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Nationwide Air Pollution Forecasting with Heterogeneous Graph Neural
Networks
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Nowadays, air pollution is one of the most relevant environmental problems in most urban settings. Due to the utility in operational
terms of anticipating certain pollution levels, several predictors based on Graph Neural Networks (GNN) have been proposed for the
last years. Most of these solutions usually encode the relationships among stations in terms of their spatial distance, but they fail
when it comes to capture other spatial and feature-based contextual factors. Besides, they assume a homogeneous setting where all the
stations are able to capture the same pollutants. However, large-scale settings frequently comprise different types of stations, each one
with different measurement capabilities. For that reason, the present paper introduces a novel GNN framework able to capture the
similarities among stations related to the land use of their locations and their primary source of pollution. Furthermore, we define a
methodology to deal with heterogeneous settings on the top of the GNN architecture. Finally, the proposal has been tested with a
nation-wide Spanish air-pollution dataset with very promising results.

CCS Concepts: • Computing methodologies → Machine learning algorithms; Artificial intelligence; • Information systems
→ Information systems applications.
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1 INTRODUCTION

One of the most relevant environmental problems in our modern society is the poor air quality in numerous urban
areas. In fact, the World Health Organization (WHO) remarks that 99% of the worldwide population are in settlements
where air pollution levels exceed the WHO guideline limits1. This same organization has highlighted that the exposure
to air pollutants causes a higher mortality rate in different regions [28].

In this context, public authorities have promoted the deployment of sensors to measure multiple pollutants produced
by road-traffic activities (NO2, CO, NH3, PM2.5 or PM10) or industry sources (SO2, CO or O3) [2, 3] in real time.
Thanks to this new source of data, the research community have proposed a large number of forecasting solutions to
anticipate the level of pollutants in a specific area at multiple time horizons [6, 11, 26, 27]. In this manner, institutions
and individuals could be able to take proactive actions before a critical pollution level is reached [4].

1https://www.who.int/data/gho/data/themes/air-pollution/ambient-air-pollution
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Regarding the applied methods for such a forecasting task, multiple algorithms dealing with timeseries have
been tested, such as ARIMA [26], Support Vector Machines [17] or deep learning techniques like recurrent [15] or
convolutional [9] neural networks. Due to the spatial and temporal dependencies involved in the prediction of air
pollution, several approaches have recently proposed the use of Graph Neural Networks (GNNs) to encode such
spatiotemporal relationships as part of the inference process [7, 10, 13, 14]. Despite the promising results obtained by
the GNN approach, we can still identify two major limitations in the current literature:

• On the one hand, GNN solutions usually consider the distance among sensors as the only relevant spatial
feature. However, there are other spatial factors that might be relevant in the air-pollution forecasting pipeline.
For example, the land use or the prominent human activity in the sensor’s surrounding area. Thus, the pollution
patterns might be different whether a sensor is installed in a urban, rural or suburban area or whether it is
installed closed to a motorway or an industrial park.

• On the other hand, most solutions assume that the infrastructure of the monitoring system is homogeneous
and all the sensors are able the measure the same pollutants. However, most real air pollution measurement
networks deployed at large scale are very heterogeneous. In fact, they generally comprise different types of
sensors, each one able to measure a different palette of pollutants. As a result, there are very few proposals that
actually consider this factor as part of their forecasting method.

Our work proposes a forecasting method to anticipate several air pollutants at large spatial scales that overcomes
these two drawbacks. To do so, the proposed methodology encodes the similarity among the air measurement stations
in terms of their surrounding land usage and their primary source of pollution. Our model relies on a GNN architecture
that receives as input an heterogeneous graph encoding these similarities along with other contextual factors such as
human mobility activity and weather conditions. Moreover, the stations are heterogeneous, containing several types of
sensors measuring different types of pollutants. Consequently, our proposal also considers such heterogeneity to better
represent real-world scenarios. In that sense, it is possible to find in the literature different techniques to deal with
heterogeneous graphs and generate the node embeddings under different conditions [24]. Moreover, they have been
successfully used in different settings such as the development of recommendation systems in the e-commerce field
[8]. The solution has been tested against a nation-wide air-pollution dataset in Spain comprising more than 600 air
measurement stations.

The remainder of the paper is structured as follows. Section 2 gives an overview about existing trends and techniques
for air pollution forecasting. Then, section 3 introduces the methodology to define the GNN architecture as a pollutant
predictor. Section 4 states the evaluation of the proposed predictor. Lastly, section 5 summarizes the main conclusions
and potential future research lines motivated by this work.

2 RELATEDWORK

The methods for analyzing and predicting air pollution have experienced significant advances, specially thanks to the
recent explosion of numerousMachine Learning (ML) and Deep Learning (DL) models. By leveraging large-scale datasets,
it is now possible to develop highly accurate predictive models that capture the relationships between meteorological
conditions, emissions sources, and pollutant levels.

Starting with related papers using ML methods, in [26] the ARIMA model was applied to analyze the effect of land
surface coverage (LSC) on PM10 pollutants in Bogotá, Colombia. The data gathered by 6 monitoring stations during 6
years included PM10 concentration, temperature, solar radiation and wind speed and direction. Using these data, the
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authors studied the relationship between PM10 concentrations and different LSC areas in a daily basis to simulate the
spread of this pollutant. The findings from the study revealed that areas with greater vegetation maintained higher
levels of PM10, preventing its dispersion into surrounding areas. Thus, a difference of about 42% of PM10 concentration
was observed in favor of green areas compared to areas with predominance of pavements and buildings. In addition,
the work in [17] proposed the use of the support vector machine (SVM) algorithm to predict the Air Quality Index
(AQI) for the city of Ahmedabad, India. This AIQ is calculated using 12 pollutant indices, including PM10, PM2.5 and
CO, among others. The authors leveraged the data collected by 7 air monitoring stations in the city monitoring the 12
pollutants during 6 years. The proposed SVM algorithm trained with this dataset obtained a 𝑅2 of 0.998, outperforming
other models compared during the study, such as LSTM and SARIMA. However, no information was given about the
time horizon of the prediction.

Regarding works leveraging DL techniques, an excellent survey on deep learning neural networks (DNN) can be
found elsewhere [27]. This survey states that these models are able to outperform previous models of ML such as
artificial neural networks when large volumes of historic air pollution data are available. In particular, when there is a
strong variation in these dataset, Recurrent Neural Networks (RNN) and Convolutional Neuronal Networks (CNN) are
the preferred models. Thus, the paper in [15] offers an example of an RNN for predicting PM10 and SO2. The authors
collected data about these pollutants from the industrialized province of Sakarya (Turkey) over a two-year period using
an open data initiative by the Ministry of Environment of that country. The results showed that the proposed RNN was
able to predict better the SO2 values compared to the PM10 ones, with an RMSE difference of one order of magnitude.
Again, no information was given about the time horizon of the prediction. Likewise, the work in [9] used a CNN for
hourly predictions of PM10, SO2 and O3 in three different cities, namely Barcelona, Kocaeli and Istanbul. Despite CNN
usually being applied to image analysis, the authors adapted this technique to analyze 2D and 3D spatial matrices
representing the historical data on a specific pollutant and its relationship to other pollutants. They combined the CNN
with an LSTM layer to analyze the temporal features of the pollutants. They obtained RMSE values under 0.1 for all the
pollutants in the cities of Kocaeli and Istanbul. Moreover, meteorological features were added to the model, but did not
result in significant improvements. A transfer learning method was also applied by training the model on Kocaeli data
and using it to predict pollution in Istanbul, yielding similar results to the baseline experiment.

Recent approaches in this area are exploring the performance of hybrid models combining ML/DL techniques. Thus,
the authors in [6] proposed a decomposition/reconstruction model combining an adaptive noise algorithm with a
K-means clustering method (CEEMDAN-KMC-RLN) to forecast the PM2.5, PM10, NO2 and O3 pollutants both at a
specific time points and intervals. This model was trained and validated using a 6-year dataset on these pollutants.
The results showed that the hybrid model outperformed the individual methods used in the proposed hybrid model.
Another study [11] combined LSTM with multi-verse optimization metaheuristic algorithm to forecast NO2 and SO2.
Thanks to this combination, the authors were able to optimize the LSTM parameters in an automatic manner through a
mutual information method. This proposal was evaluated by predicting the pollutants in a power plant in Kerman, Iran.
Apart from five months of pollutant data, the authors also used air temperature and wind speed as additional training
features. The results demonstrated that this hybrid model achieved a better accuracy compared with other variations of
LSTM and Elman neural network hybrid models.

A current trend that has attracted significant attention in numerous studies is the utilization of Graph Neural
Networks (GNNs) for air quality forecasting. An example is found in [14], where the authors use a neural network
known as Deep Spatio-Temporal Graph Network (BGGRU) to forecast the PM2.5 particle in 16 districts of the region of
Beijing (China). In addition, these studies usually use exogenous variables in order to improve the prediction quality.

3
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Some examples of this are the study in [7], in which the authors use a neural network known as Dynamic Graph
Convolutional network and the Multi-channel Temporal Convolutional Network (DGC-MTCN) to forecast the PM2.5

particle in two regions (Beijing and Fushun), with the aid of auxiliary variables such as other pollutants (like PM2.5,
SO2, NO2, CO and O3) and weather conditions as exogenous variables. Also the study in [10], in which the authors use
a neural network known as Self-Supervised Hierarchical Graph Neural Network (SSH-GNN) to forecast the AQI, PM2.5,
PM10, O3, NO2, SO2, and CO particles in the urban agglomerations of Beijing-Tianjin-Hebei, Pearl River Delta and
Yangtze River Delta, with the aid of auxiliary variables such human mobility and weather conditions as exogenous
variables. Finally, the work in [13] leverages a neural network known as Attention Temporal Graph Convolutional
Network (A3T-GCN) to forecast the NO2 particle in the region of Madrid (Spain), with the aid of auxiliary variables
such human mobility and weather conditions as exogenous variables.

Table 1. Overview of different methods for air pollution forecasting based on their prediction algorithms and input data.

Ref. Spatial scale Target Pollutants Context factors Homogeneous sensors? Land-use? Source of pollution? Method

[26] City PM10
temperature, relative humidity,
air pressure, wind speed and

direction
No No N/A CNN+LSTM

[17] City

AiQ (PM10,
PM2.5, NO2, SO2,
CO, O3, NH3,
Pb, Ni, As,

Benzo(a)pyrene, and Benzene)

- Yes No N/A SVM

[9] City PM10, SO2, O3 - Yes No N/A SVM
[11] City SO2, NO2 Air temperature, wind speed Yes Yes Power Plan LSTM-MVO
[15] District PM10 & SO2 - N/A No Industrial RNN

[7] Region PM2.5

Other pollutants
(PM10, SO2, NO2,

CO, O3),
weather conditions

No No No DGC-MTCN

[10] Urban
agglomerations

AiQ (AQI, PM2.5,
PM10, O3, NO2,
SO2, and CO)

Human mobility,
weather conditions No Yes No SSH-GNN

[13] Region NO2 Human mobility,
weather conditions No Yes Yes A3T-GCN

[14] Region PM2.5 - Yes Yes No BGGRU
[6] N/A PM2.5, PM10, NO2, O3 - N/A No N/A CEEMDAN-KMC-RLN

Our approach Nation
C6H6, PM10, PM2.5,

SO2, O3, CO,
NO, NO2, NOx

Human mobility,
weather conditions No Yes Yes ConvLSTM + GAT

Table 1 summarizes the most important features of the reviewed works. As observed, only a limited number of studies
actually consider non-homogeneous sensor settings [7, 10, 13]. However, their focus is primarily on predicting a single
pollutant (PM2.5, NO2) or an aggregated Air-Quality index (AIQ). On the contrary, our work tackles a multi-variate
prediction by anticipating the values of 9 pollutants. In addition to that, our work also combines the information about
the potential pollution sources and the type of urban area (urban, rural of suburban) where the station is located. While
it is true that other models have utilized similar contextual data such as POIs distribution or road-network topology [10],
our work defines and incorporates this contextual data in a more concise and simplified manner. This allows composing
a lightweight model architecture that is less prone to overfitting, as demonstrated in sec. 3.2.

3 METHODOLOGY TO GENERATE THE GRAPH NEURAL NETWORKS

In this section, we describe the procedure to generate the GNN model by firstly describing the different datasets to
compose the model and then its inner architecture.

4
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3.1 Datasets

We have used 3 different datasets to compose the predictor. The main features of each one are stated next.

3.1.1 Air pollution Dataset. This work makes use of a public nationwide air pollution dataset released by the Spanish
Ministry for Ecological Transition (MET)2. The dataset is obtained from 633 air monitoring stations located at different
points of the Spanish territory, as Fig. 1a shows. Note that the two largest cities in Spain, Madrid and Barcelona, are the
ones including the highest number of stations, as shown in Fig. 2. Moreover, 389 Spanish municipalities have at least
one monitoring station. In particular, each of these cities have, on average, 1.63 with a standard deviation of ±1.90.

(a) Location of the stations of the air-pollution dataset. (b) Location of the stations based on the land usage of their associated area.

(c) Location of the stations based on their primary source of pollution.

Fig. 1. Spatial distribution of the air monitoring stations in Spain .

The dataset comprises the levels of 9 pollutants on an hourly basis, namely nitrogen monoxide (NO), sulphur dioxide
(SO2), nitrogen dioxide and nitrogen oxides (NO2, NO𝑋 ), particulate matter (PM10 and PM2.5), benzene (C6H6), carbon
monoxide (CO) and ozone (O3). Let us call this set of particle types as P. However, not all the stations are able to
measure such 9 particles. Fig. 3a shows the distribution of stations based on the number of pollutants that they are able
2https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/calidad-del-aire/evaluacion-
datos/datos/Datos_2001_2020.aspx

5
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Fig. 2. Number of stations per Spanish municipality.

to measure. For example, it can be observed that only 11 stations are able to measure the 9 target pollutants whereas
140 measure only 5 of them. Besides, Fig. 3b shows the distribution of stations per particle, for example it is observed
that 363 stations are able to measure ozone (O3) levels and only 49 of them NO particles. Hence, these two plots show
the significant heterogeneity in the underlying air pollution sensor infrastructure that compose the dataset.

Furthermore, the MET dataset also labels the 633 stations with 2 different tags. The first one indicates the primary
land use of the surrounding area where the station is located. Thus, this land-use tag distinguishes among urban,
suburban and rural stations with a distribution of 283, 213 and 137 rural stations, respectively. The urban stations are
the ones located at the center of the most important Spanish cities, the suburban ones are installed in the outskirts of a
city and the rural stations are installed in small villages or towns. The spatial distribution of the stations based on this
tag is shown in Fig. 1b. Observe that urban and suburban stations are usually located quite close to each other, while
the rural stations are more spatially isolated. This is consistent with the nature of their associated tags.

The second tag informs about the primary source of pollution measured by the station. This pollution label takes 3
values: traffic, when the station mainly measures pollution generated by road-traffic activity; industry, when the station
is located near industrial parks; andmixed, when the station measures pollution from a mixed number of sources. Fig. 1c
shows the spatial distribution of the stations based on this label.

Finally, Fig. 4 shows the co-occurrence distribution of these two tags. Note that 106 urban stations have traffic activity
as the primary pollution source. This is consistent with the fact that most of the center of the cities have usually a high
density of vehicles. On the other hand, the most frequent pollution source of the suburban stations are mixed (100).
Likewise, this makes sense as many industrial parks tend to be located on the outskirts of towns and cities. Finally,
the 85 rural stations also have a mixed combinations of sources. This is also consistent with the fact that small towns
typically have neither a significant volume of traffic nor large-scale industrial activity. As a result, it is reasonable to
conclude that small towns do not possess a distinct primary source of pollution.

6
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(a) Distribution of pollutants per station.

(b) Distribution of stations per pollutant.

Fig. 3. Relation of the distributions between pollutants and stations.

Consequently, if an air-pollution station 𝑠 ∈ S, where S is the set, is able to measure𝑚 different pollutants then it is
possible to define a multivariate timeseries with 𝑛 lags at hour ℎ, T 𝑠

ℎ
= ⟨𝑡𝑠

ℎ−𝑛 → 𝑡𝑠
ℎ−𝑛+1 → 𝑡𝑠

ℎ−𝑛+2 · · · → 𝑡𝑠
ℎ
⟩ where a

tuple 𝑡𝑠
𝑗
= ⟨𝑝𝑠

𝑗,1, 𝑝
𝑠
𝑗,2, .., 𝑝

𝑠
𝑗,𝑚

⟩ comprises the values of the𝑚 pollutants at the j-th hour.

3.1.2 Human mobility dataset. Due to the relevance of the road traffic activity as a primary factor that drives the air
pollution patterns of a spatial region [18], we have also used a human mobility dataset in our study.

This dataset has been retrieved from the nationwide human mobility report released by the Spanish Ministry of
Transportation (SMT) in December 20203. It covers a 15-month period from February 29th, 2020 to May 10th, 2021,
indicating the number of trips among 3216 ad-hoc administrative areas (hereby Mobility Areas, MA) per hour in Spain
both in its peninsular and insular extension. A single trip stands for the spatial displacement of an individual with
distance above 500 meters. Consequently, this dataset could be regarded as a set of tuples where each one takes the form

⟨𝑑𝑎𝑡𝑒, ℎ𝑜𝑢𝑟,𝑚𝑜𝑟𝑖𝑔𝑖𝑛,𝑚𝑑𝑒𝑠𝑡 , 𝑛𝑡𝑟𝑝 , 𝑑𝑖𝑠𝑡⟩

reporting that there is 𝑛𝑡𝑟𝑝 human trips from the MA𝑚𝑜𝑟𝑖𝑔𝑖𝑛 to the MA𝑚𝑑𝑒𝑠𝑡 covering a distance of 𝑑𝑖𝑠𝑡 km during
the indicated 𝑑𝑎𝑡𝑒 and ℎ𝑜𝑢𝑟 . Fig. 5 shows the spatial boundaries of the MAs defined in the dataset as blue lines along
with the location of the Spanish airports as red points which we will discuss in sec. 3.1.3.

3https://www.mitma.es/ministerio/covid-19/evolucion-movilidad-big-data/opendata-movilidad
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Fig. 4. Co-occurrence of the two stations’ labels.

According to the official documents [20], these mobility data was collected through Call Detail Records (CDRs) from
13 million users of an unspecified mobile-phone carrier. Once anonymised, this dataset was used to infer representative
mobility statistics at the nation level of the population of Spain and made publicly available as open data.

It is worth mentioning that this dataset captured the movement of people regardless of the means of transport used
for their displacements. For that reason, we removed records whose distance 𝑑𝑖𝑠𝑡 was below or equal to 7 km. This is
the average distance travelled by Europeans on foot or cycling for regular trips [1]. By mean of this filtering, we just
kept records reporting trips that were more likely to be made by motorcycles, cars, trains or airplanes. These means of
transport might have an impact on the air quality of a region as, in most cases, they emit pollutant particles.

Consequently, an MA𝑚 ∈ M, whereM is the set of all MAs, emits a univariate timeseries at hour ℎ, T𝑚
ℎ

= ⟨𝑑𝑚
ℎ−𝑛 →

𝑑𝑚
ℎ−𝑛+1 → ... → 𝑑𝑚

ℎ
⟩ where ℎ𝑚

𝑖
is the sum of the incoming and outgoing human displacements of𝑚 at the i-th hour.

3.1.3 Weather conditions dataset. To collect the meteorological data, we made use of the Reliable Prognosis web service4.
This platform provides an open repository with the meteorological conditions collected by multiple weather stations
deployed at national and international airports worldwide. We extracted the temperature, wind speed and wind direction
from weather stations on an hourly basis in all the Spanish airports on the platform. Fig. 5 shows the location of the

4https://rp5.ru/Weather_in_the_world
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Fig. 5. Spatial boundaries of the Mobility Areas (MAs) modeling the human mobility as blue lines. The red points indicate the location
of the airports used to collect nationwide weather conditions.

airports as red points. Let us call the set of all airports’ weather stations as W. Hence, a weather station 𝑤 ∈ W
generates a multivariate timeseries at time instant ℎ, T𝑤

ℎ
= ⟨⟨𝑡𝑤

ℎ−𝑛,𝑤𝑠
𝑤
ℎ−𝑛,𝑤𝑑

𝑤
ℎ−𝑛⟩ → ⟨𝑡𝑤

ℎ−𝑛+1,𝑤𝑠
𝑤
ℎ−𝑛+1,𝑤𝑑

𝑤
ℎ−𝑛+1⟩ →

.. → ⟨𝑡𝑤
ℎ
,𝑤𝑠𝑤

ℎ
,𝑤𝑑𝑤

ℎ
⟩⟩ where a tuple ⟨𝑡𝑤

𝑖
,𝑤𝑠𝑤

𝑖
,𝑤𝑑𝑤

𝑖
⟩ represents the temperature (𝑡 ), wind speed (𝑤𝑠) and wind direction

(𝑤𝑑) measured by𝑤 at the i-th hour.
Finally, it is worth noticing that the 3 datasets considered in this work are public feeds that can be easily accessed by

the research community.

3.2 Definition of the Heterogeneous Graph

Given the previous datasets, the prediction setting can be defined by means of three entities: the MAs, the air monitoring
stations and the airports. Fig. 6 shows the heterogeneous graph that models the relationships among them. To begin
with, the graph includes several close-to edges among the three entities so as to model their spatial relationships. In
order to consider Tobler’s first law of geography (Everything is related to everything else, but near things are more related

than distant things) [19], each edge is weighted by the geographical distance among each pair of involved entities. For
example, the link close-to between an airport𝑤 and MA𝑚 is labelled with the distance in kilometers between𝑤 and the
spatial centroid of𝑚. By means of this network of close-to relations, we allow the predictor to encode the air pollution
patterns that not only occur in close locations but also in distant ones that might also arise in certain situations [12].

Besides, the contain edges allow encoding the relationship between the traffic activity of an MA and the air monitoring
stations that are included within the geographical boundaries of the MA. Lastly, the same land use edges connect
stations labelled with the same land use and the same source relationship connects stations whose primary pollution
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source is also the same. With these two relationships, we allow the predictor to consider the similarities that might
arise between monitoring stations that are distant in spatial terms but are enclosed in similar regions from a functional
point of view.

Mobility 
Area

Airport
Air pollution

Station

contain

close to

same land use

same source

close to

close to

close to

close to

Fig. 6. Heterogeneous graph modeling the relationships among the MAs, the airports comprising the weather stations and the air
monitoring stations.

3.3 Problem Definition

At this point, we can define the air-pollution forecasting task at hand as the following regression problem,
Given the hour ℎ, and the set of timeseries T S

ℎ
, TM
ℎ

, TW
ℎ

comprising the timeseries of all the air monitoring stations
S, MAsM and weather stations W, respectively, find a mapping function F

F (T S
ℎ
,TM
ℎ

,TW
ℎ

) → T S
ℎ+Δ

where T S
ℎ+Δ are the predicted pollution levels of the particles measured by each station𝑚 ∈ M at the hour ℎ + Δ

where Δ (≥ 1) is the time horizon of the prediction.

3.4 Graph Neural Network Design

Given the heterogeneous graph and the regression problem defined in the previous two sections, we built the Graph
Neural Network architecture shown in Fig. 7.

As observed, the proposed architecture comprises 4 different layers. In order to deal with the heterogeneous nature
of the input graph, each layer includes a convolutional operator so that when multiple relations (edge types) point to
the same destination node, the embedding of such a node is computed as the sum of its embedding for each edge type.
This is depicted as the HeteroConv boxes in Fig. 7. By mean of this approach the nodes’ embeddings are enriched at
each step of the processing pipeline of the network with the information coming from all their connections.

More in detail, the first layer is in charge of capturing the temporal evolution of the timeseries generated by the
MAs, air-pollution stations and airports’ sensors. To do so, we apply an Integrated Graph Convolutional Long Short
Term Memory (Conv-LSTM) model [21]. Basically, this model stacks a graph CNN and an LSTM cell. More in detail, the
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ConvLSTM Dense ReLU GAT Dense ReLU TS h+Δ

Layer 1 Layer 2 Layer 3 Layer 4

TS h

TW h

TM h

Hetero
Conv

Hetero
Conv

Hetero
Conv

Fig. 7. Layer structure of the proposed GNN.

cell comprises three different gates, the update 𝑧 (𝑡), the reset 𝑟 (𝑡) and the memory-content 𝑔(𝑡). The computation of
each gate is as follows:

𝑥𝐶𝑁𝑁𝑖 = 𝐶𝑁𝑁G (G𝑡𝑖 ),

𝑖 = 𝜎 (𝑊𝑥𝑖 𝑥𝐶𝑁𝑁𝑖 +𝑊ℎ𝑖𝜀𝑡𝑖−1 +𝑤𝑐𝑖 ⊙ 𝑐𝑡−1 + 𝑏𝑖 ),

𝑓 = 𝜎 (𝑊𝑥 𝑓 𝑥𝐶𝑁𝑁𝑖 +𝑊ℎ𝑓 𝜀𝑡𝑖−1 +𝑤𝑐 𝑓 ⊙ 𝑐𝑡−1 + 𝑏 𝑓 ),

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝐶𝑁𝑁𝑡 +𝑊ℎ𝑐𝜀𝑡𝑖−1 + 𝑏𝑐 ),

𝑜 = 𝜎 (𝑊𝑥𝑜 𝑥𝐶𝑁𝑁𝑖 +𝑊ℎ𝑜𝜀𝑡𝑖−1 +𝑤𝑐𝑜 ⊙ 𝑐𝑡 + 𝑏𝑜 ),

𝜀𝑡𝑖 = 𝑜 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡 )

(1)

where𝑊𝑥 and𝑊ℎ are the weights of the fully connected layers, 𝑏{𝑖,𝑓 ,𝑐,𝑜 } are the bias terms of each layer and𝐶𝑁𝑁G
is the Chebyshev spectral graph convolutional operator [5]. To do so, the layer uses the edges of the heterogeneous
graph defined in sec. 3.2. As a result, this model generates the embeddings with the latent representation of MAs,
weather and air-pollution stations based on their temporal evolution. Next, these embeddings are passed through a
first dense layer with the ReLU activation function. By means of this first dense layer we allow the model to learn
relationships among pollutants and stations that are not directly encoded in the heterogeneous graph.

In the third layer, the resulting embeddings are processed by a Graph ATtention (GAT) layer [23]. This layer
incorporates amulti-head attentionmechanism that allowsweighting the neighbours of a node based on their importance.
Hence, the latent representation of a node 𝑣 , 𝜖𝑣 giving 𝐾 attention heads, is computed as

𝜀𝑣 = 𝜎 (
1
𝐾

𝐾∑︁
𝑘=1

∑︁
𝑢∈N𝑣

𝛼𝑘𝑣𝑢𝑊
𝑘𝜀𝑢 )

where 𝛼𝑘𝑣𝑢 is the normalize coefficient and𝑊 𝑘 is the linear-transformation weight matrix of the k-th attention
mechanism. By means of this attention mechanism, the model is able to learn the importance of the links across the
different types of edges. For example, it enables giving more importance to the same-source links between air-pollution
stations with the same source of pollution exhibiting strong similarities in their pollution patterns despite the fact
that they might be very distant in spatial terms. In addition to that, it allows giving higher importance to the close-to
links between MAs and air-pollution entities in scenarios where there is a very strong relationship between the traffic
activity and the air quality of a region.

Finally, the embedding generated by the GAT operator is processed by the fourth layer, which is a dense network
and a ReLu activation function to eventually generate the prediction set T S

ℎ+Δ.
11
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3.5 Methodology for GNN generation

As discussed in sec. 3.1.1, one of the crucial aspects of this proposal is its handling of a heterogeneous setting, where
not all stations are capable of detecting the entire set of pollutants in P. To ensure accurate air pollution forecasting,
we devised a methodology for determining the optimal combination of pollutants for each station. This involved a grid
search approach that consisted of the following iterative steps:

(1) At the i-th iteration, we select a subset of pollutants P′
𝑖
⊂ P comprising up to 5 pollutants (|P′

𝑖
| ≤ 5).

(2) Next, we keep the air-pollution stations that are able to measure all the particles in P′
𝑖
, giving raise to the subset

S′
𝑖
⊂ S. Let us call the tuple R𝑖 = ⟨P′

𝑖
,S′
𝑖
⟩ the i-th partition of the station infrastructure.

(3) Based on R𝑖 , we generate and train a GNN instance, following the architecture presented in sec. 3.4, for a
particular time horizon Δ, 𝐺𝑁𝑁Δ

R𝑖
. In this case, the GNN considers all the MAs M and weather stations W of

the setting.
(4) Finally, we evaluate the prediction error of 𝐺𝑁𝑁Δ

R𝑖
for each particle 𝑝 ∈ P′

𝑖
, 𝐸𝑟𝑟Δ,R𝑖

𝑝 .
(5) We repeat steps 1-4 for each possible subset of P′ given all the 5-combinations of P, P′ ∈ C(|P|, 5).

The rationale of restricting the number of pollutants in the target subsets P′ to 5 is twofold. Firstly, it avoids an
explosion of experiments with the generation of a large number of combinations of pollutants. Furthermore, Fig. 3a
shows that the most frequent number of pollutants measured by a station is 5. Therefore, this number provides a
suitable trade-off between generating a rich palette of evaluation scenarios and a feasible computation cost.

On the basis of aforementioned search, let us call R𝑝 to the set comprising all the station partitions R𝑖 that include 𝑝
among their target pollutants (R𝑝 = {R𝛼 } | 𝑝 ∈ R𝛼 .P′

𝛼 ). Next, given a pollutant 𝑝 , its associated set R𝑝 and a particular
time horizon Δ, we extract the smallest subset of partitions R𝑝,Δ

𝑚𝑖𝑛
= {R𝛽 } ⊆ R𝑝 that accomplishes 2 conditions: 1) the

average error of their GNNs to predict 𝑝 given Δ (𝐸𝑟𝑟Δ,R𝛽

𝑝 ) is as low as possible and 2) every air-pollution station able to
measure 𝑝 is included in at least one partition of R𝑝

𝑚𝑖𝑛
(
⋃R𝛽 .S′

𝛽
= S𝑝 where S𝑝 is the set of stations able to measure

𝑝). Finally, the GNNs associated to R𝑝,Δ
𝑚𝑖𝑛

, GΔ
𝑝 compose the set of model infrastructure able to infer the pollutant 𝑝 with

a Δ time horizon for all its stations in the whole infrastructure.
For the sake of clarity, we define a toy example with 4 different pollutantsP = ⟨𝑝1, 𝑝2, 𝑝3, 𝑝4⟩, where the pollutant 𝑝2 is

measured by 5 different stations, S𝑝2 = ⟨𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5⟩ and a time horizon Δ=12h. Given this setting, let us assume that
R𝑝2 comprises 3 different partitions 𝑅𝛼1 = ⟨⟨𝑝2⟩, ⟨𝑠2, 𝑠3, 𝑠4, 𝑠5⟩⟩, 𝑅𝛼2⟨⟨𝑝1, 𝑝2, 𝑝3⟩, ⟨𝑠2, 𝑠5⟩⟩ and 𝑅𝛼3⟨⟨𝑝2, 𝑝4⟩, ⟨𝑠1, 𝑠3, 𝑠4⟩⟩
with the following accuracy of their GNNs, 𝐸𝑟𝑟12,R𝛼1

𝑝2 = 0.30, 𝐸𝑟𝑟12,R𝛼2
𝑝2 = 0.15 and 𝐸𝑟𝑟12,R𝛼3

𝑝2 = 0.25. Therefore, R𝑝,Δ
𝑚𝑖𝑛

will comprise partitions 𝑅𝛼2 and 𝑅𝛼3 as they have the lowest error and cover all the stations in S𝑝2 . As a result,
G12
𝑝2 = ⟨𝐺𝑁𝑁 12

R𝛼2
,𝐺𝑁𝑁 12

R𝛼3
⟩. These would be the two GNNs required to predict 𝑝2 in all stations of the infrastructure.

4 EVALUATION OF THE PROPOSAL

In order to evaluate our proposal, we collected a data corpus from the three datasets described in sec. 3.1 covering a
4-month period from January 1st, 2021 to April 30th, 2021. For this period, Fig. 8 shows the global timeseries of the 9
target pollutants, Fig. 9 the average number of trips per MA and hour and Fig. 10 the timeseries of the weather features.

4.1 Evaluation Metrics

Regarding the metrics to evaluate our approach, the Mean Absolute Error (MAE) and the Root Mean Squared Error
(RMSE) [25] are two of the most common metrics used to measure accuracy for continuous variables. They are suitable
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(a) C6H6. (b) C0. (c) N0.

(d) N02. (e) N0x. (f) 03.

(g) PM10. (h) PM25. (i) SO2 .

Fig. 8. Timeseries of each pollutant considering all the stations S during the evaluation period. The dark blue line indicates the
average value of all the stations whereas the bluish area around the line indicates the 95% confidence interval.

Fig. 9. Average number of hourly incoming and outgoing trips per MA during the evaluation period.

for model comparisons as they express average model prediction error in the units of the variable of interest. Their
definition is as follows:

𝑀𝐴𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |

𝑅𝑀𝑆𝐸 =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2
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(a) Temperature (in C0). (b) Wind speed (in meters per second).

Fig. 10. Timeseries of the ambient temperature and wind speed considering all the airports’ weather stations W during the evaluation
period. The dark blue line indicates the average value of all the stations whereas the bluish area around the line indicates the 95%
confidence interval.

where, for our experiment, 𝑦𝑖 is the real pollution value of a particular pollutant at a certain hour, 𝑦𝑖 is the predicted
level at this same scale and 𝑛 is the number of observations. These two measures are valid to represent the error 𝐸𝑟𝑟Δ,R𝑖

𝑝

in the coverage algorithm described in sec. 3.5.

4.2 Evaluation Settings

Concerning the hyperparameters used in the evaluation of the proposal, Table 2 comprises the most relevant ones
related to the training strategy and each of the 4 operators of the GNN according to sec. 3.4.

Table 2. Model parameters for the experiments

Type Parameter Value

Training

Training rate 0.95
Loss Mean Squared Error (MSE)

Learning factor 0,01
Weight decay 0.0005
Optimizer Adam
Early Stop patience: 5, min_delta: 0.001

Num. of epochs 40

Conv-LSTM Output size 128
Num. cells 2

Dense - layer 2 Input size 128
Output size 128

GAT Num. of heads 4
Output size 128*4=512

Dense - layer 4 Input size 512
Output size Num. of target particles

4.3 Baseline

As baseline to compare our approach, we have made use of a model that combines a Convolutional Neural Network [16]
and a Long Short-Term Memory [22] forecasting models (CNN-LSTM). It consists of a first data input layer, followed by
the usual CNN architecture (i.e. a Convolutional layer, a Max Pooling layer and a final Flatten layer). The last Flatten
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layer is connected to an LSTM layer to capture possible trends over time. Finally, the model has a last dense layer in
charge of generating all the predictions.

For the generation of the pollutant forecasts, a total of 633 instances of the CNN-LSTM model have been created, one
for each station object of this study. Thus, this baseline provides a very fine-grained ensemble of models to be compared
with our approach. In that sense, we propose a more coarse-grained ensemble where a GNN covers an aggregation of
stations instead of on a single one like the baseline.

4.4 Results Discussion

Table 3 shows the average MAE and RMSE per particle and Δ of the GΔ
𝑝 sets and the alternative CNN-LSTM models,

respectively. Note that the range of time horizons (12-192h) in our system is larger than the majority of the configurations
usually proposed in the literature, involving 4 [7], 24 [10] or 48 [13] hour predictions.

The results show that our approach clearly outperformed the baseline for almost all the particles and time horizons.
For example, the average MAE for the PM10 particle for a 96-hour prediction was 11.347 for our approach and 39.726
for the CNN-LSTM alternative. For this specific result, it is worth mentioning that we compared the results of 302 of
CNN-LST models (the number of stations able to measure PM10 particles according to Fig. 3b) and 5 GNNs (the number
of models included in the G96

𝑃𝑀10 set). Besides, the RMSE of our approach to predict NO2 particles for a 192-hour horizon
was 4.590, whereas the RMSE for the CNN-LSTM alternative was 9.399. In this case, the cardinality of G192

𝑁𝑂2
was 8 and

the number of CNN-LSTM models were 466.
The results of both tables show that we obtained more accurate results with a significant smaller number of models.

This has important implications in operational terms, as the deployment and management of a solution involving less
models is easier than a solution needing more instances.

Table 3. Average prediction error and standard deviation of the sets GΔ
𝑝 and the CNN-LSTM model for each combination of pollutant

𝑝 and time horizon Δ.

MODEL MAE RMSE
T 12h 24h 48h 96h 192h 12h 24h 48h 96h 192h

GNN

NO 0.421±0.017 0.352±0.006 0.399±0.008 0.458±0.009 0.497±0.013 0.505±0.017 0.409±0.011 0.455±0.013 0.509±0.005 0.567±0.012
C6H6 0.096±0.02 0.089±0.022 0.078±0.014 0.086±0.03 0.101±0.029 0.126±0.032 0.113±0.034 0.099±0.018 0.11±0.043 0.128±0.045
CO 0.037±0.002 0.034±0.003 0.042±0.003 0.059±0.001 0.081±0.0 0.042±0.002 0.04±0.005 0.047±0.005 0.062±0.001 0.089±0.0
NO2 4.278±0.293 3.511±0.011 3.758±0.083 3.812±0.056 3.62±0.316 5.092±0.526 4.476±0.037 4.557±0.212 4.578±0.265 4.59±0.505
NOx 6.373±0.438 4.528±0.0 5.134±0.208 5.474±0.203 5.317±0.146 7.677±1.007 5.943±0.0 6.463±0.25 6.831±0.279 6.688±0.287
O3 20.53±0.43 13.59±0.519 11.398±0.579 14.751±0.081 13.239±1.328 22.759±0.36 15.607±0.64 13.018±0.849 16.886±0.096 15.548±1.491

PM10 5.322±0.0 4.705±0.0 7.281±0.229 11.347±0.185 11.427±0.336 6.028±0.0 5.322±0.0 9.012±0.154 12.603±0.196 12.837±0.415
PM25 3.647±0.379 2.78±0.398 3.74±0.925 6.367±2.512 5.964±1.772 4.046±0.492 3.258±0.598 4.32±1.324 7.892±3.899 7.288±2.812
SO2 0.809±0.029 0.872±0.0 0.81±0.032 0.771±0.207 1.223±0.05 1.154±0.04 1.185±0.0 0.996±0.029 0.938±0.223 1.578±0.069

CNNLSTM

NO 2.173±1.836 2.109±1.687 2.177±1.52 2.065±1.168 2.109±1.041 2.34±1.854 2.284±1.69 2.503±1.733 2.348±1.346 2.506±1.164
C6H6 0.728±0.708 0.724±0.686 0.728±0.676 0.737±0.687 0.71±0.634 0.785±0.711 0.8±0.704 0.843±0.777 0.895±0.93 0.852±0.776
CO 0.178±0.157 0.176±0.151 0.181±0.158 0.219±0.454 0.298±1.149 0.193±0.158 0.192±0.151 0.202±0.171 0.266±0.736 0.352±1.427
NO2 6.651±4.365 6.131±3.818 6.185±3.887 6.169±3.737 7.206±7.42 8.019±5.174 7.502±4.47 7.67±4.69 7.676±4.495 9.399±10.099
NOx 17.134±12.671 15.769±11.722 15.595±11.767 15.785±15.19 18.113±24.078 20.337±15.719 18.742±13.584 18.643±13.442 18.985±19.09 23.377±38.773
O3 20.252±10.391 16.474±6.825 15.661±6.897 17.743±24.646 21.628±56.336 22.578±10.89 19.621±7.697 18.933±8.316 21.796±38.766 26.35±69.343

PM10 11.573±9.03 12.763±15.084 18.675±85.206 39.726±264.455 68.627±449.861 12.964±9.618 14.679±20.607 22.891±117.517 52.003±364.298 85.839±544.705
PM25 7.537±6.019 7.808±6.44 10.037±25.876 13.436±53.22 22.161±89.406 8.176±6.017 8.725±7.368 11.879±35.914 15.799±63.247 28.644±118.508
SO2 4.844±5.188 4.843±5.074 4.999±6.54 5.871±15.059 7.227±25.446 5.181±5.301 5.324±5.423 5.647±8.376 7.048±21.843 8.934±33.159

Furthermore, Fig. 11 shows the cardinality of the sets GΔ
𝑝 for each pollutant-Δ tuple. For example, the 48-h prediction

of the NO2 pollutant required 3 different GNNs. In this case, we can observe 2 different patterns with respect to the
number of models.

On the one hand, some pollutants required a largest number of GNNs to cover all its stations as long as the time
horizon increased. This is the case of NO2, PM10 and PM2.5. This positive correlation was also observed in global terms,
as shown in the global column of Fig. 11. Hence, when we increase the number of GNNs for a pollutant, it causes that

15



781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

ACM TIST, 15.00 Terroso-Saenz, et al.

each GNN focuses on a smaller number of stations. This pattern indicates that some pollutants require more specific
GNNs when the time horizon increases. Therefore, the relationships established among MAs, stations and airports are
constrained to a more limited number of elements. This allows us to remove certain connections from the model that
are not meaningful for the prediction horizon at hand.

Fig. 11. Number of required GNNs to predict a particular pollutant for a time horizon configuration. Each bar is labelled with its
actual value. The global column indicates the total number of GNNs to cover all the stations for a particular time horizon.

On the other hand, other pollutant exhibited a more stable number of GNNs regardless the prediction horizon such
as NO or C6H6. This reflects that the prediction of these particles does not require more specific GNNs from the point
of view of the target stations. As a result, they are more scalable inputs in order to deploy GNNs covering a wide range
or time horizon configurations.

Fig. 12 shows the average number of inputs of each GΔ
𝑝 model. It is worth noticing the fact that most of the models

do not require a large number of particles to predict one of them. In fact, they just need bi-variate timeseries to perform
the prediction. For instance, the GNNs to predict the SO2 particle for 48 and 192 hours actually used the timeseries
from this particle and another one to perform the prediction. These results suggest that a divide-and-conquer approach
with multiple models targeting a limited number of pollutants is more reliable than a solution comprising few and
multi-variate models.

Fig. 12. Average number of inputs of the GNNs to predict a particular pollutant for a time horizon configuration. Each bar is labelled
with its actual value. The global column indicates the average number of inputs of the models regardless of the particle for a particular
time horizon.
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Elaborating on this finding, Table 13 shows the co-occurrence between pairs of pollutants. Firstly, it is observed that
the most frequent co-occurrences are between pollutants whose estimated primary sources are different. This is the case
of the prediction of PM2.5 –a pollutant mainly caused by road-traffic emissions– whose most frequent co-occurrence is
SO2 –a pollutant mainly caused by industry emissions. A similar pattern is also observed between O3 and NO2. On the
contrary, other pollutants such as NO2, PM2.5 or SO2 are more frequently predicted using other pollutants with similar
sources (CO, NO2 and O3, respectively). This disparity of frequency of the co-occurrences between pollutants and their
estimated sources reinforces the idea of developing forecasting solutions defined as an ensemble of predictors, each one
considering a particular set of specific relationships between pollutants.

Fig. 13. Co-ocurrence of pollutants as input of the GNNs. The rows indicate the target pollutant to be predicted by the model and the
columns indicate another pollutant that is used by the GNN as input to improve the prediction accuracy.

Finally, Fig. 14 shows some interesting patterns of the spatial distribution of the GNNs for certain tuples of particles
and time horizons. For example, Fig. 14a shows that the GNN taking as input the particles CO2, NO2 and O3 (purple
points) mainly processes the stations located at the exterior boundary of Spain. Moreover, the red points in Figs. 14d-f
show a persistent GNN covering the stations located in the East coast and South and North-West regions of Spain in
order to predict the PM2.5 level. This GNN always uses CO as a secondary input for its forecasting task, revealing that
certain stations should be processed together despite being quite far allocated in spatial terms. This is due to the fact
that the GNN architecture (sec. 3.4) is able to capture other latent relationships among stations that go beyond their
spatial distance such as their surrounding land use or their most likely pollution source.
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(a) 𝑝=NO2 , Δ = 12ℎ. (b) 𝑝=NO2 , Δ = 96ℎ. (c) 𝑝=NO2 , Δ = 192ℎ.

(d) 𝑝=PM2.5, Δ = 12ℎ. (e) 𝑝=PM2.5, Δ = 96ℎ. (f) 𝑝=PM2.5, Δ = 192ℎ.

Fig. 14. Spatial distribution of the G𝑝

Δ set for different combinations of particles and time horizons.

5 CONCLUSIONS AND FUTUREWORK

Air pollution forecasting plays a crucial role in addressing current environmental and public health challenges. By
providing advanced knowledge of air pollutant levels, it could be possible to take proactive measures to mitigate the
adverse effects of pollution. Graph Neural Networks (GNNs) have emerged as one of the most advanced techniques for
building air pollution prediction models. However, existing solutions often focus solely on spatial distance relationships
among stations, disregarding other essential spatial and feature-based contextual factors. Additionally, they assume a
homogeneous setting where all stations have the same pollutant measurement capabilities.

In this work, we introduce a GNN framework capable of capturing relevant air monitoring station’s features such as
the land use of their locations and their primary pollution sources. Moreover, the GNN also receives data on human
mobility regarding to traffic pollution as well as weather data including temperature and wind speed and direction.
Thus, this framework enables a more comprehensive representation of the complex dynamics and relationships in
air pollution data. Furthermore, we developed a methodology specifically designed to address heterogeneous settings
within the GNN architecture, accommodating stations with different measurement capabilities. As a result, our solution
can measure up to 9 pollutants, including not only the most frequent ones in the literature, such as PM10 or O3, but also
less studied pollutants like benzene (C6H6).

The evaluation of our proposal was conducted on a nationwide scale in Spain, utilizing 4 months of hourly data
collected from 633 heterogeneous air monitoring stations. The results demonstrated that the proposed model was able
to predict pollutants such as PM10 and NO2 over time horizons of 96 and 192 hours, surpassing the performance of
a baseline model. This is an outstanding result taking into account that the reviewed literature typically focused on
shorter time horizons of 24/48 hours. Moreover, some interesting spatial distributions emerged from the resulting GNNs,
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which corresponded to the land use of the air monitoring stations, as well as various relationships of co-occurrence of
pollutants linked to their primary sources. The findings of this work may aid urban planning and policy-making by
informing strategies for emission reduction, traffic management, and the implementation of specific interventions in
any area of a country.

As future work, we are currently exploring the feasibility of implementing transfer learning techniques within our
proposed framework. This involves leveraging the knowledge acquired from specific patterns of spatial distribution
captured by the GNNs and applying it to regions or cities with limited air pollution data. Another line of research is the
analysis of the deployment and scalability of our model in air monitoring stations by addressing the computational
challenges found in these systems. In this manner, the operators of these system could develop new applications based
on the predicted air pollution data.
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