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Owing to its probabilistic nature, a measurement process in quantum mechanics produces a distribution
of possible outcomes. This distribution—or its Fourier transform known as full counting statistics (FCS)—
contains much more information than say the mean value of the measured observable, and accessing it is
sometimes the only way to obtain relevant information about the system. In fact, the FCS is the limit of an
even more general family of observables—the charged moments—that characterize how quantum
entanglement is split in different symmetry sectors in the presence of a global symmetry. Here we
consider the evolution of the FCS and of the charged moments of a U(1) charge truncated to a finite region
after a global quantum quench. For large scales these quantities take a simple large-deviation form,
showing two different regimes as functions of time: while for times much larger than the size of the region
they approach a stationary value set by the local equilibrium state, for times shorter than region size they
show a nontrivial dependence on time. We show that, whenever the initial state is also U(1) symmetric, the
leading order in time of FCS and charged moments in the out-of-equilibrium regime can be determined by
means of a space-time duality. Namely, it coincides with the stationary value in the system where the roles
of time and space are exchanged. We use this observation to find some general properties of FCS and
charged moments out of equilibrium, and to derive an exact expression for these quantities in interacting
integrable models. We test this expression against exact results in the Rule 54 quantum cellular automaton
and exact numerics in the XXZ spin-1=2 chain.
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Introduction.—The connection between symmetries and
conservation laws—which culminates in the celebrated
Noether’s theorem and the Ward identities [1–3]—is
arguably the most fundamental aspect of our understanding
of the physical world. Loosely stated, this connection
implies that for any continuous symmetry of a physical
system there is an associated conserved quantity, or charge,
that remains invariant during the time evolution. An
immediate consequence of this fact is that—even when
the system is out of equilibrium—the presence of a
symmetry implies that the value of the associated charge
is fixed. A conserved charge, however, can still show
nontrivial fluctuations when restricted to a subsystem
[4–13]. In fact, whenever the system is prepared in an
out-of-equilibrium state, these charge fluctuations evolve

nontrivially in time even in the presence of translational
invariance [14–16].
Because of the special nature of the conserved charge,

one can expect the time evolution of its fluctuations to give
universal information about the system’s dynamics. To
make this statement more quantitative let us consider a one-
dimensional quantum many-body system enjoying a global
U(1) symmetry generated by a charge Q̂ that can be split as
a direct sum Q̂ ¼ Q̂A ⊕ Q̂Ā for any spatial bipartition AĀ.
We then prepare the system in some low-entangled non-
equilibrium initial state jΨ0i, let it evolve according to its
own unitary dynamics, and look at the time evolution of the
full-counting statistics (FCS) at time t

ZβðA; tÞ ¼ hΨtjeiβQ̂A jΨti ¼ tr
�
ρ̂AðtÞeiβQ̂A

�
: ð1Þ

Here A is a contiguous block and ρ̂AðtÞ ¼ trĀjΨtihΨtj is the
reduced density matrix of the subsystem A. This quantity
characterizes the full probability distribution of Q̂A in jΨti.
Indeed, considering its derivatives in β ¼ 0 one can
reproduce all the moments of the reduced charge.
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Because of the generic phenomenon of local relaxation
[17–23] we expect the FCS [Eq. (1)] to show qualitatively
different behaviors in the two regimes, (i) t ≫ jAj and
(ii) t ≪ jAj,where jAj denotes the size of A. Specifically, for
t ≫ jAj we expect the subsystem A to relax to a stationary
state ρ̂st;A and, therefore, the FCS to become time inde-
pendent at leading order in time

ZβðA; tÞ ≃ tr½ρ̂st;AeiβQ̂A �: ð2Þ
For this reason we refer to (i) as the equilibrium regime.
Conversely, in the regime (ii) the FCS generically shows a
nontrivial time dependence even at leading order in time,
and we hence refer to it as the out-of-equilibrium regime.
In this Letter we consider the evolution of Eq. (1) in the

out-of-equilibrium regime and obtain two main results.
First, we show that, unexpectedly, whenever the state jΨ0i
is an eigenstate of the charge Q̂ the FCS in the out-of-
equilibrium regime can be written in terms of an equilib-
rium quantity for the “dual system”where the roles of space
and time have been exchanged. This allows us to find a
number of general features of its evolution in any locally
interacting systems. Second, we use our observation to
find an exact prediction for the nonequilibrium dynamics
of Eq. (1) in interacting integrable models treatable by
thermodynamic Bethe ansatz (TBA) [24,25]. To the best
of our knowledge, this represents the first closed form
expression of the FCS for interacting systems in the out-
of-equilibrium regime, and complements existing results
on the dynamics of FCS in the local equilibrium state
[12,26–31].
In fact, our arguments are not limited to charge fluctua-

tions in a single replica and can be extended to entangle-
ment-related quantities. Namely, they also apply for the
more general family of observables known as charged
moments (CM) [15,32,33]

Zα;βðA; tÞ ¼ tr
�
ρ̂AðtÞαeiβQ̂A

�
; α; β∈R: ð3Þ

These quantities measure how the entanglement between A
and Ā is decomposed in different charge sectors—their
Fourier transforms in β are the symmetry resolved entan-
glement entropies (SREEs) [32–36]—and, remarkably,
they are accessible in ion-trap experiments [37–41].
Space-time duality.—To explain our reasoning it is conve-

nient to begin by considering the case in which the system
of interest is a brickwork quantum circuit. Namely, it is com-
posed of a collection of 2L qudits with d internal states
arranged on a discrete lattice, and its time evolution is
implemented by discrete applications of the unitary operator

Û ¼ Π̂†Û⊗LΠ̂Û⊗L: ð4Þ
Here Û acts on two neighboring sites, and Π̂ is the periodic
shift by one site. Brickwork quantum circuits dispose of
most features of real-world quantum matter but retain spatial

locality and unitarity. Therefore, they are regarded as the
simplest possible extended quantum systems [42–45].
Importantly, these systems emerge naturally in the context
of both classical [46,47] and quantum [48] simulation of
quantum dynamics.
In a quantum circuit the conservation of the charge Q̂ can

be implemented locally via a traceless operator q̂ that
together with Û satisfies

ðeiβq̂ ⊗ eiβq̂ÞÛ ¼ Ûðeiβq̂ ⊗ eiβq̂Þ; ∀ β∈R: ð5Þ
This ensures that Q̂ ¼ P

j q̂j—where q̂j acts as q̂ at site j
and as the identity elsewhere—is conserved and can be split
as a direct sum for any spatial bipartition.
Analogously, considering the family of two-site trans-

lational invariant pair-product states

jΨ0i¼ jψ0i⊗L; jψ0i¼
Xd
i;j¼1

mijji;ji; tr½mm†�¼1; ð6Þ

where fjiig is a basis of the Hilbert space of a single qudit,
we have that if and only if

eiβq̂m̂ ¼ eiβq̄m̂e−iβq̂
T
; ∀ β∈R; ð7Þ

with q̄ a scalar and ð·ÞT denoting transposition, then
Q̂jΨ0i ¼ Lq̄jΨ0i.
Introducing the following tensor-network inspired [49]

diagrammatic representation

ð8Þ

we can depict eiβQ̂A jΨti as in Fig. 1(a). Note that the
matrices in Eq. (8) act from bottom to top, and for
convenience we define jAj as the number of qudits in
the subsystem divided by 2. Our first step is to show that,
using Eqs. (5) and (7), we can “deform” the string of red
circles in the diagram passing from Figs. 1(a) to 1(c).
To see this we first repeatedly use the diagrammatic

representation of Eq. (5), reported in Fig. 1(d1), and obtain
Fig. 1(b) from Fig. 1(a). Next, we use the relations (5) and
(7) to propagate the circles “sideways,” i.e., in the space
direction. Specifically, Eq. (8) implies that m̂ already acts in
the space direction while Eq. (5) gives

ˆ̃Uðeiβq̂ ⊗ e−iβq̂
T Þ ¼ ðe−iβq̂T ⊗ eiβq̂Þ ˆ̃U; ð9Þ

where we introduced the reshuffled local gate with ele-
ments Ũij

kl ¼ Ulj
ki [50]. The two relations (7) and (9) are

represented diagrammatically in Figs. 1(d2) and 1(d3)

respectively. In particular, ˆ̃U is still represented by the
green tensor in Eq. (8) but now the latter is seen as a matrix
propagating from left to right. A repeated application of
Figs. 1(d2) and 1(d3) brings us from Figs. 1(b) to 1(c).
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To conclude, we use the representation in Fig. 1(c) to
compute the FCS via “space propagation” [50–60].
Namely, we represent Eq. (1) as in Fig. 2(a) and contract
it from left to right using the transfer matrixWt highlighted
in the figure. Translating it into an equation we have

ZβðA;tÞ¼eiβq̄Atr½ŴjĀj
t ðeiβ ˆ̃Qt ⊗r1ÞWjAj

t ðe−iβ ˆ̃Qt ⊗r1Þ�; ð10Þ

where the tensor product ⊗r is between forward and
backward time sheets [top and bottom part of Fig. 2(a)]
and we introduced the charge of the space-time swapped

model ˆ̃Qt ¼
P

t
j¼1ðq̂2j−1 − q̂T2jÞ. Using now that for x ≥ 2t

the matrix Ŵx
t becomes a projector onto its unique fixed

points parametrized by the matrices ML;t and MR;t (see
Fig. 2(b), and, e.g., Ref. [56] for more details), we find that
for jAj; jĀj ≥ 2t [61],

ZβðA; tÞ ¼ eiβq̄jAjtr½ ˆ̃ρst;teiβ ˆ̃Qt �tr½ ˆ̃ρst;te−iβ ˆ̃Qt �; ð11Þ
where we introduced the pseudodensity matrix ˆ̃ρst;t ¼
M†

L;tMR;t [56]. We now follow Ref. [56] and interpret
ˆ̃ρst;t as the stationary state of the “space-time swapped”
circuit—i.e., the quantum circuit obtained from the starting
one by exchanging the roles of space and time. Although
this matrix is not Hermitian in the usual sense, i.e.,
ˆ̃ρst;t ≠ ˆ̃ρ†st;t, it is diagonalizable. Moreover, its eigenvalues
are real, non-negative, and sum to 1 [56]. This means that it
can be interpreted as a thermal state of a system with a non-
Hermitian, yet positive, Hamiltonian [62].
A comparison between Eqs. (2) and (11) reveals that the

FCS in the nonequilibrium regime is written in terms of
equilibrium FCS for the space-time swapped model. This
means that the FCS in the nonequilibrium regime can be
written in terms of equilibrium quantities. This observation
constitutes our first main result.
General properties.—Before showing how Eq. (11) can

be used to produce quantitative predictions we make three
important observations. (A) The analog of Eq. (11) also
holds for the CM [Eq. (3)].Indeed, applying the above
reasoning we find

Zα;βðA; tÞ ¼ eiβq̄jAjtr½ ˆ̃ραst;teiβ ˆ̃Qt �tr½ ˆ̃ραst;te−iβ ˆ̃Qt �; ð12Þ

FIG. 2. Diagrammatic representation of e−iβjAjtZβðA; tÞ for
(a) generic choices of t, jAj, jĀj, and (b) in the regime
jAj; jĀj > 2t. The diagram in the left panel follows directly from
the definition of time evolution (and subsequent manipulations in
Fig. 1), but it can be equivalently understood as a result of space
propagation by identifying the shaded part as a transfer matrix
Wt that acts on the vertical lattice of 2t qudits [cf. Eq. (10)].
Whenever the sizes of the subsystem and the system are large
enough compared with the time t, the action of Wt in each
subsystem can be replaced by fixed points MR;t and M†

L;t, which
gives the diagram in (b).

FIG. 1. Diagrammatic representation of eiβQA jΨti. Starting with the diagrammatic representation in (a), one can use the local
continuity relations (d) to first deform the string of red dots to a triangle (b), and then move it completely to the two sides (c). We adopted
the convention that when they are acting sideways [cf. the diagrams (d2) (d3)] the matrices act from left to right.
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for jAj; jĀj ≥ 2t. (B) Equations (11) and (12) immediately
imply that SREEs display a delay time for activation, i.e.,
the entanglement entropies of a sector with charge Q ¼
jAjq̄þ ΔQ is identically zero up to a time tD ∝ jΔQj.
This observation generalizes the free-fermion result of
Refs. [15,16] to generic quantum circuits. To prove it
we note that it suffices to show that ρ̂A;QðtÞ—the density
matrix reduced to the block of chargeQ—has zero trace for
t ≤ tD. Indeed, since ρ̂A;QðtÞ is positive semidefinite, it has
zero trace precisely when it is zero. Using now Eqs. (1) and
(11) and considering the physically relevant case of charge
operators with integer spectrum we have

tr½ρ̂A;QðtÞ�
Z

π

−π

dβ
2π

tr
�
ˆ̃ρst;te−iβ

ˆ̃Qt
�
tr
�
ˆ̃ρst;teiβ

ˆ̃Qt
�
eiβΔQ: ð13Þ

Using that the integrand is analytic and 2π periodic we have
that the integration contour can be shifted along the
imaginary axis. Therefore, if the integrand vanishes at either
�i∞ the integral is zero. As is shown in the Supplemental
Material [63], this happens for t ≤ tD ≔ jΔQj=2qdiff where
qdiff is the difference between the largest and smallest
eigenvalues of q̂ and is equal to the maximal eigenvalue

of ˆ̃Qt=t [63].Moreover, using the continuity equation for Q̂A

it is possible to interpret ˆ̃Qt as the associated current operator
integrated in time, up to t at the left (right) boundary of A
[68]. Thus the time delay is the shortest possible time in
which the charge jΔQj can be transported through the
boundaries of the system. (C) Interpreting ˆ̃ρst;t as a (gener-
alized) Gibbs state one can use general arguments of
statistical mechanics to show that the “number entropy”
−
P

Q tr½ρ̂A;QðtÞ� log tr½ρ̂A;QðtÞ� grows in time as ð1=2Þ log t
[63]. This observation once again generalizes the free-
fermion result of Refs. [15,16] to generic systems.
Integrable models.—Let us now proceed to show that the

general observations above can be used to find predictions in
interacting integrable quantum many-body systems. To this
aim, we begin by recalling few basic facts about the latter
systems. The spectrum of an integrable model generically
consists of a number of stable quasiparticle species, para-
metrized by a species index n and a rapidity λ. Their
properties are described through a compact set of kinematic
data: energy εnðλÞ, momentum pnðλÞ, and charge qn of a
quasiparticle, as well as the two-particle scattering kernel
TnmðλÞ, and the density of the chargeq0 in the reference state
without quasiparticles. In the equilibrium regime, for a large
subsystem jAj → ∞ we can use the TBA framework along
with the quench action method [69,70] to find the asymp-
totic logarithmic density of charged moments:

dα;β ¼ lim
jAj→∞

1

jAj log tr
�
ραst;Ae

iβQA
�

¼ iβq0 þ
X
n

Z
dλ
2π

p0
nðλÞKðα;βÞ

n ðλÞ; ð14Þ

with the functions Kðα;βÞ
n ðλÞ satisfying a set of coupled

integral equations,

Kðα;βÞ
n ¼ sgn½p0

n� log
�
ð1−ϑnÞαþ

ϑαn

xsgn½p
0
n�

n

�

log½xnðλÞ� ¼−iβqnþ
X
m

Z
dμTnmðλ−μÞKðα;βÞ

m ðμÞ: ð15Þ

HereϑnðλÞ are the occupation functions of the quasiparticles
in the long time steady statewhich can be determined exactly
for certain combinations of initial states andmodels [71–85].
This reproduces the results of Ref. [86] obtained using the
Gartner-Ellis theorem.
To evaluate Eqs. (11) and (12) we need to write the

stationary densities of the system where the roles of
position and time are swapped. Following Ref. [56] we
obtain them from Eqs. (14) and (15) by performing a space-
time swap in Fourier space, i.e., exchanging the roles of
pnðλÞ and εnðλÞ. This leads to

sα;β ¼ lim
t→∞

1

t
log tr

�
ρ̃αst;teiβQ̃t

�

¼ iβq̃0 þ
X
n

Z
dλ
2π

ε0nðλÞLðα;βÞ
n ðλÞ; ð16Þ

where now we have that

Lðα;βÞ
n ¼ sgn½ε0n� log

�
ð1−ϑnÞαþ

ϑαn

ysgn½ε
0
n�

n

�
;

log½ynðλÞ� ¼−iβq̃nþ
X
m

Z
dμTnmðλ−μÞLðα;βÞ

m ðμÞ: ð17Þ

The dual driving term q̃n and reference-state density q̃0
depend upon the form of ˆ̃Qt, but can be determined on a
case by case basis. We now arrive at our second main result:
for interacting integrable models the leading order values of
CM in the out-of-equilibrium regime are determined by
Eqs. (16) and (17).
We emphasize that Eqs. (14) and (16) predict an

exponential decay in time of the charged moments in the
nonequilibrium regime and an exponential decay in space
in the equilibrium regime. This behavior can be understood
intuitively by noting that the logarithm of a charged
moment in a stationary state is generically extensive.
Interestingly, this phenomenology is in contrast with what
is observed in the case of random unitary circuits with
conservation laws, which show subexponential decay
[87,88]. The latter results are not in contradiction with
space-time duality: they merely indicate that for random
unitary circuits with conservation laws the logarithms of the
charged moments in the space-time swapped stationary
state are not extensive, i.e., sα;β ¼ 0.
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Tests.—To test this prediction we perform two nontrivial
checks, one analytic and one numerical with details on each
presented in the Supplemental Material [63]. For the
analytic check we employ the so-called Rule 54 quantum
cellular automaton [89] which, despite being an interacting
and TBA integrable model [90,91], is simple enough to
allow for the exact calculation of several nonequilibrium
quantities [91–105] (see Ref. [106] for a recent review).
Comparing exact results of the charged moments in a
quench from a set of solvable initial states we find exact
agreement with Eqs. (16) and (17).
For the numerical checkwe use the paradigmatic example

of an interacting integrable model: the XXZ spin chain,
Ĥ¼P

2L
j¼1 σ̂

x
j σ̂

x
jþ1þσ̂yj σ̂

y
jþ1þΔσ̂zjσ̂

z
jþ1, quenched from either

theNéel state, jΨNi ¼ j↑↓i⊗L, or theMajumdar-Gosh state,
jΨMGi¼½ðj↑↓i−j↓↑iÞ= ffiffiffi

2
p �⊗L. We compare Eqs. (16) and

(17) against numerical simulations using infinite time-
evolving block decimation scheme (iTEBD) [107] directly
in the thermodynamic limit and report the results in Fig. 3
finding good agreement.
Finite time dynamics.—In analogy with what happens

for Rényi entropies [56], the expressions (14) and (16)
show a breakdown of the quasiparticle picture for CM
[15,16] in the presence of interactions. More precisely, they
imply that a quasiparticle description is only possible if one
admits that the quasiparticle velocities depend on both α
and β. This contrasts the usual assumption of the quasi-
particles being observable independent [108,109]. We also
remark that, as for the Rényi entropies [56], combining
Eqs. (14) and (16) by assuming abrupt saturation of each
mode, one can reconstruct the full dynamics of CM at
leading order, i.e.,

logZα;βðA;tÞ

≃ iβq̄jAjþ
X
n

Z
dλmin½jAj;2tvðα;βÞn ðλÞ�dðα;βÞn ðλÞ; ð18Þ

where the explicit expression of vðα;βÞn ðλÞ and dðα;βÞn ðλÞ is
reported in the Supplemental Material [63]. This means
that, upon computing the Fourier transform of the CM via
saddle point integration, our result gives access to the
full dynamics of SREE at leading order. The FCS are an
important example of this as the Fourier transform
returns the probability of measuring charge Q in A at time
t. We find that it is normally distributed with standard
deviation [63],

DðtÞ ¼
X
n

Z
dλ q2n;effρnð1 − ϑnÞ min½jAj; 2tjvnj�; ð19Þ

where vn and qn;eff are the standard quasiparticle velocity
and effective charge. This shows a remergence of the
quasiparticle picture in the α → 1 limit as is the case for
Renyi entropies [56].
Conclusions.—In this Letter we have studied the quench

dynamics of full counting statistics and charged moments,
which characterize symmetry resolved entanglement, in
interacting systems. Upon identifying two dynamical
regimes—equilibrium and nonequilibrium—we have
shown that both can be analyzed using equilibrium tech-
niques via space-time duality. We used this observation to
determine some generic features of symmetry resolved
entanglement: the presence of a time delay for activation,
and the logarithmic growth of the number entropy.
Moreover, we have conjectured a closed-form expression
for full counting statistics and charged moments in inter-
acting integrable models and tested it against exact ana-
lytical and numerical results. We considered global
quantum quenches from symmetric initial states, i.e.,
eigenstates of the charge, but our method can be directly
applied to mixed initial states relevant for transport settings
[12,26–31]. An immediate direction for future research is to
extend our approach to cases in which the initial state
explicitly breaks the U(1) symmetry [110] or, more gen-
erally, to full counting statistics of nonconserved observ-
ables [111,112].
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