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Abstract

Recently, server-edge-based hybrid computing has received considerable attention as a
promising means to provide Deep Learning (DL) based services. However, due to the
limited computation capability of the data processing units (such as CPUs, GPUs, and
specialized accelerators) in edge devices, using the devices’ limited resources efficiently is
a challenge that affects deep learning-based analysis services. This has led to the develop-
ment of several inference compilers, such as TensorRT, TensorFlow Lite, Glow, and TVM,
which optimize DL inference models specifically for edge devices. These compilers operate
on the standard DL models available for inferencing in various frameworks, e.g., PyTorch,
TensorFlow, Caffe, and MxNet, and transform them into a corresponding lightweight
model by analyzing the computation graphs and applying various optimizations at differ-
ent stages. These high-level optimizations are applied using compiler passes before feeding
the resultant computation graph for low-level and hardware-specific optimizations. With
advancements in DNN architectures and backend hardware, the search space of com-
piler optimizations has grown manifold. Including passes without the knowledge of the
computation graph leads to increased execution time with a slight influence on the inter-
mediate representation. This report presents a detailed performance study of TensorFlow
Lite (TFLite) and TensorFlow TensorRT (TF-TRT) using commonly employed DL mod-
els on varying degrees of hardware platforms. The work compares throughput, latency
performance, and power consumption. The integrated TF-TRT performs better at the
high-precision floating point on different DL architectures, especially with GPUs using
tensor cores. However, it loses its edge for model compression to TFLite at low precision.
TFLite, primarily designed for mobile applications, performs better with lightweight DL
models than deep neural network-based models.

Further, we understood that benchmarking and auto-tuning the tensor program gener-
ation is challenging with emerging hardware and software stacks. Hence, we offer a mod-
ular and extensible framework to improve benchmarking and interoperability of compiler
optimizations across diverse and continually emerging software, hardware, and data from
servers to embedded devices. We propose HPCFair, a modular, extensible framework
to enable AI models to be Findable, Accessible, Interoperable and Reproducible (FAIR).
It enables users with a structured approach to search, load, save and reuse the models
in their codes. We present our framework’s conceptual design and implementation and
highlight how it can seamlessly integrate into ML-driven applications for high-performance
computing applications and scientific machine-learning workloads.

Lastly, we discuss the relevance of neural-architecture-aware pass selection and or-
dering in DL compilers. We provide a methodology to prune the search space of the
phase selection problem. We use TVM as a compiler to demonstrate the experimental
results on Nvidia A100 and GeForce RTX 2080 GPUs, establishing the relevance of neural
architecture-aware selection of optimization passes for DNNs DL compilers. Experimental
evaluation with seven models categorized into four architecturally different classes demon-
strated performance gains for most neural networks. For ResNets, the average throughput
increased by 24% and 32% for TensorFlow and PyTorch frameworks, respectively. Addi-
tionally, we observed an average 15% decrease in the compilation time for ResNets, 45%
for MobileNet, and 54% for SSD-based models without impacting the throughput. BERT
models showed an improvement with over 90% reduction in the compile time.
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Chapter 1

Introduction

The burgeoning applications of deep neural networks (DNN) are ubiquitous across multi-
ple artificial intelligence domains, including industry and scientific disciplines. The deep
neural architecture has evolved manifolds from simple neural networks to convoluted ones,
followed by recurrent ones to massively large models such as Megatron-Turing Natural
Language Generation (MT-NLG). Advancements in hardware such as GPU and TPU and
DL frameworks like TensorFlow and PyTorch offer optimized kernel support facilitating
DL innovations.

With an upsurge of deep learning computing processing units, deep learning-based
object detection applications have received considerable research interest in recent years.
In particular, as the accuracy of deep learning-based object recognition technology sur-
passes human capabilities, real-world deployment of intelligent surveillance technology
with CCTV is expanding. Its use includes analyzing crowds and vehicle flows, performing
fire detection and localization, and detecting unauthorized garbage dumping actions in
urban regions. Edge computing (and inference at the edge) is also getting much attention
in the scientific community, especially in High Energy Physics (HEP) [81]. For example,
the next generation of HEP experiments, such as the High Luminosity Large Hadron
Collider (HL-LHC) and Deep Underground Neutrino Experiment (DUNE), are investing
in edge computing technology addressing real-time image analysis.

In most deployments, pre-trained deep learning models on servers are installed on
edge devices located around sensors and provide services based on deep learning infer-
ence, such as object recognition while simultaneously performing data acquisition. The
computing resources of edge devices are usually CPUs, GPUs, or FPGAs and have limited
computing and power resources compared to cloud servers. Thus, various techniques and
technologies have been developed to enable efficient deep learning inference on resource-
constrained edge devices. These include the development of low-power, highly efficient
SoC chips specialized for deep learning inference, such as Google’s TPU and Intel’s VPU,
the development of model compression methods, such as quantization and the pruning of
deep learning models for resource-constrained devices, as well as the design of lightweight
models with reduced weights and parameters such as Mobile-Nets and YOLO, for use in
edge computing environments. However, despite such advances, efforts are still needed to
optimize deep learning applications like object detection models for computing as men-
tioned above environments significantly to maximize resource utilization. Several deep
learning compilers, such as TVM, TensorFlow, TensorRT, and TensorFlow Lite, have
been developed to address specialized accelerators’ performance issues.

iii



Chapter 1. Introduction

1.1 Overview of Tensor Compilers

Figure 1.1: Computation Graph Before XLA Optimizations

The continuous effort from academia and industry has led to the development of
many DL frameworks, including but not limited to TensorFlow [1], PyTorch [79], and
MXNet [15]. These frameworks differ in design and implementation details. Hence, lack
of interoperability hinders the reuse of the strengths offered by one by the other, leading
to the duplication of engineering effort.

In the meantime, unique characteristics of the DL workloads have spurred the devel-
opment of customized DL accelerators for higher efficiency, for example, Graphcore [48],
SambaNova[28], Google TPU [49]. Apple Bionic, etc. We have general-purpose hardware
(CPU, GPU), dedicated hardware (SambaNova Reconfigurable Dataflow Unit [28]), and
emerging neuromorphic hardware (IBM TrueNorth [23]). With the emergence of hard-
ware, it is critical to map the computation to the hardware efficiently. To perform matrix

iv



Chapter 1. Introduction

Figure 1.2: Computation Graph After XLA Optimization

multiplication, we have MKL and cuBLAS libraries. Similarly, hardware vendors offer
hand-tuned libraries like MKL-DNN and cuDNN for the DL workloads. Again the chal-
lenges with the custom libraries are keeping up with the DL workload development and

v



Chapter 1. Introduction

the diversified hardware. The researchers have adopted domain-specific tensor compilers,
like TVM, TensorRT, TFLite, XLA, and Glow, to address these limitations and challenges
of manually optimizing for various hardware. The Tensor (or DL) compilers take model
definition (computation graph) as an input, perform target-independent and dependent
optimizations, and generate efficient code as an output to be deployed on the target de-
vice. Figure 1.1 and 1.2 present examples of computation graph optimizations taken from
the high-level optimization graph of ResNet56 using Tensorflow XLA [96]. The gain in the
throughput is over 2x after optimizations. The optimizations are applied as a sequence of
transformations (schedules) incorporating the neural network and hardware information.
Additionally, they employ a general-purpose compiler (LLVM) for portability across var-
ious hardware platforms. Analogous to traditional compilers, tensor compilers adopt the
layered architecture, including frontend, intermediate representations (IR), and backend.
They differ in the design of multi-level IRs and domain-specific optimizations.

1.2 Chapter Organization

The rest of the report is organized as follows: Chapter 2 discusses the optimizations offered
by TensorRT and TFLite and compares their performance on the architecturally varying
hardware. It evaluates the compilers on the metrics like throughput, latency, reduction
in the model size, and power consumption. Further, chapter 3 presents our framework to
modularize the DL components, helping in efficient search space exploration of the opti-
mization space. Lastly, chapter 4 examines the neural architecture-aware optimizations
to reduce the compilation time. We conclude this report in chapter 5, summarizing the
work accomplished so far and discussing future work.

vi



Chapter 2

Performance Evaluation of Tensor Com-
pilers For Inference

2.1 Primary Contributions

The main contributions of this work [105] are summarized as follows:

• The work presents a detailed performance analysis of TensorFlow Lite and Tensor-
Flow TensorRT inference compilers by comparing throughput, latency, and power
consumption.

• The work describes inference compilers’ performance behavior concerning DL model
architecture and hardware.

• The work reveals a need for a standardized benchmark suite to analyze the perfor-
mance of inference compilers’ optimization pipeline for edge computing.

2.2 Motivation

Deep Neural Network (DNN) based Machine Learning applications are gaining popularity
to enable Artificial Intelligence on edge. For instance, in an object detection scenario,
a DNN extracts feature from the input images and classify them from the predefined
categories. The inference process in a trained DNN model relies on a forward pass.
It is computation-intensive, challenging the constrained computing resources typically
available on edge devices. In a cloud data center-based approach to handling this, the
input data gathered through edge devices are offloaded to the cloud for processing. The
results are returned to the edge devices after the inference has been performed. High
latency, high memory requirements, poor real-time performance in throughput and power
consumption, and poor user experience typically limit these implementations.

Methods [38] have been developed to distribute the DNN’s computations between
the cloud and the edge. Although these approaches, e.g., an early exit [52] , provide a
reduction in latency, they have implementation challenges for certain types of DNN. For
example, AlexNet, with over 60 million nodes, is hard to partition in real-time.

The inference-on-edge paradigm has emerged as a solution to address the problems of
cloud-based inferencing. It aims to bring computing close to the data source to reduce
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Chapter 2. Performance Evaluation of Tensor Compilers For Inference

latency, bandwidth use, and power consumption. Several techniques have been proposed
to enable inference on edge, including model redesign [115] and human-invented architec-
ture [110] along with model compression solutions [11], network pruning [59], parameter
quantization [24], hardware acceleration based on parallel computing [42], and software
acceleration focused on optimizing resource management and pipeline design. System on
a Chip (SoC) [108] designs are another notable effort to improve the efficiency of infer-
ence on edge. However, the lack of any standardized chipset [111] inhibits any general
optimization.

Extreme diversity in hardware and software technologies makes the development of
a framework that can optimize DNN inference models for all edge systems challenging,
especially with regard to low-level optimizations. The TF-TRT integrated solution and
TFLite are designed with the intention of being hardware agnostic. These frameworks
take as input DNN models from DL frameworks like Tensorflow, PyTorch, Caffe2, ONNX,
etc., and perform fine-grained optimizations viz., quantization, layer, and tensor fusion,
along with computation graph-based optimizations, delivering a lightweight model to
be deployed on the edge devices. They perform these optimizations with the goal of
improving memory management, power consumption and GPU utilization. Section 2.3.1
discusses these frameworks in detail.

2.3 Evaluation

2.3.1 Compilers Under Test (CUT)

TensorFlow-TensorRT Integrated Solution

TensorRT (TRT) is a CUDA-based SDK for high-performance deep learning inference.
It optimizes the inference and provides a runtime that delivers low latency and high-
throughput for deep learning inference applications. The tight integration of TRT with
TensorFlow (TF) makes the use of high-performance inference engines possible. It facili-
tates TRT optimizations to the TF models by optimizing the supported graphs, leaving
unsupported operations to be executed by TF. TRT scans the TF graph to identify the
sub-graphs, selecting candidates for graph partitioning based on the supported opera-
tions. After identifying such candidates, it converts TF layers into TRT layers for each
sub-graph. Subsequently, these sub-graphs are converted to optimized TRT engines, as ex-
plained below, replacing the existing TF sub-graph. TRT’s optimizations can be ported
to other Nvidia GPUs. The TRT-specific optimizations are only supported on Nvidia
GPUs, restricting it from being leveraged on different back-end hardware iOS GPUs or
Adreno.

The ability to take diverse DL models as input makes TRT applicable to a wide range
of AI based edge applications. For example, TRT can execute a variety of computer vision
models to guide an unmanned aerial system flying in dynamic environments autonomously.
It can be embedded to enable high throughput execution of neural network models in
autonomous vehicles, deliver video analytics at the edge, or the data center, such as
NVIDIA’s DeepStream [75]. TRT also provides an ONNX parser and runtime extension
to frameworks like Caffe 2, MxNet, Chainer, Microsoft Cognitive Toolkit, and PyTorch.

Pivotal Optimizations in TensorRT
TensorRT offers INT8 and FP16 reduced precision calibration. Following training in 32-
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Chapter 2. Performance Evaluation of Tensor Compilers For Inference

bit precision (F32), the inference can employ half-precision, FP16, or even INT8 tensor
operations because gradient back-propagation is not done during the inference phase.
Lower precision helps in achieving a smaller model size, lower memory utilization and
latency, and higher throughput. We can control the precision in TensorRT by specifying
the Data Type in the uff to trt engine function. Since INT8 precision can represent
only 256 values (-128 to 127), TensorRT performs calibration to represent the weights
and activation as 8-bit integers minimizing the accuracy loss. The calibration is a fully
automated and non-parameterized method to convert FP32 to INT8 using a representative
input training data sample.

Additionally, it performs layer and tensor fusion by parsing the computation graph and
performing graph optimizations. The graph optimizations make the execution efficient
without changing the underlying computation. Ordinarily, the kernel computation is
faster than the kernel launch overhead coupled with the cost of reading and writing the
tensor data for each layer. TensorRT addresses the memory bandwidth bottleneck and
under-utilization of available GPU resources by vertically fusing the kernels to perform the
sequential operations within a single kernel launch. TensorRT identifies the layers with
common input data and filter size with different weights. Further, it performs horizontal
fusion to convert them into a single kernel to avoid launching more than one kernels. In
short, this results in an efficient graph with fewer layers and kernel launches, reducing
inference latency.

TensorRT also supports kernel auto-tuning by selecting the most suitable data layers
and algorithms for each target GPU platform. For example, based on the target GPU,
input data size, filter size, tensor layout, batch size, and other important parameters,
the inference engine opts for the best convolution algorithm from the kernels library to
perform the task. Furthermore, TRT allows dynamic tensor memory management, which
allocates memory for a tensor during its life-span only, thereby reducing memory footprint
and enhancing memory reuse.

Figure 2.1: Import and optimize trained models to generate inference engines

Consider Figure 2.1. The models trained on well-known frameworks like TensorFlow,
Caffe2, MxNet, and PyTorch are fed to TRT. TRT then produces a light-weight runtime
engine after optimizing the neural network computation for parameters like batch size,
precision, and workspace memory for the target deployment GPU. The generated engine
is an optimized inference execution engine serialized to a plan file.

The TF-TRT workflow involves three phases as shown in Figure 2.2. In the first phase,
a model is designed, developed, and trained in the supported frameworks. A deployment
solution is then detailed and validated as part of the second phase. Factors taken into
account while devising the deployment solution include: whether it is based on a single
network (object detection) or multi-network (federated learning), computing device, data
ingestion pipeline, data format and nature, and so on. Figure 2.2 shows that once the
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Chapter 2. Performance Evaluation of Tensor Compilers For Inference

Figure 2.2: Deployment Workflow

inference architecture is decided, the next step is to build the inference engine using TRT.
The trained model is fed to the deployment pipeline using ONNX parser, Caffe Parser,
or UFF Parser. Like ONNX, a UFF package offers utilities to convert and parse trained
models from differing frameworks to a standard format. Following this, the TRT builder
applies various optimization parameters, to say, batch size, mixed precision, and many
more, to build an optimized inference engine specific to the infrastructure. The output
inference engine is validated for accuracy as INT8 and FP16 based quantizations might
lead to a slight precision loss. It is subsequently written to a plan file in a serialized format.
The inference engine is initialized by deserializing this model from the plan file into an
inference engine. In the last phase, the TensorRT library is linked to the deployment
pipeline and is asynchronously called on-demand.

TensorFlow Lite

Figure 2.3: TensorFlow Lite Architecture
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Chapter 2. Performance Evaluation of Tensor Compilers For Inference

Google’s TensorFlow Lite [34] provides a set of developer tools to leverage DL mod-
els’ potential on edge devices. As shown in Figure 2.3, TFLite consists of two main
components: the server-side MLIR-based TFLite Converter and the client-side TFLite
Interpreter. Multi-Level Intermediate Representation (MLIR) [51] is the reusable and
extensible compiler framework for defining compiler IRs, from high-level (such as DL
framework specific) to low-level LLVM-IR.

The TFLite converter tool takes a trained model in a standard format such as Tensor-
Flow or a format interconvertible by ONNX and generates a TFLite model file (.tflite).
After conversion, the model file can be deployed to a client device (e.g., a mobile or embed-
ded system) and run locally using the TFLite interpreter. TFLite supports inference on
mobile and embedded platforms, such as Android, iOS, and Linux (including Raspberry
Pi), in multiple programming languages.

Edge devices are severely resource constrained, hence TFLite performs specific opti-
mizations to generate lightweight models targeting size and latency reduction. It supports
various optimization techniques, such as quantization, pruning, and clustering. By de-
fault, the TFLite interpreter utilizes CPU Kernels explicitly optimized for the ARM Neon
Instruction set [4]. To fully use the back-end hardware, including accelerators like GPU,
TFLite offers delegates’ support.

A delegate acts as a bridge between TFLite runtime and lower-level APIs associated
with accelerators like OpenGL/OpenCL for Mobile GPUs. Among numerous delegates
offered by TFLite, GPU Delegate is optimized for Android and iOS. It is essentially
optimized to perform floating-point matrix operations, allowing an interpreter to execute
GPU-supported operations on the device’s GPU.

At the time of this study, GPU delegate supports 23 TF operations, e.g., ADD, EXP [34].
These operations help to optimize the performance on accelerators compared to the CPUs’
execution solely. It is crucial to confirm the model’s supported operations before choosing
a delegate. Many unsupported operations can lead to multiple hops between CPU and
accelerator, impacting the latency adversely. Further, using a delegate entails added
trade-offs, e.g., using a GPU Delegate induces overhead during initialization. Also, the
GPU delegate does not support the quantized model.

Pivotal Optimizations in TensorFlow Lite
During the model conversion from a trained model to TFLite flat buffer format, TFLite
Converter supports four types of quantization; dynamic range, integer, float16, and mixed
precision. Dynamic range quantization supports on-the-fly quantization and dequantiza-
tion of activations so that quantized kernels can be utilized when available. Integer quan-
tization is an optimization strategy that converts 32-bit floating-point numbers (such as
weights and activation outputs) to the nearest 8-bit fixed-point numbers. Float16 quanti-
zation results in a 2x reduction in model size in exchange for minimal impacts to latency
and accuracy. Mixed precision converts activations to 16-bit integer values and weights
to 8-bit integer values. This mode can significantly improve the quantized model perfor-
mance when activation is sensitive to the quantization while still achieving an almost 3-4x
reduction in model size.

Moreover, the fully quantized model can be consumed by integer-only hardware accel-
erators. TFLite has exposed APIs to configure and prune either the entire model or a few
selected layers to support pruning. The pruning works by removing parameters within a
model that have only a minor impact on its predictions. This technique brings improve-
ments via model compression. Another optimization that the TFLite converter performs
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is fusion of operations (various tensor computations). Fused operations maximize the per-
formance of their underlying kernel implementations and provide a higher-level interface
to define complex transformations like quantization. TFLite also supports clustering as
an optimization. The clustering works by grouping each layer’s weights in a model into a
predefined number of clusters, then sharing the centered values for the weights belonging
to each cluster. Hence it reduces the number of unique weight values in a model and
reduces its complexity.

2.3.2 Dataset

This section summarizes the statistical information corresponding to the datasets used by
the pre-trained models to evaluate the frameworks in this work.

ImageNet

The ImageNet dataset is a collection of human-annotated images organized according to
the WordNet hierarchy and designed for developing computer vision applications such
as image classification, object detection, and object localization. WordNet is a database
of English words associated with semantic relationships. Each meaningful concept in
WordNet, perhaps described by multiple words or word phrases, is called a ”synonym
set” or ”synset.” ImageNet offers variations of the same object, including camera angles
and lighting conditions. As per the ImageNet homepage [43], more than 14 million images
are organized into over 21,000 subcategories averaging around 500 images per subcategory.
These categories are subcategories of 21 high-level categories. Additionally, slightly over
1 million images have been annotated with the bounding boxes. There are 1000 synsets
and 1.2 million images with Scale-Invariant Feature Transform (SIFT) features. SIFT
helps in detecting local features in an image.

Common Objects in Context (COCO)

Microsoft’s Common Objects in Context [56] is a large-scale object detection, segmenta-
tion, and captioning dataset. It consists of everyday scenes comprising common objects
in their natural context. Objects are labeled using per-instance segmentations to aid in
precise object localization. There are 165,482 train, 81,208 validation, and 81,434 test im-
ages encompassing 91 categories. The major portion of the dataset is non-iconic images,
as they are better at generalizing.

2.3.3 Evaluated Models

This section discusses the DL models used in the work for performance evaluation. We
focused on Image Classification and Object Detection tasks. For the Image Classification,
we used pre-trained Keras models, viz., ResNet50 v2, and MobileNet v2, trained on the
ImageNet dataset. We used the TF implementation of the SSD-MobileNet v2 model
available from the MLPerf Benchmark [27], trained on COCO Dataset to perform Object
Detection.

The ResNet50 is a 50-layer deep convolutional neural network (CNN). The Residual
Networks (ResNet) are similar to any other deep network with convolution, pooling,
activation, and fully-connected layers, except for the identity connection between the
layers. The identity connection links the input to the end of the residual block. The
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residual block gets its name because, unlike other networks, it tries to learn the residue
instead of the output. The ResNet50 inputs an image and performs convolution and
max-pooling. Then it passes through four phases. In the first phase, three residual blocks
contain three layers each, performing the convolution with stride 2. The stride of 2 is
responsible for making the input size half and doubling the channel’s height and width.
As it progresses to later stages, the channel width will double, halving the input size. As
shown in Figure 2.4a, before the multiplication with the weight matrix, it applies Batch
Normalization and ReLU activation to the input tensor. Batch Normalization increases
the network’s performance by adjusting the input layer.

(a) Basic architecture of ResNet50 v2

(b) Basic architecture of MobileNet v2

(c) Basic architecture of SSD MobileNet v2

Figure 2.4: Basic architecture of the evaluated models

We also used MobilNet v2. It is a lightweight CNN-based model introduced by Google,
quite suitable for edge devices due to its size. It is derived from an inverted residual struc-
ture where the residual connections are between the bottleneck layers. The intermediate
expansion layer uses lightweight depth-wise convolutions to filter features as a source of
non-linearity. As shown in Figure 2.4b, generally, the first layer is a 1x1 convolution
with ReLU6. The second layer is the depth-wise convolution. And lastly, the third layer
is another 1×1 convolution but without any non-linearity. It contains an initially fully
connected layer with 32 filters and 19 residual bottleneck layers.

We also used the SSD MobileNet v2 model for the work. The SSD stands for Single
Shot MultiBox Detection. The Single Shot refers to the object localization and classifi-
cation tasks performed in a single forward pass of the network. Multibox is the name of
the technique for bounding box regression developed by Wei Liu et al. [58]. The model’s
input is a single image of 1x3x300x300 (BHWC) in RGB order. It is further converted to
BGR format internally. The output is a typical vector containing the tracked object data.
As shown in Figure 2.4c, the initial network consists of standard MobileNet architecture
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truncated before any classification layers, termed as the base network. An auxiliary net-
work follows it; called the SSD network. The SSD network is based on a feed-forward
convolutional network consisting of feature maps extraction and Object Detection us-
ing a convolution filter. It produces a fixed-size collection of bounding boxes and scores
(probabilities) for the respective object classes present within those boxes.

2.3.4 Hardware Specifications

We carried out our experiments on two different Turing architecture-powered NVIDIA
GPUs, GeForce RTX 2080 and Tesla T4. In our experimentation setup, where Tesla T4
GPU uses tensor cores, RTX 2080 GPU does not. The tensor cores offered by Tesla T4
help accelerate certain half-precision matrix algebra types, including General Matrix Mul-
tiplication (GEMM). It also enables faster and easier mixed-precision computation. We
can control the automatic mixed-precision by setting/unsetting the environment variable,
TF ENABLE AUTO MIXED PRECISION. RTX 2080 has a core clock speed of 1515 MHz and a
Power Consumption (TDP) of 215 Watt. On the other hand, Tesla T4 has a core clock
speed of 585 MHz and power consumption (TDP) of 70 Watt. The clock speed of RTX
2080 is around 35% higher than Tesla T4, whereas typical power consumption in Tesla
T4 is 3x times lower than RTX 2080. Both have PCIe 3.0 x16 interface and have GDDR6
memory types. The maximum RAM amount for RTX 2080 is 8 GB, whereas Tesla T4
offers 16 GB. Higher RAM enables Tesla T4 to store more working data and machine code
currently in use, allowing quick-access and faster data processing. Additionally, the peak
memory clock speed in RTX 2080 is 14000 MHz compared to 10000 MHz in Tesla T4. The
better memory clock speed offers faster data read and store in the case of RTX 2080. We
experimented with the per process gpu memory fraction flag set to 0.7. That means
TensorFlow (TF) allocates a maximum of 70% of GPU memory for all its internal usage.

For the TF-Lite, we experimented with num threads set to 1, 4, and 8 in the in-
terpreter. TF-Lite by default uses the maximum number of threads available which
drastically impacts the performance due to GPU resource constraints. During our ex-
perimentation, we also found that with the number of threads set to more than 8, the
power consumption increased. We used the optimal number of threads based on our
experiments and set num threads to 4 for all our TF-Lite experiments.

2.3.5 Software Specifications

We carried out the TensorFlow Lite (TF-Lite), and TensorFlow-TensorRT (TF-TRT)
experiments with the following software stacks:

For the experiments with TF-Lite, we have used TF-Lite v2.3, TensorFlow 2.4, CUDA
10.1, and CuDNN v7.5. For the experiments with TF-TRT, TensorRT’s version was
v5.1.5.0, TensorFlow-GPU v2.0, CUDA 10.1, and CuDNN v7.5. Since TFLite is not
entirely optimized for x86 architecture and desktop GPUs, we also carried out the exper-
iments on a simulated device using Android Studio Emulator. We used Android Studio
4.0.1 and Pixel 3a XL simulated devices with android 10, and API 29.

2.3.6 Evaluation Metrics

We selected the following metrics to compare the performance of edge inference using
TF-TensotRT and TFLite:
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• Throughput: the volume of inferences within a given period, usually measured in
inferences per second or samples per second (imgs/sec).

• Latency: the execution time to perform inference on one image, expressed in mil-
liseconds (ms).

• Power: refers to the power drawn by the GPU to perform one inference. It is
expressed in Watt (W),

• Model Size: the saved model’s (.pb or .tflite) size on the disk. It is measured in
Megabyte (MB).

2.4 Discussion

2.4.1 Experimentation on GeForce RTX 2080

Table 2.1 presents the results from the experiments conducted on GeForce RTX 2080
GPU. For the precision mode FP32 and FP16, the TF-TRT optimized ResNet50 model
showed a 2x increase in the throughput compared to the native model. In the case of
INT8 and MIXED precision mode, the latency has improved significantly by 8x, boosting
the throughput by nearly 7x-8x. This behavior is attributed to the TF-TRT’s horizontal
and vertical fusions that reduce the number of kernel launches. Across all the precision
modes, TF-TRT could reduce the power consumption in a range of 10%-30%. It is noted
that the saved model’s size has significantly increased after the optimizations by TF-TRT,
leaving the size of parameters (assets and variables) the same. We found that the induced
optimized engines saved copies of the weights and variables during experiments to be
later used to inspect the saved model for an efficient execution plan selection. The above
finding supports the 8x times increase in the model’s size post optimizations by TF-TRT.
We could see a similar behavior of TF-TRT with the MobileNet too.

On the contrary, TFLite could not perform well with a deep CNN-based model like
ResNet50 on x86-64 architecture. TFLite is not optimized for desktop-based GPUs and
could not utilize GPU delegate to its potential. Hence, most of the computations are
executed on the CPUs, leading to an over 95% drop in the throughput. Irrespective
of that, TFLite showed a significant decrease in the model size by 75% and an overall
reduction in power consumption of roughly 35%. With the decrease in the precision mode,
the space needed to save the model also reduced proportionally.

Discussing the results obtained from the experiment with the MobileNet, TF-TRT
showed behavior similar to the ResNet50 model. Since MobileNet is not as deep as
ResNet50, TFLite performs comparatively better against its performance with the ResNet50
model. Still, we can see that almost all the computation is getting executed on the CPU
as it cannot efficiently employ GPU delegate on a x86-64 architecture. Notwithstanding
that we experimented with multi-threaded settings and optimized data format, NCHW,
the results exhibited it did not improve the performance much.

However, SSD MobileNet is a different architecture. The results reveal a decrease in
the model size with TF-TRT. There is an 8x-11x increase in the throughput and a 15%-
35% reduction in the power consumption in TF-TRT. Talking about the TFLite, despite a
reduction in power consumption and the model size, overall, TFLite does not perform on
par with TF-TRT. TFLite displays this behavior because it is not optimized for the GPUs
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Framework Precision Avg Throughput(imgs/sec) Avg Latency (ms) Avg Power(W) Model Size(MB)

Native FP32 244.50 4.089979 48 98

TF-TRT
FP32

405.73 2.464693 42 200

TFLite 5.07 197.238658 34 98

TF-TRT
FP16

485.68 2.058968 37 200

TFLite 5.10 196.078431 35 49

TF-TRT
INT8

1469.84 0.680346 34 200

TFLite 2.55 392.156862 34 25

TF-TRT
MIXED

1777.78 0.562499 34 200

TFLite 2.51 398.406374 34 25

(a) Resnet50 v2 model trained on ImageNet Dataset.

Framework Precision Avg Throughput(imgs/sec) Avg Latency (ms) Avg Power(W) Model Size(MB)

Native FP32 345.29 2.896116 65 14

TF-TRT
FP32

778.60 1.284356 57 32

TFLite 32.71 30.571690 35 14

TF-TRT
FP16

1326.91 0.753630 61 32

TFLite 32.91 30.385900 33 7

TRT
INT8

1803.46 0.554489 43 32

TFLite 18.53 53.966540 34 4

TF-TRT
MIXED

2320.10 0.431015 42 32

TFLite 18.68 53.533190 35 4

(b) MobileNet v2 model trained on ImageNet Dataset.

Framework Precision Avg Throughput(imgs/sec) Avg Latency (ms) Avg Power(W) Model Size(MB)

Native FP32 50.72 19.715548 63 67

TF-TRT
FP32

394.31 2.536058 54 65

TFLite 8.89 112.485939 42 14

TF-TRT
FP16

399.15 2.505302 53 65

TFLite 9.28 107.758620 42 7

TF-TRT
INT8

476.57 2.098322 49 45

TFLite 4.90 204.21268 43 4

TRT
MIXED

624.43 1.601458 42 45

TFLite 4.92 204.081632 42 4

(c) SSD MobileNet v2 model trained on COCO Dataset.

Table 2.1: Comparison between TF-Lite and TF-TensorRT on GeForce RTX 2080 GPU
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Framework Precision Avg Throughput(imgs/sec) Avg Latency (ms) Avg Power(W) Model Size(MB)

Native FP32 180.76 5.532197 64 98

TF-TRT
FP32

458.62 2.180454 38 200

TFLite 6.97 143.472022 43 98

TF-TRT
FP16

1373.41 0.728114 37 200

TFLite 4.81 207.900207 39 49

TF-TRT
INT8

2207.10 0.453083 40 200

TFLite 2.47 404.858299 33 25

TF-TRT
MIXED

2353.43 0.424911 39 200

TFLite 2.46 406.504065 32 25

(a) Resnet50 v2 model trained on ImageNet Dataset.

Framework Precision Avg Throughput(imgs/sec) Avg Latency (ms) Avg Power(W) Model Size(MB)

Native FP32 409.00 2.444987 43 14

TF-TRT
FP32

1584.27 0.631205 33 32

TFLite 39.56 25.278058 23 14

TF-TRT
FP16

2598.20 0.384881 34 32

TFLite 39.98 25.012506 24 7

TF-TRT
INT8

3883.14 0.257523 31 32

TFLite 18.79 53.219797 19 4

TF-TRT
MIXED

3509.76 0.284919 30 32

TFLite 18.83 53.106744 20 4

(b) MobileNet v2 model trained on ImageNet Dataset.

Framework Precision Avg Throughput(imgs/sec) Avg Latency (ms) Avg Power(W) Model Size(MB)

Native FP32 32.12 31.133251 43 67

TF-TRT
FP32

402.49 2.493765 38 65

TFLite 8.57 116.686114 29 65

TF-TRT
FP16

423.93 2.375296 37 65

TFLite 8.57 116.67645 28 33

TF-TRT
INT8

610.29 1.642036 39 45

TFLite 4.75 210.526315 26 17

TF-TRT
MIXED

654.12 1.524390 37 45

TFLite 4.76 210.084033 25 17

(c) SSD MobileNet v2 model trained on COCO Dataset.

Table 2.2: Comparison between TF-Lite and TF-TensorRT on Tesla T4 GPU
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installed on the x86-64 architecture. TFLite interpreter utilizes CPU Kernels explicitly
optimized for the ARM Neon instruction set, not for x86-64 instruction set.

2.4.2 Experimentation on Tesla T4

We repeated the experiments discussed in the last section on a tensor core GPU, Tesla
T4. The results are summarized in Table 2.2. As expected, overall, TF-TRT and TFLite
demonstrated similar behavior for all three models. TF-TRT successfully optimized the
inference latency, throughput, and power consumption. However, it suffers from an ex-
pansion in the model’s size for the reasons above. Being that TFLite is optimized for
ARM-based GPUs. We see a drastic reduction in the throughput for all three TFLite-
optimized models. Still, it can reduce the model size significantly by a factor of 75% for
INT8 precision mode.

We also observed that the throughput improved by 1.3x-1.6x on a tensor core GPU
for the TF-TRT optimized models compared to a non-tensor core GPU. It was the case,
especially for FP16, INT8, and MIXED precision mode. The tensor cores are activated
when the parameters of the layers are divisible by 8 or 16. Also, on a Tesla T4 machine,
the GPU utilization increased extensively. Compared to the native model’s utilization
of a maximum of 60% of the available GPU resources, the TF-TRT optimized model
utilized over 95% of the available resources on a tensor core GPU. TF-TRT’s selection of
hand-tuned libraries and lowering kernel launches lead to lowered GPU wait or idle time.

Backend Model Precision Avg Throughput(imgs/sec) Avg Latency (ms) Model Size(MB)

GPU
MobileNet v1 Floating

745.57 10.73
17

CPU* 311.65 25.67

GPU
MobileNet v1 Quantized

NS NS NS

CPU* 571.43 14.35 4.1

GPU
SSD MobileNet Floating

41.67 24
27

CPU* 18.86 53

*4 Threads; NS: Not supported

Table 2.3: Execution of TF-Lite models on an android device

2.4.3 Experimentation on Pixel 3a XL, an android device

Due to the lack of any standard benchmark that can evaluate both frameworks to provide
an apple-to-apple comparison, we conducted experiments on an Android Device to assess
the performance of TFLite. Table 2.3 shows our experimental results on Pixel 3a XL, a
simulated device with android 10. The GPU delegate allows TFLite to utilize the available
GPU resources. The GPU delegate executes the GPU-compatible operators, and the CPU
executes the remaining operations. There was a 2x increase in the throughput for both
the TFLite-optimized floating models compared to the native models.

Further, the GPU delegate does not support quantized models on android yet. It
causes computations to be executed on the CPU. But still, TFLite performs comparatively
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with a 75% reduction in the model’s size.
We have also estimated the loss in precision for all of the experiments conducted due

to the various optimization techniques specific to individual frameworks. Conclusively,
TF-TRT-based optimizations lead to less than 10−5 precision loss for image classification
tasks for the precision mode FP32 and FP16. For INT8 and MIXED there was a loss to an
extent of 10−3. Similarly, for TFLite, there was a loss in precision due to quantization
by a factor of 10−3 for F16 and lower precision mode. We computed the Mean Average
Precision for the native and optimized model for the Object Detection task. The results
for TF-TRT, TFLite, and native TF-based models were on par. To summarize, we can
say that the loss in precision due to the stated compilers’ various optimizations is in the
acceptable range.

There is a clear need to optimize DL models on edge devices for better latency and
power performance. TensorFlow Lite (TFLite) and TensorFlow-TenorRT (TF-TRT) are
considered state-of-the-art inference compilers for edge computing. This chapter presents
a detailed performance study of TFLite and TF-TRT using commonly employed DL mod-
els for edge devices on varying hardware platforms. We find that TF-TRT integration
performs better at high precision mode but loses its edge for model compression to TFLite
at low precision mode. TF-TRT consistently performs better with different DL architec-
tures, especially with GPUs using tensor cores. However, TFLite performs better with
lightweight DL models than with deep neural network-based models.

The scientific computing community is considering edge computing for its ML work-
load to analyze real-time data during experiments. The performance of inference compil-
ers such as TensorRT and TensorFlow Lite under a scientific ML workload is an essential
question for the scientific community. As a next step, we plan to evaluate the perfor-
mance of these frameworks using the DOE FAIR (Findable, Accessible, Interoperable,
and Reusable) workload [25] for modern AI accelerators such as Vision Processing Units
(VPU), Field-Programmable Gate Array (FPGA), Application-Specific Integrated Cir-
cuits (ASIC), and Tensor Processing Unit (TPU).

2.5 Related Work

Compiler development for DNNs has been spotlighted in the modern era of Machine Learn-
ing. Apache TVM [14], Facebook’s Glow [29], Intel’s nGraph [21], Nvidia’s TensorRT [76],
Google’s XLA [96] and Tensorflow Lite [34] are a few notable frameworks designed to com-
pile deep learning models into minimum deployable modules. These frameworks accept
a computation graph from deep learning frameworks, such as PyTorch, Caffe2, and Ten-
sorflow, and generate highly optimized code for machine learning accelerators.

The comprehensive survey by Mingzhen Li et al. [53] presents the DL compilers’ unique
design architecture. It emphasizes the DL-oriented multi-level IRs, and front-end/back-
end optimizations in TVM, nGraph, TC, Glow, and XLA. Nevertheless, it does not discuss
TensorFlow-TensorRT, Tensorflow Lite, or compilers for edge inference. TF-TRT and
TFLite provide a framework for applying fine-grained optimizations to any input DNN
models employed for edge inference.

In another comprehensive review, Fang Liu et al. [57] summarizes the existing edge
computing systems and introduces emblematic projects. In their work, the authors con-
trast edge computing systems and tools like Cloudlet [87], SpanEdge [85], and AirBox [9];
Open Source Edge Computing Projects like CORD [18], Akraino Edge [2], Apache Ed-
gent [3], Azure IoT Edge [7]. Additionally, they review Edge Computing Systems’ energy
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efficiency and DL optimizations and present critical design issues like multi-user fairness,
security, privacy, and cost model. Due to resource constraints, edge inference introduces
bandwidth, throughput, power, or efficiency-related challenges. In their work, Alberto
Marchisio et al. [63] have examined the challenges above, current trends in hardware
accelerators, hardware-level optimizations, run-time optimizations, and software-level op-
timizations. They discuss the related case studies and present open research challenges
in hardware-software co-design, in-memory computing, hardware-aware hyper-parameter
tuning, and DNN architectural exploration.

This work presents a comprehensive study of state-of-the-art frameworks, TF-TRT and
TFLite, for edge inference. The work evaluates the frameworks on various hardware and
DNN-based models to exhibit their effectiveness in optimizing inference on edge devices.
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Chapter 3

Framework to Modularize Design Space
Exploration

3.1 Primary Contributions

In particular, we make the following contributions:

• We analyze the FAIR data principles and identify ontologies as essential enabling
components.

• We create a set of guidelines for designing the HPC ontology, which takes into
consideration the special requirements and constraints of making datasets and AI
models FAIR in the HPC community.

• A high-level core ontology is designed to provide standard concepts and properties
to annotate datasets, and AI models. This is required to facilitate data sharing,
searching and ease in benchmarking.

• A set of low-level supplemental components are presented to capture fine-grained
information in various subdomains such as computers and performance datasets.

• The proposed work introduces our framework, HPCFair, to enable reusable and
reproducible AI models.

• It highlights the capabilities of the proposed framework in pipeline development and
design space exploration with a detailed design and API architecture.

• Finally, this work evaluates the functionality with standard AI models and use cases
from both HPC and the scientific machine learning communities.

3.2 Motivation

Due to the extreme heterogeneity and complexity of high-performance computing (HPC)
node architectures, white-box analytical modeling techniques have become less tractable
for analyzing and optimizing large-scale scientific applications. As an alternative, Artifi-
cial Intelligence (AI), especially machine learning (ML)-based techniques have been widely
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used to address various challenges in HPC, including those related to performance model-
ing and prediction [62, 94, 90, 60], performance analysis [44, 97, 99, 46, 107], resilience [10,
22], data storage format selection [114], memory optimization [112], scheduling [93], and
so on.

However, the HPC community’s consensus is that it is difficult to find, access, prepare,
share, and reuse high-quality training datasets and AI models, as stated by a recent report
of the Department of Energy’s Office of Science [30]. This is especially true when ML is
applied to analyze and optimize large-scale HPC applications running on heterogeneous
node architectures. Researchers spend a significant amount of effort using highly special-
ized tools (including compilers, performance tools, and runtime systems) to extract and
process training datasets from HPC systems. A range of machine learning frameworks is
then used to generate AI models. Such datasets and AI models are stored in numerous
formats, often without sufficient metadata to describe their semantics. Many datasets and
models are underutilized. Part of the reason is that the community has not established
standard processes to share the valuable datasets and the corresponding AI models.

As a result, researchers and developers have to resort to costly repeated data collec-
tion processes. The HPC community cannot quickly build, evaluate, and reuse machine
learning techniques to address pressing HPC challenges.

The problem the HPC community is facing is not unique. Researchers are establishing
standard guidelines in many other research communities and recommending best practices
to make scientific data Findable, Accessible, Interoperable, and Reusable (FAIR) [109].
Briefly, Findability means that data can be found online, typically through indexing in
search engines. Accessibility indicates that data can be retrieved directly or via an ap-
proval process. Interoperability means that data follows standards. Finally, reusability
denotes that the context of data generated (metadata) is documented so it can be com-
pared to or integrated with other datasets.

Adhering to the previously explained FAIR principles, we proposed a framework,
HPCFair, to assist the high performance computing and science communities compre-
hend the relationship between models, datasets, and data objects. The overarching goal
of this framework is to implement FAIR principles for ML-driven HPC. With the APIs
provisioned, users can query for datasets and models with metadata, deploy them in their
application and run them without the need to worry about the software support and the
need to build a model from scratch. It helps to explore models that are trained and tuned
for specific tasks; if not available, the user can save them in a central repository for future
reuse.

HPCFair empowers researchers to explore the research methodologies, metrics databases,
varying datasets, and novel learning techniques. It enables researchers with a framework
for pipeline development that refers to codification and automation of stages to produce
an AI model. It may consist of multiple sequential steps performing tasks like data load-
ing, preprocessing, model training, including deployment. Also, it renders them a unified
platform to optimize the pipeline using tools or compilers like TVM [14] and TensorRT
[102]. Notwithstanding the proposed framework’s capability to support the generic ML
use cases, we primarily focus on tailoring it to suit the large-scale HPC workload.

Additionally, this work focuses on our preliminary work of developing a core component
to enable FAIRness of training datasets and AI models for HPC: the HPC ontology, which
is a collection of essential concepts and properties capturing information in the domain
of HPC, using formal knowledge representation of Web Ontology Language (OWL) [69].
The HPC ontology provides a common vocabulary to describe various datasets and AI
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Principle Description

Findable (F) F1. Data objects (defined by R1 below) are described with rich metadata

F2. Metadata clearly and explicitly include the identifier of the data objects it de-
scribes

F3. Enable mechanism to find AI models by rich associated metadata

F4. Data objects are served in a searchable resource

Accessible (A) A1. Data objects stored are retrievable by their unique identifier.

A2. Communication protocol to retrieve data objects is open, free, and universally
implementable.

A3. Access to data objects requires authentication and authorization, where neces-
sary.

A4. Metadata is accessible even when the data object is no longer available

Interoperable (I) I1. Data objects use a formal, accessible, and shared language for information de-
scription.

I2. Data objects are interoperable from one format to another.

I3. Data objects include qualified references to other data objects.

Reproducible (R) R1. Metadata (of the data object) is extensively described with high fidelity.

R2. Data objects are served with a public and accessible data usage license.

R3. metadata adheres to domain-relevant community requirements.

Table 3.1: FAIR Principles

models. It also provides the semantics to enable the interoperability of heterogeneous
data.

3.3 Design Philosophy

In this section, we will be discussing our solution to help enable FAIRify AI models.
Henceforth, we will address our proposed approach as “HPCFair” [104]. We first detail
how our solution addresses the FAIR principles. Next, we present design architecture and
the implementation details of HPCFair. Designing as a three-tier architecture will enable
us to implement each component as an independent module with minimal dependencies
and is easily extensible to the other language APIs.

We modularize the storage of data objects’ metadata enabling efficient findability.
The indexed metadata allows users to search for the required data objects based on tags
or keywords. We store the metadata in the JSON-LD format to ensure that it can be
accessed via open and standard communication protocols like API calls. In addition to
models and datasets, we also provide support to store user implemented custom modules
in a format that can easily be discovered, loaded, and employed in a pipeline. At the
moment, we provide ONNX support to convert the models. We are working towards
implementing checkpoint conversions for the selected models. Also, while saving any
new object, we check for duplicate insertions based on primary keys, eliminating any
redundant information. We currently support access to public data objects and present
steps to access any behind the login data objects. Similarly, while loading any data object,
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we check for its existence in the cache. In such scenarios, we provide users with either a
reuse option or newly force-load the data object. We aim to incorporate authentication
checks to ensure that access is granted to only authorized users.

3.3.1 Overview

As shown in Figure 3.1, HPCFair has a front-end connected to several components
implementing tags-based search, user notification, load and store of models and datasets.
It also contains a supportive component (HPC Ontology [55]) to provide metadata and
an advanced component to automatically synthesize workflows. These two components
are still under development and are not within the scope of this chapter.

From our detailed analysis of existing state-of-the-art frameworks, we observed that
MLCube, in its pre-alpha stage of development, offers a perspective that is easily extensible
and obeys the “plug-and-play” philosophy. Considering MLCube as a basis, we have further
implemented enhancements to bridge gaps in achieving FAIR AI for HPC.

Figure 3.1: HPCFair: The Proposed Architecture

18



Chapter 3. Framework to Modularize Design Space Exploration

We developed our framework as a Python library for a lightweight implementation.
We will extend it to support other languages such as C++, Java, etc. in the future. De-
velopers are provided with CLI support to discover and load the required components. We
store detailed information about each component in Github repositories in the JSON-LD
format. It helps us store a data object and associated files, thus keeping the relationship
among them intact. Also, the JSON-LD format allows avenues to be converted into a
more efficient search data structure which is our future direction. The requested infor-
mation is provided to the developers in the dictionary format (key: value) that is easy to
comprehend.

3.3.2 High-Level Core Ontology

Figure 3.2: Major High-level Concepts and Relationships of the HPC Ontology

In this section, we present representative high-level concepts and their corresponding
properties of the HPC ontology.

3.3.3 Basic Scenario and Naming Convention

A basic scenario described by the HPC ontology is that some people who are members of
a project used some software and hardware to conduct some experiments, which in turn
used some input data to generate training datasets or AI models. The semantics can be
mapped to three high level concepts, including Agent, Activity, and Artifact. Essentially,
some Agent conducted some Activity which used some Artifact as input and generated
some other Artifact.

As shown in Figure 3.2, we follow a common naming convention when defining vo-
cabularies in the HPC ontology: Singular nouns in CamelCase are used to indicate a
Class. Multiword names are written without any spaces but with each word written in
uppercase. Relationship (or Property) names start with lowercase letters. For example,
hpc:Project means a class while hpc:project indicates a property that links some data with
its associated project.

Dashed arrows in the figure indicate the isA relation between a subclass and its super-
class. For instance, both training datasets and AI models are kind of data in this context.
Solid line arrows indicate other relationships. Some arrows have only a single label to
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denote a single relationship. To simplify the diagram, inverse relationships are combined
in a single arrow with a pair of relationship labels. For example, the label of the arrow
between Person and Project includes both hpc:memberOf and hpc:member. Not all edges
are shown in the figure to avoid a cluttered figure.

3.3.4 Top level Concept: Thing

To provide provenance of all information, the very top level concept in the HPC ontology,
hpc:Thing, is associated with a set of fundamental properties (listed in Table 3.2 ) about
its unified resource identifier, the type of the ID (such as Open Researcher and Contributor
ID and Digital Object Identifier), name, URL, etc. Any other concepts (from both high
and low levels) are direct or indirect subclasses of hpc:Thing. They naturally inherit all
the fundamental properties of hpc:Thing. The hpc:Thing node and its edges are not shown
in Figure 3.2 to simplify the figure.

Property Data-type Description

hpc:id xsd:anyURI URI of the thing

hpc:idType xsd:string Type of the ID, such as ORCID, DOI, etc.

hpc:name xsd:string Name of the thing

hpc:alternateName xsd:string An alias for this item

hpc:description xsd:string Short description

hpc:url xsd:anyURI URL of official website of a thing

hpc:submitter xsd:anyURI Who submits this piece of info.

hpc:submitDate xsd:dateTime Date of submission

Table 3.2: Properties of the Thing Class

3.3.5 Activity and Experiment

As shown in Figure 3.2, the centerpiece of this design is the concept of Activity, which
connects to many other concepts through properties such as hpc:used, hpc:generated,
hpc:wasAssociatedWithSoftware, hpc:usedWorkflow, hpc:wasConductedBy, and so on. An
activity is something that occurs over a period of time. An activity could happen after
another one, linked using hpc:wasPrecededBy. Experiment is a subclass of Activity to
represent HPC experiments.

Table 3.3 lists major properties of the Experiment class. For convenience, we also de-
fine equivalent properties as needed. For example, hpc:used is the same as hpc:hadInput.
hpc:wasAWS is a short name for hpc:wasAssociatedWithSoftware. hpc:wasAWS is equiv-
alent to hpc:wasAssociatedWithHardware. There is also the wasPrecededBy property to
link a sequence of experiments.

3.3.6 Artifact and Data

We define Data as a subclass of Artifact and further categorize it into Workflow, Training
Dataset, and AI model. We have found that in practice, any combinations of mixed scripts,

20



Chapter 3. Framework to Modularize Design Space Exploration

HPC Ontology Property Data-type Description

hpc:used xsd:anyURI Input data, ==hpc:hadInput

hpc:generated xsd:anyURI Generated data, ==hpc:hadOutput

hpc:usedWorkflow xsd:anyURI Workflow used

hpc:wasPrecededBy xsd:anyURI Experiments before this one

hpc:wasConductedBy xsd:anyURI Link to persons

hpc:wasAWS xsd:anyURI Software used

hpc:wasAWH xsd:anyURI Hardware used

hpc:startDate xsd:dateTime Start time

hpc:endDate xsd:dateTime End time

hpc:project xsd:anyURI Associated projects

Table 3.3: Major Properties of the Experiment Class

datasets, and AI model files are shared and reused. They are just vaguely categorized as
Data currently. In the HPC software analysis and optimization domain, software itself
is also a kind of artifact that can be used as input or output data. For example, many
compilers, tools and workflows process software as input data to generate program analysis
information. So there is a property link (isA) between Software and Data also. Again,
this edge is not shown in Figure 3.2 to avoid cluttering.

Figure 3.3 shows the partial class hierarchy rooted at Artifact. AIModel is equivalent
to MachineLearningModel in the figure.

Figure 3.3: Partial class hierarchy of artifact

Table 3.4 shows essential properties for the Data class. There are properties about
license, version, associated projects, as well as experiments generating or using the data.
Note that Data can be associated with one or more files through the hpc:file property.
Each file in turn has its properties such as name, size, format, MD5, URL, etc. Data can
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be derived from other data in a sequence of experiments. So we have hpc:wasDerivedFrom
to indicate such a property. In the domain of program analysis and optimization, Data
generated often has one or more focus applications or machines. We introduce targetAp-
plication and targetMachine to directly support such links.

Property Datatype Description

hpc:license xsd:string License of the data

hpc:version xsd:string Version number

hpc:subject xsd:string Performance modeling, optimization...

hpc:file xsd:anyURI Associated files

hpc:project xsd:anyURI Link to the associated projects

hpc:wasGeneratedBy xsd:anyURI output of experiments

hpc:wasUsedBy xsd:anyURI Input to experiments

hpc:wasDerivedFrom xsd:anyURI Some data was derived from other

hpc:targetApplication xsd:anyURI Applications being targeted

hpc:targetMachine xsd:anyURI Computers being targeted

Table 3.4: Major Properties of the Data Class

For Dataset and AI Model classes, they inherit all properties of their superclass Data.
They also have additional properties as needed. For example, the AI Model class shown in
Table 3.5 has extra properties such as source artifacts (hpc:wasDerivedFromDataset) used
to generate the model, machine learning framework used (hpc:machineLearningFramework),
configurable parameters (hpc:params), accuracy (hpc:accuracy), and so on. Note that
hpc:wasDerivedFromDataset (shown in its abbreviation form hpc:wasDFD) is a subclass
(or a subproperty in ontology’s term) of hpc:wasDerivedFrom.

3.3.7 Software

A piece of software (or a program) can be associated with lots of details. We have
to narrow down the scope to support generic program analyses and optimizations. In
the HPC ontology class hierarchy, Software is a subclass of Data so it has all of Data’s
properties. We have added a few popular subclasses of Software, including Compiler,
OperatingSystem, Benchmark, and so on as shown in Figure 3.3. In addition, we add the
properties shown in Table 3.6 to support brief information about a piece of software or
benchmark being analyzed or optimized.

3.3.8 Hardware and Computer

The HPC ontology must capture sufficient hardware and computer information to be use-
ful. An HPC computing system can be a single node computer (including a workstation
or server) or a cluster with a set of computers. The computer class in the HPC ontology
collects the properties describing hardware, performance, and manufacturing related de-
tails, as shown in Table 3.7. Note that some properties should link to structured QUDT
data types to encode both values and accurate units. For example, the hpc:harddriveSize
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Property Datatype Description

hpc:modelFormat xsd:string Such as protobuf, onnx, h5

hpc:isTunable xsd:boolean Tunable during the runtime or not

hpc:params xsd:string Configurable parameters

hpc:framework xsd:anyURI Such as TF, PyTorch, MXNet, etc.

hpc:modelType xsd:string Relevant problem domains

hpc:supportsAccelerator xsd:boolean Run on accelerators or not

hpc:accuracy xsd:double Accuracy of the model

hpc:overhead xsd:double Overhead of the model

hpc:wasDFD xsd:string Datasets used to generate this model

hpc:learningType xsd:string Supervised, reinforcement learning, etc.

hpc:learningAlgorithm xsd:string Decision tree, random forest, etc.

hpc:hyperParameter xsd:dict Hyperparameters such as batch size

hpc:modelProperty xsd:dict Such as number and types of layers

hpc:inputShape xsd:string Input shape to be fed to the model

hpc:inputDatasetFormat xsd:string Input format of the dataset

Table 3.5: Major Properties of the AI Model Class

Property Datatype Description

hpc:programLanguage xsd:string Programming languages used

hpc:operatingSystem xsd:string OS classes supported

hpc:firstReleaseDate xsd:date First release date

hpc:latestReleaseDate xsd:date Latest release date

hpc:vendor xsd:string Link to vendors

hpc:runsOn xsd:anyURI Machines runs the software

hpc:input xsd:anyURI Input data of the software

hpc:output xsd:anyURI Generated output data

Table 3.6: Major Properties of a Software Program/Benchmark
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property has qudt:QuantityValue to capture sizes in different units such as GigaBytes or
TeraBytes.

Property Datatype Description

hpc:vendor xsd:string Vendor of the machine

hpc:cpu xsd:anyURI Associated CPUs

hpc:cpuCoresPerNode xsd:integer CPU core count

hpc:threadsPerNode xsd:integer Threads count

hpc:coprocessor xsd:anyURI Associated coprocessors

hpc:coprocessorCoresPerNode xsd:integer Coprocessor core count

hpc:memorySize qudt:QuantityValue Total memory size

hpc:harddriveSize qudt:QuantityValue Total hard drive size

hpc:totalPeakPerformance qudt:QuantityValue The peak performance

hpc:hasOperatingSystem xsd:string The operating system

hpc:hasCompiler xsd:string The compilers available

hpc:power qudt:QuantityValue Power consumption

hpc:powerEfficiency qudt:QuantityValue Such as GFlops/Watts

hpc:hasRmax qudt:QuantityValue Obtained peak perf.

hpc:hasRpeak qudt:QuantityValue Theoretical peak

hpc:dateCommissioned xsd:date Commission date

hpc:site xsd:string Hosting facility/institution

hpc:country xsd:string Located country

Table 3.7: Major Properties of the Computer Class

We also model CPUs and coprocessors used by a computer. They are linked from
a computer object through hpc:cpu and hpc:coprocessor respectively to provide more
information. Table 3.8 shows some basic CPU class’s properties. Given the fast changing
nature of CPUs and coprocessors (such as Nvidia GPUs), we model their details in low-
level supplemental components with vendor-specific terms and properties. We don’t put
them into the core, high-level ontology.

Cluster is another class in the HPC ontology, inheriting properties from the Computer
subclass, to cover additional properties needed for cluster systems. Each cluster object
can be linked to one or more computer objects through its hasNode property. Table 3.7
shows major properties of the Cluster class. Given the importance of Top500 list, a cluster
may have related Top500 ranking information (e.g. hpc:top500Rank).

There are a few other high-level concepts such as Person and Project to help describe
the semantics of HPC datasets and AI models. We omit their details since their properties
are trivial.
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Property Datatype Description

hpc:processorTech xsd:string Codename/model

hpc:processorGeneration xsd:string Processor generation

hpc:processorCorePerSocket xsd:integer Cores in a socket

hpc:cpuFrequency qudt:QuantityValue Frequency

hpc:memoryBandwidth qudt:QuantityValue Memory bandwidth

hpc:processorPeakPerformance qudt:QuantityValue Processor performance

hpc:vendor xsd:string Link to vendors

Table 3.8: Major Properties of the CPU Class

Property Datatype Description

hpc:totalClusterCPUCoreCount xsd:integer Total CPU cores number

hpc:systemArchitecture xsd:string MPP, cluster, etc.)

hpc:computeNodeCount xsd:integer Computer node count

hpc:gpuNodeCount xsd:integer Number of GPU nodes

hpc:top500Rank xsd:integer Top500 ranking

hpc:top500nmax xsd:integer Problem size used

hpc:totalCluserMemorySize qudt:QuantityValue Total memory

hpc:totalClusterPeakPerformance qudt:QuantityValue Total peak performance

hpc:hasNode xsd:anyURI Login or compute node

Table 3.9: Major Properties of the Cluster Class
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3.3.9 Low-Level Components of Ontology

Low-level components of the HPC Ontology provide fine-granularity concepts and prop-
erties to describe subdomains, including hardware details, contents of profiling datasets,
and internal details of AI models. They are provided as needed to achieve maximal FAIR-
ness by providing rich attributes to describe data elements. In this chapter, we focus on
several example subdomains relevant to the scope of our work.

3.3.10 A Coprocessor: NVIDIA GPU

For heterogeneous architectures, Nvidia’s GPUs are popular components of many super-
computers. Six out of the top ten most powerful computers use Nvidia GPUs, as shown
in June 2021’s Top500 list [98]. We have added a low-level GPU component into HPC
ontology to model the properties of GPUs. Similar low-level components can be added in
the future to support other types of heterogeneous processors such as TPU, neuromorphic
processors, FPGAs and so on.

Table 3.10 shows major properties of a NVIDIA GPU. The properties can be divided
into two sets: one is the set of fixed properties of the GPU such as hpc:theoreticalGPUOccupancy.
The other set includes configurable properties such as hpc:gpuThreadBlockSize used to in-
dicate the thread block size configured during a kernel launch.

Property Datatype Description

hpc:dramFrequency qudt:QuantityValue Frequency of DRAM

hpc:streamingMultiprocessorFrequency qudt:QuantityValue Frequency of Streaming multiprocessor

hpc:activeCyclesOfStreamingMultiprocessor xsd:integer Active cycle counts from SM

hpc:theoreticalActiveWarpsPerSM xsd:integer Theoretical Active Warps per SM

hpc:theoreticalGPUOccupancy xsd:double Theoretical Occupancy

hpc:maxGPUThreadBlockSizeLimitedBySM xsd:integer Max block limited by SM

hpc:maxGPUThreadBlockSizeLimitedByRegister xsd:integer Max block limited by registers

hpc:maxGPUThreadBlockSizeLimitedBySharedMemory xsd:integer Max block limited by shared memory

hpc:maxGPUThreadBlockSizeLimitedByWarps xsd:integer Max block limited by warps

hpc:gpuThreadBlockSize xsd:integer Launch block size

hpc:gpuThreadGridSize xsd:integer Launch grid size

hpc:registersPerThread xsd:integer Launch register//thread

hpc:gpuSharedMemoryConfigurationSize qudt:QuantityValue Launch shared memory configuration size

hpc:gpuStaticSharedMemorySizePerBlock qudt:QuantityValue launch static shared memory

hpc:gpuThreadCount xsd:integer GPU thread count

hpc:gpuWavesPerSM xsd:integer Launch wave per SM

hpc:gpuUnifiedMemoryRemoteMapSize qudt:QuantityValue Unified memory remote map

Table 3.10: Major Properties of a NVIDIA GPU

26



Chapter 3. Framework to Modularize Design Space Exploration

3.3.11 A GPU Performance Dataset: XPlacer

When building AI models for program analyses and optimizations, performance profiling
information is often a critical part of the corresponding training datasets. We select
a dataset from XPlacer [112] as an example. The dataset contains GPU performance
profiling data used to build models guiding GPU memory placement choices for arrays.

A key observation here is that program optimizations often happen at the kernel
(or function) level. So we provide properties associated with kernel performance. Ta-
ble 3.11 lists properties to capture Nvidia GPU’s performance profiling information. The
properties can be grouped into several categories, including basic information about a
kernel and its major data objects (arrays), execution time, and hardware counter based
information such as cache utilization rate, page faults, data transfer sizes. Finally, for
optimization problems selecting optimal code variants, we provide hpc:codeVariant and
hpc:bestCodeVariant to annotate labels.

3.3.12 Serving models, datasets, and data objects

Discussing storage of a model, a dataset, or an individual component, we consider stor-
ing the AI components and the experiment’s metadata and runtime system configuration
information. This will help the users to reproduce the results with added correctness.
We employ MLCube to store the neural network-based models as containerized images.
To store the ML models, we pickle them, i.e serialize to the disk as an MLCube. It of-
fers mlcube ccokiecutter support to readily generate a containerized image given code,
data, and docker file. Instead of tightly coupling the dataset and the model, we cre-
ate a containerized image of the model alone, facilitating the pipeline development. A
containerized image consists of YAML-based configuration files with information about
the model and any associated components such as runtime libraries. A uniqueness check
is performed to ensure that there is no duplicate submission. Understanding that HPC
and scientific workloads might be public or restricted in nature, we have authentication
mechanism in our plan. The future plan is to authenticate users for access to particular
data objects, thus serving private data objects along with public data objects. The au-
thentication and authorization should be performed for all the actions on any restricted
data object.

3.3.13 Tags-based search

As shown in Figure 3.1, a user can perform “tags-based search” that inherently retrieves
information from the enriched metadata. The metadata information is categorized into
incorporating components to support efficient and low-latency fetch. Based on the in-
formation presented by the search action, a user can further load discovered datasets,
models, or any other components. When a load request is placed, an inspection is per-
formed to verify if that component exists in the cache directory. In that case, a duplicate
fetch is avoided by reusing the existing component. A user can still “force” load, deleting
the current component and downloading it anew. This is more to provide the caching
behavior to reduce the time-to-respond. Further, we store metadata broadly classified
as models, datasets, and data objects distinctly from each other. The modularity allows
an efficient search and facilitates user queries, create, update, read, and delete (CRUD)
operations.
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Property Datatype Description

Kernel Information

hpc:kenelName xsd:string Kernel/function name

hpc:benchmark xsd:anyURI Associated benchmark

hpc:commandLineOption xsd:string Command line Options

hpc:arrayName xsd:string Name of array

hpc:allocatedDataSize qudt:QuantityValue Memory allocation size

hpc:beginMemoryAddress xsd:string Beginning array address

hpc:endMemoryAddress xsd:string Ending array address

Performance Information

hpc:cycle xsd:integer Profiled cycle count

hpc:executionTime qudt:QuantityValue Execution time

hpc:numberOfCalls xsd:integer Number of calls

hpc:averageExecutionTime qudt:QuantityValue Average execution time

hpc:minExecutionTime qudt:QuantityValue Minimum execution time

hpc:maxExecutionTime qudt:QuantityValue Maximum execution time

hpc:executionTimePercentage xsd:double Percentage of time spent

hpc:memoryThroughputRate xsd:double Memory Throughput

hpc:dramUtilizationRate xsd:double DRAM utilization rate

hpc:l1CacheUtilizationRate xsd:double L1/Tex utilization rate

hpc:l2CacheUtilizationRate xsd:double L2 utilization rate

hpc:achievedGPUOccupancy xsd:double GPU occupancy

hpc:achievedActiveWarpsPerSM xsd:integer Active warps per SM

hpc:cpuPageFault xsd:integer CPU page fault count

hpc:gpuPageFault xsd:integer GPU page fault count

hpc:hostToDeviceTransferSize qudt:QuantityValue HostToDevice transfer

hpc:deviceToHostTransferSize qudt:QuantityValue DeviceToHost transfer

Labels

hpc:codeVariant xsd:integer Code variant ID

hpc:labeledCodeVariant xsd:integer Best variant ID

Table 3.11: Major Properties of Kernel Performance Profiling Data
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3.3.14 Pipeline development support

Researchers often want to compare their results against various hand-tuned libraries or
custom modules like cost functions. Also, it is not profitable to re-implement the same
algorithm from scratch for the same experiment or create a pipeline. In such scenarios,
reusability of data objects to achieve an experiment pipeline is highly critical. We enable
developers to serve and load data objects on demand. The versioning of data objects
allows having multiple versions of the same data object. A ranking system based on
usage makes it possible to rank them in a longer run. The detailed metadata of these
data objects permits usability specific to applications. In the subsequent sections, we
would discuss the encoding of datasets, models, and individual data objects like ML
libraries, workflows (experimentations, scripts, etc.) and the granularity of the metadata
information stored.

3.3.15 Metadata

An AI project consists of many components. We have classified these components into
the following categories: dataset, models, individual libraries, supporting scripts like pre
and post-processing, associated experiments or workflows, and runtime system configu-
ration. As shown in listing 3.5, all information is stored into the JSON-LD format using
hierarchical key-value pairs. The keys include standard metadata keywords such as @id

and @title. We also provide additional keys with a prefix of hpc:.
For example, every dataset is uniquely identified by its value of the @id key. The

hpc:tags are used to manage information like version, license, and tasks. It is a dynamic
field permitting users to add user-defined properties. We further store metadata describing
the associated files and workflows or experiments to reproduce the research submissions.
Additionally, to support citations and locate relevant publications, we save citations as a
linked data field.

1 {
2 "@id": "http:// example.org/DA000001",

3 "@title" : "MNIST",

4 "@description" : "The MNIST dataset",

5 "hpc:submitter" : "admin",

6 "hpc:tags" : ["Version" : 0.1, "License" : "MIT", "tasks" : "img classification"],

7 "hpc:associatedFiles" : "pre_process_mnist",

8 "hpc:associatedExpt" : "expt_img_classification",

9 "hpc:citation" : "@article{lecun2010mnist}",
10 }

Listing 3.1: Selected fields from the dataset metadata

Similarly, for the models as presented in Listing 3.2, we collect the model’s submit-
ted format which may be be a saved model, onnx, or h5 formats, and so on. The
hpc:isTunable flag informs the user whether the model is tunable during the runtime
or not. Furthermore, hpc:hyperParams consists of the parameters that can be passed
as arguments to the model during runtime. Metadata for machine learning frameworks
and model types enables an efficient search and enhances the framework’s usefulness. We
also present acceleration support and available metrics to the user. It lets the user choose
metrics of interest instead of evaluating all.

1 {
2 "@id": "http:// example.org/MD000001",

3 "@title" : "SSD_MobileNet_v2",

4 "hpc:modelFormat" : "pb",

5 "hpc:isTunable" : "false",

6 "hpc:hyperParams" : "",
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7 "hpc:machineLearningFramework" : "tensorflow",

8 "hpc:modelType" : "SSD",

9 "hpc:acceleratorSupport" : "true",

10 "hpc:metrics" : "throughput,latency",

11 "hpc:tags" : {"category":"object detection", "dataset":"COCO", "License" : "MIT"}
12 }

Listing 3.2: Selected fields from the model metadata

Another significant component is experiment or workflow-related metadata as depicted
in Listing 3.3. It describes the files or prerequisite actions required as part of the experi-
ment. The linked workflow files are the command files needed to set up the environment
or perform an action. In cases where a whole project package is submitted, a workflow can
be leveraged to reproduce the results. To standalone execution, we have fields to record
the required software and hardware, in addition to the dataset and model used as part of
the experiment. From experience, we have seen that it is critical to have system config-
uration details to reproduce the expected results. Hence, we provide the functionality to
store them.

1 {
2 "@id" : "http:// example.org/EX000001",

3 "@url" : "https:// github.com/userX/repoY/XPlacer -Adapter.md"

4 "hpc:associatedWorkflow" : "workflow_file_ex000001",

5 "hpc:reqSoftwares" : ["scikit -learn","pandas","skl2onnx","onnxruntime","hyperopt"],

6 "hpc:reqHardware" : "nvidia -GPU",

7 "hpc:sysConfig" : ["OMP_NUM_THREADS":"4","data_format":"NHWC","kmp_affinity":["

granularity":"fine,compact,1,0"]]

8 "hpc:associatedDataset" : ["AWS_data.csv","IBM_data.csv","Merged_data.csv"],

9 "hpc:associatedModel" : ["modelLearnerGUI.py","offline_trainer.py"],

10 }

Listing 3.3: Selected fields from the experiment metadata

3.4 Evaluation

This section presents some preliminary use cases using the current draft HPC Ontol-
ogy, including providing standard metadata for annotating various data and answering
questions posed as SPARQL queries.

An AWS machine is used to run experiments. It has 4 cores of Intel Xeon CPU E5-
2676 v3 running at 2.40GHz and 16 GB main memory. The evaluation uses a set of
tools. Protege v5.5.0 is used for ontology development. Typically raw data is stored in
CSV files. Tarql (git hash #b06b4dd) [91] is used to automatically convert CSV files
into RDF triples saved into N-Triples (.NT) files. Tarql’s conversion rules are manually
specified using SPARQL 1.1 syntax. Blazegraph v2.1.6 is used as the graph database
supporting standard RDF/SPARQL APIs. All N-Triples files are loaded into a namespace
of Blazegraph in a triples mode and inference turned on.

JSON-LD, a JSON-based format storing Linked Data, is used as the main format
to present annotated data. JSON-LD can be viewed as JSON plus Context and ID
information. The context is used to define the short-hand names. IDs are unique name
identifiers to describe keys in the document. These IDs are used as the keys of JSON’s
key-value pairs to unambiguously encoding information linked to formally defined entities
in an ontology. We use a Python script calling RDFLib APIs to generate the JSON-LD
output from .NT files.
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3.4.1 Providing Metadata for Top500 Supercomputers

Machine properties are fundamental information in HPC. We use the concepts and prop-
erties of the HPC ontology to annotate the tabular information of the fastest machine,
Supercomputer Fugaku, published in June 2021’s Top500 list [98].

The HPC Ontology has all the concepts and properties needed to fully annotate the
content of the entire top 500 spreadsheet. Listing 3.4 shows various example properties
of Fugaku in JSON-LD format. All properties are stored in key-value pairs. The machine
is uniquely identified by its system ID (179807) assigned by the Top500 website. The
HPC ontology provides vocabularies of property names, such as hpc:name, hpc:Cluster,
and hpc:power. The QUDT ontology provides structured values with detailed information
for the units used, such as MegaHZ and KiloWatt. Note that QUDT originally does not
have the TeraFLOPS unit, we have extended it to support this.

1 {

2 "@id": "https ://www.top500.org/system /179807" ,

3 "@type": "hpc:Cluster",

4 "hpc:name": "Supercomputer Fugaku",

5 "hpc:top500Rank ": 1,

6 "hpc:vendor ": "Fujitsu",

7 "hpc:country ": "Japan",

8 "hpc:cpuArchitecture ":" Fujitsu ARM",

9 "hpc:cpuFrequency ": { "@id": "_:B9e8a3" },

10 "hpc:hasOperatingSystem ": "Red Hat Enterprise Linux",

11 "hpc:hasRmax ": { "@id": "_:B17f29" },

12 "hpc:power ": { "@id": "_:N15c5a" },

13 "hpc:processorCorePerSocket ": 48,

14 "hpc:processorGeneration ": "Fujitsu A64FX",

15 "hpc:site": "RIKEN Center for Computational Science",

16 "hpc:systemArchitecture ": "MPP",

17 "hpc:systemModel ": "Supercomputer Fugaku",

18 "hpc:totalClusterCPUCoreCount ": 7630848

19 },

20

21 { "@id": "_:B17f29",

22 "@type": "qudt:QuantityValue",

23 "qudt:unit": { "@id": "http :// qudt.org/vocab/unit/TeraFLOPS"},

24 "qudt:value": "442010.00"

25 },

26

27 { "@id": "_:B9e8a3",

28 "@type": "qudt:QuantityValue",

29 "qudt:unit": {"@id": "http :// qudt.org/vocab/unit/MegaHZ"},

30 "qudt:value": "2200"

31 },

32

33 { "@id": "_:N15c5a",

34 "@type": "qudt:QuantityValue",

35 "qudt:unit": {"@id": "http :// qudt.org/vocab/unit/KiloW"},

36 "qudt:value": "29899.23"

37 }

Listing 3.4: Example Fugaku’s Information Annotated Using HPC Ontology

3.4.2 Providing Metadata for Datasets and AI Models

We are developing a web portal to allow users to submit information about training
datasets and AI models in HPC. To make the submitted data complaint with the FAIR
principals, standard metadata must be used to annotate the datasets and AI models. The
HPC ontology can serve as the metadata for this purpose.

Listing 3.5 shows a benchmark software package [54] which was used as an input
dataset for a code similarity analysis experiment. It is easy to identify metadata for its
name, license, subject, related project, and so on.
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1 {

2 "@id": "http :// example.org/dataset/DA000005",

3 "@type": "hpc:Dataset",

4 "hpc:description ": "microbenchmark kernels in C/C++ and Fortran",

5 "hpc:hasIDType ": "System Generated",

6 "hpc:license ": "BSD",

7 "hpc:name": "DataRaceBench micro -benchmarks",

8 "hpc:project ": {

9 "@id": "http :// example.org/project/PR000002"

10 },

11 "hpc:subject ": [

12 "OpenMP",

13 "Data Race Detection",

14 "Computer Science"

15 ],

16 "hpc:url": "https :// github.com/LLNL/dataracebench/tree/master/micro -benchmarks",

17 "hpc:version ": "1.3.2"

18 }

Listing 3.5: Example Dataset Annotated Using HPC Ontology

Listing 3.6 shows metadata for an AI model released by a study [112]. Besides common
metadata for its name and type, it additionally has metadata specific to this AI model,
such as hpc:wasDerivedFromDataset, hpc:learningAlgorithm, and hpc:targetMachine.

1 {

2 "@id": "http :// example.org/AIModel/MO000001",

3 "@type": "hpc:AIModel",

4 "hpc:contributor ":

5 {"@id": "http :// example.org/person/PI000013" },

6 "hpc:description ": "Onnx version of the decision tree model for XPlacer",

7 "hpc:wasGeneratedBy ":

8 {"@id": "http :// example.org/experiment/EX000002"},

9 "hpc:hasIDType ": "System Generated",

10 "hpc:wasDerivedFromDataset ": [

11 {"@id": "http :// example.org/dataset/DA000001"},

12 {"@id": "http :// example.org/dataset/DA000002"},

13 {"@id": "http :// example.org/dataset/DA000003"},

14 {"@id": "http :// example.org/dataset/DA000004 "}

15 ],

16 "hpc:isTunable ": false ,

17 "hpc:learningType ": "Supervised ",

18 "hpc:modelFormat ": "ONNX",

19 "hpc:modelType ": "Prediction",

20 "hpc:learningAlgorithm" : "Decision Tree",

21 "hpc:name": "decisionTree.onnx",

22 "hpc:project ":

23 {"@id":" http :// example.org/project/PR000001"},

24 "hpc:subject ": [

25 "GPGPU",

26 "Heterogeneous Systems",

27 "Data Placement",

28 "Decision Tree"

29 ],

30 "hpc:supportsAccelerator ": true ,

31 "hpc:targetMachine ":

32 {"@id": "http :// example.org/cluster/lassen"},

33 "hpc:url": "https :// github.com/xyz/decisionTree.onnx"

34 },

35 "hpc:version ": "1.2.1"

36 }

Listing 3.6: Example AI model annotated using HPC ontology

3.4.3 Encoding GPU Profiling Dataset Stored in a CSV File

Low-level components of the HPC ontology can be used to encode the internal content of
datasets or AI models. Listing 3.7 shows the annotation of a row of a CSV file representing
a dataset released by a study [112]. Each row represents information about an array
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accessed within a kernel code variant and the kernel’s associated profiling metrics such as
GPU data transferring data sizes and page faults. The dataset was used to train a model
deciding which code variant delivers the best performance. Using properties defined in
Table 3.11, the annotated json-ld file contains accurate, machine readable information for
each cell, which facilitate interoperability and reusability of the dataset.

1 {

2 "@id": "https :// github.com/xyz/rodinia_3 .1 _cuda_bfs_datalevel -lassen.csv#L11",

3 "@type": "hpc:TableRow",

4 "hpc:BeginMemoryAddress ": "0 x200060080000",

5 "hpc:EndMemoryAddress ": "0 x200060090000",

6 "hpc:allocatedDataSize ": 65536,

7 "hpc:arrayID ": "1",

8 "hpc:arrayName ": "h_graph_mask",

9 "hpc:codeVariant ": "111100" ,

10 "hpc:commandLineOption ": "graph65536",

11 "hpc:cpuPageFault ": 2,

12 "hpc:deviceToHostTransferSize ": {

13 "@id": "_:Nca485"

14 },

15 "hpc:hostToDeviceTransferSize ": {

16 "@id": "_:Na7702" }

17 },

18 {

19 "@id": "_:Na7702",

20 "@type": "qudt:QuantityValue",

21 "qudt:unit": {

22 "@id": "http :// qudt.org/vocab/unit/KiloBYTE" },

23 "qudt:value": {

24 "@type": "http ://www.w3.org /2001/ XMLSchema#decimal",

25 "@value ": "192.0" }

26 },

27 {

28 "@id": "_:Nca485",

29 "@type": "qudt:QuantityValue",

30 "qudt:unit": {

31 "@id": "http :// qudt.org/vocab/unit/KiloBYTE"

32 },

33 "qudt:value": {

34 "@type": "http ://www.w3.org /2001/ XMLSchema#decimal",

35 "@value ": "0.0"

36 }

37 }

Listing 3.7: Example profiling dataset annotated using HPC ontology

3.4.4 Enabling Various Queries

A standard approach to evaluating an ontology is to check if the ontology can be used
to formulate questions asked by intended users. Such questions often are called compe-
tency questions. We anticipate some typical questions from a HPC user may include the
following:

• Q1: What are the ids of datasets from a research project named “Xplacer”?

• Q2: What are the names of AI models available for a supercomputer named “lassen”?

• Q3: What AI models are available for machines with GPUs named “Nvidia V100”?

• Q4: What datasets of projects funded by NSF are available for building Performance
Prediction models?

• Q5: What workflows are available for generating AI models guiding “Heterogeneous
Mapping” of a benchmark (e.g. the NAS Parallel Benchmark or NPB) running on
a machine using AMD GPUs?

33



Chapter 3. Framework to Modularize Design Space Exploration

We populated a Blazegraph RDF database with information encoding a few example
datasets and AI models found in the literature, assuring diversified datasets and models
across widely researched domains. We gathered data from projects like XPlacer [112] that
come with the workflows defining dataset collection and offer models to perform experi-
ments. Further, there were scenarios when researchers publish their results as a package or
complete tool. The ProGraML [cummins2021a] and MLGO [trofin2021mlgo] are such
considered examples. Additionally, we included literature from HPC Energy Research [80]
providing datasets or models alone. We also collected some datasets and refined models
hosted at Kaggle. They are related to the GPU Kernel Performance [8, 74, 89].

Listing 3.8 shows the SPARQL queries sent to the Blazegraph database and the cor-
responding answers obtained, for Q1 through Q3. Listing 3.9 shows queries and results
for Q3 and Q4. The results show that HPC Ontology is complete to support the concepts
and properties expressed in these queries which in turn obtained desired results.

1 PREFIX hpc: <https :// example.org/HPC -Ontology#>

2 # Query for Q1: dataset ids of a project

3 #-------------------------------------------------------

4 SELECT ?ds

5 WHERE { ?pid rdf:type hpc:Project .

6 ?pid hpc:name "Xplacer" .

7 ?pid hpc:dataset ?ds }

8

9 # Results: IDs of datasets

10 # <http :// example.org/dataset/DA000001 >

11 # <http :// example.org/dataset/DA000002 >

12 # <http :// example.org/dataset/DA000003 >

13 # <http :// example.org/dataset/DA000004 >

14

15 # Query for Q2: AI models ’ names of a supercomputer

16 #-------------------------------------------------------

17 SELECT ?model_name

18 WHERE { ?model_id rdf:type hpc:AIModel .

19 ?model_id hpc:targetMachine

20 <http :// example.org/cluster/lassen > .

21 ?model_id hpc:name ?model_name }

22

23 # Results : names of AI models

24 # decisionTree.onnx

25 # randomForest.onnx

26

27 # Query for Q3: machines with NVidia V100 and their models

28 #-------------------------------------------------------

29 SELECT ?machine ?model_id

30 WHERE { ?gpu rdf:type hpc:GPU .

31 ?gpu hpc:name "Nvidia V100".

32 ?machine hpc:coprocessorModel ?gpu .

33 ?model_id hpc:targetMachine ?machine .

34 ?model_id rdf:type hpc:AIModel .

35 ?model_id hpc:name ?model_name }

36

37 # Results: machine names and AI model IDs

38 <http :// example.org/cluster/lassen > <http :// example.org/AIModel/MO000001 >

39 <http :// example.org/cluster/lassen > <http :// example.org/AIModel/MO000002 >

Listing 3.8: SPARQL queries to answer competency questions 1-3

1 PREFIX hpc: <https :// example.org/HPC -Ontology#>

2

3 # Query for Q4: NSF project ’s datasets for building performance prediction models

4 #-------------------------------------------------------

5 SELECT ?project_id ?ds_id

6 WHERE {

7 ?project_id rdf:type hpc:Project .

8 ?project_id hpc:fundedBy "the National Science Foundation" .

9 ?ds_id hpc:project ?project_id .

10 ?ds_id rdf:type hpc:Dataset .

11 ?ds_id hpc:subject "Performance Prediction" }
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12

13 # Results: project IDs and dataset IDs

14 <http :// example.org/project/PR000003 > <http :// example.org/dataset/DA000007 >

15 <http :// example.org/project/PR000003 > <http :// example.org/dataset/DA000008 >

16 <http :// example.org/project/PR000003 > <http :// example.org/dataset/DA000009 >

17

18 # Query of Q5: workflow generating AI models for NPB ’s heterogeneous mapping on AMD GPU

19 SELECT ?pid ?pname

20 WHERE {

21 ?pid rdf:type hpc:Workflow .

22 ?pid hpc:subject "Heterogeneous Mapping" .

23 ?pid hpc:name ?pname .

24

25 ?pid hpc:targetMachine ?machine_id .

26 ?machine_id hpc:coProcessor ?gpu_id .

27 ?gpu_id hpc:vendor "AMD" .

28

29 ?pid hpc:targetApplication ?app_id .

30 ?app_id hpc:name "NPB" .

31 }

32

33 # Results

34 <http :// example.org/workflow/WF000020 > OpenCL Heterogeneous Mapping

Listing 3.9: SPARQL queries to answer competency questions 4-5

To evaluate HPCFair for its compliance with FAIR principles, we have conducted
the following diversified experiments. We have compared the results for correctness in
regards to the original experiments. Additionally, we have demonstrated how the data
objects’ reusability and interoperability can further tune a model and achieve an efficient
software-hardware co-design system.

3.4.5 Evaluating Support for DNN models

To assess the HPCFair framework upon a fundamental use case, we consider experi-
menting with the MNIST dataset [68]. The MNIST dataset consists of 60,000 examples
of handwritten digits forming a test set. The intention here is to replicate the experimen-
tation by MLCube 2, where they employ a simple neural network to classify the earlier
mentioned training set into ten classes. In the original approach, the download and train
task is unified. In contrast, as shown in Listing 3.10, we have decoupled them into two
independent tasks to 1) reuse the dataset, line 18 and 2) train the model, line 23. In the
background, we use runners provided by MLCube to run cubes on different platforms,
including docker and singularity. The parameter.yaml file contains the hyperparameters
that can be set during the task execution. If not provided during the runtime, the default
hyperparameter values are used. As shown in lines 1-2 in Listing 3.10, users can load
the hpcfair dataset and hpcfair model as modules. They can search for the MNIST
dataset and related models, as shown in lines 5 and 9. Further, the dataset and model
can be loaded, and the training task is run with the custom hyperparameters, as shown
in lines 18 and 7 respectively.

1 >>> from hpcfair import hpcfair_model as model

2 >>> from hpcfair import hpcfair_dataset as dataset

3 >>>

4 >>>

5 >>> model.search("mnist")

6 [’mnist_model_us1 ’]

7 >>> model_mnist = model.load("mnist_model_us1")

8 >>>

9 >>> dataset.get_metadata("mnist")

10 [hpcfair_dataset.DatasetMetadata(

2https://github.com/mlcommons/mlcube_examples/tree/master/mnist
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11 title=’mnist’,

12 description=’The MNIST dataset consists of 70,000 28x28 black -and -white images in

10 classes (one for each digits), with 7,000 images per class. There are 60,000

training images and 10,000 test images.’,

13 files=None ,

14 supporting_files=pre_processing_mnist_0.py,

15 isTunable=’true’

16 )]

17 >>>

18 >>> dataset.load_dataset("mnist")

19 "D:\\ hpcfair \\data\\ mnist.npz"

20 >>> dataset.apply("mnist","D:\\ hpcfair \\data\\","pre_processing_mnist_0",num_threads="4")

21 Successfully processed the dataset: python3 pre_processing_mnist_0.py --data=mnist.npz

num_threads =4

22 >>>

23 >>> model.run("train", model_mnist , "D:\\ hpcfair \\data\\mnist.npz", log_dir="D:\\ logs")

24 Model successfully trained. Check logs directory for more details.

Listing 3.10: Support for generic DNN-models

3.4.6 Evaluating Support for ML libraries

In another evaluation, we applied some machine learning algorithms, such as linear re-
gression and logistic regression, on the GPU runtime dataset [88] as independent data
objects. We performed a gradient-descent with batch updates to predict GPU compu-
tation time. The dataset includes 14 independent features and 241,600 rows. In this
evaluation, we applied data processing files on the dataset stored as dataset metadata.
The hyperparameters experimented with are learning rates and convergence threshold.

• Search for the dataset

• Load the dataset

• Apply preprocessing steps as a script

• Search the ML libraries stored as data objects in the pickle format

• Deserialize the ML libraries

• Provide hyperparameter values and train the pipeline; experiment with multiple
values

• Use the above model to predict GPU runtime based on varying selected features.

Consequently, the resultant pipeline can be saved as a readily reproducible pipeline, a
data object, complying with the FAIR principles.

3.4.7 Evaluating Reproducibility of Published Research

With proliferating research involving ML and DL, it is essential to reproduce presented
results with the least effort. Effectuating these needs, we sought to produce the results
from the Best Paper Award winner submitted in PACT’17 by Chris Cummins et al. [20].
This work introduces a novel framework DeepTune, proposing heuristics predicting op-
timal mapping for heterogeneous parallelism and GPU thread coarsening factors using
LSTM - a deep neural network.

The artifact submitted tightly depends on the CLgen [16] version and has recom-
mended Ubuntu and Python versions. The containerized packaging of the HPCFair

36



Chapter 3. Framework to Modularize Design Space Exploration

facilitates the reproduction of the results with efficiency, managing the installation of
required dependencies. Also, results achieved from the DeepTune have been confronted
with results from the state-of-the-art frameworks from Grewe et al. [35] and Magni et
al. [61].

3.4.8 Evaluating Support For Workflows

Ensuing is the evaluation revealing the support for the workflows. Often, there are re-
search submissions in the form of packages where a sequence of steps needs to be performed
to set up the prerequisites for reproducibility. One such example is where we evaluated
HPCFair for its efficacy to reproduce the results from Xplacer by Xu et al. [112].

1 >>> from hpcfair import hpcfair_model as model

2 >>> from hpcfair import hpcfair_dataset as dataset

3 >>>

4 >>> model.search_workflows("xplacer")

5 [’XPlacer ’]

6 >>> model.get_metadata("xplacer")

7 [hpcfair_model.ModelMetadata(

8 title=’XPlacer: A framework for Guiding Optimal Use of GPU Unified Memory ’,

9 description=’The goal is to decide which memory placement policy is best for a

given data object ...’,

10 files=None ,

11 supporting_files =[’xplacer_wf1.sh’,’xplacer_wf2.sh’,’xplacer_wf3.sh’],

12 isTunable=’true’,

13 stepsToRun=’xplacerRunFile.txt’

14 )]

Listing 3.11: Support for workflow

As prerequisites, the experiment includes steps like building the adapter, collecting
the data-level and kernel-level baseline data, merging two levels of baseline data, labeling
the merged data, and executing all variants to decide the best-performing variants. The
authors do provide a sequence of steps and scripts to be executed to achieve the above. As
a solution, we transform them into workflow scripts and serve the related details as meta-
data in our database. These data objects are bundled together as part of the containerized
image. As shown in the Listing 3.11, line 4-6, a user can search for an experiment and
associated workflow scripts. Additionally, a user can view the brief description explaining
the steps to execute when projects are submitted as packages using the corresponding
metadata key.

3.4.9 Evaluating Support For Design Space Exploration

Lately, edge computing has received considerable attention addressing the demand for
faster Deep Learning applications at edge devices. This has led to the development of
custom accelerators (TPU, GPU, FPGA), DNN-compilers (TVM, TF-Lite), and frame-
works (MxNet, Pytorch, TF). However, recognizing a set of components briefed above
best suited for a DL task is strenuous. Hence, a comprehensive framework capable of
tackling this issue is of paramount relevance for the researchers. In a similar attempt, we
have evaluated HPCFair to reproduce the results [105] explaining its capabilities for
an efficient Design Space Exploration. A code snippet for the same is presented in the
Listing 3.12.

1 >>> from hpcfair import hpcfair_model as model

2 >>> from hpcfair import hpcfair_dataset as dataset

3 >>>

4 >>> model.search("resnet")

5 [’ResNet50_v2 ’]
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6 >>> model_resnet50 = model.load("ResNet50_v2")

7 >>> data = dataset.load_dataset("img0.jpg", fromPath="D:\\ data")

8 >>>

9 >>> res_trt = model.run("inference", model_resnet50 , data , config="trt", log_dir="D:\\

logs")

10 >>> res_tflite = model.run("inference", model_resnet50 , data , config="tflite", log_dir="D

:\\ logs")

Listing 3.12: Support for design space exploration

The evaluation includes inference using the Resnet50 v2 model trained on the Ima-
geNet dataset [43]. We make the inference pipeline efficient using optimizations proposed
by TFLite [34] and TF-TensorRT integrated solutions [76]. The intention is to select
the optimal set of components as a pipeline, essentially improving the inference efficiency
based on metrics like power consumption, throughput, and reduction in the model size.
HPCFair offers models, datasets, and frameworks as data object readily integrable into
the pipeline rather than building from scratch. Therefore, instead of repeating from
scratch, we adopted the plug-and-play methodology, comparing contrasting design space
alternatives fairly for each combination of the framework, accelerator, and optimization
engine.

3.4.10 Enabling FAIR Principles by HPCFAIR

We achieve FAIR guidelines to the AI applications and data objects as listed below.

• Findable: The metadata associated with data is registered and indexed in a search-
able resource. The metadata is assigned a globally unique and persistent identifier.
This enriched metadata enhances searchability. A user will be able to search for the
components corresponding to the application’s requirements.

• Accessible: The metadata is retrieved using a standardized communication proto-
col. It enables users to publish or discover their AI components efficiently. Further,
access to the metadata is authorized and authenticated wherever necessary.

• Interoperable: To manage interoperability, we have represented the metadata
using a formal language, JSON-LD [92]. We support qualified references among the
stored metadata and data objects. Additionally, to maintain interoperability at the
application level, we serve metadata information concerning individual supporting
files associated with the data object. We also support ONNX [77], equipping
application users to transform models from one format to another.

• Reusable: The scientific community oftentimes interacts among researchers to
share and reuse crucial components. We provide metadata with detailed provenance
to reuse the components to build an AI pipeline by plugging the data objects. The
loosely coupled nature of the stored data enables efficient development.

3.5 Use Cases Reinforcing Scientific Machine Learning
Applications

The purpose of HPCFair is not limited to the assessed experiments and features’ support.
Subsequent use cases show how it can be used to apply FAIR principles to the scientific
community applications.

38



Chapter 3. Framework to Modularize Design Space Exploration

3.5.1 Democratizing Datasets and Models in Medical Research

Part of the Cancer Distributed Learning Environment (CANDLE) project, Uno [100] is
a cancer deep learning benchmark to predict drug response based on molecular features
of tumor cells and drug descriptors. The training task on all data sources is a slow pro-
cess. But there are hand-tuned configurations that can speed up the process for a single
data source. The training and inference can further be optimized using a pre-staged
dataset. This requires regeneration of the dataset for varying configurations followed by
data processing and many other significant hyperparameters like batch size, cache,

use landmark genes, preprocess rnaseq, no feature source, shuffle, etc. The HPC-
Fair enables democratization by offering datasets and preprocessing scripts as data ob-
jects. The access to the data objects is authenticated to allow for only approved users to
access them.

Further, the hyperparameters can be set using a YAML-based configuration file infor-
mation stored as metadata. A trained model can be served to be reused later for inference.
This also would help with easy and efficient porting of the models to diverse HPC systems
such as ThetaGPU, Polaris at ALCF, Summit, Frontier at OLCF and Cori, PerlMutter
at NERSC.

3.5.2 Predicting Cosmological Parameters Efficiently

CosmoFlow [66] is a scalable TensorFlow-based deep learning framework to process size-
able 3D cosmology datasets on a modern HPC platform. The model aims to predict a
couple of parameters from the distribution of matter. The dataset consists of simulation
boxes of dark matter distribution. It is further augmented and pre-processed. HPCFair
stores the script that converts the original input data from .npy to .tfrecord. Addi-
tionally, it stores hyperparameters in a script. The processed data can be stored as a
versioned data object to account for the efforts required to regenerate the dataset.

3.6 Discussion

With the proliferating AI research and development among the HPC and scientific com-
munity, the need for a platform to contain data objects in an easily findable, accessible
format, enabling interconvertibility and reusability among various frameworks, is indis-
pensable. HPCFair is an attempt in that direction. We have endeavored to abridge gaps
in different state-of-the-art frameworks. We exhibited how HPCFair can assist develop-
ment from a baseline DNN experiment to individual ML Libraries as reusable components,
extending to reproduce research results and pipeline development. We also demonstrated
how it could be leveraged to expedite and ease the design-space exploration.

HPCFair is our very first step in applying FAIR principles to HPC applications.
Where we support only TF-ONNX interconversion, PyTorch-ONNX conversion at present,
the eventual intention is to implement checkpointing conversion-like methodology. It will
equip the user with the ability to make TF-PyTorch models interoperable. We also aim
to have GUI providing better search capabilities. Along with these, we are constantly
refining and implementing all the proposed features to proffer the scientific community a
unified platform that will make the emerging workloads efficiently reusable and portable.
The current implementation of HPCFair will be released as open source software on
github once we get necessary approvals from our organizations.
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3.7 Related Work

The advancement to promote FAIR principles in the AI universe has burgeoned in the
recent past. We extensively studied the existing state-of-the-art frameworks and have
identified and overcome any gaps in our proposed framework. We first briefly describe
them , compare their features in Table 3.12 and provide our analysis in Section 3.7.9.

3.7.1 The FAIR Data Principles

Accelerating scientific discoveries and innovations depend on a good ecosystem managing
experiment data for various purposes such as validation and reusing. Unfortunately, exist-
ing scholar publication systems focus mostly on papers. The associated experiment data
is either discarded or treated as a secondary citizen with lower standards for publishing.
In response to the urgent need in the scientific community to improve the infrastruc-
ture supporting the reuse of scholarly data, the Future of Research Communications and
e-Scholarship (FORCE11) proposed the FAIR data principles [109] describing four fun-
damental principles: Findability, Accessibility, Interoperability, and Reusability. These
principles are further refined, as shown in Table 3.1.

One of the main goals of the FAIR principles is to achieve machine-actionability in
order to process the large amount of scholar data generated daily. This means that data
management systems should provide rich and standard information such as the type of
digital objects, their formats, licensing, and appropriate operations on them. To be prac-
tical, both contextual metadata surrounding a digital object and the content of the digital
object should use controlled vocabularies, which in turn are associated with controlled
semantics. As a result, several refined FAIR principles shown in Table 3.1 explicitly men-
tion vocabularies (I2), knowledge representation (I1), and community standards (R1.3)
to improve machine-actionability.

3.7.2 Ontologies

Ontologies can provide the much-needed controlled vocabularies, knowledge representa-
tion, and standards to implement the FAIR data principles. Ontology [101] is a concept
originating in Philosophy, referring to the study of the nature of being, as well as the basic
categories of them and their relations. In recent decades, it has become a formal way to
explicitly represent knowledge in a domain. An ontology [staab2013handbook, 101] is
a formal specification for explicitly representing knowledge about types, properties, and
interrelationships of the entities in a domain. It provides a common vocabulary to rep-
resent and share domain concepts. Compared to tree-like taxonomy solely modeling the
generalization-specialization relation, an ontology can form a much more complex graph
with edges to model any kinds of relationships between entities (represented as graph
nodes). Such graphs are often called knowledge graphs in many communities.

Figure 3.4 illustrates an example ontology for Robotics. Each node in the graph
represents a concept or instance, and each edge carries a property indicating the relations
between the two nodes it connects. For example, there are two nodes named “Agent”
and “Object” indicating two concepts (or classes). The “is-a” edge between them means
that one is a subclass of the other. An edge labeled ‘instanceOf” denotes that a node
is an instance of a node representing a class. Another edge (labeled “hasPart”) between
“Robot” and “Arm” indicates that the latter is a part of the former.
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Figure 3.4: An example ontology on robotics.

A formal language for expressing ontologies is the Web Ontology Language (OWL) [69].
OWL is based on the description logic (DL) and is expressive enough for building sophis-
ticated knowledge bases while still supporting efficient inference. Resource Description
Framework (RDF) is a fundamental format used to store a wide range of information, in-
cluding ontologies written in OWL. Each piece of knowledge stored in RDF is represented
as a triple, (subject, property, object). For instance, (“Tatooine”, instanceOf, “Planet”)
states that Tatooine is an instance of Planet.

An ontology can be queried using a standard RDF query language named SPARQL.
An example query in Listing 3.13 can be used to find all robots on the Tatooine planet
using the Robotics ontology through the join of two properties. rdf:type is a standard
RDF property to link a resource as an instance to its class. :on is the property to link a
resource to its location.

1 SELECT ?s

2 WHERE { ?s rdf:type :Robot .

3 ?s :on :Tatooine }

Listing 3.13: Example SPARQL Query on the Robotics Ontology

Numerous ontologies or controlled vocabularies have been developed to enhance inter-
operability and reusability of data in different domains. For example, EDAM [ison2013edam]
is an ontology for bioinformatics operations and data types. Schema.org [guha2016schema]
is designed to improve the interoperability of web data. The Genomic Data Commons of
National Cancer Institute [jensen2017nci] maintains standard terms and references to
public ontologies and vocabularies in dictionary files to share linked clinical and genomic
data. Brick [balaji2018brick] is an ontology to capture the common terms and relations
in the domain of smart buildings.

In summary, the use of ontologies ensures “I”nteroperability and “R”eusability of the
FAIR principles. In the context of making HPC training datasets and AI models FAIR,
a supportive ontology is a natural prerequisite to provide a standard vocabulary of the
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HPC domain. However, there is a lack of effort of creating ontologies for the domain of
machine learning-based program analysis and optimizations in high-performance comput-
ing (HPC). The focus of this work is to contribute to a design of such an ontology, namely
HPC ontology.

3.7.3 MLCube

MLCube [67] by MLCommonsTM is a containerized interface to machine learning models
and datasets. It provides open-source runners capable of running on local machines, cloud
servers, or Kubernetes clusters. Being in its infancy, MLCube supports tasks like dataset
download and training. Users can also create containerized images, for their models,
provided they have the dataset, code, and docker files. The generated MLCube can be
configured using mlcube cookiecutter APIs. It provides YAML-based configuration files
that support defining tasks and additional hyperparameter options as runtime flags.

3.7.4 DLHub

Data and Learning Hub for Science (DLHub) [13] is a cloud-hosted learning system designed
to enable the publication of models with descriptive metadata, persistent identifiers, and
flexible access control. It packages models into portable containers, enabling low-latency,
distributed serving of these models on various heterogeneous platforms. It implements
command-line interface (CLI) and software development kit (SDK) support to store, dis-
cover, and publish models. DLHub provides optimizations as batching and memoization
that enhance the inference performance. To assure that all operations are performed by
authenticated and authorized users, DLHub utilizes Globus authentication mechanism.

3.7.5 Collective Knowledge

Collective Knowledge Framework (CK or cKnowledge) [17] provides unified APIs, command-
line interfaces, meta-descriptions, and general automation actions to organize and manage
research projects as a database of AI components. The customizable program pipeline
with software detection plugins and the automatic installation of missing packages en-
ables AI components like models, datasets, compilers, and tools from varying vendors
to build and run on unalike platforms. The modular CK approach has successfully auto-
mated benchmarking, auto-tuning, and co-designing software and hardware for AI. It is
also being used to reproduce results from top-tier conferences such as ASPLOS, CGO,
and Supercomputing.

3.7.6 MLflow

MLflow [113] is an MLOps platform intended to streamline machine learning development,
experimentation, and productization. Classified into several autonomous components
such as tracking, projects, models, and registry, it can be collectively employed to log
runtime information, package supporting tools, and provide a centralized store and APIs
to manage the entire lifecycle of MLflow models. The lightweight APIs offered by MLflow

can be utilized with any existing machine learning application or libraries like TensorFlow,
PyTorch, and XGBoost. It presents support for notebooks, standalone applications, and
the cloud, along with Docker containers.
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Category Feature Supported
Data Ob-
ject

MLCube DLHub CK MLflow HuggingFace TFHub TorchHub HPCFair

Findable

Search
Capability

Dataset NA NA NA NA Yes Yes NA Yes

Model NA Yes NA Yes Yes Yes Yes Yes

Metadata In-
formation

All NA Yes Yes Only
Models

Only
Datasets
and Models

NA NA Yes

Accessibility
Options

Dataset API API API/CLI NA GUI/API GUI/API NA API

Model API GUI/API API/CLI API/CLI GUI/API GUI/API GUI/API API

Accessible APIs Sup-
port

All NA Python Python,
JSON

Python,
R,
Java,
REST

Python Python Python Python

Format
Conversion

Dataset NA NA NA NA Yes NA NA Ongoing

Model NA NA NA NA Yes NA NA Yes

Interoperable Domain Sup-
port

All Generic Generic
and
Scien-
tific

Generic Generic NLP Generic Generic Generic,
HPC and
Scientific

Offering as
Individual
Component

All NA Limited Limited Limited Only
Datasets
and Models

Only
Datasets
and
Models

Only
Models

Yes

Reproducible Train and In-
ference Sup-
port

Model Train Inference Both Both Both Both Both Both

Pipeline
Development
Support

All NA NA Yes Limited Yes Yes Limited Yes

*NA: Not Applicable; GUI: Graphical User Interface; API: Application Program Interface; CLI: Command Line Interface;
All: model, dataset, custom ML libraries; limited: not applicable to all the data objects; NLP: Natural Language Processing;
Generic: industrial ML applications

Table 3.12: Comparison of the existing state-of-the-art frameworks

3.7.7 Hugging Face

Hugging Face [41] offers Transformer models and datasets as open-source libraries that
equip developers with abstraction layers to store, load, and distribute pre-trained NLP
models like BERT. The Transformer API is powered by transformer architecture that
scales with training data and model size, facilitates efficient parallel training, and captures
long-range sequence features. It contains over 2000 pre-trained and fine-tuned models.
The hub offers a user interface and command line features to load and upload models
with associated metadata.

3.7.8 Tensorflow and PyTorch Hub

Tensorflow Hub (TFHub) [95] is a platform for distributing, discovering, and reusing ma-
chine learning components as self-contained Python modules in TensorFlow (TF). A mod-
ule and pre-trained weights can be reused to retrain across other related and similar tasks
assisting transfer learning. TFHub provides modules in various domains like text, video,
image, etc., in formats like saved models, TF.js, TFLite, and Coral. Once exported to
the disk, the modules are self-contained and can be used as an interface to preprocess the
user input. The modules are applied to build the part of the TF Graph.
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PyTorch Hub [82] is an API and workflow employed to publish pre-trained models to a
GitHub repository by adding a Python script that contains functions to load a pre-trained
model. These functions, alias ”entry points,” define a model’s input and output. Like
other AI model hubs, PyTorch advances research within the machine learning community
by allowing researchers and developers to leverage plug-and-play models. It provides an
interface to load models and pre-trained weights. As of today, according to the PyTorch

Hub’s official GitHub repository doesn’t support hosting pre-trained weights. The users
with pre-trained weights need to host them correctly themselves.

3.7.9 Comparing State-of-the-art Frameworks

Table 3.12 compares different state-of-the-art frameworks proposed recently to implement
a resolution to facilitate FAIR AI, as briefly described above. We analyzed them to
understand support for multiple features and have attempted to distinguish the uniqueness
amongst each.

While frameworks like TFHub and Hugging Face offer search capabilities for datasets
and models, none other offer such capabilities for datasets. Other frameworks currently
do not support model interoperability except for Hugging Face. This is a barrier when
researchers want to compare the performance of various frameworks on heterogeneous
backends. Also, offering each AI component as a data object is critical. While CK does
offer support for packaging and reproducing the full result, individual component reuse
in pipeline support is limited. TFHub and Hugging Face offer this support only for the
datasets and the models, not custom libraries. Whereas PyTorchHub supports only mod-
els. The innate nature of Hugging Face means that it is extensively built for models used
in applications from the natural language processing (NLP) domain. This prevents it from
being portable across other disciplines, such as HPC and scientific applications. Among
all the existing frameworks, DLHub alone supports scientific workloads explicitly. Simi-
larly, TFHub or PyTorchHub are specific to the TensorFlow-based or Torch-based models.
In addition to the discussed frameworks, we also studied various publicly available model
zoos from GluonCV [33], Caffe [12], and ONNX [78]. However, most lacked support for
datasets and data objects, maintaining only models. Such constraints propose a need for
a more generic platform assisting researchers, especially in the HPC and machine learning
communities.

Our framework HPCFair aims to address the limitations above: provide support
for model interoperability, search capabilities for datasets and models, packaged to run
seamlessly, and integrate into any application while catering to HPC and science domains.
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Chapter 4

Neural Architecture-Aware Optimizations
to Reduce Compilation Time

4.1 Primary Contributions

In this work [106] , we study diverse DNNs and present the effect of neural architecture-
aware selection of passes and execution order resulting in efficient lower-level code gener-
ation. We evaluate the experimental results on execution time, throughput, GPU utiliza-
tion, memory, and energy consumption metrics. The main contributions of this work are
summarized as follows:

• This work underscores the relevance of neural architecture-aware selection of passes
in a DL compiler.

• It evaluates the proposed method against standard optimization level and random-
ized selection of passes.

• Lastly, we demonstrate how the proposed approach can prune the search space for
optimizations selection substantiated with critical metrics.

4.2 Motivation

Deep Neural Networks (DNN) form the basis for many existing and emerging applications.
Many DL compilers analyze the computation graphs and apply various optimizations at
different stages. These high-level optimizations are applied using compiler passes before
feeding the resultant computation graph for low-level and hardware-specific optimiza-
tions. With advancements in DNN architectures and backend hardware, the search space
of compiler optimizations has grown manifolds. Also, the inclusion of passes without
the knowledge of the computation graph leads to increased execution time with a slight
influence on the intermediate representation.

The researchers soon identified that the DNN execution differs from the execution
of standard computer programs. The network architecture allows extracting parallelism
and applying various high-level compiler optimizations specific to tensor operations and
particular backend hardware support to these tensor operations. The selection of these
compiler optimizations is known as pass selection. The pass selection problem has been
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researched over decades for traditional computer programs [72, 40, 70, 71, 64, 65]. Many
of the DL compilers like XLA [84], TVM [14], Glow [83], and TensorRT [76] apply a prede-
fined set of high-level optimization passes on a given input computation graph oblivion to
the neural architecture. The optimization search space has exponentially expanded with
the increase in custom optimization passes and the evolution of neural network architec-
tures. This explosion in the search space limits the use of static rule-based optimization
level selection or the application of machine learning techniques to select the best passes.

4.3 Methodology

We started by analyzing the architectural differences in the deep neural networks. Further,
we explored various compiler passes available in TVM and their impact on a given neural
architecture. Subsequently, we applied them to the deep learning workloads, improving
the throughput, latency, and overall performance.

4.3.1 Neural Architecture Analysis

We considered four different classes of neural networks - ResNet [37], MobileNet [86],
Bidirectional Encoder Representations from Transformers (BERT) [26], and Single Shot
MultiBox Detector-based (SSD) [58] architectures, as summarized in Table 4.3. We fo-
cused on image classification, object detection, and natural language processing (NLP)
task corresponding to Question Answering. Moreover, we assessed the computation graph
in TensorFlow, PyTorch, and MXNet to generalize the applicability of our methodology.
The precision mode used is FP32 as quantization is not well supported for different net-
works in TVM. We evaluted a trained network on the same and different dataset to
validate the proposition for correctness.

ResNet50:

The ResNet is a 50-layer deep convolutional neural network (CNN). To address the ac-
curacy saturation and further degradation problem with increasing depth, it uses a deep
residual learning framework. The baseline plain network consists of convolutional layers
with a global average pooling layer and a fully connected (FC) layer with a softmax ac-
tivation function in the end. It passes through phases performing the convolution with
stride 2, batch normalization, and ReLU activation followed by the multiplication with the
weight matrix. The zeros are padded, matching the dimension when there is an increase
in the dimension. We have summarized ResNet50 architecture in Table 4.1.

Layer Type Output Size Building Blocks

conv1 * 112X112 7X7, 64, stride 2

conv2 * 56X56
3X3 max pool, stride 2

[1X1, 64, 3X3, 64, 1X1, 256] X 3
conv3 * 28X28 [1X1, 128, 3X3, 128, 1X1, 512] X 4
conv4 * 14X14 [1X1, 256, 3X3, 256, 1X1, 1024] X 6
conv5 * 7X7 [1X1, 512, 3X3, 512, 1X1, 2048] X 3

- 1X1 average pool, 1000-d FC, softmax

Table 4.1: ResNet50 Architecture Summary [37]
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MobileNetV2:

MobilNetV2 is derived from an inverted residual structure where the residual connections
are between the bottleneck layers. The basic building block is bottleneck depth-separable
convolutions consisting of residuals. As shown in Table 4.2, it consists of fully connected
layers with 32 filters and 19 residual layers. It further employs ReLU6 as the activation
function, and the kernel size is 3x3.

Input Operator Expansion Factor (t) #Output Channels (c) Repetition times (n) Stride (s)

2242X3 conv2d - 32 1 2
1122X32 bottleneck 1 16 1 1
1122X16 bottleneck 6 24 2 2
562X24 bottleneck 6 32 3 2
282X32 bottleneck 6 64 4 2
142X64 bottleneck 6 96 3 1
142X96 bottleneck 6 160 3 2
72X160 bottleneck 6 320 1 1
72X320 conv2d 1X1 - 1280 1 1
72X1280 avgpool 7X7 - - 1 -

1X1X1280 conv2d 1X1 - k - -

Table 4.2: MobileNetV2 Architecture Summary [86]

SSD ResNet50:

The Single Shot (SS) in SSD refers to the object localization and classification tasks
performed in a single forward pass of the network. The SSD network is based on a feed-
forward convolutional network consisting of feature maps extraction and object detection
using a convolution filter. Its uniqueness is that the final fully connected layers in the
original ResNet are replaced by the SSD head, as shown in Figure 4.1. The SSD head
utilizes the spatial information extracted by the ResNet to decide the bounding boxes and
predict classes.

Figure 4.1: Architecture of a Convolutional Network with SSD Layers
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BERT:

BERT is essentially a multi-layer bidirectional Transformer encoder based on the attention
mechanism [103]. The transformer architecture employs self-attention on the encoder
side and attention on the decoder end. It consists of parallel FC layers and transpose
operations. Further scaling is performed before passing through the softmax layer to
output probabilities. We have used BERTBASE extended model in this work. It has 12
layers in the encoder stack, 768 feedforward hidden units, and 12 attention heads.

Model Train Dataset Test Dataset Framework DL Task

ResNet50 ImageNet ImageNet, CIFAR10 TensorFlow, PyTorch Image Classification
MobileNetV2 ImageNet ImageNet, CIFAR10 PyTorch Image Classification
SSD ResNet50 COCO COCO PyTorch, MXNet Object Detection
BERTbase cased squadV2 SQuAD V2 SQuAD V2 PyTorch Question Answering

Table 4.3: Models’ Specifications

4.3.2 Compiler Optimizations Analysis

In DL compilers, the passes are categorized into optimization levels (OPT LEVEL), -Ox,
identical to the conventional compilers. We employed the domain knowledge from the
neural architecture analysis to classify the optimization passes. While writing this chapter,
we listed passes and their functionality available in TVM. The neural network layers,
tensor operations, and their order dictated the categorization of passes. It is observed
that certain passes are applicable only when a particular feature is supported by a compiler
and is available in a neural network. For example, FoldExplicitPadding is relevant to
a network with explicit padding. Using such a pass for a network like BERT will only
increase the search space of the optimizations. We compiled the models under different
pass combinations and examined the IR to validate this.

We studied the passes executed as part of OPT LEVEL=3 to establish the baseline re-
sults. Our observations supported the following two suppositions. Firstly, two or more
optimization levels can produce precisely the same IR. For example, OPT LEVEL=2 and
OPT LEVEL=3 generated the same IR for ResNet50. Secondly, an optimization level may
contain a set of passes that do not affect the IR. For example, as part of OPT LEVEL=2,
DynamicToStatic converts dynamic operations to the static, if possible. But all the
employed networks have static operations alone.

Based on the above characterization, we selected passes relevant to the experimented
neural networks as summarized in Table 4 from all the available passes in TVM. We have
classified them into the following broader categories:

• Baseline Passes (BL): These are the passes enabled as part of OPT LEVEL=3.
We have used them as our baseline experimentation.

• ResNet Class (RN): These passes are relevant to ResNet neural architecture.

• MobileNet Class (MN): These passes are explored as part of the MobileNet
neural network.

• SSD Class (SSD): This class refers to the passes relevant to the SSD network.

• BERT Class (BR): These passes align with the BERT architecture.
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• Additional Passes (AD): There are certain passes, like ToMixedPrecision that
are dependent on the users’ intent. It can be employed across networks.

This classification is intended to increase with the addition of more passes. A particular
pass can belong to more than one class. While executing SSD ResNet, we can combine
RN and SSD classes to form the search space. This technique could reduce the search
space for the compiler optimization selection, diminishing the overhead.

Pass Description Category

AlterOpLayout
Used for computing convolution in custom layouts or other
general weight pre-transformation.

BL; RN; MN; SSD; BR

AnnotateSpans Annotate a program with span information AD

BatchingOps
Batching parallel operators into one for Conv2D, Dense and
BatchMatmul

BR

CanonicalizeCast
Canonicalize cast expressions to make operator fusion more
efficient.

BL; RN

CanonicalizeOps Canonicalize special operators to basic operators BL
CombineParallelConv2D Combine multiple conv2d operators into one RN
CombineParallelDense Combine multiple dense operators into one RN
ConvertLayout Alternate the layouts of operators BL
DeadCodeElimination Remove expressions that do not have any usage RN; MN; SSD
DefuseOps Inverse operation of fusion pass. BL
DynamicToStatic Convert dynamic operations to static if possible AD
EliminateCommonSubexpr Eliminate common subexpressions BL; RN; MN

FakeQuantizationToInteger
Takes fake quantized graphs and convert them to actual inte-
ger operations

AD

FastMath
Convert expensive non linear functions to their fast but ap-
proximate counterparts

MN; BR; SSD

FirstOrderGradient
Transform all global functions in the module to return the
original result and the gradients of the inputs.

MN

FoldConstant Fold the constant expressions in a Relay program RN; MN; SSD

FoldExplicitPadding
Find explicit padding before an operator that supports im-
plicit padding and fuses them.

RN; SSD

ForwardFoldScaleAxis Fold the scaling of the axis into weights of conv2d/dense BR
FuseOps Fuse operators in an expression to a larger operator RN; MN; SSD; BR

MergeComposite
Merge multiple operators into a single composite relay func-
tion

RN; MN; SSD

PartitionGraph
Partition a Relay program into regions that can be executed
on different backends

AD

RemoveUnusedFunctions Remove unused global relay functions in a relay module SSD

SimplifyExpr
Simplify the Relay expression, including merging consecutive
reshapes.

RN; MN; SSD

SimplifyFCTranspose Simplify the transpose operation on a dense layer MN; BR
SimplifyInference Simplify the data-flow graph for the inference phase. RN; MN; SSD

ToANormalForm
Turn Graph Normal Form expression into A Normal Form
Expression

AD

ToGraphNormalForm Turn a normal form into graph normal form. RN; MN
ToMixedPrecision Automatic mixed precision rewriter AD

*BL: baseline optimization passes having OPT LEVEL=3; RN: ResNet Class; MN: MobileNet Class; SSD: SSD ResNet
Class; BR: BERT Class; AD: Additional optimizations

Table 4.4: Categorization of Passes
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4.4 Evaluation And Discussion

We executed each neural network for 100 warm-up runs and 1000 runs to gather the stats
to avoid noise. Also, we considered only three standard deviations of the collected data
from the mean and excluded any outliers. We selected the following metrics to assess the
performance of our proposition.

• Throughput: the volume of inferences within a given period, usually measured in
inferences per second.

• Latency: the execution time to perform inference on one image, expressed in mil-
liseconds (ms).

• Compile Time: the time required to generate the optimized computation graph
to be deployed; expressed in seconds (sec).

• Power: refers to the power drawn by the GPU to perform one inference. It is
expressed in Watt (W),

• Memory Used: refers to the total memory allocated by active contexts (MiB).

• Temperature: refers to the core GPU temperature (°C).

The following notations are used to represent different selections and ordering of passes.

• BL: selection of passes having OPT LEVEL=3.

• AS-0 and AS-1: architecture-aware selection of passes for a given class; v0, v1.
Table 4.4 is referred to get the class and varying permutations are considered to get
the best result.

• PO-0, PO-1, PO-2 and PO-3: randomized selection of passes; v0, v1, v2, v3.
Class information and additional passes from Table 4.4 are considered to find the
random set of passes and then a sequence is proposed based on multiple trials.

The pass dependency is handled internally. If a pass depends on the execution of
another pass, it is called internally during the execution. In Table 4.5, we have presented
the selected pass and ordering for the SSD ResNet50 neural network in PyTorch.

4.4.1 Experiments on GeForce RTX 2080

We evaluated the performance using seven sets of passes to formulate the pass selections
similar to Table 4.5. As explained earlier, it is based on the neural network’s categories
presented in Table 4.4. Where AS-x is the architecture-specific selection, PO-x is the
randomized selection of passes from the reduced search space. We further permuted each
PO-x version to achieve the best performance among the selected version.

As shown in Figure 4.2a, the baseline throughput (frames/sec) for ResNet50 TF,
ResNet50 PT, MobileNetV2 PT, and SSD ResNet50 PT are 23.18, 21.35, 72.90, and
3.80, respectively. For ResNet50 implementation in TensorFlow, we achieved up to 24%
improvement in the throughput with an informed selection of passes. Similar behavior was
observed in the PyTorch implementation of ResNet50. Since ResNet is primarily a con-
volutional layers followed by the FC layer, we applied default passes like AlterOpLayout
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ID Selected Passes and Ordering

BL
AlterOpLayout, CanonicalizeCast, CanonicalizeOps, Con-
vertLayout, DefuseOps, EliminateCommonSubexpr

AS-0
AlterOpLayout, FuseOps, SimplifyExpr, FoldConstant,
DeadCodeElimination, MergeComposite, FastMath, Re-
moveUnusedFunctions

AS-1
SimplifyExpr, FuseOps, AlterOpLayout, MergeComposite,
FastMath, DeadCodeElimination, FoldConstant, Remove-
UnusedFunctions

PO-0
AlterOpLayout, CombineParallelConv2D, DefuseOps, Dy-
namicToStatic, CanonicalizeOps, CanonicalizeCast

PO-1
CanonicalizeCast, AlterOpLayout, DefuseOps, Com-
bineParallelConv2D, PartitionGraph, FakeQuantization-
ToInteger

PO-2

ToMixedPrecision, CombineParallelConv2D, Eliminate-
CommonSubexpr, SimplifyFCTranspose, Canonical-
izeOps, DefuseOps, ToGraphNormalForm, ToGraphNor-
malForm

PO-3
CombineParallelDense, FakeQuantizationToInteger, Al-
terOpLayout, CombineParallelConv2D, ToGraphNormal-
Form, CanonicalizeOps

Table 4.5: Pass selection and ordering for SSD ResNet50 in PyTorch

(a) Variation of ”Throughput” with Pass Selection

(b) Variation of ”Latency” with Pass Selection

Figure 4.2: Execution on a GeForce RTX 2080 GPU
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Figure 4.3: Compile-Time Reduction on A100 GPU

and FoldConstant followed by passes specific to the tensor operations like FuseOps,
EliminateCommonSubexpr, and so on. It is observed that FuseOps after AlterOpLayout

performs better as it leads to more efficient fusion. Hence, we were able to achieve an
improvement of 32% in terms of throughput.

On the contrary, throughput for MobileNet and SSD-ResNet did not improve much
on a non-tensor core architecture. There was a 5% improvement on average. Mo-
bileNet is a lightweight architecture primarily consists of bottleneck layers containing
fewer nodes than the previous layer. Hence, this network class does not have many rel-
evant passes. Similarly, for the SSD ResNet, the addition of new SSD layers reduces
the overall gain. Analogous behavior was noticed with the latency gain. As shown in
Figure 4.2b, the baseline latency (ms/inference) for ResNet50 TF, ResNet50 PT, Mo-
bileNetV2 PT, and SSD ResNet50 PT are 43.13, 46.83, 13.71, and 263.16, respectively.
The neural architecture-aware selection of optimizations reduced the latency by 18%-19%
in the case of ResNet50 in TF, and up to 24% in PyTorch implementation, as shown in
Figure 4.2b. We achieved up to a 5% latency gain for the MobileNet and SSD ResNet
models.

4.4.2 Experiments on A100

The NVIDIA A100 GPU is a tensor core supported hardware that offers advanced support
for tensor operations, mainly CUDA graphs acceleration, as discussed before. As shown
in Figure 4.3, pruning the optimization passes search space and selecting lesser and more
relevant passes than -O3 OPT LEVEL improves the compilation time by 18% in ResNet50
TF and by 15% in the PyTorch implementation. Unlike PyTorch, on using combinations of
MergeCompilerRegions and SimplifyInference, the compile-time in TF almost doubled
the baseline compile-time. It is due to the aggressive traversal of the computation graph
without optimizing the IR in TF. Currently, we are investigating the detailed cause of this
behavior. One possible explanation is the difference in the implementation of operators in
TF and PyTorch, and hence the difference in the computation graph generated in either
case.

The architecture-aware selection of passes was paramount to MobileNet and SSD ResNet.
In both scenarios, we could reduce compile-time by almost 45%-54%. As shown in Ta-
ble 4.4 and 4.5, the fewer optimization passes reduced the overhead of traversing a
vast computation graph. While we could cherry-pick passes like MergeComposite, and
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FastMath, passes like DynamicToStatic and FakeQuantizationToInteger could be ex-
cluded from the AS-x versions. We validated our results across different frameworks.
SSD MobileNet implementation in MXNet showed similar behavior. On evaluating dif-
ferent classes of models, we found that the new tensor core offers hardware optimizations
that diminish the benefits performed by various compiler optimization passes selected as
part of -O3 OPT LEVEL. Since A100 comes with tensor cores and advanced CUDA compute
capabilities as described in section 4.1, we also evaluated the computation graph without
any optimization passes in scenarios where the hardware would do most optimizations.
For SSD-based models across formats, it performed on par with baseline execution.

The most exciting results came from the BERT’s architecture-aware selection of passes.
We could achieve an almost 92% reduction in the compile-time without reducing the
throughput. That is critical when we need to Just-in-Time (JIT) compile for the edge
devices. We found that only a few passes were relevant due to the BERT-based model’s
transformer-based architecture. Hence we narrowed down the search space to the BR class
passes ad selected passes like SimplifyFCTranspose, FastMath, FoldExplicitPadding.
BERT employs three parallel FC layers followed by three parallel transpose operations
in a self-attention layer. Also, it performs scaling and softmax that get benefited by
including FastMath. Furthermore, it uses padding extensively for the shorted inputs.

Compute Hardware Model Framework Pass Order
Power (W) Temperature (°C) Memory Util. (MiB)

Median Max Median Max Median Max

GeForce RTX 2080

ResNet50 V2

TensorFlow
-O3 48 50 29 32 601 650

AS best 43 46 28 32 592 638

PyTorch
-O3 47 49 33 35 456 504

AS best 46 49 29 32 433 504

SSD ResNet50 PyTorch
-O3 90 134 31 37 1287 1458

AS best 83 133 30 34 1160 1450

MobileNet V2 PyTorch
-O3 42 45 28 31 174 190

AS best 41 43 28 29 154 186

A100

SSD ResNet50 MXNet
-O3 80 119 26 30 1747 1887

AS best 73 110 25 27 1723 1879

MobileNet V2 PyTorch
-O3 59 63 23 26 1552 1650

AS best 58 63 23 25 1540 1650

BERT PyTorch
-O3 109 249 26 36 1782 2586

AS best 104 250 26 36 1680 2586

Table 4.6: Selected Models with Considerable Distinctions

*AS best: Neural Architecture-Aware selection of passes.

Additionally, we gathered hardware statistics. Namely, power consumption, GPU
temperature, and memory utilization, to quantify the architecture-aware pass selection
and its effect on the earlier metrics. The selected results are summarized in Table 4.6. On
GeForce, where the peak memory utilization remained almost identical for all the exper-
iments, a 10% decrease in the median memory utilization is reported in the SSD ResNet
and a 5% in ResNet50 PyTorch implementation. Power consumption exhibited equiva-
lent behavior. On A100, memory utilization was reduced by 2%-6% across all the runs.
The observations confirm that the architecture-aware selection of passes impacts mem-
ory utilization and power consumption, an essential aspect of computation on resource-
constrained edge devices.
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4.5 Related Work

Pass selection and phase-ordering problems for the compiler writers are decades old but
pertinent. With the development of graph-based deep learning compilers, there are man-
ifold possibilities for multilayered optimizations targeting computation graphs generated
from an input framework like TensorFlow or PyTorch. After optimizations are applied,
the resultant intermediate representation (IR) differs significantly, affecting the overall
performance. Since optimization passes depend on various factors, including the code
block, backend architecture characteristics, and the compiler itself, the search space is
enormous, making the selection of passes and ordering an NP-hard problem.

In work performed by Haneda et al. [36], the authors propose a statistical technique to
reduce the search space for the compiler passes. They evaluated SPECint95 benchmark
suite [19] execution on a GCC compiler, validating the heuristics. Similarly, Kulkarni
et al. [50] suggest a careful and aggressive search space pruning without any informa-
tion loss. It analyzes the probabilities of various phase interactions, such as inter-phase
enabling/disabling relationships and inter-phase independence. Furthermore, research
groups [45] have also investigated methodologies involving manually partitioning the op-
timization phases into independent groups to develop a new multi-stage search algorithm.
On average, the performed iterative technique could achieve an 89% reduced search space.

Besides the statistical and iterative heuristics, researchers have also designed machine
learning-based heuristics [5, 47] to get to the bottom of efficient execution order. In
another work[6], the authors employ clustering-based predictive modeling using dynamic
features to attack the problem. They evaluate the results on the Ctuning CBench suite [31]
against other earlier discussed heuristics methods. Additionally, a research group imple-
mented a reinforcement learning (RL) based LLVM-derived framework, Autophase [39],
to deal with the phase-ordering problem for High-Level Synthesis (HLS) programs.

The effect of phase ordering on energy and power consumption is also investigated for
the LLVM-based compilers [73, 32]. The experiments exhibit a weak correlation between
energy consumption and performance, albeit the authors could significantly decrease the
energy consumption and execution time in specific scenarios.

Almost every work discussed so far targets LLVM-based compilers. Currently, DL
compilers employ predefined flags, -O2, -O3, etc. In this work, we show that the search
space can be pruned at a higher level, reducing efforts to auto-tune if we make a neural-
architecture aware selection of passes resulting in reduced execution time and improved
throughput. Additionally, it is more relevant to have a compiler-agnostic heuristic involv-
ing domain knowledge from neural architecture instead of conventional -Ox optimization
levels.
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Conclusion and Future Work

In this report, we have discussed the tensor compilers for inference, and various optimiza-
tions offered by them and have performed a comparative analysis. There is a clear need to
optimize DL models on edge devices for better latency and power performance. Tensor-
Flow Lite (TFLite) and TensorFlow-TenorRT (TF-TRT) are considered state-of-the-art
inference compilers for edge computing. This chapter presents a detailed performance
study of TFLite and TF-TRT using commonly employed DL models for edge devices
on varying hardware platforms. We find that TF-TRT integration performs better at
high precision mode but loses its edge for model compression to TFLite at low precision
mode. TF-TRT consistently performs better with different DL architectures, especially
with GPUs using tensor cores. However, TFLite performs better with lightweight DL
models than with deep neural network-based models.

We have further proposed in Chapter 3 HPC ontology and a framework, HPCFair,
to modularize the design space exploration given various data objects for apple-to-apple
comparison and speed up the tensor compiler research. With the proliferating AI research
and development among the HPC and scientific community, the need for a platform to con-
tain data objects in an easily findable, accessible format, enabling interconvertibility and
reusability among various frameworks, is indispensable. HPCFair is an attempt in that
direction. We have endeavored to abridge gaps in different state-of-the-art frameworks.
We exhibited how HPCFair can assist development from a baseline DNN experiment to
individual ML Libraries as reusable components, extending to reproduce research results
and pipeline development. We also demonstrated how it could be leveraged to expedite
and ease design-space exploration. HPCFair is our first step in applying FAIR principles
to HPC applications. Where we support only TF-ONNX interconversion and PyTorch-
ONNX conversion, the eventual intention is to implement checkpointing conversion-like
methodology. It will equip the user with the ability to make TF-PyTorch models inter-
operable.

Lastly, in Chapter 4, we have presented how neural architecture aware classification
and selection of passes can improve the compilation time by significant orders. We ex-
hibited how the proposed approach can prune the search space and significantly reduce
compile time. It can be substantial for applications heavily dependent on JIT compilation,
like edge computing. Also, with an increasing number of passes and the complexity of
the computation graph, it is essential to reduce search space to facilitate static rule-based
or ML technique-based pass selection. In the future, we plan to propose an intelligent
methodology from the computation graph and optimize the selection procedure on a
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resource-constrained edge device, emphasizing the metrics like power consumption and
device temperature.

5.1 Future Work

We have demonstrated how optimizations offered by the tensor compilers can improve the
overall performance of the deep learning workload in a server-edge hybrid environment.
At the same time, keeping up with the emerging ML/DL and hardware is a challenge. It
motivates us further to improve the compilation with these possible future steps:

• Experimentation with scientific workload: The scientific computing community is
considering edge computing for its ML workload to analyze real-time data during
experiments. The performance of inference compilers such as TensorRT and Tensor-
Flow Lite on varying hardware (ASICs, TPU, etc.) under a scientific ML workload
is an essential question for the scientific community.

• Usage of hardware metrics: Use metrics in addition to the existing ones, like per-
formance per watt (or custom metric), to better account for energy efficiency.

• We are improving benchmarking and interoperability of compiler optimizations
across diverse and continually emerging software and hardware from servers to em-
bedded devices.

• Automate tensor program generation: Auto-tuning the search-based tensor com-
pilers for deep learning workloads is gaining attention. It has resulted in machine
learning-derived cost modeling advancements to automate tensor program genera-
tion. The immense search space makes it arduous to have specific data-intensive
cost models for individual hardware. Hence, a strategy that can efficiently generate
tensor programs on a heterogeneous device is desired.
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