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Abstract—The gradually evolving automated driving and ADAS
functions require more enhanced environment perception. The key
to reliable environmental perception is large amounts of data that
are hard to collect. Several simulators provide realistic, raw sensor
data based on physical sensor models. However, besides their high
price, they also require very high computation capacity. Further-
more, most sensor suppliers provide high-level data, such as object
detections, that is complicated to reproduce from simulated raw
sensor data. This paper proposes a method that directly simulates
the detections or object tracks provided by smart sensors. The
model involves several uncertainties of the sensors, such as missed-,
false detections, and measurement noise. In contrast to the con-
ventional sensor models, this method tackles with state-dependent
clutter model and considers the field of view in the detections model.
The parameters of the proposed model are identified for an auto-
motive smart radar and camera based on pre-evaluated real-world
measurements. The resulting model provides synthetic object-level
data with higher fidelity than the conventional probabilistic models,
differing less than 2% from the precision and recall metrics of the
actual sensors.

Index Terms—Advanced driver assistance, object detection,
radar, radar clutter, sensor systems, simulation, smart cameras.

I. INTRODUCTION

THE ADAS (Advanced Driver Assistance System) and AD
(Automated Driving) functions promise a number of ben-

efits in terms of sustainability [1], traffic-flow optimization [2],
and economics [3]. Besides these advantages, the greatest mo-
tivation of ADAS functions is to increase traffic safety [4].
Therefore, the EU’s GSR (General Safety Regulations) forces
the OEMs (Original Equipment Manufacturer) to introduce new
ADAS features into their vehicles. None of the automotive
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sensors available on the market can satisfy the requirements of
these advanced functions in terms of environment perception [5].
Therefore, the perception of intelligent vehicles equipped with
ADAS functions is performed by the fusion of several sensors
with different advantages [6], [7], [8]. Several tests ensure the
functional safety of these systems on different levels, such as
unit, module, and integration tests. In the early stages of de-
velopment, testing and verification on real-world measurement
are not cost-efficient, and data acquisition is time-consuming;
hence, using simulation tools is beneficial [9]. Furthermore, in
the case of HAD (Highly Automated Driving), testing of corner
cases is complicated in a real environment due to safety and
reproducibility problems. Simulation of traffic flow and vehicle
dynamics are already widespread techniques in the testing of
high-level decision-making and control algorithms [10], [11],
[12]. Synthetic data augmentation is also commonly used to
develop and test environment perception functionalities such
as image processing, object detection, and sensor data fusion.
In this article, we propose a generic model of various smart
sensors with different outputs, such as detections and tracked
objects. The proposed model can generate synthetic sensor data,
supporting the development and testing of multi-object tracking
and sensor fusion algorithms on different abstraction levels such
as detection or track level [13], [14].

A. Related Work

A wide range of works focuses on the automatic scenario
generation and simulation of automotive sensors based on var-
ious approaches due to the increasing need for testing ADAS
and HAD functions [15], [16], [17], [18], [19]. Three types
of simulators can be distinguished according to the underly-
ing sensor model, i.e., ideal, probabilistic, and physics-based
models [18], [20]. Low-, medium-, and high-fidelity models are
closely related to the model types, which are also distinguished
in [18]. The ideal sensor models simply consider the ground
truth objects within the sensor’s field of view (FoV) without
data manipulation [21]. The physics-based sensor models have
a high fidelity in the simulation of raw sensor data [22], [23],
[24], [25]. Recently, ray tracing has become a key technology in
this field that allows the simulation of different sensors, such
as radars [26], [27], [28], LiDARs [29], cameras [30], and
ultrasonic sensors [31]. A scalable, generic physically-based
simulator using ray tracing is proposed in [32]. The commercial,
automotive simulation tools, such as Microsoft AirSim [33],
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Vector DYNA4 [34], Hexagon VTD [35], dSPACE ASM [36],
IPG CarMaker [37], and Siemens PreScan [38], besides the
vehicle and traffic model, usually include a simplified simulation
of specific sensor types using game engines, such as Unreal [39]
or Unity [40]. The less complex rasterization and ray casting
techniques are commonly used in these render engines, sim-
ulating digital cameras [41], [42], [43], [44], and raw LiDAR
point clouds [45], [46], [47], [48]. There are a lot of alternative
approaches for the simulation of raw radar data as well [49],
[50], such as time-domain electromagnetic models as in [51].

However, physical sensor model-based simulation tools gen-
erally have significant computational and hardware resource
requirements [24], [25], [52], [53]. The probabilistic sensor
models can provide a reasonable trade-off between compu-
tational complexity and fidelity level [54]. Another question
lies in the abstraction level of the data [55]. Most automotive
sensor suppliers develop smart sensors that provide processed,
object-level data, such as detections or tracked objects, instead
of raw measurements. Therefore, physical sensor models should
incorporate the processing algorithms of these sensors (e.g.,
detection and tracking) to reproduce their data. However, these
algorithms of the automotive sensors are not public, and there
is a tremendous number of approaches for the different sensors,
like radars [56], [57], cameras [58], [59], [60], and LiDARs [61].
Therefore, it is challenging to reproduce the object-level output
from the raw data of a specific sensor with high fidelity, and
this approach is not modular for different types of sensors. The
possible errors of the different sensors for probabilistic models
are collected in [62]. Some works provide a generic model
for sensor simulation, but they mainly tackle the measurement
noise [63], [64] and the detectability considering the sensor
FoV [65]. Object-level simulations with more detailed detection
models are proposed in [66], [67] considering the physical as-
pects of radar reflections. The radar model in [66] was extended
with further physical aspects [68] and clutter detection simu-
lation [69]. A generic object-based data-driven model is pro-
posed in [70]; however, the detection model follows a Bernoulli
distribution unsuitable for tracked objects. The clutter model
uses uniform distribution, neglecting the static reflecting areas
(e.g., guardrails, bridges), resulting in a non-uniform spatial
distribution of false detections.

B. Contributions of the Article

In this paper, we propose a high-level generic sensor model
that simulates the object-level information, such as detections
or tracked objects, of automotive smart sensors with low com-
putational effort. The proposed sensor model consists of three
sub-models, the detection and tracking, clutter, and measure-
ment model, tackling the missed and clutter detections and
measurement noise. The sensor model parameters are identified
using real-world measurements of a simulated camera and radar,
resulting in a data-driven simulator with high fidelity. This
simulation can support developing and validating object tracking
and sensor fusion algorithms. The detection and tracking model
imposes a state-dependent detectability of the objects consider-
ing single-shot detections and tracked objects. Compared to the

Fig. 1. Generic architecture of the proposed sensor simulation.

conventional simulators, our clutter model deals with the reasons
for false detections, including potentially false objects, instead
of the conventional Poisson Point Process (PPP) model. The
measurement model simulates the observation noise considering
the built-in state estimations used in smart sensors. The proposed
model of automotive smart sensors is detailed in Section II,
organized according to the sub-modules. The parameter iden-
tification of the model relying on real-world data is presented
in Section III following the same structure as in Section II. The
results are shown in Section IV, while the conclusions are drawn,
extended with a brief outlook on the future work in Section V.

II. SENSOR MODEL

The simulation of the automotive environment sensors has to
face two questions: what the sensor detects and how reliably.
The proposed sensor model is derived from the multi-object
tracking algorithms applied in a cluttered environment as in [71],
[72] considering the detectability, clutter detections, and the
measurement uncertainties of the sensors with the three modules
shown in Fig. 1. This concept provides an end-to-end simulation
of the objects provided by smart sensors, modeling their built-in
perception algorithm. The detection and tracking, and clutter
model answer the first question: what does the sensor detect?
The sensor detections may be generated by real targets, but some
of them are usually false detections. Therefore, the simulation
workflow illustrated in Fig. 1 consists of two main processes
generating the object- and clutter, i.e., true positive and false pos-
itive detections. The detection and tracking model determines
which scenario objects, such as passenger cars, trucks, and buses,
are assumed to be detected by the sensor, as shown in Fig. 1.
The clutter model describes the appearance of false detections
generated by static environmental objects, such as guardrails,
bridges, traffic signs, or other unknown reasons. Since usually
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Fig. 2. The detection model derived from the sensor FoV.

automotive smart sensors include a built-in tracking algorithm,
the false detections do not disappear immediately, but they
survive a couple of cycles. Therefore, the detection and tracking
model is utilized in the simulation of clutter detections to update
previous false detections, determining which survive. The over-
all clutter detections are formed by the union of the appearing
and tracked detections. The measurement model simulates the
measurements generated by the targets, i.e., the surrounding and
static objects corresponding to the object- and clutter detections,
respectively. It considers the observation noise of the simulated
sensors. The modules of the proposed model, the detection and
tracking, clutter, and measurement models, are detailed in the
following subsections.

A. Detection and Tracking Model

The detection model intends to describe how likely the sensor
is to detect a present object, thus simulating false negative
detections. In multi-object tracking algorithms, the detection
probability pD(x) corresponds to the event that an object with
state x is detectable; a constant value usually gives that as
in [73], [74]. There are works tackling object tracking problems
in varying detectability environments as in [75], [76], [77],
[78]. In this article, we propose a state-dependent detection
probability model for pD(x), considering the sensor FoV (field
of view) and the signal processing of smart sensors. A general
detection model is demonstrated in Fig. 2, where the color
intensity corresponds to the value of detection probability, and
the solid line represents the manufacturer datasheet FoV. It is
common to model the FoV of a sensor by circle sectors or annuli
defined by a distance and angle range. Therefore, the detection
probability over the surveillance area is approximated by the
following bivariate function of the d distance and ϕ azimuth
angle of the object with state x:

p̂D(d, ϕ) = max (pD,max − fd(d)− fϕ(ϕ), 0) , (1)

where pD,max denotes the constant corresponding to the maxi-
mum detection probability. The fd(d) distance and fϕ(ϕ) angle-
dependent functions in (1) are defined as

fd(d) =

{
0, if d ≤ bd
cd(d− bd), otherwise

, (2)

fϕ(ϕ) =

{
0, if |ϕ| ≤ bϕ
cϕ(|ϕ− ϕ0| − bϕ) , otherwise

, bϕ ≥ 0 (3)

where cd, cϕ, bd, bϕ are the coefficients and breakpoints of
distance and angle-dependent linear functions, respectively, and
ϕ0 denotes the orientation angle of the sensor. Many automotive
radars have multiple FoVs (e.g., a near-range and a far-range).
In this case, the approximated detection probability function
p̂D(d, ϕ) is constructed separately.

The simulation of the object detections provided by a sensor
requires the set of surrounding objects X of the simulated
scenario. Furthermore, most sensors have an interface limitation
on the number of provided detections due to the bandwidth;
therefore, the scenario objects should be sorted according to their
relevancy (e.g., distance), assuming that the sensor provides the
detections in this order. Then, the set of single-shot detectionsZs

o

at the k-th timestamp is simulated, assuming that the perception
follows a Bernoulli distribution with p̂D(d, ϕ) parameter con-
sidering the nZ,max maximum number of detections provided
by the sensor.

However, several smart sensors are equipped with an object
tracking algorithm resolving some missed detections of a single-
shot detector. Therefore, the Bernoulli distribution is not suitable
for modeling the detectability of tracked objects. In this case, the
pinit(x

i
k) initiation and pdel(xi

k) deletion probabilities of object
xi
k are defined as

pinit(x
i
k) = max(pt(x

i
k)− prc(x

i
k), 0) , (4)

pdel(x
i
k) = max(prc(x

i
k)− pt(x

i
k), 0) , (5)

where prc(xi
k) denotes the recall of object xi

k at the k-th times-
tamp, and it is computed as the proportion of the Nd(x

i
k) and

Np(x
i
k) number of cycles in what the object was detected and

present. The pt(xi
k) tracking probability considers the detection

probability of the object during its life cycle as

pt(x
i
k) =

pD(xi
k) +Np(x

i
k)− pt(x

i
k−1)

Np(xi
k)

. (6)

Then, the set of tracked object detections Zt
o at the k-th times-

tamp is simulated according to Algorithm 1, where γ(xi
k−1)

indicates whether the object xi
k−1 was detected at timestamp

k − 1, and pdel,th is the deletion threshold probability establish-
ing a more stable tracking model. If an object xi

k is assumed
to be perceived at time k, the sensor measurement considering
the observation noise is simulated according to the gk(x

i
k)

measurement model detailed in Section III-C.

B. Clutter Model

The clutter model intends to produce the false positive de-
tections of the simulated sensors as the physical sensors would
provide them. In many multi-object tracking and sensor fusion



4344 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 8, NO. 10, OCTOBER 2023

Algorithm 1: Constructing tracked object detections.

1: given X = {xi
k−1:k}ni=1 real objects at time k and

k − 1
2: Zt

o = ∅, nZ,k = 0
3: for i = 1 to n do
4: Compute pinit(x

i
k) and pdel(x

i
k) via (5) and (6)

5: r = rand ∼ U(0, 1)
6: if γ(xi

k−1) then
7: if r < pdel(x

i
k) ∧ pdel(x

i
k) ≥ pdel,th then

8: i = i+ 1 (False negative detection)
9: end if

10: else
11: if r ≥ pinit(x

i
k) then

12: i = i+ 1 (False negative detection)
13: end if
14: end if
15: if nZ,k < nZ,max then
16: z ∼ gk(x

i
k)

17: Zt
o = Zt

o ∪ z
18: nZ,k = nZ,k + 1
19: end if
20: end for
output: Zt

o = {ziz
k }nZ,k

iz=1

algorithms, the clutter model is given by a Poisson Point Process
(PPP) as in [79], [80]. The PPP model assumes uniformly
distributed clutter detections in a given measurement volume
with its cardinality distributed according to a Poisson distribu-
tion. Due to its simplicity, it is also commonly used in sensor
simulations, as in [69], [70]. However, most of the sensors have
non-uniform clutter density, and the cardinality of the false
detections does not follow a Poisson distribution.

In this article, we provide a non-uniform clutter model that
enables a realistic simulation of the sensors’ clutter detections.
The first step of such a clutter model is to explore the reasons for
false detections. For instance, radars usually detect static objects
with significant, reflecting areas such as guardrails, poles, high-
way bridges, etc., resulting in a non-uniform clutter density. The
ADAS and AD functions simulation is usually performed based
on standard static environment and scenario descriptors such
as OpenDRIVE and OpenSCENARIO. The descriptor of the
environment, including the road network, lanes, and stationary
objects (e.g., traffic lights, traffic signs, etc.), enables one to
identify the static and potentially false objects. Smart cameras
usually provide fewer false detections, but it is very challenging
to identify their exact spatial distribution since it depends highly
on the image processing algorithm. Therefore, the proposed
clutter model considers the false detections generated by static
environment objects and other unknown reasons (e.g., random
sensor noise, object detection errors). The workflow of simu-
lating the clutter detections is illustrated in Fig. 3. The set of
clutter detections, Ck, at time k consists of the CG Gaussian and
theCU uniform detections generated by the static environmental
objects and other random events, respectively. The clutter model
considers that the false detections provided by smart sensors

Fig. 3. The generic overview of the proposed clutter model.

with a built-in tracking algorithm usually do not appear for
only one frame. Therefore, in the proposed method, the clutter
detections from the previous step, k − 1, are first updated using
the detection and tracking model. Although the total cardinality
of the tracked clutters does not follow a Poisson distribution
as assumed by conventional PPP models, it gives a reasonable
estimate of the number of new false detections. Therefore, the
new clutters are generated by Poisson distributions with unique
parameters corresponding to the different kinds of assumed
origins (e.g., guardrails, lamp poles, bridges) of the detections.

In the following, the construction of the CG Gaussian and CU

uniform clutter groups is detailed. The two groups are generated
separately, starting with the Gaussian group. The first step of
the static clutter detection simulation is identifying the Gaus-
sian components corresponding to the potentially false static
objects. The Gaussian components can be divided into two types:
GS = {CiS

S }nCS
iS=1 contains clusters of ordered series of compo-

nents and GO = {ciOO }ncO
iO=1 consists of individual one-sample

components as shown in Fig 3, where nCS
and ncO denotes the

number of component clusters and the individual one-sample
components. In the parameter identification and evaluation, we
considered the guardrails (iS = 1) and lamp poles (iS = 2) as
series components since they usually generate a sequence of
detections, therefore nCS

= 2 in this case. The highway bridges
are regarded as individual Gaussian components. The number
of bridges in the view range of the simulated sensors determines
ncO .

A cluster CiS
S that corresponds to the liSS class of static,

potentially false object (i.e., l1S = guardrail, l1S = lamp poles)

consists of cicS ={ĉicS , P̂
ic
S , w

ic
S , liSS } series of Gaussian compo-

nents as in Fig. 3, where ic denotes the index of the components
within the iS series. The components are following each other
with dres distance resolution along the road path within the
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Fig. 4. The spatial PDF of the guardrail (left side) and lamp poles (right side)
Gaussian components.

sensor’s view range. The ĉicS state of the ic-th component is
determined by the location of the corresponding objects, i.e.,
guardrails and lamp poles, stored in the map data of the simulated
environment. This information can usually be extracted from
many simulation tools in standard format (e.g., OpenDRIVE).

The covariance, P̂
ic
S , is set so that the eigenvector corresponding

to the longitudinal position of the component is parallel to the
road path. The series of the guardrail’s and lamp poles’ Gaussian
components are demonstrated in Fig. 4. The wic

S weights of
the Gaussian components are computed based on γ(cicS ), that
indicates whether the cicS component is already detected at the
current timestamp and pdist(ĉ

ic
S , l

ic
S ) distance probability density

as

wic
S = pdist(ĉ

ic
S , l

iS
S )(1− γ(cicS )) . (7)

The number of new false detections is computed for each
CiS

S ∈ GS Gaussian series classes (i.e., guardrail, lamp pole)
with label liSS according to a Poisson distribution with Poisson
rate λ̄

l
iS
S

. The Poisson rate is proportional to the current number

of components, niS
cS

, constructing the object class liSS and to the
vego,k−1(tk − tk−1) distance that is traveled between timestamp
k − 1 and k as

λ̄
C

iS
S

= λ̄
l
iS
S

= cλ(l
iS
S ) vego,k−1(tk − tk−1)

niS
cS

nmax(l
iS
S )

, (8)

where cλ(l
iS
S ) and nmax(l

iS
S ) denote the constant Poisson rate

factor and the maximum number of components constructing
static false object with label liSS .

The {ciOO }ncO
iO=1={ĉiOO , P̂

iO
O , wiO

O , liOO }ncO
iO=1 one-sample

Gaussian components, shown in Fig. 3, are generated based on

the static environment description of the generated scenario.
The state ĉiOO is computed according to the location of the
object and the dynamics of the ego vehicle. The covariance

matrix P̂
iO
O is given so that the spatial distribution of the

components corresponds to the shape and angle of the object

and tr(P̂
iO
O ) is proportional to the object’s reflecting area |Ar|.

The weights wiO
O = λ̄

c
iO
O

, as opposed to the clusters including

the series of Gaussian components, directly define the Poisson
rate of the cardinality of new clutter detections generated by the
one-sample component ciCO and are computed as

wiO
O = λ̄

c
iO
O

= fwO
(λ̄

l
iO
O

, ĉiOO ) , (9)

where the Poisson rate λ̄
l
iO
O

of the static object class with label

liOO (i.e., highway bridges) is given similar to (8) by neglecting
the number of components of the cluster as

λ̄
l
iO
O

= cλ(l
iO
O ) vego,k−1(tk − tk−1) . (10)

The fwO
function that computes the Poisson rate of each com-

ponent is defined by the following two rules:∫
VFOV

fwO
(λ̄

l
iO
O

, ĉiOO ) dV = λ̄
l
iO
O

VFOV , (11)

fwO
(λ̄

l
iO
O

, ĉiOO ) ∝ pdist(ĉ
iO
O , liOO ), ∀iO ∈ GO , (12)

imposing that the λ̄
l
iO
O

overall Poisson rate of the object class

with label lO does not change and the state-dependent Poisson
rate of the component ciOO is proportional to pdist(ĉ

iO
O , liOO ).

The Gaussian clutter detections CG,k at timestamp k are
constructed by Algorithm 2. First, the false Gaussian objects,
CG,k−1 = {ciGG,k−1}

ncG,k−1

iG=1 of the previous cycle, k − 1, are
updated by the measurement model gk detailed in Section II-C
using the Gaussian components c�k ∈ {Gs,Gs} corresponding
to the static object that originally generated the detection. The
detection survives if its survive probability is less than the
uniformly distributed r ∼ U(0, 1) random number. The survive
probability ps(c

iG
G,k−1) is given according to the detection and

tracking model by the p̂D(ĉiGG,k−1) detection probability if a

single-shot detector is simulated and by 1− pdel(ĉ
iG
G,k−1) when

the sensor provides tracked objects.
In the second step, the appearance of the new Gaussian false

detections are simulated. The nb
G number of new clutters gener-

ated by the {CiS
S }nCS

iS=1 clusters including the series of Gaussian

components, and the {ciOO }ncO
iO=1 one-sample static objects, is

computed by a Poisson random number with Poisson rate λ̄
C

iC
S

and λ̄
c
iC
O

according to (8) and (9), respectively. The cbG state of a

new false detection corresponding to a series of Gaussian com-
ponents is performed by a random vector distributed according
to a weighted Gaussian mixture in line 24, where the weight is
computed according to (7). The one-sample components initiate
the state of a newborn false detection defined by the correspond-
ing Gaussian distribution. Furthermore, the maximum number
of detections nZ,max of the sensor is considered.

The uniform clutter group CU,k representing the false de-
tections not generated by static objects but for other unknown
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Algorithm 2: Constructing Gaussian False Detections.

1: given GS = {CiS
S }nCS

iS=1 series Gaussian components,

and GO = {ciOO }ncO
iO=1 one-sample Gaussian

components, CG,k−1 = {ciGG,k−1}
ncG,k−1

iG=1 Gaussian
false objects, and nZ,k number of object detections at
time k − 1 and k

2: CG,k|k−1 = ∅, Cb
G,k = ∅, ncG,k = 0

Update previous Gaussian false detections:
3: for iG = 1 to ncG,k−1 do
4: r = rand ∼ U(0, 1)
5: if single-shot detector then
6: ps(c

iG
G,k−1) = p̂D(ĉiGG,k−1)

7: else
8: ps(c

iG
G,k−1) = 1− pdel(ĉ

iG
G,k−1)

9: end if
10: if r < ps(c

iG
G,k−1) ∧ nZ,k + ncG,k < nZ,max then

11: cG ∼ gk(c
�
k ↔ ciGG,k−1)

12: CG,k|k−1 = CG,k|k−1 ∪ cG
13: ncG,k = ncG,k + 1
14: end if
15: end for
Generate new Gaussian false detections:

16: for iC = 1 to nCS
+ ncO do

17: if iC ≤ nCS
then

18: nb
G = rand ∼ Pois(λ̄

C
iC
S

)

19: else
20: nb

G = rand ∼ Pois(λ̄
c
iC
O

)

21: end if
22: for ibG = 1 to nb

G do
23: if iC ≤ nCS

then

24: cbG = rand ∼∑∀jc∈CiC
S

wjc
S N (·, ĉjcS , P̂

jc
S )

25: else
26: cbG = rand ∼ N (·, ĉiCO , P̂

iC
O )

27: end if
28: if nZ,k + ncG,k < nZ,max then
29: Cb

G,k = Cb
G,k ∪ cbG

30: ncG,k = ncG,k + 1
31: end if
32: end for
33: end for
34: nZ,k = nZ,k + ncG,k

output: CG,k = CG,k|k−1 ∪ Cb
G,k = {ciGG,k}

ncG,k

iG=1

reasons is constructed similarly. In the first step, the survival
of the previous {ciUU,k−1}

ncU ,k−1

iU=1 uniform clutter detections are
simulated based on the detection or tracking model as in lines
3–15 of Algorithm 2, but their c�k states are updated using a CA
(Constant Acceleration) model prediction. In the second step, the
new uniform clutter detection are initiated at time k according
to Algorithm 3. The nU,b number of new, uniformly distributed
false objects is drawn from a Poisson distribution with rate λ̄U

that is computed similarly to (10). However, it is assumed to be
proportional to the tk − tk−1 elapsed time instead of the traveled

Algorithm 3: Constructing Uniform False Detections.

1: given CU,k−1 = {ciUU,k−1}
ncU ,k−1

iU=1 uniform false
objects, nZ,k number of detections at time k − 1 and
k, respectively

2: Update CU,k−1 to CU,k|k−1, as in Algorithm 2
Generate new uniformly distributed false detections:
3: nb

U = rand ∼ Pois(λ̄U = cλ(U)(tk − tk−1))
4: for ibU = 1 to nb

U do
5: d = rand ∼ pdist,U
6: cbU = rand ∼ U(d ∈ V � ⊂ VFOV )
7: if nZ,k + ncU ,k−1 < nZ,max then
8: Cb

U,k = Cb
U,k ∪ cbU

9: ncU ,k = ncU ,k + 1
10: end if
11: end for
output: CU,k = CU,k|k−1 ∪ Cb

U,k = {ciUU,k}
ncU ,k

iU=1

distance. The states of the new uniform clutter detections follow
an intermittently uniform distribution. This means that theVFOV

sensor FoV is divided to Vi ∈ VFOV subspaces with equivalent
distance intervals. The d distance of the detection is defined
by the pdist,U distance probability density, and the state of the
newborn clutter detection, cU,b, is assumed to follow a uniform
distribution within the subspace V � that corresponds to the d
distance.

C. Measurement Model

The measurement model intends to describe the observations
and the measurement uncertainties of the sensors. The state
space of the scenario- and static objects is defined by

x =
[
dx vx ax dy vy ay

]
, (13)

where dx, dy , vx, vy, ax, and ay denote the longitudinal and
lateral position, velocity, and acceleration, respectively. Note
that the p̂D(d, ϕ) state-dependent detection probability is given
in polar coordinate system; therefore, the d distance and ϕ
azimuth are created from the dx and dy Cartesian coordinates.
It should be mentioned that the state space of the objects can be
extended with other attributes (e.g., dimensions, orientation) if
one of the sensors can provide information on them.

A single-shot measurement zk generated by an object with
state xk is simulated by adding ηk measurement noise to the
real object state xk transformed to the measurement space with
the observation model hk(xk) as

zk = hk(xk) + ηk , (14)

where ηk is assumed to follow a N (·,0,Rk) Gaussian distri-
bution with 0 mean value and Rk covariance. This assumption
is a commonly used measurement model in different recursive
filtering algorithms such as Kalman Filter (KF) [81] or Extended
Kalman Filter (EKF) [82].

However, in the case of tracked detections, the xk state is
recursively estimated by a KF or EKF, resulting in x̂k|k. In many
cases, the measurement zk is not identical to the estimated state,
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but it is a result of the transformation

zk = hs,k(x̂k|k) , (15)

where hs,k denotes the state estimate transformation function
that is not necessarily identical to the hk function. The first step
of the state estimation is to compute the x̂k|k−1 a priori state
estimate. The process model fk(xk) predicting the objects is
given by the commonly used constant acceleration (CA) model
with F k transition matrix as

fk(xk) = F kxk = I2 ⊗

⎡
⎢⎣1 Δt Δt2/2

0 1 Δt

0 0 1

⎤
⎥⎦xk , (16)

where Δt denotes the time elapsed between tk and tk−1. The
linear process model in (16) is applied for the state prediction of
the uniform false detections as well, since they are not generated
by the static environment objects. The P̂ k|k−1 predicted estimate
covariance is computed as

P̂ k|k−1 = F kP̂ k|k−1F

k +Qk , (17)

where Qk denotes the process noise covariance that is given
based on the σa,x and σa,y acceleration scales as

Qk =

[
σ2
a,x qk 0

0 σ2
a,y qk .

]
. (18)

The submatrix qk of process noise covariance is computed by
the following diadic product:

qk = v v, v =
[
Δt2/2 Δt 1

]
(19)

The x̂k|k−1 a priori state estimate is updated by the zsim
k simu-

lated measurement based on the Kk Kalman gain as

x̂k|k = x̂k|k−1 +Kk(z
sim
k − hk(x̂k|k−1)) . (20)

The zsim
k measurement is simulated according to the simple

measurement model described in (14). The Kk Kalman gain
and the P̂ k|k a posteriori estimate covariance are computed by
the equations of the Kalman Filter.

III. PARAMETER IDENTIFICATION

The parameters of the sensors are identified by a pre-evaluated
real-world measurement in the offline training phase to obtain a
more realistic simulation. Then in the online phase, the identified
parameters can be used to simulate the real sensors in arbitrary
environments and scenarios generated with a 3D simulation
environment (e.g., Carla, IPG CarMaker), as illustrated in Fig. 5.
The simulated sensor cluster consists of a Continental ARS408
smart radar and a Mobileye EyeQ2 smart camera, providing
tracked object detections. Therefore, in this article, only the
model of sensors providing tracked objects is validated; how-
ever, the single-shot detectors have a much more straightforward
model. The field of view of the simulated sensors and the overall
surveillance area is illustrated in Fig 6. The measurement setup
includes a separate digital camera, too, synchronized with the
aforementioned simulated smart sensors, allowing video anno-
tation for ground truth generation. The measurement that serves

Fig. 5. The relation of parameter identification and simulation.

Fig. 6. The field of views (FoV) of the simulated sensors.

as the basis of the parameter identification was recorded on a
Hungarian highway in nice weather and usual afternoon traffic
conditions, and it consists of 7000 frames (≈120 seconds), in-
cluding guardrails, lamp poles, and highway bridges. Therefore,
the clutter model of static environment objects includes these
classes, but it can be extended with other classes of potentially
false, static objects (e.g., traffic signs, buildings) by labeling
them in the evaluation of the training data used for the parameter
identification. Straightforward rules on the relative velocity and
position of the false positive detections can support the labeling.
The ground truth objects of the road scenario are identified by an-
notating the video record of the digital camera in the open-source
DarkLabel tool. The annotated objects are transformed onto the
ego vehicle coordinate system by a projective transformation.

The first step of the measurement evaluation is the associa-
tion between the annotated ground truth- and detected objects
which is performed by a GNN (Global Nearest Neighbor) algo-
rithm [83]. The algorithm assigns the detected objects to the ref-
erence objects within adc = 10 m overall anddc,lat = 1.5 m lat-
eral cutoff distance so that the global distance of the association
is minimal. The distance matrix Dij ∈ R+(N,M), as the basis
of the GNN algorithm, is defined by the Mahalanobis-distance
dMH(xi, zj) of the reference object xi and object detection zj
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as

Dij=dMH(xi, zj)=(xpos
i − zpos

j )S−1(xpos
i − zpos

j ) , (21)

where N and M denote the number of reference- and detected
objects, while xpos

i and zpos
j are the position vector of the

corresponding objects. The covariance matrix S is given based
on the ratio dr = dc/dc,lat of the cutoff distances as

S =

[
cosα − sinα

sinα cosα

][
1 0

0 d2r

][
cosα − sinα

sinα cosα

]
, (22)

where α denotes the angle of the road path at the longitudinal
distance of object xi.

The detected objects that cannot be assigned to any of the
ground truth objects within the distance dc are assumed to be
false detections, while the matched objects are considered as true
positive detections. The reference objects that do not have any
associated object detections provided by the evaluated sensor
are denoted as false negatives.

A. Detection Model

The parameters of the proposed detection model are estimated
based on the recall map of the evaluated sensor. The overall
recall of a sensor is computed by the ratio of the true positive
and reference objects’ cardinality as

Rc =
TP

TP + FN
, (23)

where TP and FN denote the number of true positive and
false negative objects as in [6]. The surrounding environment
is divided into elementary cells by discretizing the distance and
azimuth angle of the measurement space with 1 m distance
and 1◦ angle resolution. The Rc([di, d,i+1], [ϕj , ϕj+1]) recall
map is constructed by computing the local recall of [di, di+1]×
[ϕj , ϕj+1] intervals. The coasted, i.e., missed-detected but
tracked objects that are currently outside but were previously
located within the FoV, are not considered in the recall map to
neglect the tracking of the sensor. Finally, the proposed model
is fitted to the recall map by minimizing the Mean Squared
Error (MSE). We have used the Matlab Optimization Toolbox
to identify the optimal parameters of the proposed detection
model considering the criteria that the distance bd and the
angle breakpoints bϕ cannot be located outside the FoV and
the maximal detection probability pD,max shall be in the range
[0,1]. The optimal parameters in (2) and (3) determining the
p̂D(d, ϕ) detection probability map of the sensors, including the
two different scan zones of the radar, are summarized in Table I.
The fitted detection models of the smart camera and radar are
visualized and compared with the manufacturer datasheet FoV
of the sensors in Figs. 7 and 8. It can be seen that the fitted
detection models give a reasonable estimate of the FoV limits,
except in the far scan zone of the radar. Since it is challenging to
annotate the distant objects of the road scenario, the reference
objects are provided up to 100 meters. Therefore, the detection
model cannot be fitted with high reliability over this distance.

TABLE I
ESTIMATED PARAMETERS OF THE PROPOSED DETECTION MODEL IN (2) AND (3)

Fig. 7. Comparison of the fitted detection probability map and the manufac-
turer datasheet FoV of the smart camera.

Fig. 8. Comparison of the fitted detection probability map and the manufac-
turer datasheet FoV of the smart radar.

B. Clutter Model

The parameter identification of the clutter model is more
complex since it is not only necessary to identify the false
positive detections, but one must classify them as well according
to the clutter types. The classification of the clutter detections
has been performed by several rules depending on their relative
lane position and velocity. This research has considered the



LINDENMAIER et al.: OBJECT-LEVEL DATA-DRIVEN SENSOR SIMULATION FOR AUTOMOTIVE ENVIRONMENT PERCEPTION 4349

TABLE II
ESTIMATED PARAMETERS OF THE CLUTTER CLASSES

clutter detections generated by guardrails, lamp poles, bridges,
or other unknown reasons (e.g., random sensor noise, detection
algorithm). The statistics of these detections, such as the total
cardinality, the number of new detections, and their spatial
distributions, are determined frame by frame. The new detec-
tions generated by an object class with label l at k-th cycle are
identified based on the GNN data association performed between
the detections of the current and previous cycles. The Poisson
rate factor cλ(l) of object class l is estimated, in the timestamp
interval [ks, ke] within the object is present, as nearly constant
as

cλ(l) =
λ̄l∑ke−1

k=ks
vego,k(tk+1 − tk)

(ke − ks + 1) , (24)

where ks and ke denote the starting and ending timestamp index
of the time interval, and vego is the velocity of the ego vehicle.
The λ̄l rate at the average velocity within the estimation time
interval is computed by the Matlab Distribution Fitter by fitting
a Poisson distribution on the number of new detections. The
distance resolution dres(l) and the maximum number of Gaus-
sian components nmax(l) constructing the objects with labels
l∈{CiS

S }nCS
iS=1 are determined based on the maximum distance

dmax the objects can be still perceived and the maximum number
of detections max(n(zi ↔ CiS

S ) assumed to be generated by
the object class l. The parameters of the different false classes
are detailed in Table II, where cλ denotes the birth constants
in (8) and (10) of the corresponding clutter class, dres is the
distance between the nmax number of Gaussian components
of a series. Note that dres and nmax are only interpreted for
the classes modeled by a series of Gaussian components and
not for bridges and uniformly distributed false detections. The
parameters σ2

x and σ2
y in Table II define the longitudinal and

lateral position variances in P̂ of the Gaussian components
modeling the corresponding potentially false object that is not
interpreted for uniformly distributed false objects. The distance
PDF pdist(ĉ, l) of newborn clutter detections with label l is
described by a custom piece-wise linear distribution function
based on the density values of the discrete distance intervals
[di, di+1] ⊂ VFOV .

The weight function fwo(λ̄l, ĉ) of a one-sample Gaussian
component that computes the state-dependent Poisson rate of
the component with label l ∈ {ciOO }ncO

iO=1 can be formed by the

following linear system of equations:

λ̄l =
1

|D|
∑
di∈D

λ̄([di, di+1]), D = {d | d ∈ VFOV } , (25)

λ̄([di, di+1]) = cwo pdist

(
di + di+1

2
, l

)
. (26)

Although the mean value of the Gaussian components is given
by the static environment descriptor of the road scenario, their
initial covariance must be specified. As it was described in
Section II-B, the spatial distribution of a Gaussian component
cicS ∈ CiS

S is set to be parallel with the road path. The eigenvalue

σ2
x of the position covariance sub-matrix P̂

ic
S,xy is given byσ2

x =

(dres(l
iS
S )/3)2 to obtain overlapping spatial PDFs. Whereas σ2

y

is tuned based on the total lateral movement’s average of the

components cicS ∈ CiS
S . The position covariance P̂

iO
O,xy of a

one-sample Gaussian component ciOO is computed similar, but
the σ2

x and σ2
y eigenvalues indicate the shape and the area of the

reflecting surfaceAr. The eigenvalues of the position covariance
corresponding to the different object classes are detailed in

Table II. The other elements of the P̂
ic
S and P̂

iO
O complete

covariances are set in accordance with the parameters of the
measurement model detailed in Section III-C.

C. Measurement Model

The parameters of the measurement model consist of the
observation model hk(xk), the state estimate model hs,k(x̂k|k),
and the measurement covariance Rk of the sensors. The state
estimate transformation hs,k(x̂k|k) considers the measurements
provided by the sensors. Besides their longitudinal and lateral
positions, dx and dy , the smart camera provides the longitudinal
velocity vx and acceleration ax of the objects. The radar divides
both the velocity and position vector intodx,dy ,vx, andvy longi-
tudinal and lateral components, but it does not give information
about the acceleration of the objects. Since the measurements of
both sensors are included in the state vector x̂k|k, the function
hs,k(x̂k|k) can be described by the linear transformation:

zk = hs,k(x̂k|k) = Hsx̂k|k , (27)

where the state transform matrices of the sensors are given as

H radar
s =

⎡
⎢⎢⎢⎣
1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

⎤
⎥⎥⎥⎦ (28)

Hcamera
s =

⎡
⎢⎢⎢⎣
1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

⎤
⎥⎥⎥⎦ . (29)

The observation model hk(xk) defines the connection between
the state space and the raw measurements. In general, radars can
measure objects’ distance, azimuth angle, and radial velocity,
while smart cameras observe their position and, in some cases,
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TABLE III
ESTIMATED PARAMETERS OF THE SENSORS’ MEASUREMENT MODEL

the velocity based on optical flow. However, for simplicity, the
sensors are assumed to measure the subspace of the state directly
so the observation model can also be expressed as a linear
transformation as

zsim
k = hk(xk) + ηk = Hxk + ηk . (30)

The observation matrix H radar of the radar represents that it can
measure the position of the objects, and since it is a front-looking
radar, the radial velocity is estimated by the longitudinal velocity.
The Hcamera is given identically since it can directly observe the
position of the objects and the longitudinal velocity based on
optical flow as

H radar = Hcamera =

⎡
⎢⎣1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

⎤
⎥⎦ . (31)

The observation matrix must be extended accordingly if the
target sensors can measure other attributes (e.g., dimensions).
The covariance, Ri

k, of the measurement noise ηi
k is estimated

based on the xi
k reference object’s state and zi

k measurement:

Ri
k =

(
1

N

N∑
k=1

H(Hsx
i
k − zik)(Hsx

i
k − zik)

H
)

, (32)

where Nk denotes the number of cycles on which the expected
value of the covariances of the objects are computed. Since the
sensors provide tracked object detections, to eliminate the effect
of noise filtering, Nk is set to 5, considering only the initial
cycles of a track during the state estimation are not stable yet.
The generic Rk measurement covariance is determined based
on the average of the Ri

k object covariances, assuming that the
measurements are independent as

Rk = diag

(
1

n

n∑
i=1

Ri
k

)
, (33)

where n denotes the total number of objects. The variances of
the sensor measurements are included in Table III.

IV. RESULTS

The simulation is validated on a different 7000-frame section
of the measurement along with three aspects: the fidelity of the
detection and tracking model, the similarity between the clutter
density of the actual and synthetic sensor data, and the overall
performance metrics of the real and simulated sensors. Since the
detection and tracking model describes the detectability of the
valid objects, it is evaluated by comparing the object detections
provided by the simulation and the actual sensor, neglecting the

TABLE IV
COMPARISON OF THE PROPOSED AND CONVENTIONAL DETECTION MODEL

clutter detections. The association between the simulated and
actual detections is performed by the same GNN method used
for parameter identification. Then, the performance metrics, the
recall, precision, and F1 score of the detection and tracking
model are computed. The recall given in (23) indicates the
proportion of the object detections provided by the sensor found
by the simulation too. The precision expresses how many of the
simulated detections correspond to an actual sensor detection as

Pr =
TP

TP + FP
, (34)

where FP denotes the total number of false positive detections.
The comprehensive F1 score performance metric, is computed
based on the precision Pr and recall Rc [84] as

F1 = 2
Pr ·Rc

Pr +Rc
. (35)

The performance metrics of 10 simulations provided by the
proposed and a conventional Bernoulli distributed detection
model are averaged and compared in Table IV. The proposed
model provides false detections less frequently when the actual
sensor does not detect either the object, resulting in about 3-5%
higher precision for the radar and camera, respectively. Accord-
ing to the recall, the proposed method simulates almost 10%
better when the actual sensor is able to detect the surrounding
objects. Therefore, the proposed detection and tracking model
provides 7.22% and 5.75% higher fidelity for the camera and
radar than the conventional Bernoulli distributed model. The
less significant difference in the case of the radar is due to the
aforementioned reason that the parameters of the multiple scan
zone detection model are more complex to be identified.

The clutter detections of the simulation do not have to match
frame-by-frame perfectly the ones of the simulated sensor but
their spatial distribution should be similar. Therefore, the clutter
model is evaluated by comparing the κ(z) clutter density, i.e.,
the frequency of the clutter occurrence in a specific part of the
environment, of the proposed model, the commonly used con-
ventional PPP, and the actual sensor detections. The κ(z) clutter
density is approximated by κ̂([zi, zi+1]) discretized clutter map.
In the evaluation, we considered the κ̂(Ωi) spatial distribution
of the clutter density, where Ωi denotes the grid cell given by
[dx,ix , dx,ix+1] longitudinal, and [dy,iy , dy,iy+1] lateral position
intervals. The κ̂(Ωi) clutter density value of the i-th grid cell is
computed as

κ̂(Ωi) =
1

Nk · |Ωi|
Nk∑
k=1

∑
ck∈Ck:
ĉk∈Ωi

1 , (36)
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Fig. 9. The clutter density maps of the simulated (left) and the real radar
detections (right).

Fig. 10. The clutter density maps of the simulated (left) and the real camera
detections (right).

where ck ∈ Ck is a clutter detection at k-th timestamp and Nk

denotes the number of frames used for the evaluation described
in Section III. The density maps of the clutter detections pro-
vided by the conventional PPP (Poisson Point Process) and the
proposed model are compared to the clutter density of the actual
radar and camera measurements in Figs. 9 and 10. Since the
density values of the conventional PPP clutter model are shallow
due to the uniformly distributed detections, their density maps
corresponding to the radar and camera are visualized with 10
and 5 times higher values for visibility, respectively. Fig. 9 shows
qualitatively that the density map of the proposed clutter model is
much more similar to the actual radar measurement than the uni-
formly distributed clutter detections of the conventional model.
Since the camera provides few clutter detections, the clutter
density values of the conventional PPP and proposed clutter
model in Fig. 10 do not differ significantly. Still, the higher
peaks of the proposed method seem to be more realistic than the
uniform density map of the PPP model. The structural similarity
index measure (SSIM) [85] is used to quantify the fidelity of the

TABLE V
STRUCTURAL SIMILARITY OF CLUTTER DENSITY MAPS

simulated clutter detections. The SSIM algorithm determines
the quality, i.e., the similarity of digital images compared to a
given reference. The clutter density maps simulated with the
conventional and the proposed clutter models are compared
to the density map of the actual sensors measurements as a
reference. The dynamic range parameter of the SSIM defines
the maximum intensity values in the input maps (e.g., 255 in
the case of RGB images). If the density maps in Figs. 9 and
10 are compared as images, the dynamic range is given by the
maxκ = max(max(κ̂(Ωsim

i )),max(κ̂(Ωmeas
i ))) maximum sim-

ulated and measured intensity. However, this method does not
consider the fact that the clutter intensity value may be greater
than the dynamic range given by the highest intensity. Since
the 1× 1 meter size of the grid cells is smaller than the object
separation distance of the sensors, the pc(Ωi) ∈ {[0, 1] ⊂ R}
clutter probability gives approximately the density as

κ̂(Ωi) ≈ pc(Ωi) =
1

Nk · |Ωi|
Nk∑
k=1

min

⎛
⎜⎜⎝1,

∑
ck∈Ck:
ĉk∈Ωi

1

⎞
⎟⎟⎠ . (37)

Therefore, the dynamic range interval [0,1] can be applied for
SSIM providing a more meaningful measure of clutter model’s
fidelity. Furthermore, we applied four different Gaussian weight-
ing circles in SSIM. The higher the radius of the circle, the more
neighboring pixels are looked at in the similarity measure, con-
sidering the structure of the map instead of pixel-wise similarity.
The similarity metrics of the conventional PPP and proposed
clutters model are detailed in Table V, including the results of the
two dynamic ranges and radius values of four weighting circles.
Since the camera provides few clutter detections, the clutter
density map of the actual camera measurement, consisting of
many 0 intensity values, is easier to be simulated. Therefore, the
similarity metrics in the dynamic range [0, 1] show a high, more
than 99% fidelity of both the conventional and the proposed
clutter model. However, the clutter density map of the proposed
model, considering the tracking of the false detections, is ≈2%
more similar to the simulated camera in the [0,maxκ] range.
The radar has a much more complex non-uniform clutter model
resulting in lower similarity metrics, particularly in the case
of maxκ range. Still, the difference between the proposed and
conventional PPP clutter model is more significant, increasing
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TABLE VI
PERFORMANCE METRICS OF THE REAL AND SIMULATED SENSORS

with the circle radius. It means that the clutter density map of
the proposed model is significantly closer to the actual radar
data than the uniformly distributed detections of the PPP model
regarding their structure. Furthermore, the similarity values of
the proposed clutter model are greater than 93% for all radius
values in the [0,1] range representing the fidelity of the clutter
detections better than with maxκ, considering the valid range of
clutter intensity values.

Finally, the overall performance metrics of the simulated sen-
sor data, namely the aforementioned recall, the precision, and the
F1 score, are compared to the same metrics of the actual sensor
data. The averaged metrics of 10 simulations are compared to
the actual sensors in Table VI, including the proposed model
and a conventional one using Bernoulli distributed detection and
PPP clutter model. According to the F1 scores, both sensors are
simulated with high fidelity by the proposed method since the
differences to the actual sensors are less than 1% in contrast with
the conventional model that under- and overestimates the camera
and radar performance, respectively. The precision related to the
false positive detections is more realistic for the radar simulation
than for the camera since the latter considers only the clutter
detections due to unknown reasons, i.e., partially uniform clutter
appearance. The precision of the radar data simulated by the
proposed model is much closer to the actual precision than
the conventional model, indicating that the proposed clutter
model is more reliable than the commonly used PPP clutter
model. In contrast, the camera’s recall estimation is more reliable
because the radar has a complex detection model consisting
of multiple scan zones. The proposed model considering the
built-in tracking module of the actual sensors, achieves 5%
better camera recall in simulation than the conventional model
using Bernoulli distribution. Both the precision and recall of
the sensors simulated by the proposed data-driven sensor model
have more than 98% fidelity.

The fidelity of the radar clutter model is confirmed by Figs. 11
and 12 demonstrating the output of guardrail, lamp pole, and
highway bridge simulations on a frame. Fig. 11 shows that both
the spatial and cardinality distribution of the false positive ob-
jects generated by the guardrail accurately match the detections
provided by the clutter model for guardrails. It also exposes the
simulated radar detections corresponding to street lamp poles
that do not precisely match the actual sensor measurement. This
is anticipated since they are less frequently located along the road
path and the radar cross-section, so the detection probability is

Fig. 11. Qualitative result illustrating the simulated (left) and real (right)
clutter detections generated by guardrail and street lamp poles.

Fig. 12. Qualitative result illustrating the simulated (left) and real (right)
clutter detections generated by highway bridge.

lower compared to guardrails. Fig. 12 shows an example of high-
way bridge clutter simulation. The number of simulated bridge
detections gives a suitable estimate of the detections observed
by the actual sensor. Although the position of the points reflected
on the bridge does not fit precisely the measured reflections, the
simulation still provides a fair estimation. Furthermore, since
the clutters are simulated according to a random distribution,
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Fig. 13. Qualitative result illustrating the simulated (left) and real (right)
detections generated by standstill objects in emergency lane.

Fig. 14. Qualitative result illustrating the simulated (left) and real (right)
detections generated by standstill objects in emergency lane.

the result should be evaluated statistically. The detection model
performance and its limitations in a more complex scenario
involving standstill objects in the emergency lane are illustrated
in Figs. 13 and 14. The detectability of the police car detected by
both the actual radar and camera is simulated correctly, while the
farther car is missed by the real sensors and the simulator as well

shown in Fig. 13. Moreover, the measurement error regarding
the position of the detections is also simulated accurately. The
slight difference in Fig. 13 is coming from the simulated clutter
detections assumed to be generated by the lamp poles. However,
as mentioned earlier, it does not distort the simulation data sig-
nificantly if the clutter model does not match the detections of the
actual sensors frame-by-frame, but statistically, they are similar.
The limitations of the proposed detection model are illustrated
in Fig. 14 showing that the radar detects both standstill cars
in the emergency lane but the simulator assumes the closer one
undetected. Furthermore, despite the simulated camera detecting
the police car, the real sensor misses both standstill objects,
and false detections occurs over the guardrail. The pedestrians
appearing in Fig. 14 are not considered in the simulation nor
the evaluation because of the lack of pedestrian detection in the
training data used for parameter identification, which is also a
limitation of the current status of the proposed method. Although
the simulation does not perfectly reconstruct frame-by-frame
the detections of the actual sensors due to the limitations of the
proposed method, statistically, it provides high-fidelity synthetic
data. Using this simulated data for testing, one can evaluate and
further improve the performance of the environment perception
algorithms in different scenarios, increasing the safety of the
ADAS and HAD functions.

V. CONCLUSION

The proposed sensor model can simulate the object-level data,
i.e., detections or tracked objects, of a generic smart sensor with
high fidelity based on the data-driven identification of the model
parameters. The simulator tackles tracked object detections as
well by involving a tracking model that extends the detection
model fitted to the actual sensor. The measurement model can
also handle tracked objects simulating the measurement un-
certainties of the sensors. The clutter model reproduces the
clutters provided by the sensor with high accuracy regarding
their cardinality and spatial distribution, considering different
types of false detections. Since the surrounding scenario- and
static environmental objects are usually provided by the com-
monly used 3D simulation environments on which the proposed
model relies, the simulator can generate the sensor data in an
arbitrary road scenario. Therefore, the simulator can support the
development and testing of different environment perception
modules, such as sensor data fusion, even in corner cases,
increasing the safety of ADAS and HAD functions. We intend
to improve the proposed model with a more detailed radar
and camera clutter model considering multi-path detections and
digital image processing failures that are now handled by the
partially uniformly distributed clutters due to unknown reasons.
Furthermore, we plan to extend the proposed simulation with the
consideration of object occlusion in the detection and tracking
model.
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