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Abstract

Visual object recognition has been extensively studied in both neuroscience and
computer vision. Recently, the most popular class of artificial systems for this
task, deep convolutional neural networks (CNNs), has been shown to provide
excellent models for its functional analogue in the brain, the ventral stream in
visual cortex. This has prompted questions on what, if any, are the common
principles underlying the reformatting of visual information as it flows through a
CNN or the ventral stream. Here we consider some prominent statistical patterns
that are known to exist in the internal representations of either CNNs or the
visual cortex and look for them in the other system. We show that intrinsic
dimensionality (ID) of object representations along the rat homologue of the
ventral stream presents two distinct expansion-contraction phases, as previously
shown for CNNs. Conversely, in CNNs, we show that training results in both
distillation and active pruning (mirroring the increase in ID) of low- to middle-level
image information in single units, as representations gain the ability to support
invariant discrimination, in agreement with previous observations in rat visual
cortex. Taken together, our findings suggest that CNNs and visual cortex share a
similarly tight relationship between dimensionality expansion/reduction of object
representations and reformatting of image information.

1 Introduction

Deep Convolutional Neural Networks (CNNs) currently stand as our best class of models of visual
processing in the brain [|1} 2| 3]], showing success in: (1) predicting the tuning of individual neurons
[4] and bold responses [5] at various stages of the ventral stream; (2) accounting for the ability of
ventral stream neurons to encode a variety of object properties [6[]; and (3) controlling their activity via
synthetic stimuli inferred through model inversion 7, |8|]. This suggests that the objective-optimization
framework of deep learning offers a parsimonious explanation of the inner workings of complex,
hierarchical brain circuits [9]], although the latter are likely shaped by very different learning processes
(e.g., unsupervised adaptation to the spatiotemporal statistics of the visual input [[10, [11]. Despite
this success, key differences between biological and artificial hierarchical networks exist (e.g., in
sensitivity to noise or adversarial examples [[12} |13]]), possibly highlighting core dissimilarities in
how information is processed in the two systems.

In this study, we investigated whether a similar reformatting of image information takes place along
rat visual cortex and a representative CNN (VGG-16). We started from the observation that the
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H(X)=—>,cxPx (x)logpx (x). The final estimate of the information conveyed by the units of
a given layer about the feature metric was computed as U* (X|Y) = E; [If (X[, Y/) /H! (X{)].
where E; is the expected value over all units ¢ of layer ¢. Importantly, although such unit-averaging
was performed on a sub-population of O (102) units, the variability of U across independent
experiment realizations (different units and stimuli) was very low, as shown by the error bars reported
in Figures [3]and [5] The limited sampling bias for the mutual information was corrected with the
the Panzeri-Treves method [22, 23]. Finally, we stress here how U?, being a single-unit information
estimate, is not bound by the data processing inequality and can in general express non-monotonic
behaviours as a function of layer depth ¢.

2.3 Definition of the metrics to quantify visual features

In our analysis, each image patch Imagepy falling within the RF of a unit was quantified by
an array of four different visual properties of increasing complexity: 1) luminosity; 2) contrast;
3) orientation of the dominant edge (if any); and 4) orientations of the two dominant edges
(if any), which is a proxy for the orientation and width of the dominant corner. Therefore
feat € {luminosity, contrast, orientation, corner}.

Luminosity can be easily defined as the average pixel-intensity in the image path: luminosity =
mean (Imagegp). Contrast quantifies the amount of luminosity variation in the patch and was
computed as: contrast = mean (Sobel * Imager ), where Sobel denotes the Sobel kernel and * is
the convolution operator (the Sobel transform is a standard approach to compute image gradients
[24]).

The dominant orientation of in an image patch is less straightforward to quantify, because of the
large variation in RF size across the layers of the network and the complexity of the natural scenes in
ImageNet. At very low resolution, such as for individual units in early layers in VGG-16 (which have
3 x 3 RF size), no meaningful orientation can be computed. For units in late layers, which process
the entire scene, multiple prominent orientations might coexist or not exist at all. More generally,
image patches span a spectrum of scene orientation strength, ranging from those containing one or
more sharp edges to those featuring none. To deal with such variability, we developed a two-stage,
compute-and-filter approach. The orientation estimation routine is based on Fourier Analysis and
defines the dominant orientation of the patch 6* as the angle of highest power of its Fourier spectrum
(see Algorithm 1 in the Supplementary Material for a detailed pseudo-code of the pipeline). In
addition, the function provides an orientation strength index £ € [0, 1], which peaks for images
containing at least one very sharp edge. Before measuring orientation information, we ranked the
pool of sampled units in each layer by computing, for each unit, the average of the orientation strength
index & across the full set of 1500 input images. Out of the initial population of 250 units we only
retained the 200 units with the largest average index. In addition, for each selected unit, we only
considered the 500 images with the largest index &.

The corner feature was quantified as the pair of orientations of the two most prominent edges in the
image patch. Specifically, the corner estimation routine applies Fourier analysis and peak-finding
algorithms to identify the two dominant orientations 67 and 63 in a patch, along with a corner strength
index ¢ € [0,1] [[17, [16], which is large when at least two orientations with similar power are
detected in the Fourier spectrum, while it becomes negligible both for no-peak and single-peaked
angular spectra (see Algorithm 2 in the Supplementary Materials for a pseudo-code description of the
complete pipeline). We used this index following the same rationale as for the £ index of orientation
strength, this time ranking units and input images based on their corner strength ¢ and retaining a
population of 200 units, each tested with a sample of 400 images.

3 Results

3.1 Intrinsic dimension of object representations along the rat ventral stream

We applied the nonlinear ID estimator Two-NN [20] to compute the intrinsic dimension of object
representations in four visual cortical areas (V1, LM, LI and LL) of the rat ventral stream, as a
function of the number of units included in the population vector space (Figure [2]A, solid lines),
up to the maximal number of units available in each area (circles). In addition, we extracted the
asymptotic values of the ID (stars in Figure 2B) via power-law fits (dashed lines) to control for
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Figure 2: Intrinsic Dimension of neural representations (A) Estimation of the ID as a function of
the number of neurons considered in the four visual areas (solid lines). Shadings correspond to the
SD of multiple estimates with randomly sampled neuronal sub-populations, while circles mark the
estimates obtained with the full populations in each area. Dashed lines are power-law fits to the data.
(B) The ID estimates obtained for the full populations (circles) and for the asymptotic values of the
fits (stars) are plotted as a function of the rank of the areas along the rat ventral stream. Error bars are
the standards deviation of the values returned by the fit.

finite-size effects. At any population size considered, the ranking of the visual areas in terms of the
estimated ID was remarkably stable, with V1 featuring the lowest ID, LI the highest, and LM and LL
reaching intermediate values. More importantly, plotting the ID in each area as a function of its rank
along the cortical processing hierarchy (Figure 2B) revealed a characteristic "hunchback" profile,
with an initial expansion (from V1 to LI), followed by a contraction (from LI to LL). This trend is
consistent with the one observed in deep networks (see Figure[TJA) by [14]l, who conjectured that
the initial ID expansion was due to the pruning of low-level image information (e.g., luminosity and
contrast). Our result strongly supports this intuition, since the alternation of the expansion-contraction
phases is now observed along an object processing pathway where such pruning has been shown to
take place (see Figure[IB) [15]].

3.2 Encoding of low- to middle-level visual features in single units of VGG-16

We now turn to the other question addressed in our study, namely investigating if the information
about low-level image features is actively discarded in artificial networks in a manner that resembles
the one observed in rats. Having defined a set of metrics to quantify image features of increasing
complexity (see Section[2.3), we measured how much information about these features was encoded
by the activation of individual units across the layers of VGG-16 (see Section for details).

We found that information about luminosity was a monotonic decreasing function of the layer’s depth,
with training producing a very large luminosity information loss in the very first layer (compare
blue and green curves in Figure B]A). Intuitively, this can be explained by the fact that learning
spatially structured convolutional kernels will tend to produce both positive and negative weights with
balanced, near-zero average, which are poorly sensitive to the mean luminosity within a unit’s RF.
By contrast, randomly assigned weights will often have the same sign, at least for the small kernels
of the early layers, yielding activations that are proportional to the luminous energy falling within a
unit’s RF. This intuition was confirmed by comparing the distributions of the average weights for
the 3 x 3 kernels of the first layer in the trained and untrained network (bar plot in the inset). The
gradual monotonic decrease that was nevertheless observed in the untrained network is explained
by the fact that randomly assigned weights, in case of increasingly larger kernels, will progressively
tend to the zero-average condition (inset, red line).

If training produces spatially structured kernels, units in early layers should not only lose sensitivity to
luminosity, but also become sensitive to image contrast. Our mutual information analysis confirmed
this intuition, showing that the units of the initial layers encoded a larger amount of contrast infor-
mation in the trained network, as compared to the untrained one (Figure[3B, blue vs. green curve).
In addition, as a result of training, contrast information grew steadily in the early convolutional
layers, reaching a peak in the third one, but then decayed sharply in the following layers, eventually
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Figure 3: Distillation and pruning of image information in VGG-16 (A) Mean normalized infor-
mation conveyed by VGG-16 units about image luminosity for a trained (blue) and random (green)
network. Error bars are standard deviations over five realizations of the experiment (independent
sampling of units, images and random weights). Circles represent convolutional layers, while stars
indicate fully connected layers. Inset: distribution of the average weights of the units in the first layer
of the trained and random network (blue and green bars) and in the forth convolutional layer of the
latter. (B-D) Same as in A, but for the information conveyed by VGG-16 units about image contrast,
orientation and corners (i.e., joint orientation of two prominent edges).

attaining values that were lower than those of the untrained network. This suggests that learning
representations that are useful to process and classify natural images requires to first distill contrast
information in the units of early layers, followed by actively discarding such information in later
processing stages. The pruning of contrast and luminosity information matches the results in rat
visual cortex [[15]] (see Figure [TB). We note that the analysis of rat data did not reveal the initial
rise of contrast information found in VGG-16, but this is unsurprising, given that the rat dataset did
not contain recordings from the processing stages that precede V1, i.e., retina and thalamus, where
center-surround contrast detectors first emerge in the visual system and that would correspond to
VGG-16 very first layers.

We next considered visual features of increasing complexity, measuring the amount of information
encoded by VGG-16 units about the dominant orientations of the image patches falling within their
RFs. This analysis was applied only to units for which enough input images existed that contained,
in the patch falling within the units’ RFs, a sufficiently prominent oriented edge (see Section 2.3).
Moreover, we excluded from the analysis the first two layers of the network, because their units
have RFs that are too small for the orientation estimate to be meaningful. When visualized as a
function of layer depth, orientation information in the trained network followed a hunchback profile
(Figure[3[C, blue curve), raising sharply and reaching a peak in the fifth convolutional layer, i.e., at
a later stage than contrast information (see Figure [3B), consistently with the hierarchically higher
nature of the orientation feature. Following the peak, orientation information dropped sharply in
the deeper layers. As for luminosity and contrast, this trend was the result of training, as it was not
observed in the randomly initialized network (green curve). And again, as for contrast, orientation
information, once distilled in individual units of early layers, was then actively discarded in the
following processing stages, becoming lower than for the untrained network - a finding consistent
with the loss of orientation tuning found along the ventral stream [16] (see Figure[ID, solid lines).
Just like for contrast, no initial rise of orientation tuning was observed along the rat ventral stream,



because no data were available from subcortical areas where orientation tuning is known to be much
less prominent [25].

Finally, considering features of even greater complexity, we measured the information conveyed by
VGG-16 units about the joint orientation of two dominant edges, i.e., the corner information (again,
this analysis was applied only to cases where the image patch falling within a unit RF contained a
sufficiently prominent corner; see Section 2.3). As for orientation, also corner information varied
across the layers of the trained network according to a hunchback profile (Figure , blue curve),
again peaking in the fifth convolutional layer, and again being discarded in deeper processing stages,
but more gradually than orientation information, reaching a sort of plateau in middle layers. Once
more, this trend was not observed in the untrained network (green curve) and was instead consistent
with the increase of neurons tuned for pairs of orientations found along the ventral stream [[16] (see
Figure[ID, dashed lines).

Importantly, all these feature information trends were largely preserved when assessed on the
activations following the ReLU non-linearities (see Appendix [C), and when tested on other networks
of the VGG family (see Appendix

3.3 Effective pruning of low-level information requires training

One of the most intriguing findings of our experiments is that training is necessary not only to build
sensitivity for low- and middle-level visual features, but also plays the complementary role of pruning
this information, once it has been distilled in individual units of early layers. To better understand
the extent to which information pruning is actively enforced by training, we considered a hybrid
VGG-16 network constructed as follows: layers ¢ < ¢* shared the same weights as the fully-trained
(on ImageNet) VGG-16, while weights in layers ¢ > ¢* were left randomly initialized. By letting
£* vary, one could visualize the effect of random transformations after a given checkpoint (£*) and
ask whether the observed decay of feature information (Figure 3] is a direct consequence of training
(active information pruning) or is merely the result of architectural constraints. We found that training
played an active role in pruning luminosity information (Figure 4JA), with the information profile of
the fully-trained network (blue curve) being consistently lower with respect to the profiles obtained
for hybrid networks with intermediate £* checkpoints (green curves). The effect of training was
even more striking for contrast information (Figure f]B), which, in the hybrid networks, displayed
a growing trend through the random convolutional layers, before finally dropping in the second
fully-connected layer. In the case of orientation (Figure B[C), results were only partially consistent
with those of luminosity and contrast. Training the network only up to layer 5 (i.e., up to the peak of
orientation information), still yielded a large drop of information from layer 6 onward when these
layers are left randomly initialized. However, orientation information did not reach the same low
values attained by the fully-trained network in the last layers: information here remained substantially
higher. This indicates that a reduction of orientation information after the peak in layer 5 is achieved
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Figure 4: Training results in active pruning of low-level image information (A) Mean normalized
information conveyed by VGG-16 units about image luminosity for a trained network (thick blue line;
same curve as in Figure[3]A) and for three additional hybrid network configurations (green lines) that
have been trained only until layer £* (with weights in the following layers having been left randomly
initialized). The gradients of color (from green to blue) correspond to progressively larger £* values,
ie., £* € {1,2,3}. (B) Same as in A, but for the information conveyed by VGG-16 units about image
contrast. Here the thick blue line is the same curve as in Figure and ¢* € {3,5,7,9,11}. (C-D)
Same as in A, but for the information conveyed by VGG-16 about image orientation and corner.



Figure 5: Evolution of category information across VGG-16 layers (A) Mean normalized informa-
tion conveyed by VGG-16 units about image category for a trained (blue line) and a random (green
line) VGG-16 network. As in Figure[3] error bars are standard deviations over five realizations of the
experiment. (B) Training and validation performance (dashed and solid lines respectively) of linear
SVM classifiers that were trained to predict the labels of images belonging to 10 selected Imagenet
categories (250 and 50 images per category were used, respectively, for training and validation),
based on the activations of a pool of 250 VGG-16 units sampled from each layer. Data points are
averages (+ SD) over 200 sub-populations of 100 units that were randomly sampled from each pool
of 250 units.

even without training, likely because of architectural constraints (e.g., increase in receptive fields).
However, further pruning of orientation information in the last layers of the network still requires
training, consistently with the results found for luminosity and contrast information. A qualitatively
similar behavior, albeit noisier, was found for corner information (Figure E]D).

3.4 Information on object identity emerges in late layers at both the single unit and
population level

The VGG-16 network used in our experiments was pretrained to achieve high classification per-
formance on Imagenet. Thus, all the information about the low- to middle-level visual features
explored in our analyses must have been harvested (and then pruned) by the network in the attempt to
maximize the separability of image categories in its output layer. Having reported how information
about several such features peaked in early convolutional layers, we next asked how information about
image category evolved across the network. Intuition suggests that it should peak in the very last
layer, where readout takes place. It is however unclear how such information varies along the network
depth, especially the one encoded by individual units. In the rat ventral stream, information about
object category encoded by single neurons has been found to rise from low to high visual areas, with a
matching increase in the ability of neuronal populations to support invariant recognition [[15] (see Fig-
ure[T[C). In [18], using a neighbourhood regularity metric, it was shown how representation-support
for image category emerged sharply in late layers of various CNN architectures.

Here, we measured the category information encoded by VGG-16 units by using the label of the 1500
test images as the feature variable X! in Eq. (I). We found that this metric remained low and stable
for about half the depth of the trained network, increasing smoothly in the last convolutional layers
and then abruptly in the fully connected ones (Figure [5JA, blue curve), while no trend was observed
for the random network (green curve). This result resonates with that in [18]], again indicating a late
and sharp rise in image category information.

Next, we investigated how easily accessible was such category information encoded by single units.
To this aim, we trained linear SVMs to predict the image labels based on the activity of a pool of
250 units in a layer (Supplementary Material, section B). We found a growth of decoding accuracy
(Figure [5B, blue curve) that tracked the increase of category information observed, at the single
unit level, in the second half of the convolutional layers (compare to Figure[5]A). This suggests that,
similarly to what observed along the rat ventral stream, the concentration of category information
in single units plays a role in supporting the linear readout of category label at the population level.
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Appendix

A Algorithms for orientation and contrast

We report in this Appendix the detailed pseudo-codes for the computation of the orientation and the
contrast features.

The algorithm for the computation of the orientation features (see Algorithm|I)) is based on a Fourier
analysis of the unit-specific RF-sub patch of the image (denoted Imagegy in the main text). We first
extract the power spectrum by taking the norm of the complex-value 2D- Fourier Transform of the
image. We then perform a log-polar transform of the image to make explicit the angular dependence
of the power spectrum. By summing over the angular dimension, we obtain the total amount of power
present in a given angular direction 6. We define the image orientation to be the angle of maximal
power 6*. We furthermore produce a quality metrics £ € [0, 1] which is the Michelson contrast of the
angular power spectrum. Such metric takes high values for strongly peaked spectra (i.e. there exist
an angular direction which carries the most amount of power present in the image) and can later be
used to score the images and implement an high-pass filter.

Algorithm 1 Estimating orientation for given Imagegp

procedure ORIENTATION(Imagepy)
Input: Image tensor of shape [C, W, H]

P,y +| FFT2D (Imagegy) | > Compute power spectrum via real-FFT of Imagegp
P,g < to_logpolar(P,,) > Convert the power spectrum to Log-Polar coordinates
Py« (Prg) > Sum along the radius dimension

0* < argmax, (Pp)

maxPy — minPy o . .
¢ —— > Compute a quality index for orientation
max Py + minPy

return 6%, £
end procedure

The algorithm for the contrast feature (see Algorithm[2) follows a similar rationale as the one for the
orientation. It is again based on a Fourier analysis of the unit-specific RF-sub patch of the image,
with the major difference being the need to extract the two most powerful (in terms of the Fourier
power spectrum) two orientations. Our analysis relies on the Python scipy.signal implementation of
the find_peaks algorithm, which identifies the peaks in a 1D signal, in our case the angular power
spectra. To compute a quality metric for the corner feature, we simultaneously measure also the
values of the deepest pits of the signal. The final image score ¢ € [0, 1] is a bimodal selectivity index
and takes high values for multi-peaked signals, while being small for no- or singled-peaked signals.

B SVM decoding of object identity from VGG-16 units

Following results on single-unit information about object identity (see Section 3.4 of main text), we
investigated how a population-based linear decoder could harvest such information for the object
classification task. We used the Python sklearn implementation of a linear SVM as our decoder. The
stimulus set was composed of images taken from the ILSVRC2012 ImageNet dataset. Among the vast
pool of images categorized into 1000 different classes, we selected 10 random classes and used this
subset of ImageNet as out dataset. We then built a training set (sampling from the ImageNet training
set) which consisted in a total of 2500 images (250 images per class), while we used all the available
50 images per class of the ImageNet validation set (for a total of 500 images) as our validation
dataset. We then recorded the activations of a random sub-population of 250 units from each layer of

14



Algorithm 2 Estimating corner for given Imagegp

procedure CORNER(Imagepy)
Input: Image tensor of shape [C, W, H]

Py +| FFT2D (Imagegp) || > Compute power spectrum via real-FFT of Imagegp
P,y < to_logpolar(Py,) > Convert the power spectrum to Log-Polar coordinates
Py >, (Pro) > Sum along the radius dimension
0*, u* « find_peaks (Fp) > Get position 0* and values p* of Py peaks

_, V* « find_peaks (—Py)
> Get position and value of highest peak
i, g1+ argmaxqy (p*), maxy (p*)
> Get position and value of second-to-highest peak
Js M2 ¢ argmaxy) (p*), max(gy (u*)
¥, 05 « 0*[i], 0*[4] > Get corresponding angle of first and second peak

> Get values of first two deepest pits
Vi, v < mingy (=), min(y) (—v*)

— > Compute a quality index for corner
M1 —

return 67, 03, ¢
end procedure

the (Pytorch implementation of) VGG-16 neural network. We considered both a fully-trained (on
ImageNet) VGG-16 network and a randomly-initialized one as control.

We sampled a random sub-population of 100 units among the 250 available in each layer and
then fitted a linear-SVM model to predict the classification label based on the activations of the
whole sub-population. We then repeated the experiment 200 time with independent samples of the
sub-population. The final estimate for the population-based decoding was then measured as the
classification accuracy (both on the training and validation set) averaged over the 200 realizations of
the experiment.

C Probing Information after the non-linear ReLLU activations

In a given layer of a neural network, one can consider unit activations before the non-linear activation
gate (ReLU in VGGs), or after the gate. This choice is somewhat arbitrary, because we are interested
in a layerwise comparison and both choices allow measuring information and comparing it between
layers in a consistent way. Intuitively, they correspond (respectively) to the information received by a
neuron from the previous layer or transmitted to the next. In the main text we measured the linear
activations of the layer unit (pre-activations), because we speculated that this could be advantageous
as ReLU gates maps half of possible values to zero, making it harder to spot interesting patterns in
information by decreasing the range over which this can vary between layers. We check here that the
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Figure C: Single unit Mutual Information after ReLLU activation Mean normalized information
conveyed by VGG-16 units when probed after the layer activation (ReLUs). Visual features and color
conventions are the same as in Figure [3]of main text. Shaded area are standard deviations over five
realizations of the experiment (independent sampling of units, images and random weights).
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choice between the two alternatives does not qualitatively affect the results. Indeed, the trends for the
single unit mutual information when probed after the non-linearity are qualitatively similar to those
presented in the main text (compare Figure [C| with Figure [3]of main text).

D Mutual Information trends in other VGG networks

We report the measured single-units mutual information trends for the same visual features (lumi-
nosity, contrast, orientation and corner) in two different networks of the VGG family: VGG-11 and
VGG-19. The observed profiles are very similar to the ones presented for VGG-16, exhibiting the
complementary pruning and distilling phenomena described in the main text.
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Figure D: Mutual Information in VGG-11 and VGG-19 (A) Mean normalized information conveyed
by VGG-11 units about image luminosity, contrast, orientation and corner. Color and marker
conventions are the same of Figure [3] of main text. Error bars are standard deviations over five
realizations of the experiment. (B) Same as in (A) but for units in a VGG-19 network.
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