalty of hydrogen storage at the end of period t

Qt power generation flow during period t

Vt water storage of the reservoir at the beginning of
period t
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