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Work statistics, quantum signatures, and enhanced work extraction in quadratic fermionic models
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In quadratic fermionic models, we determine a quantum correction to the work statistics after both a sudden
quench and a time-dependent driving. Such a correction lies in the noncommutativity of the initial quantum state
and the time-dependent Hamiltonian, and is revealed via the Kirkwood-Dirac quasiprobability (KDQ) approach
to two-times correlators. Thanks to the latter, one can assess the onset of nonclassical signatures in the KDQ
distribution of work, in the form of negative and complex values that no classical theory can reveal. By applying
these concepts on the one-dimensional transverse-field Ising model, we relate nonclassical behaviors of the KDQ
statistics of work in correspondence of the critical points of the model. Finally, we also prove the enhancement
of the extracted work in nonclassical regimes where the noncommutativity takes a role.
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I. INTRODUCTION

A fundamental quantity in nonequilibrium thermodynam-
ics is the statistics of the work done on a quantum system
by an external coherent source varying its Hamiltonian over
time [1–3]. In the quantum regime, the task of determin-
ing energy-change fluctuations is still debated in the current
literature, especially when considering many-body quantum
systems [4–10] and addressing cases where the initial density
matrix ρ0 and the system Hamiltonian Ht are noncommuting
operators [11–17].

It is known that there is no quantum observable that allow
us to directly measure differences of energy values in different
realizations of the system dynamics [18]. Hence, different
protocols for their evaluation have been proposed in the last
few decades [14,15,19–26]. In this regard, a celebrated proto-
col is the two-point measurement (TPM) scheme [27–30] that
well reproduces the quantum work statistics when ρ0 and Ht

commute. However, in the case of noncommutativity, the re-
sults provided by the TPM scheme suffer from the uncertainty
due to quantum measurement back action. On the other hand,
in agreement with the no-go theorems in Refs. [15,31,32], it is
also known that there is not a unique measurement scheme to
characterize—quantum mechanically—the work statistics or,
more in general, functions of measurement outcomes defined
at two times.

In this paper, we compute the characteristic function of
the work distribution for a quadratic fermionic many-body
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system [33], using the Kirkwood-Dirac quasiprobability
(KDQ) approach [34–37] applied to quantum thermodynam-
ics [15,16,38]. In fact, quadratic models are of paramount
importance since they allow us to investigate equilibrium
and nonequilibrium properties of probability distribution
functions exactly [39–43]. They give us the opportunity to
rigorously inspect at quantum many-particle phenomena, thus
going beyond the few-particle results but still keeping man-
ageable the complexity of the computation.

Thanks to KDQs, we are able to determine a quantum
correction to the distribution of work by thus amending the
result obtained from applying the TPM scheme, which rids us
off any quantum coherence of ρ0 in the initial Hamiltonian
basis. In this way, we recover the unperturbed expression of
the average work, i.e., Tr{Htρt } − Tr{H0ρ0}, which exhibits a
natural classical-quantum correspondence [44]. Another key
property of the KDQ approach is that, by evaluating the
characteristic function, one can determine whether the work
statistics is originated by a quasiprobability distribution, thus
with negative real terms or even complex ones. The latter
cannot be reproduced by any corresponding classical theories,
and for this reason their presence represents a signature of
nonclassicality [45]. A work distribution can be nonclassical
at a given time if the initial state and the system Hamiltonian
do not commute. In such a case, a quantum correction to
the work statistics needs to be applied. Here, these concepts
are derived for a generic many-body fermionic system and
directly linked to the critical behavior of the one-dimensional
(1D) transverse field Ising model [46] across its magnetic
phases. In this way, we determine that the KDQ distribution
of the stochastic work becomes nonclassical across the critical
point, where the noncommutativity of ρ0 and Ht , if present, is
made evident. We also find a work extraction enhancement
in those regions where noncommutativity takes a role. As an
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important remark, we stress that the results of our analysis
hold both in the case the initial Hamiltonian Ht1 of the work
protocol is powered by a sudden quench and in the more
realistic scenario where the Hamiltonian change Ht1 → Ht2 is
enabled by a sufficiently fast ramp driving.

II. PROTOCOL

Let us take into account a quantum system starting
from a state ρ0 subjected to a time-dependent driving of
its Hamiltonian parameters from time t1 to t2. By ex-
pressing the Hamiltonian Ht in spectral decomposition, i.e.,
Ht = ∑

n E (n)
t �

(n)
t with �

(n)
t = |E (n)

t 〉〈E (n)
t |, the probability to

do/extract a given amount of stochastic work W[t1,t2] = Et2 −
Et1 on/from the system obeys the distribution

P(W[t1,t2] ) =
∑
m,n

pm,n δ
(
W − (

E (m)
t2 − E (n)

t1

))
, (1)

where δ(·) is the Dirac delta, and E (n)
t1 and E (m)

t2 are, respec-
tively, the internal energies of the system at the beginning
and at the end of the driving. In fact, since the energy of the
system is assumed to change according to a time-dependent
driving of its Hamiltonian, the internal energy variations can
be ascribed as work. Moreover, with pm,n we denote the joint
probability of the energy at times t1 and t2. As argued in
the Introduction, if [ρ0, Ht1 ] �= 0 and/or [Ht1 , Ht2 ] �= 0, there
is not an unique way of defining multitime joint probabilities
in the quantum regime. In fact, quantum mechanically, one
cannot obtain the statistics of outcomes originating from non-
compatible quantum observable without losing information
[15,31,32]. Therefore, we are going to analyze the following
two possibilities:

pm,n =
{

Tr
{
U[t1,t2]�

(n)
t1 ρ0 �

(n)
t1 U †

[t1,t2]�
(m)
t2

}
TPM

Tr
{
U[t1,t2]�

(n)
t1 ρ0 U †

[t1,t2]�
(m)
t2

}
KDQ,

(2)

where U[t1,t2] = T exp(−i
∫ t2

t1
Ht dt ) is the time-ordered expo-

nential of the Hamiltonian. The expressions in Eq. (2) are the
joint probabilities returned by the TPM and KDQ approach,
respectively, to the two-times work statistics. It is worth noting
that, if [ρ0, Ht1 ] = 0, then the two schemes are equivalent.
Otherwise, the noncommutativity of ρ0 and Ht1 can entail that
some pm,n are negative real numbers or even complex. In this
context, the characteristic function G(u) = 〈eiuW[t1 ,t2]〉 of the
work distribution is thus defined as

G(u) =
{

Tr
{
�1(ρ0)e−iuHt1 eiuHH

t2
}

TPM

Tr
{
ρ0 e−iuHt1 eiuHH

t2
}

KDQ,
(3)

where u ∈ C, HH
t2 = U †

[t1,t2]Ht2U[t1,t2] denotes the evolution of
Ht2 expressed in the Heisenberg representation and �1(ρ0) =∑

n �
(n)
t1 ρ0�

(n)
t1 is the diagonal part of the initial density matrix

ρ0 in the basis of Ht1 . Note that the characteristic function of
the KDQ work distribution is the quantum correlation function
of the operators e−iuHt1 and eiuHH

t2 that, in the general case, do
not commute among them and with ρ0, the arbitrary initial
quantum state.

III. MODEL

We consider quadratic fermionic models with the Hamilto-
nian

Ht = −
∑
k, j

(Tk jc
†
kc j + �k jc

†
kc†

j + H.c.) − h(t )
∑

k

(2nk − 1),

(4)
where c†

k and ck are the fermionic creation and annihilation
operators, such that nk = c†

kck and {ck, c†
j } = δk j . {·, ·} denotes

the anticommutator, while δk j is the Kronecker delta. More-
over, Tk j and �k j are, respectively, the hopping (or tunneling)
and pairing amplitudes, while h(t ) is the time-dependent
strength of an external field. Under the assumption that the
Hamiltonian Ht is translational invariant, i.e., Tk j = T (|k − j|)
and �k j = �(|k − j|), Ht admits the quadratic form

Ht =
∑
p>0

�†
pHp(t )�p (5)

in the momentum component p, with �†
p = (c̃†

p, c̃−p) where

c̃p = ei π
4√
L

∑
k

e−ipkck,

Hp(t ) =
(

h(t ) − T̃p �̃p

�̃p T̃p − h(t )

)

in terms of the Fourier transform T̃p = ∑
r T (r) cos(pr) and

�̃p = ∑
r �(r) sin(pr) of the hopping and pairing ampli-

tudes, respectively. Quadratic fermionic models are quite
versatile, since they can be directly mapped to quantum spin
systems via the Jordan-Wigner transformation [47]. In this re-
gard, both the transverse field Ising model and the XY model
can be recovered and then analytically solved [48].

The 2×2 Hamiltonian Hp(t ) becomes diagonal after
a proper SU(2) rotation around the y axis. Formally,
Hp(t ) = R†

y (φp(t ))Dp(t )Ry(φp(t )), with Dp(t ) = ωp(t )σ z and
R†

y (φp(t )) = exp(−iφp(t )σ y/2), where φp(t ) denotes the Bo-
goliubov angle and σα (α ∈ {x, y, z}) are Pauli matrices.
We thus get the instantaneous Bogoliubov fermions �p(t ) =
(γp, γ

†
−p)T = R†

y (φp(t ))�p such that, for any time t ,

Ht =
∑
p>0

�†
p(t )Dp(t )�p(t ). (6)

During the work protocol, we vary the external field over
time according to a specific time-dependent function h(t ). In
the characteristic function G(u), the full time dependence en-
ters via the Heisenberg representation of the final Hamiltonian
HH

t2 , whose closed-form expression reads

HH
t2 =

∑
p>0

�†
pH

[2]
p

H
�p, (7)

with

H[2]
p

H = U†
p,t1:t2 R†

y

(
φ[2]

p

)
ω[2]

p σ zRy
(
φ[2]

p

)
Up,t1:t2 , (8)

where Up,t1:t2 = T exp(−i
∫ t2

t1
Hp(s) ds) and we used the

shortcut notation ω
[ j]
p = ωp(t j ) and φ

[ j]
p = φp(t j ) for the sake

of presentation. Note that the time-ordered exponential en-
tering the matrix Up,t1:t2 is carried out from solving the
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Heisenberg differential equation

�̇p = i[Ht , �p] = −iHp(t )�p, (9)

with h̄ set to 1 and such that Up,t1:t�p = �H
p,t .

IV. KDQ CHARACTERISTIC FUNCTION OF WORK

Let us demonstrate how to analytically compute the char-
acteristic function of the KDQ distribution of work, as well
as its derivatives, for a generic quadratic fermionic model. We
thus recall that G(u) depends on the initial density matrix that
is taken equal to ρ0 = exp{−βHt0}/Z , with Z = Tr{e−βHt0 }
such that [Ht0 , Ht1 ] �= 0. In this regard, note that some effi-
cient variational quantum algorithms are now available for the
preparation of thermal states, such as ρ0, on a quantum device
[49–54]. It is thus shown that also the preparation of a desired
thermal state does not come without a cost, as auxiliary sys-
tems (ancillae) are needed. However, high-fidelity preparation
can be achieved by means of algorithmic procedures whose
complexity scales polynomially with the product of the size
of the quantum system one aims to initialize and the number
of ancillae. Thus, by preventing the use of algorithms scaling
exponentially with the system’s size, an efficient initial states
preparation is, in principle, feasible.

By substituting ρ0, Ht1 , and HH
t2 in the characteristic func-

tion, one gets

G(u) =
∏

p

gp(u)

gp(0)
, (10)

where

gp(u) = Tr
{
e−β�†

pH
[0]
p �pe−iu�†

pH
[1]
p �peiu�†

pH
[2]
p

H
�p

}
. (11)

We note that the trace in Eq. (11) is evaluated in the
p-momentum Fock subspace {|∅〉, c†

p|∅〉, c†
−p|∅〉, c†

pc†
−p|∅〉},

where |∅〉 denotes the vacuum state such that c±p|∅〉 = 0.
By repeatedly applying the group composition law of

SU(2) matrices to Eq. (11), one gets

e−β�†
pH

[0]
p �pe−iu�†

pH
[1]
p �peiu�†

pH
[2]
p

H
�p = e�†

pBp�p . (12)

The spectral decomposition of Bp provides us eigenvalues
bp,−bp such that

gp(u) = Tr
{
e�†

pBp�p
} = 2(1 + cosh bp). (13)

V. QUANTUM SIGNATURES IN WORK STATISTICS

The KDQ distribution of work P(W[t1,t2] ) can exhibit
nonclassical properties, which no classical model can repro-
duce. Specifically, the nonclassicality of P(W[t1,t2] ) means that
Repm,n < 0 and/or Impm,n �= 0 for some indices (m, n). To
witness Impm,n �= 0, one can use the following statement:

G∗(u) =
∫

dW[t1,t2]e
−iuW[t1 ,t2] P∗(W[t1,t2]

) = G(−u) (14)

if and only if Impm,n = 0 for any (m, n). Hence, a violation
of the identity G∗(u) = G(−u) is directly linked to the pres-
ence of complex values in the KDQ distribution of work.
In the previous paragraph, we have determined that G(u) =

∏
p gp(u)/gp(0). As a result,

G∗(u) = G(−u) if gp(u) = g∗
p(−u) (15)

for any p, u. In this regard, we can determine that

gp(u) − g∗
p(−u) = −4 sin

(
φ[0]

p − φ[1]
p

)
sin

(
φ[2]

p

)
sinh

(
βω[0]

p

)
× (

Ims2
p + Imz2

p

)
sin

(
uω[1]

p

)
sin

(
uω[2]

p

)
,

(16)

where zp and sp are the independent variables that define the
unitary 2×2 matrix

Up,t1:t2 =
(

zp −s∗
p

sp z∗
p

)
(17)

associated to the p mode. The right-hand side (r.h.s.) of
Eq. (16), witness of non-classicality, is equal to zero if
[ρ0, Ht1 ] = 0, i.e., if φ[0]

p = φ[1]
p ∀p.

In the sudden quench limit, namely, when HH
t2 = Ht2 ,

zp = 1 and sp = 0. Therefore, the KDQ distribution of
work P(W[t1,t2] ) is a real-valued function of real variable.
Nonetheless, we can find quantum signatures due to negative
quasiprobabilities. This is shown in detail in Appendix F,
where the sign of the fourth central moment 〈(W[t1,t2] −
〈W[t1,t2]〉)4〉 is investigated for paradigmatic case studies.

Albeit nonclassical, the statistical moments of the KDQ
distribution of work can still be computed from making the
derivatives of the characteristic with respect to u. Specifically,
for the average work, one gets

〈W 〉= L
∫ π

0

d p

2π
tanh

(
βω[0]

p

2

)(
ω[1]

p Q[0,1]
p − ω[2]

p Q[0,2]
p

)
, (18)

where Q[0,1]
p = 2P[0,1]

p − 1 = cos (φ[0]
p − φ[1]

p ) and Q[0,2]
p =

2P[0,2]
p − 1, with 1 − P[�, j]

p denoting the transition probability
from the energy eigenstates at time t� towards the ones at time
t j in the momentum domain (see Appendix B for the deriva-
tion). Notice that in Eq. (18), 〈W[t1,t2]〉/L =: 〈w〉 becomes the
work density in the thermodynamic limit of L → ∞, with L
size of the fermionic system. This result generalizes the find-
ings of Refs. [8,10], where the work protocol operates from
an initial state that commutes with the initial Hamiltonian,
and the average work is computed using the TPM scheme.
In Eq. (18), the TPM result is retrieved when Q[0,1]

p = 1 ∀p.
Equation (18) can be applied to any initial state of the form

ρ0 = exp{eβHt0 }/Z that does not commute, in general, with
the Hamiltonian Ht1 at the beginning of the work protocol.
As a consequence, quantum coherences in the initial energy
basis also start playing a relevant role in energy fluctuations.
Their effect on the average work is encoded in the param-
eters Q[0,1]

p and Q[0,2]
p . In particular, Q[0,1]

p is related to the
overlap between the eigenbases of the initial Hamiltonian and
the initial state, respectively. Interestingly, the average work
extracted by the external driving, −〈W[t1,t2]〉, increases as Q[0,1]

p

approaches the minimum value −1 for any p. Q[0,1]
p = −1

corresponds to φ[0]
p − φ[1]

p = π , meaning that the eigenbases
of H[0]

p and H[1]
p are orthogonal. In other terms, concerning

Q[0,1]
p , the work extraction is optimized when the operators ρ0

and Ht1 are maximally noncommuting. On the other hand, the

104308-3



ALESSANDRO SANTINI et al. PHYSICAL REVIEW B 108, 104308 (2023)

parameters Q[0,2]
p are associated to the transition probabilities

among the instantaneous eigenstates of the (time-dependent)
Hamiltonian Ht from time t0 to t2 as an effect of the external
driving. If the transitions operated by the driving field occur
in a nonadiabatic fashion, then part of the internal energy
variation is converted in irreversible work [9,55–57]. Accord-
ingly, in the general case, the Q[0,2]

p s describe, on average,
how the presence of quantum coherence affects nonadiabatic
irreversible work in quadratic fermionic models.

To analyze the dynamical contribution of Q[0,2]
p to the

average extracted work, we compare the r.h.s. of Eq. (18)
with the average work obtained by applying the TPM scheme
that considers the completely dephased initial state �1(ρ0) =∑

n �
(n)
t1 ρ0�

(n)
t1 . The dephasing operator does not modify the

initial average energy, but the absence of initial quantum co-
herence in the eigenbasis of Ht1 unavoidably alters the final
energy probabilities. Specifically, one has that

〈w[ρ0]〉 − 〈w[�1(ρ0)]〉

= 1

L
Tr

{
[ρ0 − �1(ρ0)]HH

t2

}

=
∫ π

0

dk

2π
tanh

(
βω[0]

p

2

)
ω[2]

p

(
Q[0,1]

p Q[1,2]
p − Q[0,2]

p

)
. (19)

Hence, enhanced energy extraction can be obtained in a finite
and connected region of parameters. A significant advantage,
with respect to what is returned by the TPM scheme, is al-
ways achieved when Q[0,1]

p = 0 and Q[0,2]
p > 0. Remarkably,

as shown in the next paragraph, these conditions are originated
by the interplay between quantum coherences and quantum
critical points.

VI. ENHANCED ENERGY EXTRACTION
IN THE QUANTUM ISING MODEL

To conclude the analysis, we show analytical and numer-
ical results, concerning the enhancement of work extraction
aided by nonclassicality, in the concrete example of the quan-
tum transverse field Ising model, which Hamiltonian reads

H = −
L∑

j=1

σ x
j σ

x
j+1 + h

L∑
j=1

σ z
j , (20)

where σα
j are the local Pauli matrices, with α = x, y, z, j =

1, . . . , L, and L the size of the spin system. The diago-
nalization of this model and its mapping to a fermionic
model [47,58] are detailed in Appendix A. Following the
protocol introduced above, we initialize the system in ρ0 =
exp{−βHt0}/Z . ρ0 is identified by the magnetic field h = h0,
while the Hamiltonian Ht1 at the beginning of the work pro-
tocol is with h = h1. Afterwards, we quench the external
field from h = h1 to h = h2. Figure 1(a) shows the aver-
age work density exchanged during this driving process as
a function of h0 and h1 with fixed h2 = 0.5 and β = 15.
Energy extraction corresponds to negative values of the av-
erage work density. This has to be compared with Fig. 1(b),

where we plot Q[0,1]
p = ∫ π

0 Q[0,1]
p d p/π as an estimate of the

average overlap between the eigenbases of Ht0 and Ht1 . In
agreement with our general analysis, the amount of energy

−2 −1 0 1 2
h0

−2

−1

0

1

2

h
1

(a)

−1
.6

−1
.2

−1.2

−0
.8

−0.
8

−0
.4

−0
.4

0.
0

0.0

0.4

0.4

0.8

0.8

1.2

1.2

1.6

−2 0 2
〈w[ρ0]〉

−2 −1 0 1 2
h0

−2

−1

0

1

2

h
1

(b)

−1.0 −0.5 0.0 0.5 1.0

Q
[0,1]
p

FIG. 1. (a) Average work density originated by quenching the
quantum Ising Hamiltonian from h1 to h2 = 0.5 for different values
of h0. The inverse temperature of the initial state ρ0 = exp{−βHt0 }/Z
is taken equal to β = 15. (b) Average overlaps between the eigen-
bases of Ht1 and Ht2 .

extraction increases in the parameters region where Q[0,1]
p is

negative, i.e., the quantum coherences of ρ0 in the basis of
Ht1 significantly change the work density. Interestingly, the
optimal region for energy extraction corresponds to h0 > 1
in the ferromagnetic phase and h1 < −1 in the antiferromag-
netic phase or vice versa. In Fig. 2(a), we plot the r.h.s.
of Eq. (19) as a function of h0 and h1, with h2 = 0.5 and
β = 15. It represents the quantum correction to the average
work density, provided by an extra contribution (than the TPM
scheme) due to noncommutativity. In this regard, in Fig. 2(a),
we also highlight a region (green shaded area) where the
sign of the fourth central moment of the work distribution
is negative. This signals the presence of a nonclassical re-
gion, corresponding to the fact that the KDQ distribution of
work has negative values. Accordingly, in such a nonclassical

−2 −1 0 1 2
h0

−2

−1

0

1

2

h
1

(b)

0 ln 2
d(Δ1(ρ0) ‖ ρ0)

−2 −1 0 1 2
h0
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0
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h
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−0.8
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0.6

−0.4
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−0
.2

−0.2

0.0

0.0

0.2

−0.9 0.5
〈w[ρ0]〉 − 〈w[Δ1(ρ0)]〉

FIG. 2. (a) Quantum correction to the average work density in
the quantum Ising model, using the same Hamiltonian as in Fig. 1(a),
and enhancement of the amount of extracted work due to noncommu-
tativity of the Hamiltonian operators at different times of the work
protocol. The shaded green areas mark the nonclassical region of
parameters where the fourth central moment of the KDQ distribution
of work is negative. (b) Relative entropy of quantum coherence
density, D(ρ0||�1(ρ0))/L, as a function of h0 and h1. The inverse
temperature of the initial state is taken equal to β = 15.
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region, 〈w[ρ0]〉 < 0 witnesses an enhancement of energy ex-
traction that is boosted by quantum coherence of the initial
state ρ0, expressed in the basis of Ht1 .

For quadratic fermionic models, we have already argued
that Q[0,1]

p = 0 and Q[0,2]
p > 0 always allow for energy extrac-

tion enhancement. In Fig. 1(b) [details are in Appendix C],
we specialize our analysis to the quantum Ising model where
the maximum enhancement in energy extraction Eq. (19)
is exactly satisfied by choosing h0 = ±1 and h1 = ∓1, i.e.,
in parameter regions where the initial state and the initial
Hamiltonian sit at the two opposite quantum critical points
of the model. Remarkably, these points also correspond to
the maximum of the relative entropy of quantum coherences
[59,60] that is defined as

D(ρ0||�1(ρ0)) = Tr{ρ0(ln ρ0 − ln �1(ρ0))}. (21)

Its density d (ρ0||�1(ρ0)) = D(ρ0||�1(ρ0))/L is thus plotted
in Fig. 2(b) as a function of h0 and h1. Consequently, the cor-
respondence between the maximum value of D(ρ0||�1(ρ0))
and the enhancement of the work extraction benchmarks that
this advantage originates from the noncommutativity of the
initial state ρ0 with the Hamiltonian Ht1 at the beginning of
the work protocol. At the critical points of the quantum Ising
model, it becomes a quite useful thermodynamic resource.

VII. LANDAU-ZENER-STÜCKELBERG-MAJORANA
(LZSM) DYNAMICS

The above results are obtained by assuming a sudden
change of the initial Hamiltonian with a quench dynamics.
However, the validity of such findings can be also confirmed
by changing the Hamiltonian of the work protocol via a
sufficiently fast, but time-finite, ramp drive. Specifically, the
magnetic field h(t ) varies over time as a linear ramp at velocity
δ, i.e.,

h(t ) = h1 + (t − t1)δ, (22)

with t ∈ [t1, t2] and δ = (h2 − h1)/(t2 − t1). In this case, the
system evolution is still exactly solvable since it can be
decomposed in the dynamics of L independent Landau-Zener-
Stückelberg-Majorana models [61,62], one for each Fourier
mode.

To properly take into account changes of the Hamiltonian
at finite velocity, we have to solve the following time-
dependent equation for

Up,t1:t =
(

zp(t ) −s∗
p(t )

sp(t ) z∗
p(t )

)
(23)

namely,

i∂t

(
cp(t )

c†
−p(t )

)
= [(h(t ) − cos p)σ z − (sin p)σ x]

(
cp(t )

c†
−p(t )

)
.

(24)

The solution of Eq. (24) can be determined by introducing the
ansatz

cp(t ) = zp(t )cp − s∗
p(t )c†

−p

c†
−p(t ) = sp(t )cp + z∗

p(t )c†
−p, (25)

where the time dependence of the fermionic operators is
encoded in the parameters zp(t ) and sp(t ). Hence, the equa-
tion for cp(t ) can be mapped into an equation for zp(t ) and
sp(t ). In fact, from

iżp(t )cp − iṡ∗
p(t )c†

−p = [h(t ) − cos p](zp(t )cp − s∗
p(t )c†

−p)

− sin p(sp(t )cp + z∗
p(t )c†

−p), (26)

we end up with the following equation in matrix form:

i

(
żp(t )
ṡp(t )

)
=

(
�p(t ) �p

�p −�p(t )

)(
zp(t )
sp(t )

)
= Hp(t )

(
zp(t )
sp(t )

)
,

(27)

where �p(t ) = h(t ) − cos p and �p = − sin p, with initial
conditions zp(t1) = 1 and sp(t1) = 0. Being dependent on
each other, the first-order equations in Eq. (27) can be thus
recast into a second-order equation for zp(t ), i.e.,

iz̈p = �̇pzp + �pżp + �pṡp

= δzp − i�p[�pzp + �psp] − i�p[�pzp − �psp], (28)

that reduces to

z̈p + [
�2

p(t ) + �2
p + iδ

]
zp = 0. (29)

This equation has to be solved with initial conditions zp(t1) =
1 and żp = −i�p(t1), while

sp(t ) = 1

�p
[i∂t − �p(t )]zp(t ). (30)

The general solution for Up,t1:t2 is readily available in terms
of the Weber D functions [61]. From the latter, we can com-
pute the exact transition probabilities as well as Q[0,2]

p . In this
way, from Eq. (18), we can also determine the explicit average
work that is originated by a linear driving.

In Fig. 3, we plot the difference of the average work den-
sities obtained by initializing the system in the quantum state
ρ0 and in its dephased counterpart �1(ρ0), respectively. In the
figure, both the fast (δ = 4) and slow (δ = 0.5) drivings are
considered. It is worth noting that the average work density
〈w[ρ0]〉 witnesses an enhancement of the work extraction,
which is boosted by the noncommutativity of ρ0 with Ht1 .
The latter makes available quantum coherence of the initial
quantum state ρ0 that is robust against finite but sufficiently
fast velocity of the driving. In the opposite limit of an in-
finitely slow driving, the difference 〈w[ρ0]〉 − 〈w[�1(ρ0)]〉
approaches zero whenever the driving ramp does not cross
a quantum critical point, while it takes a finite value around
the criticality [see Fig. 3(f)]. This may be ascribed to the fact
that, in case the adiabatic hypothesis is satisfied, Q[1,2]

p → 1
and Q[0,2]

p → Q[0,1]
p as δ → 0, thus leading to a zero average

work difference. However, the adiabatic hypothesis is violated
whenever a gapless quantum critical point is crossed during a

104308-5



ALESSANDRO SANTINI et al. PHYSICAL REVIEW B 108, 104308 (2023)

−2 −1 0 1 2
h0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

h
1

(a)

−0
.8

−0.8

−
0.4

−0
.4

0.00.0

0.4

0.4

0.8

0.8

1.2

1.2

1.6

−1.0

−0.5

0.0

0.5

1.0

1.5

〈 w
[ρ

0
]〉

−2 −1 0 1 2
h0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

h
1

(b)

−1.20.
9

−0.6

−0

−0
.3

−0.3

0.00.0

0.3

0.3

0.6

0.6

0.9

0.9

1.2

1.2

1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

〈w
[Δ

1
(ρ

0
)]
〉

−2 −1 0 1 2
h0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

h
1

(c)

−0.4

−0.3

−0.2

−0.2

−0.1

−0.1

−0.1

0.
0

0.0

0.0

0.
0

0.1

0.1

0.1

0.2

0.3

−0.4

−0.2

0.0

0.2

〈 w
[ρ

0
]〉−

〈w
[Δ

1
( ρ

0
)]
〉

δ = 4

−2 −1 0 1 2
h0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

h
1

(d)

−1.2

−1.2

−0.8

−0.8

−0.8

−
0.4

−0
.4

0.00.0

0.4

0.4

0.8

0.8

0.8

1.2

1.2

1.6

−1.0

−0.5

0.0

0.5

1.0

1.5

〈 w
[ρ

0
]〉

−2 −1 0 1 2
h0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

h
1

(e)

−1.2
−0

.9

−0.9

−0
.6

−0.
6

−0.3

−0.3

0.00.0

0.3

0.3

0.6

0.6

0.6

0.9

0.9

1.2

1.2

1.2

1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

〈w
[Δ

1
(ρ

0
)]
〉

−2 −1 0 1 2
h0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

h
1

(f)

−0.4

−0.4

−0.3

−0.3

−0.2

−0.2

−0.2 −0.2

−0
.1

−0
.1

−0.1

0 0 0 0

0.
0

0.0

0.
0

0.1

0.1

0.2

0.20.3

0.4

−0.4

−0.2

0.0

0.2

0.4

〈 w
[ρ

0
]〉−

〈w
[Δ

1
( ρ

0
)]
〉

δ = 0.5

FIG. 3. Average work density of the quantum Ising model obtained by initializing the system in the quantum state ρ0 with magnetic field
h0 [(a), (d)] or in the dephased state �1(ρ0) [(b), (e)]. In all cases, the Hamiltonian changes are due to a linear driving of the magnetic field
h1 → h2. (c), (f) Enhancement of work extraction. A faster driving allows for the extraction of a larger amount of work. (a)–(c) Fast driving
with velocity δ = 4; (d)–(f) slow driving with velocity δ = 0.5.

quantum dynamics. Such violation allows for a finite enhance-
ment of extracted work that also persists for slow drivings.

VIII. CONCLUSIONS

We have analyzed a fundamental aspect of quantum ther-
modynamics when applied to many-body systems, namely,
the understanding of how the noncommutativity between a
generic initial quantum state and the Hamiltonian of the
system, evaluated at least over two times, modifies work fluc-
tuations. To answer this question, we make use of the KDQ
approach, introduced for two-time quantum correlators, by
obtaining analytical results for a generic quadratic fermionic
model, among which the transverse field Ising model.

In summary, beyond determining a correction to the work
statistics that strictly depends on noncommutativity, the main
outcome of our analysis is to show a connection between the
following concepts: (i) nonclassical signatures in the KDQ
distribution of work, (ii) enhanced work extraction under
nonadiabatic coherent driving and noncommutativity of ρ0

and Ht during the work protocol, and (iii) critical behav-
iors in quantum fermionic systems across different matter
phases.

We believe that our study can open a research line for deter-
mining nonclassical fluctuations of thermodynamic quantities
in a generic quantum many-body system thanks to the use of
KDQ distributions. In this regard, we propose the application

of this quasiprobability approach to shed light, with a unique
perspective, at the quantum nature of the phase transitions
occurring in spin and fermionic many-body systems. Finally,
in line with Refs. [57,63], our results about the enhancement
of work extraction would be worth further investigation for
the design of quantum heat engines [64–67] and quantum bat-
teries [68,69] that are powered by genuinely quantum features
and show a clear quantum advantage.

Note added. Recently, Ref. [70] appeared, dealing with
topics related to the ones discussed by us.
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APPENDIX A: FROM QUANTUM ISING MODEL
TO QUADRATIC FERMIONIC HAMILTONIANS

The Hamiltonian operator of the transverse field quantum
Ising model reads

Ht = −J
L∑

j=1

σ x
j σ

x
j+1 + h(t )

L∑
j=1

σ z
j , (A1)

104308-6



WORK STATISTICS, QUANTUM SIGNATURES, AND … PHYSICAL REVIEW B 108, 104308 (2023)

where σα
j are the local Pauli matrices, with α = x, y, z and

j = 1, . . . , L. It thus holds that [σα
i , σ

β
j ] = 2iδi jε

αβγ σ
γ
j ,

where δ denotes the Kronecker delta and ε is the Levi-Civita
symbol. We set J = 1 to fix the energy scale of the system.
At zero temperature, the model has a ferro-/paramagnetic
phase transition for h = ±1. As is customary, we transform
the Hamiltonian Eq. (A1) by means of the Jordan-Wigner
transformation [47,58]

σ x
k =

k−1∏
j=1

(1 − 2n j )(c
†
k + ck ),

σ
y
k = i

k−1∏
j=1

(1 − 2n j )(c
†
k − ck ), (A2)

σ z
k = 1 − 2nk,

where {ci, c†
j } = δi j and n j = c†

j c j . After the Jordan-Wigner
transformation, the Hamiltonian takes the following form:

Ht = −
L∑

j=1

(c†
j c j+1 + c†

j c
†
j+1 + H.c.) − h(t )

L∑
j=1

(2c†
j c j − 1).

(A3)

Since the model is translationally invariant, the Hamiltonian
Ht can be diagonalized by means of the discrete Fourier trans-
form

c j = e−iπ/4

√
L

∑
p

eip j c̃p, c̃p = eiπ/4

√
L

L∑
j=1

e−ip jc j, (A4)

with p = 2πm/L and m = −L/2 + 1, . . . , L/2. Moreover,
the invariance under the inversion symmetry p → −p allows
us to restrict the computations to positive momenta by defin-
ing �p = (c̃p, c̃†

−p)T . Therefore,

Ht =
∑
p>0

�†
pHp(t )�p, (A5)

where

Hp(t ) =
(−2 cos p + 2h(t ) −2 sin p

−2 sin p 2 cos p − 2h(t )

)
. (A6)

The Ry(φp(t )) = exp(iφpσ
y/2) rotation applied to the new

fermions �p(t ) = (γp, γ
†
−p)T diagonalizes the problem. For-

mally, one has

�p = exp

(
i
φp(t )

2
σ y

)
�p(t ) ≡ Ry(φp(t ))�p(t ), (A7)

where the eigenvectors of the rotation are given by
v+,p = (cos φp(t )/2 sin φp(t )/2)T ,

v−,p = (− sin φp(t )/2 cos φp(t )/2)T . (A8)

The rotation angles φp are implicitly defined by the con-
ditions cos φp(t ) = 2(h(t ) − cos p)/ωp(t ) and sin φp(t ) =
2 sin p/ωp(t ); note that φp(t ) = −φ−p(t ). The Hamiltonian,
written in terms of the new fermionic operators, then
reads

Ht =
∑
p>0

�†
p(t )Dp(t )�p(t )

=
∑
p>0

�†
pR†

y (φp(t ))ωp(t )σ zRy(φp(t ))�p, (A9)

where Dp(t ) = ωp(t )σ z and the energies of each mode are

given by ωp(t ) = 2
√

(cos p − h(t ))2 + sin2 p, with ωp(t ) =
ω−p(t ).

APPENDIX B: DERIVATION OF THE AVERAGE WORK

In this Appendix, we show an alternative derivation of
Eq. (18) in the main text by directly computing

〈
W[t1,t2]

〉 = Tr
{
Uρ0U

†Ht2

} − Tr
{
ρ0Ht1

}
. (B1)

First, we consider the Hamiltonian Ht in diagonalized form,
i.e.,

Htj =
∑
p>0

�†
pH

[ j]
p �p =

∑
p>0

ω[ j]
p

(
γ [ j]

p
†
γ [ j]

p − γ
[ j]
−pγ

[ j]
−p

†
)
.

(B2)
Then, from Eq. (B2), the initial state can be written as

ρ0 = e−βHt0

Z [0]
,

=
∏
p>0

exp
{−βω[0]

p

(
n[0]

p + n[0]
−p − 1

)}
Z [0]

p

≡
∏
p>0

ρ[0]
p , (B3)

where we have defined the number operator in the p-

momentum subspace n[0]
±p = γ

[0]
±p

†
γ

[0]
±p , and Z [0] = Tre−βH [0] =∏

p>0
Z [0]

p = ∏
p>0

2(1 + cosh(βω[0]
p )). To compute the average

work, we have to consider

Trρ0U
†H [2]U =

∏
q>0

Trρ[0]
q

∑
p>0

H [2]
p

H =
∑
p>0

Trρ[0]
p �†

pU
†
p,t1:t2 R†

y

(
φ[2]

p

)
ω[2]

p σ zRy
(
φ[2]

p

)
Up,t1:t2�p

=
∑
p>0

Trρ[0]
p �[0]

p
†
R†

y

(
φ[0]

p

)
U†

p,t1:t2 R†
y

(
φ[2]

p

)
ω[2]

p σ zRy
(
φ[2]

p

)
Up,t1:t2 Ry

(
φ[0]

p

)
�[0]

p ≡
∑
p>0

Trρ[0]
p �[0]

p
†
M�[0]

p , (B4)
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with �p = Ry(φ[0]
p )�[0]

p and

M = R†
y

(
φ[0]

p

)
U†

p,t1:t2 R†
y

(
φ[2]

p

)
ω[2]

p σ zRy
(
φ[2]

p

)
Up,t1:t2 Ry

(
φ[0]

p

)
.

(B5)

Then, by computing the trace over the Fock space
{|∅〉, γ †

p |∅〉, γ †
−p|∅〉, γ †

p γ
†
−p|∅〉}, we can find that

Tr
{
ρ[0]

p �[0]
p

†
M�[0]

p

}
= M11Tr

{
ρ[0]

p n[0]
p

} + M22Tr
{
ρ[0]

p

(
1 − n[0]

−p

)}
= M11

1 + e−βω[0]
p

Z [0]
p

+ M22
eβω[0]

p + 1

Z [0]
p

. (B6)

From the cyclic property of the trace, it is easy to check that
tr{M} = 0, and therefore M11 = −M22, whereby

Tr
{
ρ[0]

p �[0]
p

†
M�[0]

p

} = M22
eβω[0]

p − e−βω[0]
p

Z [0]
p

= M22

2
tanh

βω[0]
p

2
. (B7)

If we define ê+ = (1 0)T and ê− = (0 1)T , M22 can be
expressed as

M22 = ω[2]
p

[
êT
−R†

y

(
φ[0]

p

)
U†

p (t )R†
y

(
φ[2]

p

)
(ê+ · êT

+

− ê− · êT
−)Ry

(
φ[2]

p

)
Up(t )Ry

(
φ[0]

p

)
ê−

]
. (B8)

From the explicit expression of the eigenvectors in Eqs. (A8),
R(φ[ j]

p ) = (v[ j]
+,p v

[ j]
−,p), so R(φ[ j]

p )êi = v
[ j]
i,p with i = ±. There-

fore,

M22 = ω[2]
p

[∣∣v[2]
+,p

†
Up,t1:t2v

[0]
−,p

∣∣2 − ∣∣v[2]
−,p

†
Up,t1:t2v

[0]
−,p

∣∣2]
= −ω[2]

p

[
P[0,2]

p − (1 − P[0,2]
p )

] = −ω[2]
p

(
2P[0,2]

p − 1
)
,

(B9)

where P[0,2]
p denotes the probability of not transition-

ing between the instantaneous eigenstates of H [2]
p . It is

worth pointing out that the transition matrix with elements

P [0,2]
i, j = |v[2]

i,p
†
Up,t1:t2v

[0]
j,p|2 is bistochastic, which implies that∑

i P
[0,2]
i, j = ∑

j P
[0,2]
i, j = 1. As a result, we can define∣∣v[2]

+,p
†
Up,t1:t2v

[0]
+,p

∣∣2 = ∣∣v[2]
−,p

†
Up,t1:t2v

[0]
−,p

∣∣2 = P[0,2]
p∣∣v[2]

+,p
†
Up,t1:t2v

[0]
−,p

∣∣2 = ∣∣v[2]
−,p

†
Up,t1:t2v

[0]
+,p

∣∣2 = 1 − P[0,2]
p .

(B10)

Moreover, Tr{ρ0H [1]} is obtained setting Up,t1:t2 = Ip. Hence,
substituting 2 → 1 concludes our derivation of the average
work that leads to

〈W[t1,t2]〉 = L

2π

∫ π

0
d p tanh

(
βω[0]

p

2

)[
ω[1]

p

(
2P[0,1]

p − 1
)

− ω[2]
p

(
2P[0,2]

p − 1
)]

. (B11)

The formula above reduces to the expression for the average
work shown in the main text upon introducing the parameters
Q[i, j]

p = 2P[i, j]
p − 1. More details on the properties of such

parameters as functions of the Fourier modes and for different

values of the chemical potential h are provided in the next
Appendix.

APPENDIX C: TRANSITION PROBABILITIES
AND BOGOLIUBOV ANGLES

We here provide a detailed analysis of the properties of
both the transition probabilities P[i, j]

p and the parameters
Q[i, j]

p = (2P[i, j]
p − 1) entering the expression for the average

work in the main text. Let us start from Q[0,1]
p ; this quantity

describes the overlap between the eigenbasis of the initial
Hamiltonian Ht1 , with chemical potential h1, and the eigen-
basis of the initial state ρ0. The latter is chosen of the form
ρ0 = e−βHt0 /Z , where Ht0 is a quadratic fermionic Hamilto-
nian with chemical potential h0. Accordingly, Q[0,1]

p can be
written in terms of the Bogoliubov angles φ[0]

p , φ[1]
p associated

to the rotations that diagonalize the Hamiltonians Ht0 and
Ht1 , i.e.,

Q[0,1]
p = cos

(
φ[0]

p − φ[1]
p

)
. (C1)

It thus follows that the properties of Q[0,1]
p derive directly

from the properties of the Bogoliubov angles. Figure 4 shows
the Bogoliubov angles as a function of the Fourier modes p in
the different phases of the model, i.e., for different values of
the control parameter h. One can note that the different phases
of the model can be identified by behavior of the Bogoliubov
angles at p = 0, π . In fact, for p → 0 we have that

lim
p→0

φp =
⎧⎨
⎩

0 if h > 1
π/2 if h = 1
π if h < 1,

(C2)

with a jump discontinuity at the critical point h = 1. Similarly,
for p → π we find

lim
p→π

φp =
⎧⎨
⎩

0 if h > −1
π/2 if h = −1
π if h < −1,

(C3)

with another discontinuity in correspondence with the second
critical point h = −1. Moreover, note that for h = 0,±1 the
Bogoliubov angle φp takes the simple form

φp =
⎧⎨
⎩

π/2 − p/2 if h = 1
π − p if h = 0
−p/2 if h = −1.

(C4)

These properties of the Bogoliubov angles translate into prop-
erties of Q[0,1]

p , which are estimated in the main text through

their average over the Fourier modes: Q[i, j]
p = 1

π

∫ π

0 Q[i, j]
p d p.

APPENDIX D: SYMMETRIES OF THE AVERAGE WORK

In this Appendix, we provide a proof that the average work
〈W[t1,t2]〉 (from here on simply denoted with 〈W (h)〉 unless
specified) is an odd function of h0, i.e.,

〈W (h0)〉 = −〈W (−h0)〉. (D1)

For the sake of presentation, we are going to explicitly write
the dependence on h(t ), namely, hj = h(t j ).

Let us thus start from a summary of properties of both the
single-particle spectrum and the Bogoliubov angles, which are
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FIG. 4. Rotation angles for different values of h as a function of p; left panel, ferromagnetic phase; right panel, paramagnetic phase.

necessary to carry out the proof. In particular, directly from
their definitions in the main text, we find that

ωp(h) = ω−p(h) = ωπ−p(−h), (D2)

while for the Bogoliubov angles it holds that

φp(h) = −φ−p(h) = π − φπ−p(−h). (D3)

With the above properties in mind, we consider the average
work that can be expressed as

〈W (h0)〉 = L

2π

∫ π

0
d p tanh

(
βωp(h0)

2

)

× [ωp(h1) cos(φp(h0) − φp(h1))

− ωp(h2) cos(φp(h0) − φp(h2))], (D4)
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FIG. 5. Average work density after a sudden quench from h1 to h2 for ρ0, its dephased counterpart �1(ρ0), and the difference of the two.
In all plots, β = 15.
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where we have used the fact that Q[i, j]
p = cos(φp(hi ) −

φp(h j )) for quench dynamics. To proceed with our proof, it is
convenient to translate the integration variable by π/2. Thus,
we introduce the change of variables k = p + π/2, so

〈W (h0)〉 = L

2π

∫ 3π
2

π
2

d p tanh

(
βωk− π

2
(h0)

2

)

× [ωk− π
2
(h1) cos(φk− π

2
(h0) − φk− π

2
(h1))

− ωk− π
2
(h2) cos(φk− π

2
(h0) − φk− π

2
(h2))]. (D5)

Then, exploiting that ωk− π
2
(h0) = ωπ

2 −k (−h0) = ωk− π
2
(−h0)

and φk− π
2
(h0) = π − φπ

2 −k (−h0) = π + φk− π
2
(−h0), we de-

termine that

〈W (h0)〉 = L

2π

∫ 3π
2

π
2

d p tanh

(
βωk− π

2
(−h0)

2

)

× [ωk− π
2
(h1) cos(π + φk− π

2
(−h0) − φk− π

2
(h1))

− ωk− π
2
(h2) cos(π + φk− π

2
(−h0) − φk− π

2
(h2))].

(D6)

Finally, using the trigonometric identity cos(π + x) =
− cos(x) and translating back the integration variable to
p = k − π/2, we obtain

〈W (h0)〉 = − L

2π

∫ π

0
d p tanh

(
βωp(−h0)

2

)

× [ωp(h1) cos(φp(−h0) − φp(h1))

− ωp(h2) cos(φp( − h0) − φp(h2))]=− 〈W (−h0)〉.
(D7)

This concludes our proof.

APPENDIX E: AVERAGE WORK WITH INITIAL
DEPHASED QUANTUM STATE

In this Appendix, we aim to extend the above discus-
sion to the case of a dephased quantum state �1(ρ0) ≡

∑
α �[1]

α ρ0�
[1]
α , where �[1]

α are projectors in the H [1] basis.
In this case, we find that the corresponding average work,
identified by 〈W [�1(ρ0)]〉, equals

〈W [�1(ρ0)]〉 = Tr
{
�1(ρ0)U †Ht2U

} − Tr
{
�1(ρ0)Ht1

}
= Tr

{
�1(ρ0)U †Ht2U

} − Tr
{
ρ0Ht1

}
. (E1)

To find an explicit expression for the average work origi-
nated by a work protocol starting from �1(ρ0), we need to
project the state ρ0 onto the basis that decomposes the ini-
tial Hamiltonian Ht1 . For this purpose, we consider the state
with

Z [0]
p ρ[0]

p = eβω[0]
p
{[

1 + n[0]
p (e−βω[0]

p − 1)
]

× [
1 + n[0]

−p(e−βω[0]
p − 1)

]}
. (E2)

Then, we have to rewrite such a state in terms of the
fermionic operators that diagonalize Ht1 . The latter are re-
lated to the fermionic operators diagonalizing ρ0 through the
condition

γ [0]
p = Cpγ

[1]
p + Spγ

[1]
−p

†
, (E3)

where

Cp = cos

(
φ[1]

p − φ[0]
p

2

)
and Sp = sin

(
φ[1]

p − φ[0]
p

2

)
.

(E4)

Therefore, the number of zero fermions in the p mode can be
expressed in terms of γ [1]

p , i.e.,

n[0]
p = [

C2
pn[1]

p + S2
p

(
1 − n[1]

−p

)] + CpSp
[
η[1]

p
† + η[1]

p

]
, (E5)

where we have introduced the bosonic operator ηp = γpγ−p.
Thus, using the relations above, we can write ρ0 in the basis
of Ht1 :

Z [0]
p ρ[0]

p = eβω[0]
p
{[

C2
p

(
1 + n[1]

p (e−βω[0]
p − 1)

) + S2
p

(
1 + (

1 − n[1]
−p

)(
e−βω[0]

p − 1
)) + CpSp

(
η[1]

p
† + η[1]

p

)
(e−βω[0]

p − 1)
]
[(p → −p)]

}
,

(E6)

with S−p = −Sp. In the following, to extract only the diagonal contribution, we are going to discard the terms that are not
diagonal in n[1]

p , n[1]
−p. Accordingly, by defining ρ[1|0]

p = ∑
α �[1]

α ρ[0]
p �[1]

α , we find that

Z [0]
p ρ[1|0]

p = [
C4

pe−βω[0]
p (n[1]

p +n[1]
−p−1) + S4

peβω[0]
p (n[1]

p +n[1]
−p−1) + 2S2

pC
2
p − (

Z [0]
p − 4

)
S2

pC
2
p

(
η[1]

p
† + η[1]

p

)(
η

[1]
−p

† + η
[1]
−p

)]
= [

C4
pe−βω[0]

p (n[1]
p +n[1]

−p−1) + S4
peβω[0]

p (n[1]
p +n[1]

−p−1) + 2S2
pC

2
p − (

Z [0]
p − 4

)
S2

pC
2
p (np + n−p − 1 − 2npn−p)

]
, (E7)

whereby, as expected, Tr{ρ[1|0]
p } = 1.
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We are now ready to compute the explicit expression of the average work 〈W [�1(ρ0)]〉. This is achieved by following the
same steps of the previous section and simply replacing ρ[0]

p with its diagonal part in the ρ[1|0]
p basis of Ht1 . Accordingly,

Tr
{
ρ[1|0]

p �[1]
p

†
M�[1]

p

} = M11Tr
{
ρ[1|0]

p n[1]
p

} + M22Tr
{
ρ[1|0]

p

(
1 − n[1]

−p

)} = M22

2
tanh

(
βω[0]

p

2

)(
C4

p − S4
p

)

= M22

2
tanh

(
βω[0]

p

2

)
cos

(
φ[1]

p − φ[0]
p

)
, (E8)

where

M = R†
y

(
φ[1]

p

)
U†

p,t1:t2 R†
y

(
φ[2]

p

)
ω[2]

p σ zRy
(
φ[2]

p

)
Up,t1:t2 Ry

(
φ[1]

p

)
.

(E9)

As a result, given that M22 = −ω[2]
p (2P[1,2]

p − 1) and
cos(φ[1]

p − φ[0]
p ) = 2P[0,1]

p − 1, we finally get that

〈W [�1(ρ0)]〉 = L

2π

∫ π

0
d p tanh

(
βω[0]

p

2

)

× [
ω[1]

p

(
2P[0,1]

p − 1
) − ω[2]

p

(
2P[1,2]

p − 1
)

× (
2P[0,1]

p − 1
)]

. (E10)

The formula above reduces to the expression for the average
work shown in the main text upon substituting the parameters
Q[i, j]

p = 2P[i, j]
p − 1.

APPENDIX F: AVERAGE WORK DENSITY
AND NONCLASSICAL REGIONS FOR DIFFERENT

VALUES OF THE MODEL PARAMETERS

For completeness, in Fig. 5 we show the value of the
average work density for ρ0, its dephased counterpart �1(ρ0)
and the difference of the two, with different choices of h2.
They are plotted by considering a sudden quench h1 → h2 and
an inverse temperature of the initial quantum state equal to

−1 0 1
h0

−1

0

1

h
1

0.3

1.3

β

FIG. 6. Quantum signatures of the KDQ distribution of work in
the form of nonclassical regions where the fourth central moment
of the corresponding work distribution is negative. Such regions (in
grey) are obtained by varying the temperature of the initial state
ρ0, with a fixed value (h2 = 0.5) of the final magnetic field. The
borders of the nonclassical regions are marked with different colors,
corresponding to different values of temperature.

β = 15. As in the main text, the shaded green areas mark the
nonclassicality regions, for which the fourth central moment
of the KDQ distribution of work is negative.

Moreover, in Fig. 6 we plot the regions of nonclassicality,
where the fourth central moment of the KDQ distribution
work is negative, against h0 and h1 for a sudden quench with
h2 = 0.5. Different values of the initial inverse temperature β

are also considered. From the figure, it is worth noting that the
nonclassical region is reduced by increasing the temperature
of the initial state. This signals that nonclassical effects are
reduced in the limit of high temperature.

APPENDIX G: RELATIVE ENTROPY
OF QUANTUM COHERENCES

Let us consider the quantum relative entropy between state
ρ0 and its projection on the basis of Ht1 . It is defined as

D(�1(ρ0) ‖ ρ0) = Trρ0(ln ρ0 − ln �1(ρ0)). (G1)

It can be shown that

D(�1(ρ0) ‖ ρ0) = S[�1(ρ0)] − S[ρ0], (G2)

where S[ρ] = −Trρ ln ρ is the von Neumann entropy of a
quantum state ρ. Remember that ρ0 = ∏

p ρ[0]
p and �1(ρ0) =∏

p ρ[1|0]
p . Therefore, the quantum relative entropy among

these two states can be also expressed by the following sum:

D(�1(ρ0) ‖ ρ0) =
∑

p

Trρ[0]
p ln ρ[0]

p − ρ[1|0]
p ln ρ[1|0]

p . (G3)
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(b)

0 ln 2d(Δ1(ρ0) ‖ ρ0)
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h
1

(a)

0 ln 2d(Δ1(ρ0) ‖ ρ0)

FIG. 7. Relative entropy of the coherence density for the quan-
tum Ising model between a thermal state ρ0 = exp{−βHt0 }/Z with
magnetic field h = h0, and the dephased state �1(ρ0) with respect
to the Hamiltonian Ht1 with magnetic field h = h1. (a) β = 1, (b)
β = 15.
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Moreover, after some algebra, we also arrive at an explicit expression for the relative entropy of the coherence density:

d (�1(ρ0) ‖ ρ0) = D(�1(ρ0) ‖ ρ0)

L
= 1

π

∫ π

0
d pβωp

[0] tanh
βωp

[0]

2
+ − 1

Zp
[0] [(Pp

[1,0]eβωp
[0] + (1 − Pp

[1,0])e−βωp
[0]

)

× ln (Pp
[1,0]eβω[0]

p + (1 − Pp
[1,0])e−βωp

[0]
) + (Pp

[1,0]e−βωp
[0] + (1 − Pp

[1,0])eβω[0]
p )

× ln (Pp
[1,0]e−βω[0]

p + (1 − Pp
[1,0])eβω[0]

p )]. (G4)

For the quantum Ising model, Fig. 7 shows d (�1(ρ0) ‖ ρ0) as a function of h0 and h1 for two different values of the initial inverse
temperature β = 1 [Fig. 7(a) and β = 15 [Fig. 7(b)]. It is worth noting that d (�1(ρ0) ‖ ρ0) has two maxima corresponding to
h0 = ±1 and h1 = ∓1, i.e., when h0 and h1 sit at the two quantum critical points of the model. At these points, P[0,1]

p = 1/2
(Q[0,1]

p = 0) ∀p, thus leading to the maximum value

max
h0,h1

d (�1(ρ0) ‖ ρ0) = 1

π

∫ π

0
d p

[
βω[0]

p tanh

(
βω[0]

p

2

)
− cosh

(
βω[0]

p

)
1 + cosh

(
βω

[0]
p

) ln
(

cosh
(
βω[0]

p

))]
. (G5)

Interestingly,

lim
β→0

max
h0,h1

d (�1(ρ0) ‖ ρ0) = 0, (G6)

which again signals the fact that quantum coherences in ρ0 (with respect to the basis of Ht1 ) does not entail relevant effects to
work statistics in the high-temperature limit. On the other hand, at low temperatures the relative entropy of quantum coherences
increases, until saturating the maximum value allowed by the Hilbert space dimension in the zero-temperature (infinite β) limit:

lim
β→∞

max
h0,h1

d (�1(ρ0) ‖ ρ0) = ln 2. (G7)
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