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THE RELAXED AREA OF S1-VALUED SINGULAR MAPS IN THE

STRICT BV -CONVERGENCE∗

Giovanni Bellettini1,2, Simone Carano3 and Riccardo Scala1,**

Abstract. Given a bounded open set Ω ⊂ R2, we study the relaxation of the nonparametric area
functional in the strict topology in BV (Ω;R2), and compute it for vortex-type maps, and more generally
for maps in W 1,1(Ω; S1) having a finite number of topological singularities. We also extend the analysis
to some specific piecewise constant maps in BV (Ω; S1), including the symmetric triple junction map.
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1. Introduction

Let Ω ⊂ R2 be a bounded open set and v = (v1, v2) : Ω→ R2 be a map of class C1(Ω;R2). The area functional
A(v; Ω) computes the 2-dimensional Hausdorff measure H2 of the graph

Gv := {(x, y) ∈ Ω× R2 : y = v(x)} (1.1)

of v, a Cartesian 2-manifold in Ω× R2 ⊂ R4, and is given by the classical formula

A(v; Ω) =

∫
Ω

√
1 + |∇v1|2 + |∇v2|2 + (det∇v)2dx, (1.2)

where

det∇v =
∂v1

∂x1

∂v2

∂x2
− ∂v1

∂x2

∂v2

∂x1
(1.3)

is the Jacobian determinant of v. Clearly, the integral in (1.2) is finite if v ∈W 1,1(Ω;R2) and det∇v ∈ L1(Ω).
As opposite to the case when the map is scalar-valued, the functional A(·; Ω) is not convex, but only polyconvex
in ∇v, and its growth is not linear, due to the presence of det(∇v).
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An interesting problem is to try to extend A(· ; Ω) out of C1(Ω;R2): setting for convenience

A(v; Ω) := +∞ ∀v ∈ L1(Ω;R2) \ C1(Ω;R2),

let us consider the sequential lower semicontinuous envelope

Aτ (u; Ω) := inf

{
lim inf
k→+∞

A(vk; Ω) : (vk) ⊂ C1(Ω;R2) ∩ S, vk
τ−→ u

}
∀u ∈ S (1.4)

of A(· ; Ω) with respect to a metrizable topology τ on a subspace S ⊆ L1(Ω;R2) containing those v ∈ C1(Ω;R2)
with A(v; Ω) < +∞, and choose this as the extended notion of area.

A typical choice is S = L1(Ω;R2) and τ the L1(Ω;R2) topology, i.e., Aτ = AL1 , a case in which little
is known1. It is not difficult to show that the domain of AL1 is properly contained in BV (Ω;R2), but its
characterization is not available. Also, one can prove that

AL1(u; Ω) ≥
∫

Ω

√
1 + |∇u|2dx+ |Dsu|(Ω), (1.5)

but the inequality might be strict [1, 7, 8]. Here ∇u is the approximate gradient of u, | · | is the Frobenius norm,
Dsu is the singular part of the distributional gradient Du of u, and |Dsu|(Ω) stands for the total variation of
Dsu. Finding the expression of AL1(· ; Ω) is possible, at the moment, only in very special cases. This is also due
to its nonlocal behaviour, since for several maps u, the set function U 7→ AL1(u;U) is not sub-additive with
respect to the open set U ⊆ Ω. This happens, for example, for the symmetric triple junction map uT on an open
disk B`, as conjectured in [11], and proven in [1]. A complete picture can be found in [6, 22], where AL1(uT ;B`)
is explicitely computed, taking advantage of the symmetry of the map and of B`. We refer also to [3] where an
upper bound inequality is proved for a triple junction map without symmetry assumptions.

Also for the vortex map uV : B` \ {0} → S1,

uV (x) :=
x

|x|
, (1.6)

the above mentioned nonsubadditivity holds. In [1] it is proved that

AL1(uV ;B`) =

∫
B`

√
1 + |∇uV |2dx+ π if ` is sufficiently large, (1.7)

while

AL1(uV ;B`) <

∫
B`

√
1 + |∇uV |2dx+ π if ` is sufficiently small. (1.8)

The explicit computation of AL1(uV ;B`) for small values of ` has been done in [4], again strongly exploiting
the symmetries, where it is shown that AL1(uV ;B`) is related to a Plateau-type problem in codimension 1,
whose solution is a sort of (half) catenoid constrained to contain a segment. This “catenoid” describes the
vertical part of a Cartesian current [13, 14] obtained as a limit of the graphs of a recovery sequence. Specifically,
the main result in [4] reads as

AL1(uV ;B`) =

∫
B`

√
1 + |∇uV |2dx+ inf Fϕ(h, ψ), (1.9)

1For scalar valued maps it is known that the domain of AL1 (·; Ω) is BV (Ω), and on BV (Ω) the relaxed functional can be
represented as the right-hand side of (1.5), see [10, 15].
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where the infimum is taken over all functions h ∈ C0([0, 2`]; [−1, 1]) with h(0) = h(2`) = 1, and ψ ∈ BV ((0, 2`)×
(−1, 1)) with ψ = 0 on UGh, and

Fϕ(h, ψ) =

∫
(0,2`)×(−1,1)

√
1 + |∇ψ|2 dtds+ |Dψ|((0, 2`)× (−1, 1))

+

∫
((0,2`)×{−1,1})∪({0,2`}×[−1,1])

|ψ − ϕ|dH1 − |UGh|,
(1.10)

where ϕ : R × [−1, 1] → R is ϕ(t, s) =
√

1− s2, and UGh is the region in [0, 2`] × [−1, 1] upon the graph of
h. The latter functional accounts for a Plateau problem in non-parametric form with partial free boundary on
a plane domain (see also [5] for more details). If ` is large enough, a minimizer of Fϕ has the shape of two
half-disks of radius 1, whose total area is π, recovering the result in (1.7).

The L1-topology is rather weak, and so it is convenient in order to show compactness results, in the effort of
proving existence of minimizers of some possible weak formulation of the two-codimensional Cartesian Plateau
problem. However, the above discussion illustrates the difficulties of the study of the corresponding relaxation
problem. Besides all nonlocality phenomena, the L1 convergence does not provide any control on the derivatives
of v and, of course, neither on the Jacobian determinant. The aim of the present paper is to study the relaxation
of the area in S = BV (Ω;R2) in a different topology, stronger than the L1-topology, in order to possibly avoid
nonlocality and keep some control of the gradient terms. Specifically, we will take as τ in (1.4) the topology
induced by the strict convergence in BV (Ω;R2). This notion of convergence, weaker than the strong W 1,1

topology, and in general not related with the weak W 1,1 topology (see Rem. 2.3), allows to consider relaxation
in (1.4) for all BV -maps. We recall that (vk) converges to u strictly BV (Ω;R2) if vk → u in L1(Ω;R2) and
|Dvk|(Ω) → |Du|(Ω) (see Sect. 2.1 for details). We are therefore led to consider, for all u ∈ BV (Ω;R2), the
corresponding relaxed area functional Aτ = ABV ,

ABV (u; Ω) := inf

{
lim inf
k→+∞

A(vk; Ω) : (vk) ⊂ C1(Ω;R2) ∩BV (Ω;R2), vk → u strictly BV (Ω;R2)

}
. (1.11)

In the first part of the paper we restrict our analysis to maps w : B` \ {0} → S1 = {x ∈ R2 : |x| = 1} of the form

w(x) = ϕ(uV (x)) = ϕ

(
x

|x|

)
, (1.12)

with ϕ : S1 → S1 Lipschitz continuous. The vortex map corresponds to the case ϕ = id.
After setting some notation and preliminaries in Section 2, in particular the total variation of the Jacobian,

the Jacobian distributional determinant Det∇u (Sect. 2.2), and the degree (Sect. 2.3), in Section 3 we prove
the following result:

Theorem 1.1. Let ` > 0, and w : B` \ {0} → S1 be as in (1.12). Then

ABV (w;B`) =

∫
B`

√
1 + |∇w|2dx+ π|deg(ϕ)|. (1.13)

In particular,

ABV (uV ;B`) =

∫
B`

√
1 + |∇uV |2dx+ π. (1.14)

By (1.7), for ` large enough we find ABV (uV ;B`) = AL1(uV ;B`) while by (1.8), for small values of ` we have
ABV (uV ;B`) > AL1(uV ;B`). We also remark that for any radius `, in the computation of ABV (uV ;B`), the
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minimal surface employed to fill the holes of the graph GuV ⊂ R4 of uV is a two dimensional disc living upon
the origin of R2.

In Section 4 we extend our analysis to a more general class of maps u ∈W 1,1(Ω;S1). To state our result, we
recall that when |Det∇u|(Ω) < +∞, then Det∇u can be written as

Det∇u = π

m∑
i=1

diδxi ,

where the points xi ∈ Ω are the topological singularities of u, around which the degree of u is nontrivial and
equals di ∈ Z \ {0} (see Thm. 2.12). We then prove the following:

Theorem 1.2. Let u ∈ W 1,1(Ω; S1). Suppose that Det∇u is a Radon measure with finite total variation
|Det∇u|(Ω). Then

ABV (u; Ω) =

∫
Ω

√
1 + |∇u|2dx+ |Det∇u|(Ω) =

∫
Ω

√
1 + |∇u|2dx+ π

N∑
i=1

|di|, (1.15)

where N ∈ N and d1, . . . , dN ∈ Z \ {0} are such that Det∇u = π
∑N
i=1 diδxi .

The total variation of Det∇u can be characterized by relaxation. More precisely, for maps v ∈W 1,2
loc (Ω;R2),

we introduce the functional TVJ(v; Ω) :=
∫

Ω
|det∇v|dx, measuring the total variation of the Jacobian of v, and

consider

TVJW 1,1(u; Ω) := inf

{
lim inf
k→+∞

TVJ(vk; Ω) : (vk) ⊂ C1(Ω;R2) ∩W 1,1(Ω;R2), vk → u in W 1,1(Ω;R2)

}
,

for all u ∈W 1,1(Ω;R2). It is known (see Thm. 2.12) that for u as in Theorem 1.2,

TVJW 1,1(u; Ω) = |Det∇u|(Ω).

In Theorem 4.3 we show that

TVJW 1,1(u; Ω) = TVJBV (u; Ω),

where

TVJBV (u; Ω) := inf

{
lim inf
k→+∞

TVJ(vk; Ω) : (vk) ⊂ C1(Ω;R2) ∩BV (Ω;R2), vk → u strictly BV (Ω;R2)

}
.

Eventually, in Section 5 we consider some piecewise constant maps valued in S1, in particular the symmetric
triple junction map (see Sect. 5 for the precise definition). If we call Tαβγ the equilateral triangle with vertices
α, β, γ ∈ S1 and L := |β − α| its side length, then we have:

Theorem 1.3. Let uT : B` := B`(0)→ {α, β, γ} be the symmetric triple-point map. Then

ABV (uT ;B`) = |B`|+ LH1(JuT ) + |Tαβγ |, (1.16)

where | · | is the Lebesgue measure and JuT is the jump set of uT .
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In particular, in view of the results in [1], [6], we find ABV (uT ;B`) > AL1(uT ;B`). We will also see that
the same argument used to prove Theorem 1.3 provides a proof also for a symmetric n-uple junction map, as
expressed in Corollary 5.3.

As opposite to AL1(u; Ω), we see that the functional ABV (u; Ω), at least for the maps u taking values in S1

considered here, is local, and admits an integral representation.
We conclude this introduction by pointing out that, at the present stage, we miss the generalization of our

results in higher dimension or codimension. On the one hand the strict convergence in BV provides some control
on the gradient of u, and consequently, on the distributional determinant. In the case of maps u : Ω ⊂ R3 → R3,
for instance, this notion of convergence might be useful to get some control of the 2 × 2-subdeterminants of
∇u, but seems too weak to control the higher order minor. On the other hand, even in the case of maps
u : Ω ⊂ R3 → R2, the strict convergence in BV is not sufficient to show the counterpart of Proposition 2.4
(see Rem. 2.5) which, in our arguments, is crucial to localize the concentrations of |det∇vk| (where (vk) is a
sequence of smooth maps converging to u).

2. Preliminaries

In this section we collect some preliminaries. For an integer M ≥ 2, set SM−1 := {x ∈ RM : |x| = 1}.

Theorem 2.1 (Reshetnyak). Let Ω ⊆ Rn be an open set and µh, µ be finite Radon measures valued in RM .

Suppose that µh
∗
⇀ µ and |µh|(Ω)→ |µ|(Ω). Then

lim
h→+∞

∫
Ω

f

(
x,

µh
|µh|

(x)

)
d|µh|(x) =

∫
Ω

f

(
x,

µ

|µ|
(x)

)
d|µ|(x)

for any continuous bounded function f : Ω× SM−1 → R.

Proof. See for instance ([2], Thm. 2.39).

2.1. Strict BV -convergence

In what follows, Ω ⊂ R2 is a bounded open set. For any u ∈ BV (Ω;R2), the distributional derivative Du is
a Radon measure valued in R2×2. The symbol |Du|(Ω) stands for the total variation of Du (see [2], Def. 3.4, p.
119 with | · | the Frobenius norm).

Definition 2.2 (Strict convergence). Let u ∈ BV (Ω;R2) and (uk) ⊂ BV (Ω;R2). We say that (uk) converges
to u strictly BV , if

uk
L1

−−→ u and |Duk|(Ω)→ |Du|(Ω).

The topology of the strict convergence in BV is metrized by the distance

(u, v)→ ‖u− v‖L1(Ω;R2) + ||Du|(Ω)− |Dv|(Ω)| , u, v ∈ BV (Ω;R2).

Remark 2.3 (Weak convergences and strict convergence). If uk → u strictly BV (Ω) then uk ⇀ u
w∗-BV (Ω), where uk ⇀ u w∗-BV (Ω) means:

uk
L1

−−→ u and

∫
Ω

ϕ ·Duk →
∫

Ω

ϕ ·Du ∀ϕ ∈ C0
c (Ω;R2),



6 G. BELLETTINI ET AL.

with · the scalar product in R2. A similar definition holds for vector valued maps. The converse is not true,
already in one dimension: consider the sequence (fk) ⊂W 1,1((0, 2π)),

fk(x) :=
1

k
sin(kx) ∀x ∈ (0, 2π).

Then fk ⇀ 0 weakly in W 1,1((0, 2π)), so in particular w∗-BV , but the convergence is not strict in BV , since
‖f ′k‖L1((0,2π)) = 4 for all k ∈ N. We underline that on W 1,1(Ω;R2) the strict BV convergence is not comparable
with the weak convergence: the following slight modification of Example 4, page 42 in [13], provides a sequence
converging strictly BV ((0, 1)) but not weakly in W 1,1((0, 1)). Consider the sequence (gk) ⊂ L1((0, 1)) defined
by

gk(x) := 2k
k−1∑
i=0

χ[ ik ,
i
k+ 1

k2k
](x) ∀x ∈ [0, 1], ∀k ≥ 1,

where χA is the characteristic function of the set A. Then ‖gk‖L1 = 1 for every k ∈ N. Now, let fk ∈ C([0, 1])
be the primitive of gk vanishing at 0; then (fk) converges uniformly to the identity, and ‖f ′k‖L1 = ‖gk‖L1 = 1 =
‖id′‖L1 for any k ∈ N, and so fk → id strictly BV ((0, 1)). On the other hand, (f ′k) cannot converge weakly in
L1 since it is not equi-integrable (see [13], Thm. 2, p. 50): gk tends to concentrate a large mass in arbitrarily
small sets, as k becomes large.

However, the following result (needed in the proof of Props. 3.3 and 4.4) shows that the strict BV convergence
implies the uniform one, under certain hypotheses.

Proposition 2.4 (Strict convergence in one dimension). Let I = (a, b) ⊂ R be a bounded interval and
let (fk) be a sequence in W 1,1(I). Suppose that (fk) converges strictly BV (I) to f ∈ W 1,1(I). Then fk → f
uniformly in I.

Proof. First of all, for any open interval J ⊂ I we have

lim
k→+∞

∫
J

|f ′k|dx =

∫
J

|f ′|dx. (2.1)

Indeed, since fk ⇀ f w∗-BV (I), by the lower semicontinuity of the variation, one has∫
J

|f ′|dx ≤ lim inf
k→+∞

∫
J

|f ′k|dx.

On the other hand, using the strict BV convergence on I and again the lower semicontinuity of the variation,
we get ∫

J

|f ′|dx =

∫
J

|f ′|dx =

∫
I

|f ′|dx−
∫
I\J
|f ′|dx ≥ lim

k→+∞

∫
I

|f ′k|dx− lim inf
k→+∞

∫
I\J
|f ′k|dx

= lim sup
k→+∞

(∫
I

|f ′k|dx−
∫
I\J
|f ′k|dx

)
= lim sup

k→+∞

∫
J

|f ′k|dx,

so (2.1) holds.
Now, since f and fk belong to W 1,1(I), we may assume that they are continuous. By contradiction, suppose
that (fk) does not converge uniformly to f , so that, up to a not relabeled subsequence, we may suppose:

∃δ > 0 ∃(xk) ⊂ I ∃k0 ∈ N : |fk(xk)− f(xk)| > δ ∀k ≥ k0, (2.2)
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and that there exists x ∈ I such that xk → x. Now consider an open interval E ⊂ I such that x ∈ E and∫
E

|f ′|dx < δ

4
(2.3)

(in case x = a or x = b, E is a semi-open interval). Using (2.1), we can find an index k1 ∈ N such that k1 ≥ k0

and ∫
E

|f ′k|dx <
δ

2
∀k ≥ k1. (2.4)

Moreover, there exists k2 ∈ N, k2 ≥ k1, such that xk ∈ E for every k ≥ k2. Pick a point y ∈ E; then for every
k ≥ k2, using (2.2), (2.3), and (2.4), we have

|fk(y)− f(y)| ≥ −|fk(y)− fk(xk)|+ |fk(xk)− f(xk)| − |f(xk)− f(y)|

≥ −
∫ y

xk

|f ′k|dx+ δ −
∫ y

xk

|f ′|dx ≥ −
∫
E

|f ′k|dx+ δ −
∫
E

|f ′|dx

≥ −δ
2

+ δ − δ

4
=
δ

4
.

Hence, (fk) (and any subsequence of it) does not converge to f pointwise at every point of E which leads to a

contradiction, since |E| > 0 and fk
L1(E)−−−−→ f .

Remark 2.5. Proposition 2.4 is still valid with the same proof when fk and f are vector valued. On the contrary,
it is crucial that the domain is one-dimensional, since counterexamples can be done already in dimension 2: for
instance, the sequence (fk) given by fk(x) := max{(1 − k|x|), 0}, x ∈ R2, converges to 0 in W 1,1(R2) but not
uniformly in any neighborhood of the origin.

2.2. The Jacobian determinant and its total variation

Definition 2.6 (Total variation of the Jacobian). Let u ∈ W 1,2
loc (Ω;R2). We define the total variation of

the Jacobian of u as

TVJ(u; Ω) =

∫
Ω

|det∇u|dx. (2.5)

We need to define TVJ(·; Ω) for other Sobolev maps, in particular for maps with singularities, the main
example being the vortex map uV in (1.6). This can be accomplished in two ways. The first one is to define the
distributional Jacobian determinant Det∇u: if2 p ∈ [1, 2) and u ∈W 1,p(Ω;R2) ∩ L∞loc(Ω;R2),

< Det∇u, ϕ >:= −1

2

∫
Ω

adj∇u(x)u(x) · ∇ϕ(x)dx ∀ϕ ∈ C∞c (Ω), (2.6)

where adj∇u :=

( ∂u2

∂y −∂u1

∂y

−∂u2

∂x
∂u1

∂x

)
. This definition is justified by the property

u ∈ C2(Ω;R2)⇒ det∇u =
1

2
div(adj∇uu).

2If p = 2 then u ∈W 1,2(Ω;R2).
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Notice that, if u ∈ C2(Ω;R2) and Br(x) ⊂⊂ Ω, then by the divergence theorem, writing the outward unit normal
to ∂Br(x) as ν = (ν1, ν2), and its π/2-counterclockwise rotation ν⊥ = τ = (τ1, τ2),

∫
Br(x)

det∇udz =
1

2

∫
∂Br(x)

(adj∇uu) · ν dH1

=
1

2

∫
∂Br(x)

((∂u2

∂y
u1 −

∂u1

∂y
u2

)
ν1 +

(
− ∂u2

∂x
u1 +

∂u1

∂x
u2

)
ν2

)
dH1

=
1

2

∫
∂Br(x)

(
u1

(∂u2

∂y
,−∂u2

∂x

)
· ν + u2

(
− ∂u1

∂y
,
∂u1

∂x

)
· ν
)

dH1

=
1

2

∫
∂Br(x)

(u1∇u2 · τ − u2∇u1 · τ) dH1

=
1

2

∫
∂Br(x)

(
u1
∂u2

∂s
− u2

∂u1

∂s

)
ds,

(2.7)

where s is the arc-length parameter on ∂Br.
By Formula (3.7) of [18] (which in turn is a consequence of Theorem 3.2 in [18]), one sees that formula (2.7)

is valid also for u ∈W 1,∞(Ω;R2).
We recall that

Det∇u = det∇u ∀u ∈W 1,2(Ω;R2),

while if p ∈ [1, 2) they can differ, for instance det∇uV is null, whereas Det∇uV = πδ0 (see [20]). Then one is led
to define TVJ(u; Ω) = |Det∇u|(Ω), for those u for which Det∇u is a Radon measure with finite total variation
in Ω.

The second way is to argue by relaxation. For p ∈ [1, 2] and u ∈W 1,p(Ω;R2) one sets

TVJW 1,p(u; Ω) := inf

{
lim inf
k→+∞

TVJ(vk; Ω) : (vk) ⊂ C1(Ω;R2) ∩W 1,p(Ω;R2), vk → u in W 1,p

}
. (2.8)

It is known that TVJ(u; Ω) = TVJW 1,2(u; Ω) for u ∈ W 1,2(Ω;R2). Moreover, when p ∈ [1, 2), TVJW 1,p(u; Ω)
coincides with the total variation of the Jacobian distributional determinant of u, provided u ∈W 1,p(Ω;S1) (see
Thm. 2.12 below, and [9], Thm. 11 and Rem. 12). The same conclusions do not hold in general, for maps in
W 1,p(Ω;R2) which do not take values in S1 (see [9], Open problem 5). Notice also that relaxation in (2.8) can
also be done with respect to the weak convergence in W 1,p (we do not treat this in the present paper and refer
the reader to [9, 12, 20]).

We emphasize that we required C1-regularity for the approximating sequences in (2.8). This ensures that
such sequences are contained in W 1,2

loc (Ω;R2) which is the minimal feature to guarantee that det∇vk ∈ L1
loc(Ω).

Replacing the C1-regularity with the W 1,2
loc -regularity3 gives rise to the same relaxed functionals; this can be seen

by a density argument, since any v ∈W 1,2
loc (Ω;R2) can be approximated by maps vk ∈ C1(Ω;R2) in W 1,2

loc (Ω;R2)
(such a convergence ensures the corresponding convergence of TVJ(vk; Ω) to TVJ(v; Ω)). In the same way, one
can also replace the C1-regularity with the C∞-regularity.

One can also relax TVJ with respect to the strict BV convergence: this will be the content of Theorem 4.3.
Moreover, the relaxation with respect to the L1 convergence is possible, but not interesting for us, because we
will deal with maps with values in S1, so the resulting relaxed functional turns out to be zero (see [9], Cor. 5).

3As sometimes can be found in literature.
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2.3. Multiplicity and degree

In what follows Br(x) denotes the open ball of R2 centered at x of radius r > 0.

Definition 2.7 (Multiplicity). Given u ∈W 1,1(Ω;R2), for all measurable sets A ⊆ Ω and all y ∈ R2, we set

mult(u,A, y) := ]{u−1(y) ∩A ∩Ru},

where Ru ⊆ Ω is the set of regular points of u (see [13], p. 202). Similarly, if u ∈W 1,1(∂Br(x); S1), we define

mult(u,A, y) := ]{u−1(y) ∩A ∩Ru},

for all measurable sets A ⊆ ∂Br(x) and all y ∈ S1.

Let u ∈W 1,1(Ω;R2); by Theorem 1–6, Section 3.1.5 of [13], if det∇u ∈ L1(Ω), we have∫
A

|det∇u|dx =

∫
R2

mult(u,A, y)dy, (2.9)

for any measurable set A ⊆ Ω. In particular, mult(u,A, ·) is measurable and finite a.e. in R2.
If a Lipschitz continuous map ϕ : ∂Br(x)→ S1 has constant multiplicity on ∂Br(x), then we will make use

of the simplified notation

mult(ϕ) := mult(ϕ, ∂Br(x), ·).

Definition 2.8 (Degree). Given u ∈W 1,1(Ω;R2) with det∇u ∈ L1(Ω), for all measurable sets A ⊆ Ω, we let

deg(u,A, y) :=
∑

x∈u−1(y)∩A∩Ru

sign(det∇u(x)), (2.10)

for those y ∈ R2 for which mult(u,A, ·) is finite.

Clearly

mult(u,A, ·) ≥ |deg(u,A, ·)|. (2.11)

By Theorems 1–6, Section 3.1.5 of [13], if det∇u ∈ L1(Ω), then∫
A

det∇udx =

∫
R2

deg(u,A, y)dy, (2.12)

for any measurable set A ⊆ Ω, and by (2.9) and (2.11)∫
Ω

|det∇u|dx ≥
∫
R2

|deg(u,Ω, y)|dy. (2.13)

Remark 2.9. The notion (2.10) of degree is too weak to be related to the trace of u on ∂Ω. However, homological

invariance is recovered under stronger hypotheses on u; for instance if u, v are Lipschitz in Ω̂ ⊃⊃ Ω and u = v
in Ω̂ \ Ω, then deg(u,Ω, ·) = deg(v,Ω, ·) a.e. in R2 (see [13], p. 233 and 469). In particular, if u, v : Br(x)→ R2

are Lipschitz continuous and u = v on ∂Br(x), then we might extend u to a Lipschitz map u on R2; the map
v coinciding with v in Br(x) and with u outside Br(x) is a Lipschitz extension of v. Hence deg(u,Br(x), ·) =
deg(v,Br(x), ·), which implies deg(u,Br(x), ·) = deg(v,Br(x), ·).
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Definition 2.10. For an open disc Br(x) ⊂ R2 and u ∈W 1,1(∂Br(x);S1), we define

deg(u) :=
1

2π

∫
∂Br(x)

(
u1
∂u2

∂s
− u2

∂u1

∂s

)
ds ∈ Z. (2.14)

If u ∈W 1,1(Ω;S1), Br(x) ⊂⊂ Ω, and u ∂Br(x) ∈W 1,1(∂Br(x); S1) (which is true for almost every r), we set

deg(u, ∂Br(x)) := deg(u ∂Br(x)). (2.15)

Remark 2.11. If u : Br(x)→ R2 is Lipschitz continuous and |u| = 1 on ∂Br(x), then deg(u,Br(x), ·) is constant
in B1 = B1(0), and coincides with deg(u, ∂Br(x)). Indeed deg(u,Br(x), ·) is a constant c in B1 thanks to The-
orem 1.3 of [16] (and zero on R2 \B1), and then it is sufficient to check that deg(u,Br(x), y) = deg(u, ∂Br(x)),
for a.e. y ∈ B1. By applying (2.7) to the left-hand side of (2.12) one has∫

R2

deg(u,Br(x), y) dy =

∫
B1

deg(u,Br(x), y) dy = πc =

∫
Br(x)

det∇u dx = πdeg(u ∂Br(x)).

In this particular case, thanks to (2.13), we conclude∫
Br(x)

|det∇u|dx ≥
∫
B1

|deg(u, ∂Br(x))|dy = π|deg(u, ∂Br(x))|. (2.16)

2.4. Singular Sobolev maps with values in S1

We will make use of the following theorems.

Theorem 2.12. Let u ∈W 1,1(Ω; S1). Then

TVJW 1,1(u; Ω) < +∞⇐⇒ Det∇u is a Radon measure.

In this case TVJW 1,1(u; Ω) = |Det∇u|(Ω), and there exists a finite set {x1, . . . , xm} of points in Ω such that

Det∇u = π

m∑
i=1

diδxi , (2.17)

where di = deg(u, ∂Bri(xi)) ∈ Z \ {0} for a.e. ri > 0 small enough. In particular

|Det∇u|(Ω) = π

m∑
i=1

|di|.

Proof. See for instance ([9], Thm. 11) and ([17], Prop. 5.2).

Remark 2.13. Theorem 2.12 provides the existence of a radius ri > 0 such that the number di not only is the
degree of the trace of u on ∂Bri(xi), but also on almost every circumference ∂Bρ(xi) with ρ < ri. Moreover, on
these circumferences, we may assume that u is continuous, since its trace is still of class W 1,1. For more details,
we refer the reader to [9].

Theorem 2.14. Let u ∈ W 1,1(S1;S1). Then there exists a sequence in C∞(S1;S1) converging to u in
W 1,1(S1;S1).

Proof. See Theorem 2.1 of [19].
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Theorem 2.15. Let B ⊂ R2 be a bounded open connected set, and u ∈W 1,1(B;S1). Then there exists a sequence
in C∞(B;S1) converging to u in W 1,1(B;S1) if and only if Det∇u = 0 in the sense of distributions.

Proof. See Theorem 1.5 of [21].

3. Relaxation for vortex-type maps in W 1,p(B`;S1): Theorem 1.1

In this section we focus on maps w ∈W 1,1(B`;S1) of the form (1.12), where ϕ : S1 → S1 is a Lipschitz map.
Of course det∇w = 0 a.e. on B`. Moreover, w ∈ W 1,p(B`;S1) for every p ∈ [1, 2); indeed, for x ∈ B` \ {0},

let us write in polar coordinates

w(x) = w̃(ρ, θ) = ϕ(cos θ, sin θ) =: f(θ) = (f1(θ), f2(θ)) ∀ρ ∈ (0, `), ∀θ ∈ [0, 2π). (3.1)

Then for a.e. θ ∈ [0, 2π) and all ρ ∈ (0, `)

∇ρ,θw̃(ρ, θ) =

(
0 f ′1(θ)
0 f ′2(θ)

)
, |∇ρ,θw̃(ρ, θ)| = |∂θw̃(ρ, θ)| = |f ′(θ)|,

∫
B`

|∇w|pdx =

∫ 2π

0

∫ `

0

ρ

(
|∂ρw̃|2 +

|∂θw̃|2

ρ2

) p
2

dρdθ

=

∫ 2π

0

∫ `

0

|f ′(θ)|p

ρp−1
dρdθ ≤ 2πlip(f)p

∫ `

0

1

ρp−1
dρ < +∞;

(3.2)

in particular

∫
B`

|∇w|dx = `

∫ 2π

0

|f ′(θ)|dθ. (3.3)

Remark 3.1. We have used that f in (3.1) is Lipschitz continuous in [0, 2π). Let us check that lip(f) = lip(ϕ)

and, moreover, Var(f) :=
∫ 2π

0
|f ′(θ)|dθ =

∫
S1 |∇

S1ϕ(y)|dH1(y) = Var(ϕ), where

∇S1ϕ(z) := lim
y→z

y∈S1\{z}

ϕ(y)− ϕ(z)

|y − z|
, (3.4)

is the (tangential) derivative of ϕ on S1, that is well-defined for a.e. z ∈ S1 as an element of the tangent
space Tϕ(z)S1 to S1 at ϕ(z). Fix y0 ∈ S1 where ϕ is differentiable, and take the unique θ0 ∈ [0, 2π) such that
y0 = (cos θ0, sin θ0). From (3.4), it follows

∇S1ϕ(y0) =
d

dθ |θ=θ0
ϕ(cos θ, sin θ) = f ′(θ0), (3.5)

and therefore lip(ϕ) = lip(f). Moreover

Var(ϕ) =

∫
S1
|∇S1ϕ(y)|dH1(y) =

∫ 2π

0

|f ′(θ)|dθ = Var(f). (3.6)
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In particular, from (3.3), we conclude ∫
B`

|∇w| dx = `Var(ϕ). (3.7)

Remark 3.2 (Lifting). A lifting of ϕ is a map Φ : [0, 2π]→ R such that

ϕ(cos θ, sin θ) = (cos(Φ(θ)), sin(Φ(θ))) ∀θ ∈ [0, 2π]. (3.8)

The function f(·) = ϕ(cos(·), sin(·)) : [0, 2π]→ S1 being continuous on a simply-connected set, always admits a
continuous lifting Φ : [0, 2π]→ R such that

ϕ(cos θ, sin θ) = f(θ) = (cos(Φ(θ)), sin(Φ(θ))).

Moreover, since the covering map t ∈ R 7→ eit ∈ S1 satisfies |eit1 − eit2 | ≤ |t1 − t2| ≤ π|eit1 − eit2 | for all t1, t2
with |t1 − t2| ≤ π, any continuous lifting of ϕ must be Lipschitz, indeed

|Φ(θ1)− Φ(θ2)|
|θ1 − θ2|

≤ π |e
iΦ(θ1) − eiΦ(θ2)|
|eiθ1 − eiθ2 |

= π
|ϕ(eiθ1)− ϕ(eiθ2)|
|eiθ1 − eiθ2 |

∀θ1, θ2 ∈ [0, 2π] with |θ1 − θ2| ≤ π; (3.9)

while if |θ1 − θ2| > π, the left-hand side is bounded by 2
π max[0,2π] |Φ|.

Using the 2π-periodicity of f , we see that Φ(2π)− Φ(0) ∈ 2πZ; hence Φ can be extended in a Lipschitz way
to the whole of R (this can be done extending periodically its first derivative). It is possible to see that the
lifting is unique up to a multiple of 2π: fix a starting point, e.g. (1, 0) ∈ S1 and set ϕ(1, 0) =: y0 ∈ S1. Now
extract the Argument θ(y0) ∈ [0, 2π) of y0, and define Φ : R→ R as

Φ(t) := θ(y0) +

∫ t

0

λϕ(s)ds, (3.10)

where λϕ(s) ∈ R is uniquely determined by

∇S1ϕ(cos s, sin s) = λϕ(s)τϕ(cos s,sin s) a.e. s ∈ R, (3.11)

with

τϕ(cos s,sin s) = ϕ⊥(cos s, sin s) =
(
− ϕ2(cos s, sin s), ϕ1(cos s, sin s)

)
(3.12)

the unit tangent vector to S1 (counter-clockwise oriented) at the point ϕ(cos s, sin s). By definition, Φ is Lipschitz
in R since lip(Φ) = ‖λϕ‖∞ = lip(ϕ). In order to show the lifting property (3.8), take a lifting Φ : R→ R of ϕ.
Differentiating the equality ϕ(cos s, sin s) = (cos(Φ(s)), sin(Φ(s))) gives

λϕ(s)τϕ(cos s,sin s) = Φ
′
(s)(− sin(Φ(s)), cos(Φ(s))) = Φ

′
(s)τϕ(cos s,sin s), a.e. s ∈ R,

so that Φ
′

= λϕ a.e. in R. This implies, by (3.10), that Φ(t) − Φ(t) is a constant multiple of 2π. Thus Φ also
satisfies (3.8), and any lifting of ϕ is of the form (3.10), up to a constant multiple of 2π.

As a further consequence of the previous discussion and of (3.11)–(3.12), for any lifting Φ̃ of ϕ, and in

particular for Φ, the map f̃(θ) = (cos(Φ̃(θ)), sin(Φ̃(θ))) satisfies the same linear ordinary differential system as
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f , namely

f ′1 = −Φ′f2, f ′2 = Φ′f1 a.e. in R. (3.13)

Finally, from (3.13) it follows λϕ = f1f
′
2 − f2f

′
1 a.e. in R, so that by (2.14), we get

Φ(2π) = Φ(0) +

∫ 2π

0

λϕ(θ)dθ = Φ(0) + 2πdeg(ϕ). (3.14)

Now we can start the proof of Theorem 1.1: As usual, we divide it into two parts, the lower bound (Prop. 3.3)
and the upper bound (Prop. 3.4).

Proposition 3.3 (Lower bound). Let w : B` \ {0} → S1 be the map defined in (1.12). Suppose that (vk) ⊂
C1(B`;R2) ∩BV (B`;R2) is such that vk → w strictly BV (B`;R2). Then

lim inf
k→+∞

A(vk;B`) ≥
∫
B`

√
1 + |∇w|2dx+ π|deg(ϕ)|.

Proof. We may assume that

lim inf
k→+∞

A(vk;B`) = lim
k→+∞

A(vk;B`) < +∞.

We define the functions ψk, ψ : (0, `)→ [0,+∞) as

ψk(r) :=

∫
∂Br

|∇vk|ds, ψ(r) := lim inf
k→+∞

ψk(r), r ∈ (0, `),

where s is an arc length parameter on ∂Br. By Fubini’s theorem it follows

∫ `

0

ψk(r)dr =

∫
B`

|∇vk|dx,

hence, using Fatou’s lemma, the strict convergence of (vk) to w, and (3.7),

∫ `

0

ψ(r)dr ≤ lim inf
k→+∞

∫ `

0

ψk(r)dr = lim
k→+∞

∫
B`

|∇vk|dx

=

∫
B`

|∇w|dx = `Var(ϕ).

(3.15)

In particular,

ψ is almost everywhere finite in (0, `).

Now we claim that

ψ = Var(ϕ) a.e. in (0, `). (3.16)
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Indeed, without loss of generality we may assume that (vk) converges to w almost everywhere in B`, so that for
almost every r ∈ (0, `)

vk ∂Br → w ∂Br H 1 − a.e. in ∂Br. (3.17)

Now fix r ∈ (0, `) such that (3.17) holds; consider the total variation of vk ∂Br, that is the L1(∂Br)-norm of
the tangential derivative of vk (as in (3.4)):

|D(vk ∂Br)|(∂Br) =

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ ds.

Clearly

lim inf
k→+∞

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ds ≤ lim inf

k→+∞

∫
∂Br

|∇vk|ds = ψ(r). (3.18)

Let us extract a subsequence (vkh) ⊂ (vk) depending on r, such that

lim inf
k→+∞

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ds = lim

h→+∞

∫
∂Br

∣∣∣∣∂vkh∂s

∣∣∣∣ ds. (3.19)

Since ψ is almost everywhere finite, we may suppose that ψ(r) < +∞, so that the sequence (vkh ∂Br) is
bounded in BV (∂Br;R2). Thus, using (3.17), we also have

vkh ∂Br⇀w ∂Br weakly∗ in BV (∂Br;R2) as h→ +∞. (3.20)

Now, since ∇w is only tangential, and |∇w(r, θ)|2 = |f ′(θ)|2
r2 , we get

∫
∂Br

∣∣∣∣∂w∂s
∣∣∣∣ds =

∫
∂Br

|∇w|ds =

∫ 2π

0

r|f ′(θ)|1
r

dθ = Var(ϕ). (3.21)

Hence, using the lower semicontinuity of the variation along (vkh ∂Br), (3.19), and (3.18) we infer

Var(ϕ) =

∫
∂Br

∣∣∣∣∂w∂s
∣∣∣∣ds ≤ lim inf

h→+∞

∫
∂Br

∣∣∣∣∂vkh∂s

∣∣∣∣ds
= lim
h→+∞

∫
∂Br

∣∣∣∣∂vkh∂s

∣∣∣∣ds = lim inf
k→+∞

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ds ≤ ψ(r).

(3.22)

Thus ψ ≥ Var(ϕ) almost everywhere in (0, `) and, from (3.15), we deduce ψ = Var(ϕ) almost everywhere in
(0, `), and so (3.16) is proved.

As a consequence of the previous arguments,

∀ε ∈ (0, `) ∃rε ∈ (0, ε) ∃(vkh) ⊂ (vk) s.t.

vkh ∂Brε → w ∂Brε strictly BV (∂Brε ;R2),
(3.23)

where the subsequence (vkh) depends on ε. Indeed, proving (3.16), we have shown that for almost every r ∈ (0, `),
there exists a subsequence (vkh) satisfying (3.20); so, given ε ∈ (0, `), there exists rε ∈ (0, ε) and a subsequence
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(vkh) depending on ε, such that

vkh ∂Brε⇀w ∂Brε weakly∗ in BV (∂Brε ;R2). (3.24)

But from the previous discussion we also deduce

lim
h→+∞

∫
∂Brε

∣∣∣∣∂vkh∂s

∣∣∣∣ ds = ψ(rε) = Var(ϕ) =

∫
∂Brε

∣∣∣∣∂w∂s
∣∣∣∣ds; (3.25)

thus the convergence in (3.24) is actually strict in BV (∂Brε ;R2).
Now, fix ε ∈ (0, `) and, for simplicity, denote by (vh) the subsequence (vkh) for which (3.23) holds. Remember

that our approximating maps vh = ((vh)1, (vh)2) are of class C1(Ω;R2), so they might have non-zero Jacobian
determinant Jvh := det∇vh, as opposed to w = (w1, w2), whose Jacobian determinant vanishes a.e. in B`. In
particular, we expect the contribution of area given by Jvh to be non trivial around the origin. Thus, we split
the area functional as follows:

A(vh;B`) = A(vh;B` \Brε) +A(vh;Brε) ≥ A(vh;B` \Brε) +

∫
Brε

|Jvh|dx,

and notice that, by definition of relaxed functional and Theorem 3.7 of [1],

lim inf
h→+∞

A(vh;B` \Brε) ≥ AL1(u;B` \Brε) ≥
∫
B`\Brε

√
1 + |∇w|2dx.

Hence

lim
h→+∞

A(vh;B`) ≥ lim inf
h→+∞

A(vh;B` \Brε) + lim inf
h→+∞

∫
Brε

|Jvh| dx

≥
∫
B`\Brε

√
1 + |∇w|2dx+ lim inf

h→+∞

∫
Brε

|Jvh| dx.

(3.26)

To conclude the proof it is then sufficient to show that

lim inf
h→+∞

∫
Brε

|Jvh|dx ≥ π|deg(ϕ)|. (3.27)

Define the sequence wh : B` → R2 as

wh(x) :=


vh(x) if |x| ≤ rε
`− |x|
`− rε

vh

(
rε
x

|x|

)
+
|x| − rε
`− rε

w

(
rε
x

|x|

)
if rε < |x| < `.

(3.28)

Then wh is Lipschitz continuous and interpolates vh ∂Brε and w ∂Brε in the annulus enclosed by ∂Brε and
∂B`. Now we show that

lim
h→+∞

∫
B`\Brε

|Jwh|dx = 0. (3.29)
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Indeed, passing to polar coordinates in B` \Brε :

wh(x) = w̃h(ρ, θ) =
`− ρ
`− rε

ṽh(rε, θ) +
ρ− rε
`− rε

w̃(rε, θ),

where

ṽh(rε, θ) := vh (rε(cos θ, sin θ))) = ((ṽh)1(rε, θ), (ṽh)2(rε, θ)), w̃(rε, θ) := w (rε(cos θ, sin θ)) = f(θ).

Making use of (3.1) and (3.13), we get

∇w̃h(ρ, θ) =
1

`− rε

(
−(ṽh)1 + f1 (`− ρ)∂θ(ṽh)1 − (ρ− rε)Φ′f2

−(ṽh)2 + f2 (`− ρ)∂θ(ṽh)2 + (ρ− rε)Φ′f1

)
, (3.30)

where (ṽh)i, ∂θ(ṽh)i are evaluated at (rε, θ) for i = 1, 2, and f1, f2,Φ
′ are evaluated at θ. Then we can compute

the Jacobian determinant of wh in polar coordinates:

Jw̃h(ρ, θ) =
1

(`− rε)2

[
(`− ρ)

{
(ṽh)2∂θ(ṽh)1 − ∂θ(ṽh)1f2

}
+ (`− ρ)

{
∂θ(ṽh)2f1 − (ṽh)1∂θ(ṽh)2

}
− (ρ− rε)Φ′

{
(ṽh)1f1 + (ṽh)2f2 − 1

}]
,

where we use also that f2
1 + f2

2 = 1. Thus

∫
B`\Brε

|Jwh|dx =

∫ `

rε

∫ 2π

0

|Jw̃h|dρdθ

≤C`,ε
∫ `

rε

∫ 2π

0

|(ṽh)2∂θ(ṽh)1 − ∂θ(ṽh)1f2|dρdθ

+ C`,ε

∫ `

rε

∫ 2π

0

|(ṽh)1∂θ(ṽh)2 − ∂θ(ṽh)2f1|dρdθ

+ C`,εlip(Φ)

∫ `

rε

∫ 2π

0

|(ṽh)1f1 + (ṽh)2f2 − 1|dρdθ,

(3.31)

where C`,ε is a positive constant depending only on ` and ε. Consider the first integral on the right hand side
of (3.31): its integrand is independent of ρ, and so

∫ `

rε

∫ 2π

0

|(ṽh)2∂θ(ṽh)1 − ∂θ(ṽh)1f2(θ)|dρdθ = (`− rε)
∫ 2π

0

|(ṽh)2(rε, θ)− f2(θ)| |∂θ(ṽh)1(rε, θ)|dθ

≤ C`,ε‖(vh)2 − w2‖L∞(∂Brε )

∫
∂Brε

∣∣∣∣∂vh∂s
∣∣∣∣ds k→+∞−−−−−→ 0,

where in passing to the limit we used (3.23), which implies that the variation of vh on ∂Brε is necessarily
equi-bounded and, together with Proposition 2.4, that vh → w uniformly on ∂Brε . For the second integral, the
argument is similar.
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As for the third one, by the uniform convergence of (vh) to w on ∂Brε , we can pass to the limit under the
integral sign: ∫ `

rε

∫ 2π

0

|(ṽh)1f1 + (ṽh)2f2 − 1|dρdθ
h→+∞−−−−−→

∫ `

rε

∫ 2π

0

|f2
1 + f2

2 − 1|dρdθ = 0.

Therefore, (3.29) holds.
Now, we write the Jacobian determinant of vh on Brε in the following way:∫

Brε

|Jvh|dx =

∫
B`

|Jwh|dx−
∫
B`\Brε

|Jwh|dx. (3.32)

Notice that wh = w on ∂B`, so that (see Rems. 2.9 and 2.11)

deg(wh, ∂B`) = deg(w, ∂B`) = deg(ϕ). (3.33)

We may suppose that vh takes values in B1, since the limit function w is valued in S1 (see [1], Lem. 3.3). So
wh : B` → B1 is Lipschitz continuous and maps ∂B` into ∂B1. Then, by (3.33) and (2.16), we have∫

B`

|Jwh|dx ≥ π|deg(w, ∂B`)| = π|deg(ϕ)|. (3.34)

Finally, passing to the lower limit as h → +∞ in (3.32), using (3.29) and the previous inequality, we deduce
estimate (3.27), which concludes the proof.

Proposition 3.4 (Upper bound). Let w : B` \ {0} → R2 be the map defined in (1.12). Then there exists a
sequence (vk) ⊂ C1(B`;R2) ∩BV (B`;R2) such that vk → w strictly BV (B`;R2) and

lim sup
k→+∞

A(vk;B`) ≤
∫
B`

√
1 + |∇w|2dx+ π|deg(ϕ)|. (3.35)

Proof. Although vk needs to be of class C1, we claim that it suffices to build vk just Lipschitz continuous. Indeed,
assume that (vk) ⊂W 1,∞(B`;R2) ∩C1(B`;R2) converges to w strictly BV (B`;R2) and (3.35) holds. Consider,
for all k ∈ N, a sequence (vkh) ⊂ C1(B`;R2) approaching vk in W 1,2(B`;R2) as h→ +∞. In particular, we get
the L1-convergence of all minors of ∇vkh to the corresponding ones of ∇vk. Then, by dominated convergence,

lim
h→+∞

A(vkh;B`) = A(vk;B`). (3.36)

Hence, by a diagonal argument, we find a sequence (vkhk) converging to w strictly BV (B`;R2) such that (3.35)

holds for vkhk in place of vk.

Let us consider the map ϕ : S1 → S1 given by

ϕ(cos θ, sin θ) := (cos(dθ), sin(dθ)) where d := deg(ϕ). (3.37)

Then

mult(ϕ) = |deg(ϕ)|, deg(ϕ) = deg(ϕ), (3.38)

and, in particular, mult(ϕ) = |deg(ϕ)|. Moreover, since the maps ϕ and ϕ have the same degree, we can construct
a Lipschitz homotopy H : [0, 1] × S1 → S1 between them. Precisely, if Φ and Φ are Lipschitz liftings of ϕ
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and ϕ respectively, we define Ψ(t, ·) := tΦ(·) + (1 − t)Φ(·), which is Lipschitz. Hence one defines the map
H(t, ·) : [0, 2π)→ S1 as H(t, ·) := (cos(Ψ(t, ·), sin(Ψ(t, ·))), which satisfies

H(0, ·) = ϕ(·), H(1, ·) = ϕ(·). (3.39)

It remains to show that H(t, ·) defines a continuous (and then Lipschitz) map from S1 to S1, i.e. that is
2π-periodic: to this aim it is enough to observe that Ψ(t, 2π) and Ψ(t, 0) differ from a constant multiple of
2π and indeed, recalling (3.14), we have Φ(2π) − Φ(0) = 2πd = Φ(2π) − Φ(0), from which easily follows that
Ψ(t, 2π)−Ψ(t, 0) = 2πd.

We now define the sequence (vk) ⊂ Lip(B`;R2) as vk(0) := 0,

vk :=


vk in B `

k
\ {0},

hk in B 2`
k
\B `

k
,

w = ϕ
(
x
|x|

)
in B` \B 2`

k
,

(3.40)

where

vk(x) :=
k

`
|x|ϕ

(
x

|x|

)
∀x ∈ B `

k
,

and

hk(x) := H

(
k

`
|x| − 1,

x

|x|

)
∀x ∈ B 2`

k
\B `

k
.

Let us check that ∫
B`

|Jvk|dx = π|d| ∀k ∈ N. (3.41)

Since H and w take values on S1, we have∫
B`\B `

k

|Jvk|dx =

∫
B 2`
k
\B `

k

|Jhk|dx+

∫
B`\B 2`

k

|Jw|dx = 0.

Moreover, mult(vk, B `
k
, ·)=mult(ϕ), and therefore, by (2.9),

∫
B `
k

|Jvk|dx =

∫
B `
k

|Jvk|dx =

∫
B1

mult(vk, B `
k
, y)dy = |B1|mult(ϕ) = π|d|.

We now prove that vk → w in W 1,p(B`;R2) for every p ∈ [1, 2). This, in particular, implies the desired strict
convergence in BV . Since vk = w in B` \B 2`

k
, we have to do the computation in B 2`

k
:

∫
B 2`
k

|vk − w|pdx ≤ 2p−1

∫
B 2`
k

(|vk|p + |w|p)dx ≤ 2p|B 2`
k
| k→+∞−−−−−→ 0.
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In addition

|∇vk| = |∇hk| ≤ 2k lip(H) a.e. in B 2`
k
\B `

k
,

hence

∫
B 2`
k
\B `

k

|∇vk −∇w|pdx ≤ C

(2k)plip(H)p|B 2`
k
|+
∫
B 2`
k

|∇w|pdx


≤ C

C kp
k2

+

∫
B 2`
k

|∇w|pdx

 k→+∞−−−−−→ 0,

(3.42)

where C > 0 is a positive constant independent of k. Finally, setting w(x) := ϕ
(
x
|x|

)
for x ∈ B` \ {0}, we have

∇vk(x) =
k

`
|x|∇w(x) +

k

`
w(x)⊗ x

|x|
for a.e. x ∈ B `

k
.

Whence ∫
B `
k

|∇vk −∇w|pdx ≤ C
∫
B `
k

(
kp|x|p|∇w|p + kp

∣∣∣∣w(x)⊗ x

|x|

∣∣∣∣+ |∇w|p
)

dx

≤ C

∫
B `
k

|∇w|pdx+ kp|B `
k
|+
∫
B `
k

|∇w|pdx

 k→+∞−−−−−→ 0.

(3.43)

Now, we easily get (3.35): upon extracting a (not relabelled) subsequence such that (∇vk) converges almost
everywhere to ∇w, by (3.41) and dominated convergence theorem we have

lim sup
k→+∞

A(vk;B`) ≤ lim
k→+∞

∫
B`

√
1 + |∇vk|2dx+ lim

k→+∞

∫
B`

|Jvk|dx =

∫
B`

√
1 + |∇w|2dx+ π|d|.

Remark 3.5. In the proof of the upper bound in Proposition 3.4 we have shown the W 1,p convergence of the
recovery sequence to the function w, for p ∈ [1, 2). Hence

AW 1,p(w;B`) ≤
∫
B`

√
1 + |∇w|2dx+ π|deg(ϕ)|.

Moreover, since in general ABV (· ;B`) ≤ AW 1,p(· ;B`) for all p ≥ 1, we deduce

AW 1,p(w;B`) =

∫
B`

√
1 + |∇w|2dx+ π|deg(ϕ)|.

4. Relaxation for maps in W 1,1(Ω;S1): Theorem 1.2

In the following lemma we generalize to a generic function in W 1,1(B`;S1) the argument used to prove (3.23),
by showing that the strict BV convergence on B` is inherited to almost every circumference centered at the
origin. Unlike (3.23) of Proposition 3.3, in this more general context we have to make use of Theorem 2.1.
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We start to generalize the arguments leading to (3.25).

Lemma 4.1 (Inheritance). Let (vk) ⊂ C1(B`;R2), u ∈ W 1,1(B`;R2), and suppose that vk → u strictly
BV (B`;R2). Then, for almost every r ∈ (0, `), there exists a subsequence (vkh), depending on r, such that

vkh ∂Br → u ∂Br strictly BV (∂Br;R2).

Proof. The (tangential) variation of the restriction of u on ∂Br is well-defined and finite for almost every
r ∈ (0, 1) since u ∈W 1,1(B`;R2), and

|D(u ∂Br)|(∂Br) :=

∫
∂Br

∣∣∣∣∂u∂s
∣∣∣∣ ds =

∫ 2π

0

|∂θũ(r, θ)|dθ,

where ũ : R := (0, `)× [0, 2π)→ R2, ũ(ρ, θ) := u(ρ cos θ, ρ sin θ). We compute∫
R

|∂θũ|dρdθ =

∫
B`

|(∇u)τ |dx, (4.1)

with τ(x) := 1
|x| (−x2, x1), x 6= 0. Indeed

∫
R

|∂θũ|dρdθ =

∫ `

0

∫ 2π

0

[
2∑
i=1

ρ2
(
(∂x1

ui)
2(sin θ)2 + (∂x2

ui)
2(cos θ)2 − 2∂x1

ui∂x2
ui cos θ sin θ

)] 1
2

dρdθ

=

∫
B`

1

|x|

[
2∑
i=1

(
(∂x1

ui)
2x2

2 + (∂x2
ui)

2x2
1 − 2∂x1

ui∂x2
uix1x2

)] 1
2

dx

=

∫
B`

√
|∇u1 · τ |2 + |∇u2 · τ |2dx =

∫
B`

|(∇u)τ |dx.

In the same way we get ∫
R

|∂θṽk|dρdθ =

∫
B`

|(∇vk)τ |dx.

Thanks to Theorem 2.1, with the choices M = 4, S3 ⊂ R4 = R2×2, f ∈ Cb((B` \ {0})× S3),

f(x, σ) :=
√
|σhor · τ(x)|2 + |σvert · τ(x)|2,

where σ ∈ S3 and σhor := (σ1, σ2), σvert := (σ3, σ4), we obtain

lim
k→+∞

∫
B`

|(∇vk)τ |dx =

∫
B`

|(∇u)τ |dx. (4.2)

Now we notice that for almost every r ∈ (0, `) we have

vk ∂Br → u ∂Br in L1(∂Br;R2).
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Then, since (vk ∂Br) ⊂ BV (∂Br;R2) for every r ∈ (0, `), by the lower semicontinuity of the variation we get∫
∂Br

∣∣∣∣∂u∂s
∣∣∣∣ds ≤ lim inf

k→+∞

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ ds for a.e. r ∈ (0, `). (4.3)

Integrating with respect to r and by Fatou’s lemma, we obtain∫
R

|∂θũ|drdθ =

∫ `

0

∫
∂Br

∣∣∣∣∂u∂s
∣∣∣∣dsdr ≤ ∫ `

0

lim inf
k→+∞

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ dsdr ≤ lim inf

k→+∞

∫
R

|∂θṽk|drdθ. (4.4)

But we notice that, by (4.1) and (4.2), we must have all equalities in (4.4). In particular,∫
∂Br

∣∣∣∣∂u∂s
∣∣∣∣ds = lim inf

k→+∞

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ ds for a.e. r ∈ (0, `),

and we conclude extracting a suitable subsequence (vkh) of (vk) depending on r such that

lim
h→+∞

∫
∂Br

∣∣∣∣∂vkh∂s

∣∣∣∣ds = lim inf
k→+∞

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ ds.

Definition 4.2. Let u ∈W 1,1(Ω;S1) and TVJW 1,1(u; Ω) < +∞. We set

TVJBV (u; Ω) := inf

{
lim inf
k→+∞

TVJ(vk; Ω) : (vk) ⊂ C1(Ω,R2) ∩BV (Ω;R2), vk → u strictly BV

}
.

The proof of Theorem 1.2 is essentially a consequence of the following theorem.

Theorem 4.3 (Relaxation of TVJ in the strict convergence). Let u ∈ W 1,1(Ω; S1) be such that
TVJW 1,1(u; Ω) < +∞, and write Det∇u as in (2.17). Then

TVJBV (u; Ω) = π

m∑
i=1

|di|.

In particular, TVJBV (u; Ω) = TVJW 1,1(u; Ω) = |Det∇u|(Ω).

As usual, we divide the proof of Theorem 4.3 into two parts, the lower bound (Prop. 4.4) and the upper
bound (Prop. 4.5).

Proposition 4.4 (Lower bound for TVJBV ). Let u ∈ W 1,1(Ω;S1) be such that TVJW 1,1(u; Ω) < +∞, and
write Det∇u as in (2.17). Then

TVJBV (u; Ω) ≥ π
m∑
i=1

|di|.

Proof. According to Theorem 2.12, we choose a radius ` > 0 so that the balls B`(xi) ⊂ Ω, i = 1, . . . ,m, are
disjoint. Let (vk) ⊂ C1(Ω;R2) be such that vk → u strictly BV (B`;R2) and

lim
k→+∞

∫
Ω

|Jvk|dx = TVJBV (u; Ω).
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To show the thesis it is sufficient to prove that, for all i = 1, . . . ,m,

lim
k→+∞

∫
B`(xi)

|Jvk|dx ≥ πdi,

and it suffices to show this inequality for i = 1. Let us denote B`(x1) simply by B`. Without loss of generality we
may assume x1 = (0, 0). Since u ∈W 1,1(B`;S1), it is W 1,1(∂Br;S1), in particular continuous, for almost every
r ∈ (0, `). Thus, we can choose r > 0 small enough so that u ∂Br ∈ W 1,1(∂Br;S1). Since the balls B`(xi),
i = 1, . . . ,m, are disjoint, we also have deg(u, ∂Br, ·) = d1. From Theorem 2.14 and Lemma 4.1, we get that

∀ε ∈ (0, r) ∃rε ∈ (0, ε) ∃(vkh) ⊂ (vk) ∃(uh) ⊂ C∞(∂Brε ;S1) s.t.

u ∂Brε ∈W 1,1(∂Brε ;S1), uh → u ∂Brε in W 1,1(∂Brε ;S1),

and vkh ∂Brε → u ∂Brε strictly BV (∂Brε ;R2).

(4.5)

In particular, on ∂Brε we have uniform convergence of (uh) and (vkh) to u by Proposition 2.4. Setting as usual
Jvkh = det∇vkh , write ∫

Brε

|Jvkh |dx =

∫
Br

|Jwh|dx−
∫
Br\Brε

|Jwh|dx,

where wh ∈ Lip(Br;R2) and is given by

wh(x) :=


vkh(x) if |x| ≤ rε
r − |x|
r − rε

vkh

(
rε
x

|x|

)
+
|x| − rε
r − rε

uh

(
rε
x

|x|

)
if rε < |x| ≤ r.

(4.6)

Now, since ‖vkh − uh‖L∞(∂Brε ) → 0 as h→ +∞, arguing as in the proof of (3.29) we have

lim
h→+∞

∫
Br\Brε

|Jwh|dx = 0. (4.7)

Moreover, from (4.6) we note that

deg(wh, ∂Br) = deg(uh, ∂Brε). (4.8)

Thanks to the uniform convergence of (uh) to u on ∂Brε , for h large enough, uh and u ∂Brε must have the
same degree

deg(uh, ∂Brε) = deg(u, ∂Brε) = d1.

Then, arguing as in (3.34), we obtain that∫
Br

|Jwh|dx ≥ π|deg(wh, ∂Br)| = π|d1|,

for h ∈ N sufficiently large. In conclusion we get

TVJBV (u;B`) = lim
h→+∞

∫
B`

|Jvkh |dx ≥ lim inf
h→+∞

∫
Brε

|Jvkh |dx ≥ lim inf
h→+∞

∫
Br

|Jwh|dx ≥ π|d1|. (4.9)
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Proposition 4.5 (Upper bound for TVJBV ). Let u ∈ W 1,1(Ω; S1) be such that TVJW 1,1(u; Ω) < +∞, and
write Det∇u as in (2.17). Then

TVJBV (u; Ω) ≤ π
m∑
i=1

|di|.

Proof. As in the proof of Proposition 4.4 we choose a radius ` > 0 so that the balls B`(xi) ⊂ Ω, i = 1, . . . ,m,
are disjoint.

We construct a suitable recovery sequence (vk) ⊂ Lip(Ω;R2) such that

lim
k→+∞

vk = u in W 1,1(Ω;R2) (4.10)

and setting B := ∪ni=1B`(xi),

lim
k→+∞

∫
B`(xi)

|Jvk|dx = π|di|, i = 1, . . . ,m, and

∫
Ω\B
|Jvk|dx = 0. (4.11)

As in the proof of Proposition 4.4, we can find r1 ≤ ` so that u ∈W 1,1(∂Br1(xi);R2) and deg(u, ∂Br1(xi)) = di,
for all i = 1, . . . ,m. For every k ∈ N, we set Bk := ∪mi=1B2−kr1(xi). By Theorem 2.15, there exists a sequence(
ukn
)
n∈N ⊂ C

∞(Ω \Bk;S1) such that

lim
n→+∞

ukn = u in W 1,1(Ω \Bk;S1). (4.12)

Now, for all k > 1, we choose rk ∈ (2−kr1, 2
−k+1r1) such that the following conditions hold: for all i = 1, . . . ,m,

u ∂Brk(xi) ∈W 1,1(∂Brk(xi);S1),

lim
n→+∞

‖ukn ∂Brk(xi)− u ∂Brk(xi)‖W 1,1(∂Brk (xi);S1) = 0.
(4.13)

In particular, for all k > 1 and i = 1, . . . ,m, we have

lim
n→+∞

‖ukn ∂Brk(xi)− u ∂Brk(xi)‖L∞(∂Brk (xi);S1) = 0, (4.14)

thus, using (2.15), (4.13) and (2.14), we obtain

|deg(ukn, ∂Brk(xi))− deg(u, ∂Brk(xi))|

≤ 1

2π

(∫
∂Brk (xi)

∣∣∣∣(ukn)1
∂(ukn)2

∂s
− u1

∂u2

∂s

∣∣∣∣ds+

∫
∂Brk (xi)

∣∣∣∣(ukn)2
∂(ukn)1

∂s
− u2

∂u1

∂s

∣∣∣∣ ds
)
−→ 0

(4.15)

as n→ +∞.
Therefore, there exists mk ∈ N such that, for all i = 1, . . . ,m,

deg(ukn, ∂Brk(xi)) = deg(u, ∂Brk(xi)) = di ∀n ≥ mk. (4.16)

Now, using (4.12) and (4.13), for all k > 1 there is m̃k ∈ N such that, for all i = 1, . . . ,m,

‖ukn − u‖W 1,1(Ω\(∪mi=1Brk (xi));S1) ≤ ‖ukn − u‖W 1,1(Ω\Bk;S1) ≤
1

k
∀n ≥ m̃k, (4.17)
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‖ukn ∂Brk(xi)− u ∂Brk(xi)‖W 1,1(∂Brk (xi);S1) ≤
1

k
∀n ≥ m̃k. (4.18)

Setting nk := max{mk, m̃k}, we define uk := uknk , which satisfies (4.16) and (4.17) for all k > 1. In particular

lim
k→+∞

‖uk − u‖W 1,1(Ω\(∪mi=1Brk (xi));S1) = 0. (4.19)

For all i = 1, . . . ,m, let now ϕi : S1 → S1 be the Lipschitz function defined in (3.37) with d = di, which satisfies

mult(ϕi) = |deg(ϕi)| and deg(ϕi) = di.

Now, for all i = 1, . . . ,m, ϕi and uk ∂Brk(xi) have the same degree, and so there exists a Lipschitz homotopy4

Hk,i : [0, 1]× S1 → S1 such that

Hk,i(0, y) = ϕi(y), Hk,i(1, y) = uk(rky + xi), y ∈ S1.

Let us define the sequence (vk) ⊂ Lip(Ω;R2) as follows: vk := uk in Ω \B, and, for all i = 1, . . . ,m, vk(xi) := 0
and

vk(x) :=


|x− xi|
rk+1

ϕi

(
x− xi
|x− xi|

)
if x ∈ Brk+1

(xi) \ {0},

hk,i(x) if x ∈ Brk(xi) \Brk+1
(xi),

uk(x) if x ∈ B`(xi) \Brk(xi),

(4.20)

where

hk,i(x) := Hk,i

(
|x− xi| − rk+1

rk − rk+1
,
x− xi
|x− xi|

)
∀x ∈ Brk(xi) \Brk+1

(xi).

Since Hk,i and uk take values in S1, we have vk(x) ∈ S1 for x ∈ Ω \ (∪mi=1Brk+1
(xi)), and so∫

Ω\(∪mi=1Brk+1
(xi))

|Jvk|dx = 0.

In particular, the second condition in (4.11) holds. Moreover, mult(vk, Brk+1
(xi), ·)=mult(ϕi), and therefore, by

(2.9), ∫
Brk+1

(xi)

|Jvk|dx =

∫
B1

mult(vk, Brk+1
(xi), y)dy = |B1|mult(ϕi) = π|di|,

and also the first condition in (4.11) follows.
It remains to show (4.10). By (4.19) and (4.17) we have∫

Ω

|vk − u|dx ≤
∫

Ω\(∪mi=1Brk (xi))

|uk − u|dx+ 2m|Brk(0)| → 0 as k → +∞,∫
Ω\(∪mi=1Brk (xi))

|∇vk −∇u|dx =

∫
Ω\(∪mi=1Brk (xi))

|∇uk −∇u|dx→ 0 as k → +∞.

4To define it it suffices to consider two liftings of ϕ1 and uk(rk · +x1) S1, and linearly interpolate them, as done for H in
(3.39). Observe that Hk,i is Lipschitz since uk ∂Brk (xi) is Lipschitz by the choice of rk.
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Now, let us show that, for all i = 1, . . . ,m,

lim
k→+∞

‖∇hk,i‖L1(Brk(xi)
\Brk+1

(xi)) = 0.

Let us make the computation for i = 1, the other cases being identical. Set Hk = Hk,1 and hk = hk,1. Assume
without loss of generality that x1 = (0, 0), and denote Br(x1) = Br. By definition of Hk we have

‖∂tHk‖L∞([0,1]×S1) ≤ ‖ϕ1‖L∞(S1) + ‖uk‖L∞(∂Brk ) ≤ 2 ∀k ∈ N. (4.21)

Moreover, since ϕ1 is Lipschitz,

|∇yHk(t, y)| ≤ |∇S1ϕ1(y)|+ rk|∇uk(rky)| ≤ C + rk|∇uk(rky)|. (4.22)

We now compute ∇hk for x ∈ Brk \Brk+1
:

∇hk(x) =
1

rk − rk+1
∂tHk

(
|x| − rk+1

rk − rk+1
,
x

|x|

)
⊗ x

|x|
+∇yHk

(
|x| − rk+1

rk − rk+1
,
x

|x|

)
∇
(
x

|x|

)
and we get∫

Brk\Brk+1

|∇hk|dx

≤
∫
Brk\Brk+1

1

rk − rk+1

∣∣∣∣∂tHk

(
|x| − rk+1

rk − rk+1
,
x

|x|

)∣∣∣∣+

∣∣∣∣∇yHk

(
|x| − rk+1

rk − rk+1
,
x

|x|

)∣∣∣∣ ∣∣∣∣∇( x

|x|

)∣∣∣∣dx
≤ 1

rk − rk+1
‖∂tHk‖L∞

∣∣Brk \Brk+1

∣∣+

∫ rk

rk+1

∫ 2π

0

ρ
1

ρ

∣∣∣∣∇yHk

(
ρ− rk+1

rk − rk+1
, (cos θ, sin θ)

)∣∣∣∣dρdθ

≤C(rk + rk+1) + C(rk − rk+1) + (rk − rk+1)

∫ 2π

0

rk|∇uk(rk(cos θ, sin θ))|dθ

≤Crk + (rk − rk+1)

∫
∂Brk

|∇uk|dH1 ≤ C (rk + (rk − rk+1))→ 0 as k → +∞,

(4.23)

where we have used (4.18) in the last inequality. Then we conclude∫
Brk\Brk+1

|∇vk −∇u|dx =

∫
Brk\Brk+1

|∇hk −∇u|dx ≤
∫
Brk\Brk+1

|∇hk|dx+

∫
Brk\Brk+1

|∇u|dx→ 0.

Finally, for x ∈ Brk+1
, we have

∇vk(x) =
1

rk+1

x

|x|
⊗ ϕ1

(
x

|x|

)
+

1

rk+1
|x|∇

(
ϕ1

(
x

|x|

))
.

Then, since ϕ1 is Lipschitz,

|∇vk(x)| ≤ C

rk+1
,



26 G. BELLETTINI ET AL.

so we get ∫
Brk+1

|∇vk −∇u|dx ≤
C

rk+1
|Brk+1

|+
∫
Brk+1

|∇u|dx→ 0,

and (4.10) follows.

Now, we can prove Theorem 1.2.

Proof. We start with the proof of the lower bound. Arguing as in the proof of Proposition 4.4, we may suppose
m = 1, Ω = B` and x1 = (0, 0). Let (vk) ⊂ C1(B`;R2) be such that vk → u strictly BV (B`;R2) and

lim inf
k→+∞

A(vk;B`) = lim
k→+∞

A(vk;B`) < +∞.

Select r1 > 0 and d1 ∈ Z as in the proof of Proposition 4.5. Without loss of generality we can suppose that
r1 = `. So we deduce (4.5) and the uniform convergence of (vk) to u on almost every circumference in B`. Now
write A(vk;B`) = A(vk;B` \Brε) +A(vk;Brε) ≥ A(vk;B` \Brε) +

∫
Brε
|Jvk| dx, so that

lim
k→+∞

A(vk;B`) ≥ lim inf
k→+∞

A(vk;B` \Brε) + lim inf
k→+∞

∫
Brε

|Jvk| dx

≥
∫
B`\Brε

√
1 + |∇u|2dx+ lim inf

k→+∞

∫
Brε

|Jvk| dx.

(4.24)

We now apply (4.9) and next pass to the limit as ε→ 0+ to get the lower bound in (1.15), i.e.,

lim inf
k→+∞

A(vk;B`) ≥
∫

Ω

√
1 + |∇u|2dx+ π

N∑
i=1

|di|.

Concerning the proof of the upper bound, consider the sequence (vk) defined in (4.20), which converges to
u in W 1,1(Ω;R2). Then, upon extracting a subsequence such that (∇vk) converges almost everywhere to ∇u,
by (4.11) and dominated convergence we have, using the inequality

√
1 + a2 + b2 + c2 ≤

√
1 + a2 + b2 + |c| for

a, b, c ∈ R,

lim sup
k→+∞

A(vk;B`(xi)) ≤ lim
k→+∞

∫
B`(xi)

√
1 + |∇vk|2dx+ lim

k→+∞

∫
B`(xi)

|Jvk|dx

=

∫
B`(xi)

√
1 + |∇u|2dx+ π|di|,

that leads to

lim sup
k→+∞

A(vk; Ω) ≤ lim
k→+∞

∫
Ω\∪mi=1B`(xi)

√
1 + |∇vk|2dx+ lim sup

k→+∞
A(vk;∪mi=1B`(xi))

=

∫
Ω

√
1 + |∇u|2dx+ π

m∑
i=1

|di|.

Remark 4.6. If u ∈W 1,p(Ω; S1), p ∈ [1, 2), the recovery sequence defined in (4.20) converges to u in W 1,p(Ω;S1)
as well. Then, the results of Theorems 4.3 and 1.2 are still valid if one deals with the relaxation of the area
functional with respect to the strong topology of W 1,p(Ω; S1).
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Remark 4.7 (Relaxation in the local uniform convergence outside singularities). If u is continuous
in Ω \ {x1, . . . , xm}, one can relax the area functional with respect to the uniform convergence out of the
singularities {xi}, i.e., we require that for every compact set K ⊂ Ω \ {x1, . . . , xm} the approximating sequence
(uk) ⊂ C1(Ω;S1) satisfies

uk → u in L∞(K),

or, in other words, if uk → u in L∞loc(Ω \ {x1, . . . , xm};R2). Therefore we are led to consider

AL∞(u; Ω) := inf
{

lim inf
k→+∞

A(uk; Ω) : (uk) ⊂ C1(Ω;R2), uk → u in L1(Ω;R2)

and uk → u in L∞loc(Ω \ {x1, . . . , xm};R2)
}
. (4.25)

It is then possible to show that

AL∞(u; Ω) =

∫
Ω

√
1 + |∇u|2dx+ π

m∑
i=1

|di|. (4.26)

Notice that, if one considers the functional TVJL∞ , obtained by relaxing TVJ with this notion of convergence,
the counterpart of Theorem 4.3 does not hold anymore, since we cannot guarantee a uniform bound on the L1

norm of ∇vk, needed to get (4.7); however, we gain such a control on ‖∇vk‖L1 in the area functional, as soon
as the approximating sequence (vk) has bounded area.

The proof of (4.26) is the same as the one of Theorem 1.2, with the difference that we can deduce straight-
forwardly the uniform convergence of (vk) on almost every circumference in Br1 , without passing through
(4.5).

5. An extension to symmetric piecewise constant BV (Ω;S1) maps

In this section we prove Theorem 1.3. Let us recall that a symmetric triple point map in R2 is a map
u = uT : B`(0) ⊂ R2 → S1 taking three values {α, β, γ} ⊂ S1, vertices of an equilateral triangle, on three non-
overlapping 2π/3-angular regions A,B,C with common vertex at the origin and interfaces a, b, c (see Fig. 1).
We denote by Tαβγ ⊂ R2 the triangle with vertices {α, β, γ}, whose length side is |α − β| =: L =

√
3, and by

Ju = a ∪ b ∪ c the jump set of u. We have |Tαβγ | =
√

3
4 L

2 = 3
√

3
4 , and |Du|(B`) = LH1(Ju) = 3L`.

Proof of Theorem 1.3: upper bound. For simplicity of notation, in what follows we write

ε in place of 1/k,

with k ∈ N.
We construct a recovery sequence (uε)ε ⊂ Lip(B`;R2) as ε→ 0+. Let us consider the rectangle

R := {(t, s) ∈ R2 : t ∈ (0, `), s ∈ (0, L)}

and, for ε ∈ (0, `), the functions mε : R→ [0,+∞) (whose graph is plotted in Fig. 2) defined as

mε(t, s) :=


0 t ∈ [ε, `],

2 ε−tε
sh
L t ∈ [0, ε), s ∈ [0, L2 ],

2 ε−tε
(L−s)h
L t ∈ [0, ε), s ∈ (L2 , L],

(5.1)
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b

Figure 1. The symmetric triple point map: on the left the source disk B`(0), three-sided in
the regions A,B,C, where u takes the values α, β, γ, depicted in the R2 target on the right.

where h := L
2
√

3
= 1

2 . The number h is the height of each of the three isosceles triangles with common vertex

at the origin of the target space that decompose Tαβγ (see Fig. 1 right). Let us denote by Saε , S
b
ε, S

c
ε three tiny

stripes around a, b, c in B`, of width ε and length `− ε
2
√

3
, drawn in Figure 3. More explicitely, we have

Sbε :=

{
(x, y) ∈ B` : |x| ≤ ε

2
, y ≥ ε

2
√

3

}
,

and Saε (Scε) is obtained by clockwisely rotating Sbε of an angle 2π
3 ( 4π

3 respectively) around the origin.
The idea is to gluemε on each strip in order to build three surfaces embedded in R4 living in three non-collinear

copies of R3, whose total area contribution gives |Tαβγ | in the limit ε→ 0+.

We introduce the affine diffeomorphism ψε :
[

ε
2
√

3
, `
]
→ [0, `] such that

ψ′ε(y) =
`

`− ε
2
√

3

=: kε → 1 as ε→ 0+.

Now we can define uε on Sbε: we set

ξ :=
γ − α
L
∈ S1, η := −ξ⊥ = β,

(where ξ⊥ is the π
2 -counterclockwise rotation of ξ) and

uε(x, y) := α+

(
L

2
+
Lx

ε

)
ξ +mε

(
ψε(y),

L

2
+
Lx

ε

)
η ∀(x, y) ∈ Sbε.

In a similar way, we define uε on Saε and Scε . Setting T ε := Bε/
√

3 \ (Saε ∪ Sbε ∪ Scε) and Aε := A \ (Saε ∪ Sbε ∪
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Figure 2. The graph of mε on the rectangle R.

Scε ∪ T ε), Bε := B \ (Saε ∪ Sbε ∪ Scε ∪ T ε), Cε := C \ (Saε ∪ Sbε ∪ Scε ∪ T ε), we define:

uε :=


α in Aε,

β in Bε,

γ in Cε.

(5.2)

It remains to define uε on the small triangle T ε. Let us divide it in four triangles T aε , T
b
ε , T

c
ε , T

0
ε (see Fig. 4).

So, we set uε = 0 on T 0
ε and let uε be the affine function that equals α (β, γ respectively), in the vertex of T ε

confining with Aε (Bε, Cε respectively), and equals 0 on the edge of T 0
ε . A direct check shows that the function

uε is Lipschitz continuous in B`.
Let us compute the area of the graph of uε on Sbε: denoting by mε

t ,m
ε
s the partial derivatives of mε, we have

∇uε(x, y) =

(
L
ε ξ1 +mε

s(ψε(y), L2 + L
ε x)Lε η1 mε

t (ψε(y), L2 + L
ε x)kεη1

L
ε ξ2 +mε

s(ψε(y), L2 + L
ε x)Lε η2 mε

t (ψε(y), L2 + L
ε x)kεη2

)
. (5.3)

Recalling that ξ · η = 0 and |ξ| = |η| = 1, we can compute the square of the Frobenius norm of ∇uε:

|∇uε(x, y)|2 =
L2

ε2

[
ξ2
1 + (mε

s)
2η2

1 + 2ξ1η1m
ε
s + ξ2

2 + (mε
s)

2η2
2 + 2ξ2η2m

ε
s

]
+ (mε

t )
2k2
εη

2
1 + (mε

t )
2k2
εη

2
2

=
L2

ε2
(1 + (mε

s)
2) + (mε

t )
2k2
ε ,

(5.4)

where mε
s and mε

t are evaluated at
(
ψε(y), L2 + L

ε x
)
. Moreover, using that ξ · η⊥ = 1, we have

(det∇uε)2 =
k2
εL

2

ε2
[(ξ1η2m

ε
t +mε

sm
ε
tη1η2)− (ξ2η1m

ε
t +mε

sm
ε
tη1η2)]

2
=
k2
εL

2

ε2
(mε

t )
2.
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y

x

Figure 3. The strips Saε , S
b
ε, S

c
ε and the little triangle T ε in the center.

So we have

A(uε;Sbε) =

∫
Sbε

√
1 +

L2

ε2
(1 + (mε

s)
2) + (mε

t )
2k2
ε +

k2
εL

2

ε2
(mε

t )
2dxdy

=
L

ε

∫
Sbε

√
1 +mε

s

(
ψε(y),

L

2
+
L

ε
x

)2

+mε
t

(
ψε(y),

L

2
+
L

ε
x

)2

k2
ε

(
1 +

ε2

L2

)
+O(ε2)dxdy

=
1

kε

∫
R\Pε

√
1 +mε

s(t, s)
2 +mε

t (t, s)
2k2
ε

(
1 +

ε2

L2

)
+O(ε2)dtds,

(5.5)

where in the last equality we have performed the change of variables

(x, y) =

(
ε

L

(
s− L

2

)
, ψ−1

ε (t)

)
=: φε(t, s)

and we have set Pε = R \ φ−1
ε (Sbε). Notice that 1

kε
→ 1, k2

ε

(
1 + ε2

L2

)
→ 1 as ε→ 0+, so that we get

lim inf
ε→0+

A(uε;Sbε) ≤
∫
R

1dtds+ lim inf
ε→0+

∫
R

|mε
t (t, s)|dtds+ lim inf

ε→0+

∫
R

|mε
s(t, s)|dtds. (5.6)
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Figure 4. The triangle T ε divided further in the four triangles T aε , T
b
ε , T

c
ε , T

0
ε .

Let us compute explicitely the derivatives of mε:

mε
t (t, s) =


0 t > ε,

− 2
sh

εL
t < ε, s <

L

2
,

− 2
(L− s)h
εL

t < ε, s >
L

2
,

mε
s(t, s) =


0 t ≥ ε,

2
ε− t
ε

h

L
t < ε, s <

L

2
,

− 2
ε− t
ε

h

L
t < ε, s >

L

2
.

Then, we obtain

∫
{t<ε,s<L

2 }
|mε

t (t, s)|dtds = ε

∫ L
2

0

2
sh

εL
ds =

hL

4
,∫

{t<ε,s>L
2 }
|mε

t (t, s)|dtds = ε

∫ L

L
2

2(L− s) sh
εL

ds =
hL

4
,

so we get

∫
R

|mε
t (t, s)|dtds =

hL

4
+
hL

4
=
hL

2
∀ε > 0. (5.7)

On the other hand,

∫
{t<ε,s<L

2 }
|mε

s(t, s)|dtds =

∫
{t<ε,s>L

2 }
|mε

s(t, s)|dtds =
L

2

∫ ε

0

2
ε− t
ε

h

L
ds = O(ε),

so we get

lim inf
ε→0+

∫
R

|mε
s(t, s)|dtds = 0. (5.8)
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Summarizing, from (5.6) we obtain

lim inf
ε→0+

A(uε;Sbε) ≤ `L+
hL

2
.

In the same way, we can prove that

lim inf
ε→0+

A(uε;Saε ) = lim inf
ε→0+

A(uε;Scε) ≤ `L+
hL

2
.

Clearly, the definition of uε on Aε, Bε, Cε provides that

lim
ε→0+

A(uε;Aε ∪Bε ∪ Cε) = |B`| = π`2.

It remais to show that the area contribution on T ε is infinitesimal: first notice that

A(uε;T 0
ε ) = |T 0

ε | = O(ε2).

Moreover on T aε (respectively T bε , T
c
ε ) uε is the affine parameterization of the segment (α, 0) (respectively

(β, 0), (γ, 0)) of the target space, therefore on T ε \ T 0
ε the area integrand has no Jacobian contribution and

so is O(ε−1), giving

A(uε;T aε ) = A(uε;T bε ) = A(uε;T cε ) = O(ε).

Then we have

A(uε;T ε) = A(uε;T 0
ε ) +A(uε;T aε ) +A(uε;T bε ) +A(uε;T cε ) = O(ε2) +O(ε).

In the end, we conclude

lim inf
ε→+0

A(uε;B`) ≤ π`2 + 3`L+ 3
hL

2
,

where we recognize that the last quantity on the right-hand side is exactly |Tαβγ |.
As a final step, we have to check that (uε) converges to u strictly BV (B`;R2). Clearly uε → u in L1(B`;R2).

Let us compute the total variation of uε: we have

|Duε|(B`) = |Duε|(Saε ) + |Duε|(Sbε) + |Duε|(Scε) + |Duε|(T ε).

In particular,

|Duε|(T ε) ≤ A(uε;T ε)→ 0 as ε→ 0+.
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Computing the variation on the strip Sbε (similarly for the other strips) we find

|Duε|(Sbε) =

∫
Sbε

√
L2

ε2
(1 + (mε

s)
2) + (mε

t )
2k2
εdxdy

=
L

ε

∫
Sbε

√
1 +mε

s

(
ψε(y),

L

2
+
L

ε
x

)2

+mε
t

(
ψε(y),

L

2
+
L

ε
x

)2

k2
ε

ε2

L2
dxdy

=
1

kε

∫
R\Pε

√
1 +mε

s(t, s)
2 +mε

t (t, s)
2k2
ε

ε2

L2
dtds.

Then, using (5.7) and (5.8), we conclude

lim sup
ε→0+

|Duε|(Sbε) ≤
∫
R

1dtds+ lim sup
ε→0+

∫
R

|mε
s(t, s)|dtds+O(ε) lim sup

ε→0+

∫
R

|mε
t (t, s)|dtds = `L,

so that

lim sup
ε→0+

|Duε|(B`) ≤ 3`L.

By the lower semicontinuity of the variation, we get also

lim inf
ε→0+

|Duε|(B`) ≥ |Du|(B`) = 3`L,

which shows the desired convergence of (uε) to u strictly BV (B`;R2).

Before proving the lower bound, similarly to Lemma 4.1, we show that the strict BV convergence is inherited
to almost every circumference centered at the origin.

Lemma 5.1 (Inheritance). Lemma 4.1 holds with uT in place of u.

Proof. Let ρ < ` and u be the triple point map; clearly

|D(u ∂Bρ)|(∂Bρ) = 3L. (5.9)

On the other hand, since (vk) converges to u in L1(Bρ;R2), for almost every ρ < ` we have vk ∂Bρ →
u ∂Bρ in L1(∂Bρ;R2), and by lower semicontinuity we infer that

|D(u ∂Bρ)|(∂Bρ) ≤ lim inf
k→+∞

∫
∂Bρ

∣∣∣∣∂vk∂s
∣∣∣∣ds for a.e. ρ < `. (5.10)

Integrating with respect to ρ ∈ (0, `), by (5.9) and Fatou’s lemma, we have

|Du|(B`) = 3`L =

∫ `

0

|D(u ∂Bρ)|(∂Bρ)dρ ≤
∫ `

0

lim inf
k→+∞

∫
∂Bρ

∣∣∣∣∂vk∂s
∣∣∣∣dsdρ ≤ lim inf

k→+∞

∫
B`

|∇vk|dx. (5.11)
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By assumption, (vk) converges to u strictly BV (B`;R2), so we have all equalities in (5.11), in particular, using
(5.10),

|D(u ∂Bρ)|(∂Bρ) = lim inf
k→+∞

∫
∂Bρ

∣∣∣∣∂vk∂s
∣∣∣∣ds for a.e. ρ < `.

Upon extracting a suitable subsequence (vkh) depending on ρ we get the conclusion.

Proof of Theorem 1.3 (lower bound). Let (vk) ⊂ C1(B`;R2) be a recovery sequence, i.e.,

vk → u strictly BV (B`;R2) and lim
k→+∞

A(vk;B`) = ABV (u;B`).

Fix ρ ∈ (0, `) and a subsequence (vkh) of (vk) whose restriction to ∂Bρ converges to u ∂Bρ strictlyBV (∂Bρ;R2),
as in Lemma 5.1. For simplicity, let us still denote vkh by vk.

Let us split the area functional as

A(vk;B`) = A(vk;B` \Bρ) +A(vk;Bρ).

On B` \Bρ we still have L1-convergence of (vk) to u, but u (B` \Bρ) has no triple points, so by Theorem 3.14
of [1],

lim inf
k→+∞

A(vk;B` \Bρ) ≥ AL1(u;B` \Bρ) =

∫
Br\Bρ

|
√

1 + |∇u|2dx+ |Dju|(B` \Bρ)

= |B` \Bρ|+ 3L(`− ρ) = π(`2 − ρ2) + 3L(`− ρ).

Therefore

lim
k→+∞

A(vk;B`) ≥ lim inf
k→+∞

A(vk;B` \Bρ) + lim inf
k→+∞

A(vk;Bρ)

≥π(`2 − ρ2) + 3L(`− ρ) + lim inf
k→+∞

∫
Bρ

|Jvk|dx,
(5.12)

where as usual Jvk := det∇vk.
Let us prove that

lim inf
k→+∞

∫
Bρ

|Jvk|dx ≥ |Tαβγ |, (5.13)

from which the lower bound in (1.16) is obtained by passing to the limit as ρ→ 0+ in (5.12). Now we observe
that, since vk is Lipschitz on Bρ, it satisfies the following identity (see (2.7)):∫

Bρ

Jvkdx =
1

2

∫
∂Bρ

(
(vk)1

∂(vk)2

∂s
− (vk)2

∂(vk)1

∂s

)
ds ∀k ∈ N.

Let us parametrize ∂Bρ from [0, 2π) and set ṽk(t) := vk(s(t)) for t ∈ [0, 2π); then

( ˙̃vk)i(t) =
d

dt
(vk)i(s(t)) = ρ

∂(vk)i
∂s

(s(t)), i = 1, 2.
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Thus we get ∫
∂Bρ

(
(vk)1

∂(vk)2

∂s
− (vk)2

∂(vk)1

∂s

)
ds =

∫ 2π

0

(
(ṽk)1(t)( ˙̃vk)2(t)− (ṽk)2(t)( ˙̃vk)1(t)

)
dt.

Denoting ṽk(t) simply by vk(t), we can write∫
Bρ

Jvkdx =
1

2

∫ 2π

0

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)1(t)) dt.

To show (5.13) it is sufficient to prove that

lim inf
k→+∞

1

2

∫ 2π

0

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)1(t)) dt ≥ |Tαβγ |, (5.14)

since obviously

∫
Bρ

|Jvk|dx ≥

∣∣∣∣∣
∫
Bρ

Jvkdx

∣∣∣∣∣ .
In order to show (5.14), denote by θ1 ∈ [0, 2π) (respectively θ2, θ3) the angle of the middle point of the arc
C ∩ ∂Bρ (respectively A ∩ ∂Bρ, B ∩ ∂Bρ) and write

1

2

∫ 2π

0

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)1(t)) dt

=
1

2

∫ θ2

θ1

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)1(t)) dt

+
1

2

∫ θ3

θ2

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)1(t)) dt

+
1

2

∫ θ1

θ3

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)1(t)) dt.

(5.15)

Notice that, as a consequence of Lemma 5.1, vk converges to u strictly BV ([θ1, θ2];R2). Furthermore, by restrict-
ing vk to [θ1, θ1 + δ], for a small δ > 0, as a consequence of Proposition 2.4 we see that vk converges uniformly
to v ≡ γ on [θ1, θ1 + δ]. In particular we have

lim
k→∞

vk(θ1) = γ.

Similarly vk will tend to α and β in θ2 and θ3, respectively. We set

Lk :=

∫ θ2

θ1

(
|v̇k(t)|+ 1

k

)
dt, z(t) = zk(t) :=

∫ t

θ1

(
|v̇k(τ)|+ 1

k

)
dτ, t ∈ [θ1, θ2].

Since z is strictly increasing with derivative bounded from below by 1
k , we can invert it and denote its inverse

t(z). We define wk : [0, Lk]→ R2 as

wk(z) = vk(t(z)).
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Then we have

w′k(z) = v̇k(t(z))
dt

dz
=

v̇k(t(z))

|v̇k(t(z))|+ 1
k

, dt =
1

|v̇k(t(z))|+ 1
k

dz.

Thus, (wk)k is uniformly Lipschitz continuous on [0, Lk] (with modulus of derivative bounded by 1), and

1

2

∫ θ2

θ1

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)1(t)) dt =
1

2

∫ Lk

0

((wk)1(z)(w′k)2(z)− (wk)2(z)(w′k)1(z)) dz. (5.16)

We also have

lim
k→+∞

Lk = lim
k→+∞

∫ θ2

θ1

(
|v̇k(t)|+ 1

k

)
dt = |Du| {y ∈ ∂Bρ : arg(y) ∈ [θ1, θ2]} = |γ − α| = L.

We further reparametrize wk on [0, L] by a multiple of the arc length parameter. Still denoting the obtained
function by (wk)k, we see that wk is uniformly bounded in W 1,∞([0, L];R2) so, upon passing to a (not relabelled)
subsequence, we have

wk
∗
⇀ w w∗-W 1,∞([0, L];R2),

for some w ∈W 1,∞([0, L];R2). Hence, we can pass to the limit in (5.16), which now reads

1

2

∫ L

0

((wk)1(z)(w′k)2(z)− (wk)2(z)(w′k)1(z)) dz
k→+∞−−−−−→ 1

2

∫ L

0

(w1(z)w′2(z)− w2(z)w′1(z)) dz. (5.17)

Recalling that

w(0) = lim
k→+∞

wk(0) = lim
k→+∞

vk(θ1) = γ,

w(L) = lim
k→+∞

wk(L) = lim
k→+∞

wk(Lk) = lim
k→+∞

vk(θ2) = α,

we see that w is a 1-Lipschitz curve on [0, L] starting from γ and ending at α; therefore it must coincide with
the unit speed parameterization of the segment connecting γ to α, i.e.,

w(z) = γ +
α− γ
L

z.

So, we can easily compute the limit integral in (5.17):

1

2

∫ L

0

(w1(z)w′2(z)− w2(z)w′1(z)) dz = −1

2

∫ L

0

(
γ +

α− γ
L

z

)
· (α− γ)⊥

L
dz = −1

2
γ · (α− γ)⊥

=
1

2
(γ1α2 − γ2α1) = |Tα0γ |,

where Tα0γ is the triangle with vertices α, γ and the origin 0. We conclude that

lim
k→+∞

1

2

∫ θ2

θ1

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)2(t)) dt = |Tα0γ |.
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In a similar way, one can prove that

lim
k→+∞

1

2

∫ θ3

θ2

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)2(t)) dt = |Tα0β |,

lim
k→+∞

1

2

∫ θ1

θ3

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)2(t)) dt = |Tβ0γ |,

and (5.14) follows.

Remark 5.2. A result similar to Theorem 1.3 holds, up to trivial modifications, when u : B`(0) → S1 is a
symmetric n-junction map, taking (in the order) the values α1, . . . , αn vertices of the regular n-gon Pα1···αn
inscribed in the unit circle, on n non-overlapping 2π/n-angular regions with common vertex at the origin. In
formulas, let L be the side of Pα1···αn and h be the height of each isosceles triangle that decomposes Pα1···αn ,
then there holds the following.

Corollary 5.3. Let u : B`(0)→ S1 be a symmetric n-junction map. Then

ABV (u,B`) = |B`|+ |Du|(B`) + |Pα1···αn | = π`2 + nL`+
n

2
hL.
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