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Abstract

The Internet of Things (IoT) is driving the next economic revolution where the main actors are both data and
immediacy. The IoT ecosystem is increasingly generating large amounts of data that are created but never analyzed.
Efficient big data analysis in IoT infrastructures is becoming mandatory to transform this data deluge into meaningful
information. Edge computing is proving to be a compelling alternative for enabling computing capabilities at the
edge of the network. These computing capabilities could help in transforming the generated data into useful informa-
tion. However, the edge computing platforms available on the market are low-power devices with limited computing
horsepower. In this paper, we present a novel approach to providing computing resources to edge devices without
penalizing their power consumption by using remotely virtualized GPUs. We evaluate this hardware environment by
executing a computational-intensive clustering algorithm called Fuzzy Minimals (FM). Our results show that using
a remotely virtualized GPU on the edge device provides a 3.2x speed-up factor compared to the local counterpart
version. Moreover, we report up to 30% reduction in power consumption and up to 80% of energy savings at the edge
device, delegating the GPU workload to the backend, transparently to the programmer.
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1. Introduction

A key driver of the current digital revolution is the
Internet of Things (IoT), where devices and humans are
connected to the Internet, interacting with each other in
real time. Two key factors that underpin this revolution
are (1) data, which carries hidden patterns, correlations,
and other valuable insights, and (2) real-time data analyt-
ics, required because knowledge is often time-sensitive
and useful only within a specific time-frame [10]. The
IoT generates zettabytes (1021 bytes) of “dark data” which
is data never actually analyzed. In addition to the concern
about the amount of data, the fast acceleration of data
generation further complicates this scenario. Actually,
90% of the data stored in the world was just generated in
the last two years [8]. Therefore, enabling efficient big
data analytics within the IoT infrastructure is crucial to
transform this data deluge into meaningful information.

Machine learning (ML) has become essential for the
predictive analysis of huge amounts of data. Addition-
ally, high-performance computing (HPC) plays an equally
important role, particularly when the real-time response
is crucial. The intersection between ML and HPC is
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mandatory to deal with large and complex datasets with
real-time requirements. In this regard, using a cloud ser-
vice approach, ML algorithms have been traditionally
executed in supercomputers, where performance prevails
over energy efficiency [17]. However, when performance
is not the only concern, other approaches are feasible.
For instance, edge/fog computing [20] is a recent trend
towards decentralization, where initial computations on
data are carried out close to (or actually at) the capture
location. Processing in close proximity to mobile de-
vices or sensors may provide energy savings, highly re-
sponsive web services for mobile computing, scalabil-
ity, and privacy-policy enforcement for the IoT, as well
as the ability to mask transient cloud outages. How-
ever, IoT devices have a limited power budget at this
level of the network, as they typically rely on batter-
ies or energy harvesters, leading to ultra-low power ap-
proaches. This limited power scenario translates into
a major limitation for many components of the archi-
tecture, especially energy-intensive components such as
wireless transmitters or even processing capabilities [2].

Edge devices used in IoT usually rely on ultra-low
power solutions such as ARM-based CPUs or onboard
microcontroller units. Microprocessor companies are re-
leasing systems on chip (SoCs) that include higher com-
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puting capabilities by adding accelerators such as Graph-
ics Processing Units (GPUs) or Tensor Processing Units
(TPUs). Among them, we may highlight Nvidia’s Jet-
son family [6], Intel’s branch Movidius [14] or Google’s
Coral project [5]. Including these accelerators increases
the power consumption of edge devices which is already
a limiting factor. However, in terms of energy-efficient
computing, accelerators substantially reduce application
execution time, so that the increased power is amortized.
An alternative or additional way to increase the compu-
tational capabilities of edge devices without paying for
the power increase is the use of remote virtualization of
accelerators [12]. This promising mechanism provides
hardware resources (mainly GPUs) located on remote
nodes to applications in a transparent way to program-
mers. Moreover, this technique increases GPU utiliza-
tion thus reducing the waste of energy caused by the idle
state of GPUs.

Several GPU virtualization solutions can be found in
the literature. Based on CUDA [15], frameworks such as
vCUDA [21], DS-CUDA [16], GViM [11], rCUDA [22],
GVirtuS [9] or GridCuda [13] provide their own CUDA
API implementations that are compatible with the orig-
inal NVIDIA CUDA library. They are usually based on
a client-server approach. The client is a library transpar-
ently linked to the CUDA application asking for GPU ac-
celeration on the local node. The server is a daemon run-
ning in the remote node that owns the physical GPU. Ev-
ery time the CUDA application performs a CUDA call, it
is caught by the client and forwarded to the server to be
executed on the physical GPU. Once the CUDA func-
tion is executed, results are returned to the client and
forwarded to the CUDA application. It is important to
note that the application is not aware of this virtualiza-
tion process. Moreover, these solutions also allow re-
mote GPUs to be concurrently shared among several ap-
plications. Table 1 summarizes the main features of GPU
virtualization solutions.

Feature Effect
GPU utilization increased
Amount of required GPUs in the cluster decreased
The total cost of GPUs in the cluster decreased
Energy consumption decreased
Execution time for a set of jobs decreased

Table 1: Summary of the main features of GPU virtualization solutions.

In this work, we introduce a way to increase the com-
puting capabilities of edge devices without increasing
their power consumption. To that end, we leverage the
rCUDA remote GPU virtualization middleware, using an
Nvidia Jetson AGX Xavier as the client node. rCUDA
is the best-maintained middleware among the aforemen-
tioned frameworks, also offering the best performance
compared to other remote GPU virtualization solutions

available as well as being available for all processor ar-
chitectures [23]. The evaluation is carried out with the
Fuzzy Minimals (FM) algorithm [3]: a challenging fuzzy
clustering algorithm within the umbrella of ML. The main
contributions of this paper are the following:

1. We provide a novel way to increase the comput-
ing power of edge devices without penalizing their
power consumption. Our results show that a 3.2x
speed-up factor can be achieved by reducing the
power usage by up to 30% using a single remote
GPU.

2. A multi-GPU implementation of the FM algorithm
is provided to fully leverage multiple GPU instances.
Different computational patterns are found in this
algorithm, which affects the performance of the
remote virtualization framework, concluding that
CPU-GPU communication is a critical parameter
in this environment.

3. An in-depth evaluation of Nvidia Jetson AGX Xavier
is carried out, showing the benefits of introducing
accelerators on edge devices for executing heavy
workloads.

4. A thorough evaluation of the rCUDA middleware
is performed as an alternative to provide the de-
vices on the edge with increased computing capa-
bilities. Several communication technologies are
studied to assess the impact of communications
within this framework.

The paper is organized as follows. We briefly intro-
duce some preliminary concepts about the rCUDA mid-
dleware and the FM algorithm in Section 2. The par-
allelization in multi-GPU systems is introduced in Sec-
tion 3. In Section 4 we describe the experimental results
before we conclude the paper with a brief discussion and
consideration of future work.

2. Background

2.1. The rCUDA middleware
The architecture of the rCUDA middleware, shown

in Figure 1, follows a client-server distributed approach
and works as described in the previous section (inter-
cepting CUDA calls and forwarding them to the remote
server). We refer the reader to a full description of rCUDA
[18].

It is important to remark that rCUDA works in a com-
pletely transparent way to programmers, who do not have
to change the source code of their applications in order
to leverage this middleware. Actually, if the application
is compiled to dynamically use the CUDA library, then
the application does not even need to be recompiled to be
executed with rCUDA. In this regard, rCUDA is binary
compatible with CUDA 9.2 and implements the entire
CUDA Runtime and Driver APIs (except for graphics
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Figure 1: Architecture of the rCUDA middleware.

functions). It also provides support for the libraries in-
cluded within CUDA (cuBLAS, cuFFT, etc). Addition-
ally, it supports several underlying interconnection tech-
nologies by making use of a set of network-specific com-
munication modules (currently TCP/IP, RoCE and Infini-
Band). Independently of the exact network used, data ex-
change between rCUDA clients and servers is pipelined
in order to attain high performance. Internal pipeline
buffers within rCUDA use preallocated pinned memory,
given the higher throughput of this type of memory [19].

rCUDA allows applications to make use of a tech-
nique known as multi-tenancy. This mechanism con-
sists of providing several virtual instances of the same re-
mote GPU to the same client application. That is, instead
of providing the client application with several remote
GPUs, all of them being different physical GPUs, with
rCUDA it is possible to partition a physical GPU into
several virtual instances and provide them to the same
client application. In this way, the client application will
have the illusion of being accessing several remote GPUs
although all of those remote GPUs are finally mapped
onto the same physical GPU. We will make use of multi-
tenancy later in this paper.

It is important to notice that rCUDA guarantees the
same isolation and security features among virtual GPU
instances mapped onto the same physical GPU as the fea-
tures guaranteed by CUDA. This is achieved by using a
different GPU context for each of the virtual GPU in-
stances being run at the same virtual GPU. Therefore,
as far as CUDA guarantees isolation among GPU con-
texts when rCUDA is used, there cannot exist a data leak
among applications concurrently using the same physical
remote GPU.

2.2. The Fuzzy Minimals algorithm

Clustering analysis consists of assigning data points
to clusters (or groups) so that points belonging to the
same cluster are as similar as possible, whereas points
belonging to another group are as different as possible
to the former. This similarity process is based on the
evaluation (i.e. minimization) of an objective function,

which includes measures such as distance, connectivity,
and/or intensity. Different objective functions may be
chosen, depending on the dataset features or the appli-
cation. Fuzzy clustering is a set of classification algo-
rithms where each data point can belong to more than
one cluster. Typical examples of these algorithms in-
clude the Fuzzy C-Means (FCM) and Fuzzy Minimals
(FM) algorithms [1, 25]. The latter was initially pro-
posed by Flores-Sintas et al. where authors demonstrate
that it meets the expected characteristics of a classifica-
tion algorithm; i.e. scalability, adaptability, self-driven,
stability, and data-independent. In addition, the FM algo-
rithm does not require setting the number of prototypes
to be identified in the dataset, as it makes use of k-means
or FCM algorithms. In what follows, a brief description
of FM is provided. We refer the reader to [24, 25] for
insights.

Let X be a set of n data points, such that

X = {x1,x2, . . . ,xn} ⊂ RF ,

where F is the dimension of the vector space.

Algorithm 1 Fuzzy Minimals algorithm, where X is the
input dataset to be classified, V is the algorithm output
that contains the prototypes found by the clustering pro-
cess. F is the dimension of the vector space.

1: Choose ε1 and ε2 standard parameters.
2: Initialize V = { } ⊂ RF .
3: Load Dataset(X)
4: r =Calculate r Factor(X)
5: Calculate Prototypes(X ,r,ε1,ε2,V )

Algorithm 1 shows the sequential baseline of the FM
algorithm. This algorithm has two main procedures: (1)
the calculation of the factor r (line 4) and (2) the cal-
culation of prototypes or centroids (lines 5) to complete
the set V . The factor r is a parameter that measures the
isotropy in the data set. The use of Euclidean distance
implies that the homogeneity and isotropy of the feature
space are assumed. Whenever homogeneity and isotropy
are broken, clusters are created in the feature space.√

|C−1|
nrF ∑

x∈X

1
1+ r2d2

xm
= 1. (1)

The calculation of factor r is based on Equation 1. It
is a non-linear expression, where |C−1| is the determinant
of the inverse of the covariance matrix, m is the mean of
the sample X , dxm is the Euclidean distance between x
and m, and n is the number of elements in the sample.

Once the factor r is calculated, the calculation of pro-
totypes is executed to obtain the clustering result in V
(see Algorithm 2). The objective function used by FM is
given by Equation 2
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Algorithm 2 Calculate Prototypes() of fuzzy minimals
algorithm.

1: for k = 1;k < n;k = k+1 do
2: v(0) = xk, t = 0, E(0) = 1
3: while E(t) ≥ ε1 do
4: t = t +1
5: µxv =

1
1+r2·d2

xv
, using v(t−1)

6: v(t) =
∑x∈X

(
µ
(t)
xv

)2
·x(

µ
(t)
xv

)2

7: E(t) = ∑
F
α=1

(
vα

(t)− vα

(t−1)

)
8: end while
9: if ∑

F
α (vα −wα)> ε2, ∀w ∈V then

10: V ≡V +{v}.
11: end if
12: end for

J(v) = ∑
x∈X

µxv ·d2
xv, (2)

where

µxv =
1

1+ r2 ·d2
xv
, (3)

Equation 3 measures the degree of membership for a
given element x to the cluster where v is the prototype.
The FM algorithm is an iterative procedure that aims to
minimize the objective function through Equation 4, giv-
ing the prototypes represented by each cluster. Finally,
ε1 and ε2 are input parameters that establish the error de-
gree committed in the minimum estimation and show the
difference between potential minimums respectively.

v =
∑x∈X µ2

xv · x
∑x∈X µ2

xv
(4)

3. Parallelization strategies for the Fuzzy Minimals
on multi-GPU systems

This section presents the CUDA parallelization of the
FM algorithm in multi-GPU environments. Paralleliza-
tion of the FM algorithm on a single GPU was initially
proposed in [3]. However, the rCUDA middleware al-
lows applications to use many GPUs on a single node
in a shared memory fashion. Thus, the FM algorithm is
redesigned to fully leverage this new computational land-
scape. Our multi-GPU parallelization approach is based
on the distributed parallelization of the FM algorithm in-
troduced in Timon et al. [25], called the Parallel Fuzzy
Minimals (PFM); a parallel version of the FM algorithm
to improve data-parallelism. Contrary to other propos-
als, the FM algorithm does not require cluster compari-
son to minimize the objective function. The PFM takes
advantage of this feature to split the original data set into

Figure 2: Parallel implementation of fuzzy minimals clustering algo-
rithm based on [25].

different subsets to which the FM is independently ap-
plied. The clustering procedure is not affected by this
partition as the global properties of the original data set
are not lost. Actually, each subset will be classified using
an objective function that includes the factor r, which has
information about the overall data structure. In fact, the
factor r is a global parameter that contains information
about the entire data set (see Figure 2).

In order to benefit from the PFM’s intrinsic paral-
lelism, the factor r must be first calculated using the whole
dataset (see Figure 2). As previously explained, the fac-
tor r calculation is based on the resolution of a non-linear
expression that is computationally intensive. Moreover,
the factor r calculation grows exponentially with the num-
ber of variables to be clustered [4]. This may become a
bottleneck. Therefore, the first goal is to leverage the
available multi-GPU system for the factor r calculation.
Algorithm 3 shows the multi-GPU implementation of com-
puting factor r. The factor r procedure is based on two
main tasks that are applied to each row in the dataset.
They are (1) the calculation of the fuzzy covariance ma-
trix, which is a square matrix (columns× columns) and
(2) the calculation of its determinant. It is an iterative
procedure with as many iterations as rows (points in the
datasets). These iterations can be carried out indepen-
dently and thus they can be equally distributed among
the number of GPUs available in the system. This is
achieved by parallelizing the for loop with as many CPU
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Algorithm 3 Factor r calculation algorithm in GPU
1: #pragma omp parallel f or private (detvalue) schedule (dynamic) reduction (+ : r f actor)
2: for i = 1; i < rows; i++ do
3: cudaSetDevice(omp get thread num())
4: covariance <<< bl, th,sh >>> (dataset,determ,rowi,rows,cols)
5: LU solver <<< bl, th,sh >>> (determ)
6: cudaMemcpy(detvalue,determ,sizeo f ( f loat),cudaMemcpyDeviceToHost)
7: r f actor+= 1√

detvalue
8: end for

Algorithm 4 Multi-GPU parallelization of the prototype calculation.
1: #pragma omp parallel f or private( jE total, jE reduction,mu total,mu reduction,mu, prot, prov prot,aux)
2: for i = 1; i < rows; i++ do
3: cudaSetDevice(omp get thread num())
4: cudaMemcpy(prot,(dataset + i∗ columns),columns∗ sizeo f (FLOAT ),cudaMemcpyDeviceToDevice);
5: while jE total > error do
6: new prot <<< bl, th,sh >>> (dataset,mu, prot, prov prot);
7: reduction mu <<< 1,columns >>> (mu,mu reduction);
8: cudaMemcpy(mu total,mu reduction,sizeo f (FLOAT ),cudaMemcpyDeviceToDevice)
9: distance prots <<< 1,columns >>> ( jE, prov prot, prot,mu total,columns);

10: reduction jE <<< 1,columns >>> ( jE, jE reduction);
11: cudaMemcpy( jE total, jE reduction,sizeo f (FLOAT ),cudaMemcpyDeviceToDevice)
12: aux = prot
13: prot = prov prot
14: prov prot = aux
15: end while
16: cudaMemcpy(prot provisional + i∗ columns, prot,columns∗ sizeo f (FLOAT ),cudaMemcpyDeviceToHost);
17: end for

threads as GPUs are available in the rCUDA client node
(see line 1, algorithm 3). OpenMP is used to do this task
and also to eventually reduce the factor r. Moreover, the
performance is also affected by the number of columns
(i.e. the dimension of points F). Actually, performance
will be drastically affected by this last parameter, since
the execution time of the determinant calculation, which
is carried out in the GPU using the LU method, will in-
crease exponentially with the size of the matrix. The
fuzzy covariance matrix is then calculated to obtain fac-
tor r.

The multi-GPU parallelization of prototype calcula-
tion is shown in Algorithm 4. Here, the input dataset is
equally divided into subgroups that are distributed among
the GPUs available on the rCUDA client node. As with
the factor r parallel design, this is achieved by paralleliz-
ing the outermost for loop (see Lines 1-3, Algorithm 4).
Each GPU thread calculates the distance between each
row of the data set and the different prototypes by calcu-
lating Equation 3 to obtain the probability of belonging
to each subset. Finally, in each GPU, a block reduction
must be performed to obtain the total degree of relevance
for each point in the dataset. It is worth highlighting the
large number of synchronizations and data transfers be-
tween CPU and GPU this function has.

4. Evaluation and discussion

4.1. Hardware setup and benchmarking

Our experimental environment includes nine nodes
(see Figure 3). Seven out of these nine nodes will be
used as GPU servers by leveraging the rCUDA middle-
ware whereas the other two nodes will be used to ex-
ecute the FM application. Regarding the GPU server
nodes, six of them are equipped with processors belong-
ing to different Intel Xeon generations. They comprise
several Nvidia GPU architectures, ranging from old Ke-
pler (2xK80 and 6xK20) to Pascal (3xP100) and Volta
(1xV100) architectures. GPUs in these nodes are con-
nected to the rest of the nodes by a PCI express v3.0
link (16 GB/sec). The seventh GPU server is an IBM
POWER 9 system with two 16-core Power 9 processors
at 2.7 GHz including two Nvidia V100 GPUs. These
GPUs are connected to the processors and between them
through an NVLink high-speed interconnect with a the-
oretical bandwidth equal to 300 GB/sec. All of these
seven nodes in the cluster are connected among them
by two network technologies: Gigabit Ethernet (1 Gbps)
and EDR InfiniBand (100 Gbps).

In addition to the seven GPU-sever nodes, our test-
bench includes two additional nodes where the FM ap-
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plication will be executed along with the rCUDA client
library. The first of these two nodes is an edge comput-
ing Nvidia AGX Jetson Xavier. This device is connected
to the cluster through Gigabit Ethernet (1Gbps) and has
an 8-core ARM v8.2 64-bit CPU, 8MB L2 + 4MB L3,
512-core Volta GPU with Tensor Cores, and 16GB 256-
Bit LPDDR4x running at 137GB/sec. It is important to
note that this is where the FM computation is performed
using either the local GPU or the remote hardware re-
sources provided by rCUDA.

The connection of the Nvidia AGX Jetson Xavier
with the GPU servers is one of the main infrastructure
bottlenecks. The remote GPU virtualization strategy to
bring hardware resources from the GPU servers to the
rCUDA client requires intensive communication between
the rCUDA client and the remote server processes. There-
fore, the technology used in this connection should be
evaluated to identify the main bandwidth and latency re-
quirements in this virtualized context. However, Nvidia
Jetson Xavier has only an Ethernet interface, which lim-
its this evaluation. Therefore, an additional ARM-based
node with two different network interfaces, Gigabit Eth-
ernet and EDR InfiniBand, has been considered. This
node has two 28-core ARM processors ThunderX2 at
2GHz with 256 GB RAM and will be used as an rCUDA
client in order to test the connection among the rCUDA
clients and GPU servers.

Tables 2 and 3 summarize the hardware resources
available for the evaluation and the keywords used for
the ongoing experimental results.

An interesting discussion is how general is the hard-
ware configuration leveraged in our experiments. In this

GPU ID Model Location GPU ID Model Location
0 P100 node P1 7 K80 node K1
1 P100 node P2 8 K20m node K2
2 P100 node P2 9 K20m node K2
3 V100 node V1 10 K20m node K3
4 V100 node V2 12 K20m node K3
5 V100 node V2 12 K20m node K3
6 K80 node K1 13 K20m node K3

Table 2: GPU models and hardware location of the experimental envi-
ronment.

Tag (amount
of GPUs)

Devices used
(GPU IDs)

Tag (amount
of GPUs)

Devices used
(GPU IDs)

1 GPU 0 8 GPUs 0,1,2,3,4,5,6,7

2 GPUs 0,1 10 GPUs 0,1,2,3,4,5,6,7
8,9

3 GPUs 0,1,2 12 GPUs 0,1,2,3,4,5,6,7
8,9,10,11

4 GPUs 0,1,2,3 14 GPUs 0,1,2,3,4,5,6,7
8,9,10,11,12,13

6 GPUs 0,1,2,3,4,5

Table 3: Relationship between experiment tag and GPU ID shown in
Table 2. Please refer to Table 2 in order to know the exact GPU location
in the cluster.

regard, there are three considerations to be done: (1) is
the NVIDIA Jetson Xavier node representative of actual
edge nodes? (2) are the nodes hosting the real GPUs
representative of current cluster nodes? (3) is the Thun-
derX2 node representative of current edge devices? Re-
garding (1), please notice that edge devices are based on
ARM processors, as the NVIDIA Jetson Xavier is. How-
ever, the latter device comprises a powerful GPU, which
could not be a common choice in edge deployments. In
this regard, it is important to remark that, in our experi-
ments, when we use remote GPUs according to our pro-
posal, the GPU located within the NVIDIA Jetson Xavier
node is not used. Actually, that GPU is only used for
comparison purposes, and it is not part of our edge pro-
posal. Therefore, using the NVIDIA Jetson Xavier de-
vice in our experiments is representative of current edge
deployments. Regarding (2), the nodes we have used to
host the real GPUs are a good example of what it could
be found in current clusters. Thus, the combination of
the NVIDIA Jetson Xavier and the cluster nodes used
in this paper represents a general hardware solution (as
far as the GPU used in the NVIDIA Jetson Xavier is not
used). Finally, regarding (3), the big ThunderX2 ARM
node used in this paper is not representative of the current
edge devices. However, notice that we only use that node
in order to deeper analyze the behavior of our proposal
when a faster network is leveraged, as it could be the
case when 5G or 6G infrastructure is widely available.
In summary, the hardware configuration used in our ex-
periments is general enough to get general conclusions
from the experiments.

In order to calculate the energy consumption of our
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proposal, we have measured, at intervals of one second,
the power consumed by each of the devices used. The
power consumed by Nvidia Jetson AGX Xavier has been
measured using the Watts Up Pro power meter. Regard-
ing the K20, K80, P100 and V100 GPUs, their power
consumption has been measured using Nvidia Manage-
ment Library (NVML).

Finally, the dataset to test our implementation is taken
from the UCI Machine Learning Repository [7]. It is
an input database with up to 100K points, belonging to
different chemical sensors. These sensors have been pro-
vided with a set of parameters that measure the quality of
the gas, as well as the temperature and humidity values
of the environment.

4.2. Performance and energy evaluation
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Figure 4: Execution time of FM algorithm using a local GPU for a
different number of rows.

Figure 4 shows the execution time of the FM algo-
rithm on different GPU architectures. These GPU ar-
chitectures are those described in Section 4.1, which in-
clude the edge computing platform Xavier and Nvidia
HPC GPU solutions K80 (Kepler), P100 (Pascal), and
V100 (Volta). Only one local GPU has been used in
each experiment. The difference in performance between
Xavier and HPC GPUs is substantial as expected, reach-
ing up to 13.2X speed-up factor. Computationally speak-
ing, Xavier offers a low-power solution with some com-
putational capabilities but there is still a big gap in per-
formance between HPC GPUs and edge computing plat-
forms and therefore cloud-based approaches are still manda-
tory to deploy high computational workloads such as those
within the umbrella of ML.

Our main goal in this paper is to introduce the com-
putational horsepower available in the cloud into the edge
transparently to the programmer. In this way, program-
mers can develop edge computing-based applications with
high-performance capabilities without penalizing power
consumption. With this approach, programmers could
also use already existing multi-GPU codes that were de-
veloped for shared memory multi-GPU nodes on edge
computing platforms.
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Figure 5: Execution time of FM algorithm on AGX Xavier, varying the
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In the search for our goal, Figure 5 shows the FM
execution times on the Xavier while varying the num-
ber of virtual GPUs available at the edge platform. In
other words, the rCUDA client is executed at the AGX
Xavier node where several rCUDA servers are running
at different nodes where HPC GPUs are plugged into. It
is worth highlighting that only one GPU process is run-
ning at each physical remote GPU, which means up to
14 physical GPUs are used in the cloud to provide these
performance figures. Table 3 shows the exact GPUs used
for each experiment, whereas Table 2 provides the loca-
tion for each GPU. Figure 5 shows an important concern:
while all virtualized GPUs have higher performance than
the Xavier AGX (see Figure 4) the rCUDA middleware
introduces some communication overhead, which can be
perfectly seen in Figure 5 when only one virtual GPU is
used, thus worsening the performance of the low-power
GPU available on Xavier. However, as more virtualized
GPUs are introduced into the edge, the overall applica-
tion performance gets better. This is particularly true
when the data set is large enough because the overhead
introduced by rCUDA communications is hidden by the
higher computational load assigned to each of the GPUs.
This leads us to believe that for small problem sizes,
GPUs are not busy enough and, therefore, the compu-
tation could be optimized by better using remote GPUs,
as will be explained later in this section.

As explained in Section 2.2, the FM algorithm is di-
vided into two main functions: Calculate r Factor and
Calculate Prototypes. They have different computational
patterns that affect their performance in the virtualized
environment targeted. Figure 6a shows the execution
time of the Calculate r Factor function when this func-
tion addresses a large dataset composed of 100,000 rows
and up to 11 different variables (columns), which is ac-
tually a very challenging scenario. The factor r calcu-
lation is made up of several GPU kernels that are exe-
cuted independently. Actually, there is only a final re-
duction to get the final factor r. This means that there
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Figure 6: Execution time of factor r and prototypes calculation for
100,000 rows. The number of virtual GPUs are varied up to 6 virtual
GPUs. The host node is the AGX Xavier that we also use as baseline.

are few CPU-GPU or GPU-GPU communications in the
loop which actually benefits the system’s scalability. Re-
member that CPU-GPU communication in this virtual-
ized environment means having communication over the
network which penalizes the performance. Results in
Figure 6a show the execution time of the factor r cal-
culation in the local GPU included in the Jetson AGX
Xavier and also using up to 6 remote GPUs. It can be
seen in the figure that execution time for the factor r
calculation progressively decreases along with the num-
ber of GPUs, showing almost linear scalability. On the
other hand, Figure 6b shows the execution time of the
prototype calculation. Here, the results are quite differ-
ent because the CPU-GPU communication ratio is higher
than in the factor r counterpart version. The set of pro-
totypes obtained in each iteration by each GPU is shared
with the rest of the GPUs. This means that the incre-
ment in network traffic must be compensated by adding
more GPUs in the system that allow reducing computa-
tion time. This effect happens from 2 remote GPUs and
beyond and this pattern is transferred to all the computa-
tions since the calculation of prototypes represents 95%
of the total computation of the algorithm.
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Figure 7: Execution time of FM algorithm, varying the number of vir-
tual GPUs for different number of rows from ARM-based node with
Ethernet and InfiniBand.

Summing up, there are two main conclusions from
this initial analysis. The first conclusion is that remote
virtualization of GPUs is drastically penalized by the CPU-
GPU communication overhead. This makes sense since
CPUs are connected to GPUs via low-latency and high
bandwidth connections such as PCI Express 3.0 (approx.
16 GB/sec) or NVLINK (approx. 300 GB/sec). On the
contrary, in rCUDA each CPU-GPU transfer goes through
the network fabric, thus depending on the connectivity
technology that is used in the cluster. The above re-
sults are based on Ethernet, whose bandwidth is around
100MB/sec. This is at least an order of magnitude less
than the scenario within the node. This is actually shown
in Figure 7 where the execution time of the FM algo-
rithm is shown, varying the interconnection technology
(i.e. Gigabit Ethernet in Figure 7a and InfiniBand in Fig-
ure 7b). It is important to note that experiments in these
figures have been carried out in the ARM-based node in-
stead of AGX Xavier as the latter does not have an Infini-
Band interface. With the improvement in the intercon-
nection technology, execution time using remote GPUs
is dramatically reduced, reaching up to 3x speed-up fac-
tor.

The second conclusion from this initial analysis is
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that it looks like GPUs are not busy enough and therefore
we may think about making better use of them. In this
regard, in order to increase GPU utilization we may think
about multi-tenancy. That is, instead of running one sin-
gle GPU process per physical GPU as in the previous ex-
periments, we may execute several GPU processes in the
same physical GPU. This can be achieved by virtualizing
multiple times a single physical GPU and providing mul-
tiple virtual instances of that GPU to the FM application.

This multi-tenancy approach is used in Figure 8, which
shows performance and energy consumption when re-
mote GPU virtualization is used in Nvidia Jetson Xavier
but only one remote GPU (i.e. V100) is physically tar-
geted although this GPU supports several GPU instances
virtually. This increases GPU utilization as it is reflected
by the bars of Figures 8a, 8c, and 8e. Almost 100%
of the GPU utilization is achieved with 6 virtual GPUs
running on the same V100. Indeed, this is translated
into a performance gain as the continuous line shows
(the dashed line shows the yield horizon set by Xavier’s
performance). Almost full utilization of the V100 re-
sources (80%) is required to match Xavier’s performance
for the medium datasets (i.e. 50K). As for 10K and 100K
datasets (Figures 8a and 8e), Xavier’s performance is
defeated with 1-2 Virtual GPUs, achieving a speed-up
factor in the range of 3.5X to 4.5X with 6 virtual GPUs
within the same physical V100. It is important to note
that the performance using remote virtualization tech-
niques does not entirely depend on the data size. Ac-
tually, there is another important factor that also penal-
izes performance as shown in Figures 7a and 7b; i.e. the
number of CPU-GPU communications. This last factor
depends on the number of synchronization, cudaMem-
cpy, CUDA kernel launches, and so on, carried out by
the application, which in the case of FM, and cluster-
ing algorithms in general, depends on the convergence
criterion as a function of the layout of the input data.
The number of calls to cudaMemcpyDeviceToHost for
50K is 906,493 and 892,587 for 100K, which means
less CPU-GPU communications for 100K case. On the
right-hand side of Figure 8, the energy consumption of
the FM algorithm is shown. In this case, the dashed line
shows Xavier’s energy consumption when running the
FM algorithm locally; i.e. using its low-power GPU. It
can be seen in Figures 8b, 8d and 8f that overall energy
consumption is reduced as the multi-tenancy degree in-
creases. Actually, with 6 virtual instances, overall energy
consumption is less than one-half of the energy required
with a single remote virtual instance. On the other hand,
overall energy consumption is always larger than when
the FM algorithm is executed locally in Nvidia Xavier
edge node. However, it can be seen that the energy re-
quired by the edge node noticeably decreases when sev-
eral virtual instances are employed. This is better ana-
lyzed in Figure 9 where the average power consumption

of the edge computing device and NVIDIA V100, run-
ning the FM algorithm for 10K, 50K, and 100K is shown.

Figure 9 shows that the average power consumption
of this edge device when the GPU is active is 10.15 Watts
with 0.5 standard deviations. Furthermore, Xavier’s power
consumption is reduced by a factor of up to 30% when
the execution is offloaded to a remote GPU. Xavier’s lo-
cal GPU can be switched off in this scenario, reducing its
power budget in the range of 7-8 watts. As the number of
virtual GPU instances increases, Xavier’s CPU workload
also increases, and this is translated into slightly higher
power consumption. Actually, the power consumption
for 1 virtual GPU is 7.77 watts and increases up to 8.3 for
6 virtual GPUs. But even in this worst-case scenario, our
results show 21.15% power savings over using Xavier’s
local GPU. The server-side power consumption also de-
pends on the workload supported by Nvidia V100 used
in our experiments. It ranges from 54.54 watts for 1 GPU
instance to 75.80 watts for 6 GPUs instances. The power
consumption of V100 is higher than Xavier (up to 7.5x)
but it offers better performance as expected (up to 3.1x
speed-up factor using 6 GPU instances). A trade-off be-
tween power consumption and performance is clearly re-
ported; the edge/fog computing devices such as Nvidia
Jetson Xavier are low-power devices because they are
designed to be in IoT infrastructures where power con-
sumption could become a big issue. By delegating the
heaviest workloads to the GPU servers, up to 30% of the
power consumption could be transferred to a more suit-
able and supportive infrastructure. In addition, perfor-
mance can be gained but taking into account that the total
power consumption of the solution is penalized. Sum-
ming up, it is important to note that the execution time is
reduced in exchange for increasing both the power and
energy consumed in the IoT infrastructure as a whole
(i.e. GPU servers and rCUDA client).

The most remarkable result to emerge from the data,
however, is that the rCUDA client is where there are
usually problems with energy and power supply in IoT
infrastructures, and our approach reduces the execution
time, power, and energy at this level of the architecture.
Actually, Figure 10 clearly shows the energy savings achieved
at the rCUDA client (Jetson AGX Xavier) thanks to the
usage of a remote virtualized GPU providing multiple in-
stances of virtual GPUs. In order to compute energy sav-
ings, the energy required by the AGX Xavier node when
executing the FM algorithm with the local small GPU
was used as the baseline. It can be seen in the figure that,
the more virtual GPU instances are leveraged, the larger
energy savings are attained. Energy savings, when 6 re-
mote virtual GPU instances are used, ranging from 40%
for 50K rows up to 81% for 10K rows. It is noteworthy
that in the case of 100K rows energy savings are about
70%. These extraordinary energy savings could translate
into much longer battery availability, for instance. On
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Figure 8: Execution time and energy consumption of the FM algorithm at local AGX Xavier and varying the number of virtual GPUs within the
same physical GPU (V100)

the other hand, the previous discussions about the be-
havior of the FM algorithm for 50K rows also apply to
this figure, where it can be seen that energy savings for
this particular amount of rows are noticeably lower than
for the other amounts of rows as the performance gains
of using remote virtualization is lower than in the other
case. But even with these lower performance benefits,
the energy savings reach up to 40%.

5. Conclusions and future work

This paper evaluates the virtualization of remote GPUs
in edge computing devices in order to provide them with
computational horsepower without increasing the power
consumption of these devices. A particular case study
is developed with a fuzzy clustering algorithm (Fuzzy
Minimals, FM) which is widely used for different data
science applications. The FM’s GPU version has two
main kernels with different CPU-GPU communication
patterns that strongly affect this kind of GPU virtual-
ization. The factor r calculation shows little CPU-GPU
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Figure 10: Energy savings achieved at the Jetson AGX Xavier node
when using remote virtual GPUs with respect to local executions. 10K,
50K, and 100K datasets are run while varying the number of virtual
GPUs within the same physical GPU.

communication while the calculation of the prototypes
needs continuous global synchronization in each step of
the algorithm. Our results show that new edge comput-
ing platforms, which include low-power GPUs such as
Nvidia Jetson Xavier, provide an excellent framework
for driving edge computing as a real alternative to smart
applications. However, they have yet to further improve
their performance to meet the challenge of the data del-
uge in IoT ecosystems. Remote virtualization of GPUs
can be a good solution to increase computing power with-
out increasing the power budget of edge devices. We re-
port a performance gain of up to 3.1x speed-up factor by
just using a single remote GPU running multiple virtual
GPU instances on it. Moreover, the power consumption
of the edge device is reduced by up to 30%, obtaining up
to 80% of energy savings by delegating the GPU work-
load to the rCUDA servers as its GPU can remain off.
However, the overall power consumption of the IoT in-
frastructure (rCUDA clients and remote GPU servers) is
increased by a factor of 7x with the solution presented
here. Anyway, notice that the GPU servers are not a
dedicated infrastructure but they can provide service to
multiple applications. Therefore, the increase in overall
energy consumption is diluted, making the energy saving
in the edge device more appealing.

The conjunction of virtualization and edge comput-
ing is still at a relatively early stage; we emphasize that
we have only so far tested a relatively simple variant of
this solution that is designed for supercomputer environ-
ments. We definitely think that designing low-power vir-
tualization solutions can reduce overall power consump-
tion by maintaining the performance gains for edge de-
vices. Moreover, there are many other types of data sci-
ence algorithms still to explore, and as such, it is a po-
tentially fruitful area of research. However, the differ-
ent kernels of the FM algorithm have different compu-
tational and communication patterns that provide inter-
esting conclusions about the computational patterns that
can benefit from this edge computing virtualized infras-
tructure. This and other algorithms could also be tested
on frameworks other than the one tested in this paper in
order to assess the impact of edge device characteristics
on the performance and power consumption of these al-
gorithms. We hope that this paper stimulates further dis-
cussion and work.

Finally, another direction for future work is to model
performance vs. power consumption, varying the dif-
ferent hardware parameters used in this work, in order
to provide the research community with a useful tool to
evaluate the benefits of using remote GPU virtualization
in the context of edge computing.
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