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ABSTRACT: In many regions of the world, tornadoes travel through forested areas with low population densities, mak-
ing downed trees the only observable damage indicator. Current methods in the EF scale for analyzing tree damage may
not reflect the true intensity of some tornadoes. However, new methods have been developed that use the number of trees
downed or treefall directions from high-resolution aerial imagery to provide an estimate of maximum wind speed. Treefall
Identification and Direction Analysis (TrIDA) maps are used to identify areas of treefall damage and treefall directions
along the damage path. Currently, TrIDA maps are generated manually, but this is labor-intensive, often taking several
days or weeks. To solve this, this paper describes a machine learning– and image-processing-based model that automati-
cally extracts fallen trees from large-scale aerial imagery, assesses their fall directions, and produces an area-averaged tree-
fall vector map with minimal initial human interaction. The automated model achieves a median tree direction difference
of 13.38 when compared to the manual tree directions from the Alonsa, Manitoba, tornado, demonstrating the viability of
the automated model compared to manual assessment. Overall, the automated production of treefall vector maps from
large-scale aerial imagery significantly speeds up and reduces the labor required to create a Treefall Identification and
Direction Analysis map from a matter of days or weeks to a matter of hours.

SIGNIFICANCE STATEMENT: The automation of treefall detection and direction is significant to the analyses of
tornado paths and intensities. Previously, it would have taken a researcher multiple days to weeks to manually count
and assess the directions of fallen trees in large-scale aerial photography of tornado damage. Through automation, anal-
ysis takes a matter of hours, with minimal initial human interaction. Tornado researchers will be able to use this auto-
mated process to help analyze and assess tornadoes and their enhanced Fujita–scale rating around the world.

KEYWORDS: Tornadoes; Aircraft observations; Unpiloted aerial systems; Automated systems; Deep learning;
Neural networks

1. Introduction

The enhanced Fujita (EF) scale is implemented in several
countries such as Canada, the United States, China, and
Japan to assess the severity of tornadoes. Within this scale,
various damage indicators (DIs) are evaluated, each having
corresponding degrees of damage (DOD) along with their as-
sociated wind speeds. The spectrum of DODs typically spans
from the point of minimal discernible damage to the complete
devastation of the DI. (McDonald and Mehta 2006). The
overall EF-scale rating for the damage is then assigned based
on the maximum wind speed across all observed damage indi-
cators (Mehta 2013).

In many regions of the world, tornadoes travel through for-
ested areas with low population densities, meaning that
downed trees are the only observable damage indicator. For
example, Fig. 1 shows a map of Canadian tornadoes (over
land) recorded by the Northern Tornadoes Project (NTP)
from 2017 to 2022 that occurred in areas where the population
density is less than 1 person km22 (Government of Canada
2020). Of the 510 tornadoes over land recorded by NTP, 259
of these (50.8%) occurred in these areas where the population
density is less than 1 person km22, with 81% of these having

forests along some portion of the track (Karra et al. 2021).
Figure 2 shows an unmanned aerial vehicle (UAV) photo de-
picting significant treefall from a Canadian tornado.

There are international variations for how the EF scale
handles damage to trees. In the United States, for example,
there are two tree DIs: one for softwood and the other for
hardwood. The Canadian version of the EF scale (Sills et al.
2014) has a single tree DI with most DODs related to the
percentage of trees snapped or uprooted along the path of
damage. The NTP developed a method for accurately and
consistently estimating those percentages called the “scalable
box method” (Sills et al. 2020), where a box (with size related
to tornado width) is drawn around the area of worst damage
and the percentage of downed trees in that area is used to
provide an estimate of the maximum wind speed. The maxi-
mum EF-scale rating a tornado can be assigned via this DI is
EF3, which may not reflect the true intensity of some torna-
does. Additionally, many of these tornadoes occur on the
shallow soil of the Canadian Shield, where downed trees can
only be given a maximum rating of EF2.

Significant damaging wind events that occur in remote
areas or cause extensive tree damage are often analyzed with
the help of high-resolution aerial imagery (Sills et al. 2020).
Aerial imagery consists of aircraft and UAV imagery, one or
both of which may be collected for an event depending on the
severity and remoteness of the damage. Typical high-resolutionCorresponding author: Connell S. Miller, connell.miller@uwo.ca
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aircraft imagery used by research groups has a resolution of up
to 5 cm per pixel and is captured weeks or months after an
event. UAV imagery typically has a minimum resolution of
2.5 cm per pixel and is captured days or weeks after an event.
Regardless of the aerial imagery collection method, these im-
ages can be stitched together to produce a high-resolution,
georeferenced aerial map, also known as an orthomosaic map.
These orthomosaics may cover an area of 1–100 km2, or more,
and typically contain all the significant damage from an event in
the case of aircraft imagery, or sometimes just a notable area of
damage along the damage path in the case of UAV imagery.
Importantly, the resolution of aircraft imagery is detailed
enough to detect individual trees, as well as the direction in
which they fell. The enhanced resolution of UAV imagery adds
the capability to determine tree species as well as soil type and
condition. Table 1 lists the specific details of the aerial imagery
used in this study. The aerial imagery presented in this paper
was taken on clear days during various hours of bright sunlight,
which is critical for being able to clearly see the downed trees.

All aerial surveys of severe wind damage conducted by re-
searchers result in some level of damage analysis. Typically,
at minimum, damage from the wind event is manually out-
lined, the centerline, pathlength, and maximum width are
determined, and a wind speed and associated EF rating
are assigned. Since 2020, for particularly significant or

complicated events, especially those involving a mix of tor-
nado and downburst damage, the NTP generates a Treefall
Identification and Direction Analysis (TrIDA) map. These
analyses are inspired by similar work done by T. T. Fujita in
several of his papers (e.g., Fujita and Wakimoto 1981; Fujita
1989). Generating a TrIDA map consists of identifying the
areas of treefall damage and the general treefall directions
along the damage path. First, all areas of fresh treefall are en-
closed by polygons to highlight the damage path. Then, the
average treefall directions of groups of trees are noted, spaced
as needed to obtain a good understanding of the treefall pat-
terns in the damage. Finally, when applicable, these treefall
directions can be used to distinguish between tornadic and
downburst damage. Generally speaking, tornadic damage is
convergent and closer to the damage centerline, whereas re-
lated downburst damage is usually divergent and off the main
path of the tornado. Occasionally, the entire area of damage
is divergent and caused by one or multiple downbursts, which
may not be known until after the analysis is performed.
TrIDA maps are useful for separating out potential down-
burst damage from related tornado paths while also providing
some insight into the character of the event and a valuable
visual representation of the wind patterns.

Currently, TrIDA maps are generated manually. The tag-
ging of areas of tree damage and general treefall directions is

FIG. 1. Map depicting Canadian tornadoes (over land) recorded by the Northern Tornadoes Project from 2017 to
2022 in areas where the population density is less than 1 person km22 as well as land cover recorded by Sentinel-2
data.
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time consuming, often taking several days or weeks, depend-
ing on the size of the event. There is also reason to use these
analyses on more than just complicated events with a mix of
tornado and downburst damage. As mentioned earlier, the
EF scale and scalable box method do not usually allow for the
rating of Canadian tornadoes above EF2 when only forest
damage is present, as most of them occur on the shallow soil
of the Canadian Shield. However, alternative methods have
been developed that use treefall directions in significant tornadoes
to provide a maximumwind speed for these events. Some notable
examples include Karstens et al. (2013), Godfrey and Peterson
(2017), and Rhee and Lombardo (2018). These methods present

the possibility of assessing EF3 or higher damage from tornadoes
in forested areas at the cost of requiring significant treefall data
for their analyses. Godfrey and Peterson’s method requires the
identification of every downed tree, with Karsten’s or Rhee and
Lombardo’s method requiring area-averaged treefall directions.
Compared to other analysis methods, such as the scalable box
method and ground surveys, wind speeds determined by these
treefall methods tend to be higher. This development has in-
creased the need and utility of TrIDA maps and the desire to
make these analyses more time efficient. To address these needs,
an automated process to assist with the generation of TrIDA
maps is required.

In 2017, a method for coarse-to-fine extraction of downed
trees from UAVs was proposed by Duan et al. (2017). Their
extraction method first utilizes a random forest machine
learning model (Breiman 2001) to extract a rough mask of the
trees, followed by image processing techniques that leverage
the linear shape of trees to refine the mask. Once a refined
mask is produced, the Hough transform (Hough 1962) is im-
plemented to fit lines to the tree stems. However, their dataset
was limited to a single event in northeastern Hainan, China,
and taken from a UAV camera at a relatively high altitude of
500 m, producing lower-resolution (10 cm per pixel) imagery.

FIG. 2. A UAV photo of significant treefall, including a clear swirl pattern (foreground), from the 2018 EF2 Saint-Julien tornado in Quebec.

TABLE 1. List of the specifications of the aerial imagery used in
this study.

Aerial imagery specifications

Resolution 20 000 3 20 000 pixel per image
Scale 5 cm 3 5 cm per pixel
Area 1 km2 per image
Color channels Red, green, blue (24-bit RGB)
Image format .tif, no compression
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As a result, many of their techniques would require significant
manual adjustment if applied to a broader range of tornadic
events with higher concentrations of trees or different species
of trees with more pronounced branches that are resolved
with higher-resolution imagery.

In early 2021, a semiautomated method for identification of
downed trees from 5-cm aerial photography was proposed by
Rhee et al. (2021). Their method utilizes many image processing
techniques including image filtering to extract tree stems and
leaves. After extraction, the Hough transform is used to fit lines
to the stems, and the position of leaves relative to these lines is
used to extrapolate the area-averaged tree directions for a given
area. Although effective at extracting trees, the process is only
semiautomated, requiring significant adjustments and human in-
teraction to achieve accurate results. Moreover, their direction–
extraction method uses leaf positions, which does not work in
areas with a high concentration of downed trees, areas where
the colors of the leaves are similar to the background colors, or
with trees that do not have leaves.

Most recently, the detection of tree stems from UAV or-
thomosaics using U-Net convolutional neural networks was
demonstrated by Reder et al. (2022). They created various
datasets augmented from 454 trees downed in a severe storm
northeast of Berlin, Germany. These datasets are then used
to train a U-Net model to perform semantic segmentation of
downed tree stems (Ronneberger et al. 2015). Their results
are automated and are more effective at extracting tree stems
than the coarse-to-fine method proposed by Duan et al.
(2017). However, their datasets are limited to a single event
with a moderate density of trees, and no fitting of lines or ex-
traction of direction is performed.

Given the above, a method for systematic wide-ranging
treefall analysis in remote forested areas is needed. The objec-
tive of this paper is to describe a machine learning and image
processing-based model that can automatically extract fallen
trees from large-scale aerial imagery, assess their fall direc-
tions, and produce an area-averaged treefall vector map with
minimal initial human interaction.

2. Methodology

The method developed to produce an automated treefall map
model is described in this section and summarized in Fig. 3. First,

a treefall segmentation mask is produced similar to that of Reder
et al. (2022). Next, instance segmentation is performed using the
segmentation mask to extract individual trees, followed by assess-
ing their fall directions. Finally, the treefall directions are sorted
into a chosen grid, and the area-averaged directions of trees in
each grid square are used to create a treefall vector map.

a. Treefall semantic segmentation model

To identify each fallen tree contained in the aerial images
collected from a tornado swath through a forest, it is benefi-
cial to first extract a binary segmentation mask containing just
the pixels of the fallen tree stems. This mask highlights only
the pixels that are part of tree stems, removing everything
else. Producing a segmentation mask removes noise and sim-
plifies the image, making further image processing signifi-
cantly more effective, as demonstrated by Duan et al. (2017)
and Rhee et al. (2021). To create a binary segmentation mask
of the tree-stem pixels, a U-Net architecture is used similar to
Reder et al. (2022).

The U-Net deep-learning architecture is a type of fully con-
volutional neural network originally designed for the pur-
poses of biomedical image segmentation (Ronneberger et al.
2015). Semantic segmentation is the process of labeling each
pixel in an image as belonging to a specific equivalence class.
More specifically, U-Net performs semantic segmentation by
first using a series of convolutional layers in conjunction with
downsampling using max-pooling (much like a typical convo-
lutional neural network), referred to as an encoder or the
backbone of the network. Then, a series of repeated convolu-
tional layers followed by upsampling are combined with the
extracted features from the encoder to ultimately make pixel-
wise predictions. The U-Net architectures can be adjusted to
take any fixed-sized images as an input, but generally smaller
sizes ranging between 128 3 128 and 572 3 572 pixels are
used due to the computational complexity with larger image
sizes. Moreover, different encoders (backbones) including re-
sidual networks (ResNet; He et al. 2016) and Visual Geome-
try Group’s (VGG) convolution neural networks (Simonyan
and Zisserman 2014) can be substituted.

To construct a dataset to train the U-Net model, 10 images
with an average size of 200 m 3 200 m (4000 3 4000 pixels),
are chosen from the seven tornadoes listed in Table 2. The

FIG. 3. High-level flowchart for the automated treefall model. The number and letter next to each image indicates the relevant section of
the paper where each part is covered.
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fallen trees in these images are manually segmented to pro-
duce segmentation masks, as shown in Fig. 4. Only 10 images
were utilized to reduce the required time for manual segmen-
tation and quality control. Three images are chosen for valida-
tion, while the other seven are used for training, also shown in
Table 2. The validation images are chosen from larger events
with more imagery or because later evaluation of the model’s
performance would be done on the same events. For evalua-
tion purposes, no images from the 2018 EF4 Alonsa, Mani-
toba, or the 2018 EF2 Lac Gus, Quebec, tornadoes are used
for training. A size of 256 3 256 pixels (12.8 m 3 12.8 m) is
chosen as the input image size for the U-Net model as it gives
a good balance between real-world scale, computational com-
plexity, and the size of the produced dataset. Each of the
manually segmented images and their corresponding segmen-
tation masks are then split into 256 3 256 pixel images using
grids with various offsets, followed by performing data aug-
mentation techniques including rotating, flipping, and adjust-
ing of hue. Data augmentation helps to enhance diversity and
increase the overall dataset size leading to improvements in
training accuracy as shown by Reder et al. (2022). The final
dataset contains just over 100000 and 35 000, 256 3 256 pixel
images and corresponding tree segmentation masks for train-
ing and validation, respectively.

The TensorFlow (Abadi et al. 2016) and Keras (Chollet
et al. 2015) Python modules are used for building and training
the U-Net models. During training, a variety of backbone

convolutional networks including ResNet-18/34/50 and VGG-
16/19 (the numbers denoting the number of convolutional
layers) are used to achieve the best fit as well as compare per-
formance between smaller and larger models. For a loss func-
tion, the Dice similarity coefficient, the harmonic mean of
precision and recall (Dice 1945), and weighted binary cross-
entropy (WBCE) are used, as shown by (Reder et al. 2022).
These loss functions are chosen due to the unbalanced nature
of the dataset having many more non-tree-stem pixels than
tree-stem pixels. The ratio of tree-stem pixels to non-tree-stem
pixels in the produced dataset is approximately 1:10. As a re-
sult, weights of 15:1 are used with WBCE in order to prioritize
the extraction of tree-stem pixels over non-tree-stem pixels.
This strong weighting likely increases the number of falsely
identified tree-stem pixels. However, this is preferable to the
alternative possibility of missing trees altogether. The adaptive
momentum (ADAM) optimizer (Kingma and Ba 2014), along
with a learning rate of 0.01 and batch size of 16, are used to op-
timize model weights, with all models being trained until vali-
dation loss converges.

Once training is complete, a segmentation mask of a
large-scale aerial image is produced by splitting the image
into 256 3 256 pixel sections, with each section being proc-
essed by the U-Net model. After processing, each individual
section is stitched back together to reassemble the sections
into a complete segmentation mask of the original image.
This process can be seen in Fig. 5.

TABLE 2. List of tornadic events used for both the training and validation datasets of the treefall semantic segmentation model.

Event name
Location
(province) Date

Canadian
EF-scale rating

No. of images
used for training

No. of images
used for
validation

No. of images
used for

empirical tests

Alonsa Manitoba 3 Aug 2018 EF4 0 1 1
Brooks Lake Ontario 8 Jun 2020 EF2 2 1 0
Lac Flocon Quebec 5 Sep 2018 EF2 2 0 0
Lac Gus Quebec 5 Sep 2018 EF2 0 1 1
Lac Rouille Quebec 5 Sep 2018 EF2 1 0 0
Lake Traverse Ontario 15 Jun 2021 EF2 2 0 0
Mary Lake Ontario 10 Jun 2020 EF2 0 0 1

FIG. 4. A 76.8 m 3 76.8 m section of the aerial imagery from (left) the 2018 EF2 Lac Gus tornado in Quebec, (center) the manual tree
segmentation, and (right) the manually produced binary tree segmentation mask.
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b. Tree instance segmentation algorithm

Following semantic segmentation, instance segmentation is
performed in order to separate and identify individual trees
so that their directions can be assessed. For assessment of

direction, it is beneficial to perform instance segmentation by fit-
ting a line to the stem of each tree, referred to as “tree tagging.”
In the works of Duan et al. (2017) and Rhee et al. (2021), the
Hough transform is utilized for instance segmentation. However,

FIG. 5. A flowchart demonstrating the processes of producing a treefall segmentation mask of a large-scale aerial image using a U-Net
deep learning model.

FIG. 6. A diagram that demonstrates the key ideas utilized in the line-joining algorithm.
(a) The angle difference criterion. (b) The endpoint to line segment distance criterion. (c) The
search arc criterion, and (d) a demonstration of the line-joining process.
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initial testing showed that the Hough transform struggles to accu-
rately segment trees in high-density areas where many trees are
overlapping. As a result, edge-based line segment detection algo-
rithms are utilized instead.

After the production of the tree segmentation mask, the
mask is preprocessed using the Guo and Hall (1992) thinning
algorithm, followed by applying a 3 3 3 dilation and mean
blur convolution. This preprocessing stage is done to ensure
the trees in the segmentation mask are of uniform thickness
and to facilitate ideal conditions for extraction using edge-
based line segment detectors. Once preprocessed, the fast line
segment detection algorithm (von Gioi et al. 2010) is used to
fit lines to the edges of the segmented tree-stem pixels. How-
ever, edge-based line segment detectors fit lines to each edge
of the tree stems, so to join together the edges, a line-joining
algorithm is developed.

The line-joining algorithm first uses spatial hashing to sort the
found edge lines into grid squares of the same 256 3 256 pixel
(12.8 m 3 12.8 m) size used with the production of the treefall
segmentation mask. This is done to improve computational per-
formance since lines only need to be compared with other lines
in a 3 3 3 grid around the same grid square, given that the
height of tree stems in the tornado events used are shorter than
3 3 12.8 m 5 38.4 m. Each line is then compared to all other
lines in or around its corresponding grid square and, if a set of
criteria is met, the lines are joined into a single line before being
added back to the same grid square. The first criterion is that
the lines should be close to parallel with each other, such that
the angle difference between the lines is less than an angle dif-
ference threshold Du. This criterion is based on the fact that
most tree stems are linear in shape and lines that are not parallel
to each other are likely different trees as described in Fig. 6a.

FIG. 7. (a),(c) Examples of the output of the fast line segment detection algorithm (van Gioi
et al. 2010), from the 2018 EF2 Lac Rouille/Gus tornadoes in Quebec. (b),(d) The results from
the line-joining algorithm in (a) and (c), respectively.
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Next, the distance from an endpoint of one line, to the opposite
line segment must be less than a distance threshold d. This crite-
rion is utilized to join together lines that are on either edge of a
tree stem, as shown in Fig. 6b. Then, search arcs of radius r and
angle 2u are extended out from the endpoints of one line, to
see if one of the opposite line’s endpoints fall within the search
arc. This criterion is utilized to join lines that are separated by
sections of debris or foliage blocking the middle of a tree stem
from being picked up by the semantic segmentation model as
demonstrated in Fig. 6c. In order for a pair of lines to be
joined, they must meet the minimum angle difference thresh-
old and either the minimum endpoint distance threshold or
search arc criteria.

When joining two lines together, a line between the furthest
apart pair of endpoints between the first and second line is
considered. Next, a weighted average of the angles of the first
and second lines is calculated, weighting the angles based on
the squared length of their lines. Then, the line between the
farthest endpoints is rotated to match this angle as shown in
Fig. 6d. The described weighted average skews the angle
more toward lines of longer length. This is used since lines of
longer length tend to be less prone to slight curves in a tree
stem, which can be picked up by edge-based line segmented
detectors. Last, after all lines have been considered and joined
as necessary, any lines found to have a length less than m are
removed, being considered as false positives, most likely due

to branches or other linearly shaped debris. Example results
of the line-joining algorithm can be seen in Fig. 7.

The value of d is set to 3
��

2
√

, based on the uniform width of
trees following the preprocessing of the tree segmentation
mask and 3 3 3 dilation/blur convolutions. Next, the value of
m is set at 1.5 m as trees of length less than 1.5 m are uncom-
mon throughout the various tornadic events tested, being
likely false positives. Then, the values of Du, u, and r are ex-
perimentally fit to 98, 1.88, and 1.5 m, respectively, by finding
the average of optimal values over the various tornado events
tested.

c. Tree direction model

Once instance segmentation has been performed to find
and fit lines to detected trees in the imagery, each fallen tree’s
direction must be assessed to convert the fitted line into a vec-
tor. Mathematically, the direction or the angle of each fallen
tree is a continuous value ranging over [08–3608) before loop-
ing back to 08 for values larger than or equal to 3608. Al-
though machine learning algorithms can certainly be utilized
to directly predict continuous values, training a machine
learning model to understand the similarities between 08 and
3608 poses an additional challenge. However, a line segment
has already been fit to each detected tree; thus, only the direc-
tion of the line needs to be assessed. Given this simplification,

FIG. 8. A diagram that demonstrates the process of converting a tagged tree identified by the tree instance segmentation algorithm into a
horizontally aligned image.

FIG. 9. A flowchart that demonstrates the use of convolutional neural networks along with fully connected layers for classification of
horizontally aligned tree box images as either left, right, or inconclusive (inc).
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a simpler model can be constructed to classify the direction as
either pointing toward one of the line’s endpoints or the
other.

To perform this direction classification, a rectangular box
of 768 3 384 pixels (38.4 m 3 19.2 m) is extended around the
line on the image containing the detected tree. This size is
chosen to ensure all trees fit within the boxes, while also con-
taining relevant areas of the tree’s surroundings. Next, this
section of the image is cropped out, rotated such that it aligns
with the horizontal axis, and resized to 256 3 128 pixels, as
shown in Fig. 8. Once horizontal, the classification of the di-
rection of each line can be further simplified to either pointing
toward the left or right. Additionally, for the purposes of fil-
tering out false identification of branches/debris as tree stems
or the inability to assess the direction, a third category of in-
conclusive is added. From here, convolutional neural net-
works such as ResNet and VGG along with the addition of
fully connected layers can be utilized to make the required

classification of either left, right, or inconclusive, as shown in
Fig. 9.

To train a convolutional neural network, the tree semantic
segmentation model and instance segmentation algorithms
are run on the same training and validation images used for
the semantic segmentation model, along with an additional
image from the 2020 EF2 Mary Lake, Ontario, and 2019 EF2
Lac des Iles, Saskatchewan, tornadoes being added to in-
crease the diversity of the training dataset. This produces hor-
izontal tree boxes for each detected tree as shown in Fig. 8.
From here, 16 000 horizontal tree boxes are manually labeled
as fallen to the left, right or inconclusive (which notes either a
false positive or the inability to assess the fall direction manu-
ally). The same images from the Alonsa, Brooks Lake, and
Lac Gus tornadoes are again separated for validation. Data
augmentation techniques, including flipping and adjusting of
hue are utilized, bringing the final dataset to just over 100 000
and 30000 images for training and validation, respectively.

TABLE 3. Training results for U-Net tree segmentation model. The bold font indicates the best performance.

Model architecture Loss function Validation accuracy Validation DICE (F1) Validation WBCE

ResNet-50
Dice 95.0% 94.9% 82.6%U-Net

ResNet-50
Dice 1 WBCE 95.2% 94.3% 94.7%

U-Net
ResNet-34

Dice 1 WBCE 95.1% 94.8% 94.3%
U-Net
ResNet-18

Dice 1 WBCE 95.0% 94.1% 95.1%
U-Net
VGG-19

Dice 95.2% 95.0% 89.4%
U-Net
VGG-19

Dice 1 WBCE 95.5% 94.7% 95.3%
U-Net
VGG-16

Dice 1 WBCE 95.4% 95.1% 94.2%U-Net

FIG. 10. (left) A 64 m 3 64 m image of the Alonsa, Manitoba, tornado and (right) corresponding automatically
extracted mask.
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ResNet and VGG convolutional neural networks are se-
lected with an input image size of 2563 128 pixels, downsam-
pling the original 768 3 384 pixel boxes to reduce the overall
model size. The Keras Tuner Python module (Chollet et al.
2015), along with Bayesian optimization (Snoek et al. 2012), is
utilized to find the optimal fully connected layer size, along
with adjusting hyperparameters such as batch size and learn-
ing rate. The ADAM optimizer (Kingma and Ba 2014) is used
along with the Dice score as a loss function. The Dice score is
chosen due to the unbalanced nature of the training dataset at
approximately a 45%/45%/10% split between left, right, and
inconclusive, respectively. All tested models are trained until
validation loss converges.

Once the convolutional neural network is trained, lines
from each tagged tree can be automatically used to produce a
horizontal tree box image and then have its direction classified.

Together the classified direction of left or right, along with the
tagged tree line’s original orientation, can be used to produce
a fall direction vector for every tagged tree. In the case of a di-
rection classification as inconclusive, the tagged tree is ex-
cluded from any further use.

3. Results

Table 3 shows the results of the U-Net tree segmentation
models trained for a given combination of model architecture
and loss function. The VGG-16 model using a Dice 1 weighted
binary cross-entropy loss function performed the best with a
validation Dice score of 95.1%. Due to the unbalanced nature
of the dataset, 1:10 for tree-stem pixels to non-tree-stem pixels,
the Dice score is considered a better indicator of performance
than accuracy. However, all models performed quite similarly,

FIG. 12. (left) A 64 m3 64 m image of the Mary Lake, Ontario, tornado and (right) automatically extracted mask.

FIG. 11. (left) A 64 m3 64 m image of the Lac Gus, Quebec, tornado and (right) automatically extracted mask.
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even with differing architectures, leading to the conclusion that
the performance of the model is limited more by the training
data than the size of model used. Overall, a Dice score of 95.1%
indicates that the model can effectively extract almost all trees
stems in the imagery. Figures 10–12 show empirical tests of au-
tomatically produced treefall segmentation masks for the
Alonsa, Lac Gus, and Mary Lake tornado events.

Using both the tree semantic segmentation model and the
instance segmentation algorithm, an automated tree tagging
model is produced. Figure 13 shows an example result of the
automated tree tagging model run on a section of the Alonsa
tornado. The result performs effectively, fitting lines to almost
all tree stems. However, several branches are picked up or
lines not joined together due to the curvature of a tree. Addi-
tionally, a comparison of manual versus automatic tree tag-
ging is performed on 100 m 3 100 m sections of the Alonsa,
Lac Gus, and Lac Des Iles tornadoes, an example of which is

shown in Fig. 14. The results, shown in Table 4, conclude that
the automated model has a mean recall of 90.2%, precision of
72.5%, and Dice score of 80.3%. The recall is relatively high,
meaning that the model can find almost all trees in each im-
age, but the precision at 72.5% is less than ideal, showing that
a significant portion of the model’s predictions are false posi-
tives on branches or other linear-shaped debris. Overall, the
model achieves a Dice score of 80.3%, which is satisfactory
for the end goal of automatically producing TrIDA maps.

The following equations show the formulas used to calcu-
late precision, recall, and the Dice score for Table 4:

precision 5
TP

TP 1 FP

5
TP

b
, (1)

recall 5
TP

TP 1 FN

5
TP

P
; and (2)

FIG. 13. (left) Preprocessed treefall segmentation mask, (center) extracted edge lines using fast line segment detector (van Gioi et al.
2010), and (right) joined lines using the constructed line-joining algorithm, for the 64 m 3 64 m section of the Alonsa, Manitoba, tornado
shown in Fig. 10.

FIG. 14. (left) A 100 m3 100 m section of the Lac Gus, Quebec, tornado along with (right) manually (blue) and auto-
matically (red) tagged tree lines.
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Dice 5
2 3 precision 3 recall
precision 1 recall

, (3)

where TP, FP, and FN, represent the true positives (model pre-
dicted a tree where there is a tree), false positives (model pre-
dicted a tree where there is not a tree or multiple trees where
there is only one tree), and false negatives (model did not pre-
dict a tree where there is a tree), respectively. Moreover, b
and P represent the total number of trees predicted by the au-
tomated tree tagging model, and total number of actual trees,
respectively. Additionally, the mean precision and recall can
also be used to produce an estimate for the ratio between the
number of predicted trees b and the number of actual trees P
in an image:

b
precision
recall

5 P; and (4)

precisionmean

recallmean
’ 0:80: (5)

Table 5 shows the number of fallen trees predicted by the auto-
mated tree tagging model, followed by an estimate for the actual
number of fallen trees for various events tested. The estimate
for the actual number of fallen trees is calculated by multiplying
the ratio in Eq. (5) by the number of predicted fallen trees
tagged by the automated model. Only the trees in the tornadic
damage path captured in the collected aerial imagery are consid-
ered, excluding any identified downburst damage.

Table 6 shows the results from training various tree direc-
tion models. The best model trained has a validation accuracy
and Dice score of 86.6%, using a VGG-19 backbone followed
by a 4096 node fully connected layer. Although not perfect,
86.6% is suitable for the end goal of producing a TrIDA map
as fall directions will be considered over larger areas rather
than each individual tree’s direction.

4. Automated production of treefall vector maps

Following detection and direction predictions, the large-
scale aerial images are split into a grid, with each tagged tree
line’s unit vector sorted into a grid square based on the tagged
line’s midpoint. From here, the unit vectors in each grid
square are assessed using downsampling methods such as the
mean, median, or clustering, to find the area-averaged direc-
tion for each grid square. In theory, any grid size could be
chosen, but the larger the grid square, generally the more
fallen trees will be present. Moreover, using a grid size which
is too large will downsample too much data, leading to less
useful results. As such, grid sizes are manually chosen relative
to the size of the tornado damage path and desired resolution,
usually between 25 and 250 m in size. Additionally, using the
median is preferred over the mean due to it being more resis-
tant to outliers.

However, there is a possibility of more than one distinct clus-
ter of directions. This can be due to many factors, including mul-
tiple vortices in the tornado, a tornado changing course and
hitting the same location multiple times, a combination or tor-
nado and downburst damage, etc. Based on observations from
manual analysis of treefall patterns, it is most likely to have one
or two significant distinct clusters of treefall directions. To ac-
count for the possibility of two distinct clusters of directions in a
grid square, a method of fitting two area-averaged directions per
grid square is developed. First, the unit vectors in each grid
square are assumed to be in two clusters, which are fit using the
k-medoids clustering algorithm (Kaufman and Rousseeuw 1990)
with k equal to 2. The medoid of a cluster is the data point that
is the most similar to all other data points in the cluster, which,
like the median, is more resistant to outliers. Given that the data
points are unit vectors, the similarity between vectors is defined
by comparing the polar angles of each vector. After clustering,
the ratio of data points and the angle between the medoid vector
of each cluster is considered. If the ratio is more balanced than a
60:40 split and the angle between the medoid vectors is greater
than 458, the two medoid vectors are utilized instead of the me-
dian vector, as shown in Fig. 15.

To assess the automated model’s performance, a compari-
son is made between the manually assessed treefall directions
used in Stevenson et al. (2023) for the Alonsa tornado and
the model’s automatically assessed directions. Both median
and clustering methods with a grid size of 25 m are used with
the automated model, and a relatively small example section
using the clustering method can be seen in Fig. 16. The vec-
tors are compared by calculating the difference between their
angles and producing histograms with bin sizes of 58, as shown

TABLE 5. Number of fallen trees predicted and estimates for
the actual number of fallen trees from the tornadic damage of
various events tested.

Tornado event
Number of fallen
trees predicted

Estimated actual
number of fallen

trees (two
significant figures)

Brooks Lake, Ontario 911 659 730 000
Alonsa, Manitoba 286 684 230 000
Lac Gus, Quebec 56 983 46 000

TABLE 4. Results comparing manual to automatic tree instance segmentation for 100 m 3 100 m sections. The “trees” column lists
the number of real trees manually tagged. The “predictions” column lists the number of trees the algorithm predicted. The “found
trees” column lists the number of trees correctly predicted. The bold font highlights the most important result.

Event Trees Predicted trees Found trees Precision Recall Dice (F1)

Alonsa 432 512 379 74.0% 87.8% 80.3%
Lac Gus 792 965 725 75.1% 91.5% 82.5%
Lac Des Iles 386 515 352 68.3% 91.2% 78.2%
Mean x x x 72.5% 90.2% 80.3%
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in Fig. 17. To compare the clustering method, if two vectors
are produced for a given grid square, the vector whose angle
is closer to the manual vector is considered. This is done to ac-
count for the fact that even in a 25-m grid square, there can
be two sets of distinct directions, only one of which is chosen
during manual assessment.

The treefall directions used in Stevenson et al. (2023) are
the result of the semiautomated treefall extraction method
used in Rhee et al. (2021), followed by significant manual ad-
justment. For our comparison, some vectors between the
manual and automated model do not align perfectly. To ac-
count for this, the automatically generated vectors are com-
pared to the nearest neighboring manual vector. A grid size
of 25 m is used, resulting in a worst-case distance between
manual and automatic vectors of

��

2
√

3 12:5 m’ 17:68 m,
though generally less, as can be seen in Fig. 16.

As shown in Fig. 17, the distributions of angle differences
are exponentially decreasing, with a median value of approxi-
mately 13.38 for both the median and clustering methods.
Moreover, the clustering method performs better than the
median method in terms of both mean and 80% values dem-
onstrating its viability. Angle differences between 1308 and
1808 tend to occur as error on the part of model but was re-
duced significantly with the clustering method as shown in
Fig. 17. Angle differences of 308–808 tend to occur closer to
where the trees converge toward the center of the tornado’s
path as there can be rapid changes in direction leading to

inconsistency between manual and automated assessment.
Overall, when considering the inconsistent alignment be-
tween manual and automatic vectors and factoring in human
error when performing a manual assessment, a median of
13.38 and 80% threshold of 25.38 demonstrates effective
results.

The appendix provides a step-by-step process to how the au-
tomated treefall model is implemented for generating TrIDA
maps, along with a visual representation of the similarity be-
tween manual and automated analyses.

5. Conclusions

Around the world, many tornadoes occur in unpopulated
forested regions. To more accurately analyze the aerial imagery
obtained from these events, Treefall Identification and Direc-
tion Analysis (TrIDA) maps are developed to analyze treefall
damage. An automated machine learning method for the de-
tection and recording of fallen trees and their fall directions
from large-scale aerial imagery is implemented in order to re-
duce the time and labor of producing TrIDA maps. The auto-
mated method first uses a U-Net-based image segmentation
model to extract fallen tree-stem pixels from the aerial imag-
ery. Next, a constructed algorithm is used to perform instance
segmentation, identifying and separating the individual fallen
trees. Then, a convolutional neural network is used to assess
the directions from images of each individual tree. Last, the

FIG. 15. Depiction of the clustering algorithm utilized to find two distinct clusters of directions in a grid square. The dots represent the
endpoints of unit vectors placed on the unit circle. The red and blue dots show the corresponding cluster, and the teal dots represent the
medoid of each cluster.

TABLE 6. Training results for various tree direction convolutional neural networks. The bold font indicates the best model.

Convolutional backbone
architecture

Fully connected
layer size

Learning
rate

Batch
size

Validation
accuracy

Validation
dice (F1)

ResNet-50 2048 0.000 05 32 83.3% 83.2%
4096 0.000 05 16 82.9% 82.9%

VGG-16 2048 0.000 05 32 85.8% 85.8%
4096 0.000 03 16 84.8% 84.5%

VGG-19 2048 0.000 05 16 86.1% 86.1%
4096 0.000 01 16 86.6% 86.6%
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imagery is split into a grid, and the area-averaged direction of
all the trees in each grid square is assessed using the median or
k-medoids clustering algorithm to produce a treefall vector map.

The U-Net-based treefall semantic segmentation model
achieved a validation Dice score of 95.1%, indicating that the
model can effectively extract almost all tree stems from the
aerial imagery. When compared to manually detected trees,
the automated model has a mean tree detection Dice score of
80.3%, which is satisfactory for the end goal of automatically
producing treefall vector maps. The automated model achieves
a median tree direction difference of 13.38 when compared to

the manual tree directions from the Alonsa, Manitoba, tornado,
demonstrating the viability of the automated model compared
to manual assessment. Overall, the automated production of
treefall vector maps from large-scale aerial imagery significantly
speeds up and reduces the labor required to create a Treefall
Identification and Direction Analysis map going from a matter
of days or weeks to a matter of hours.

All model training and testing was performed on a worksta-
tion with an Intel i9–12900K CPU, Nvidia RTX 3080 10GB
GPU, 64 GB of DDR5 RAM, and a Samsung 980 pro NVME
SSD. The time to perform semantic and then instance

FIG. 16. Manual (black) vs automated (red) treefall direction field with a 25-m grid size for a 575 m 3 325 m section
of the Alonsa, Manitoba, tornado aerial imagery.

FIG. 17. Histograms comparing the angle difference between manual and automated treefall direction vectors for the Alonsa, Manitoba,
tornado. Bins of 58 are used comparing both median and clustering methods. The 80% mark indicates the value at which 80% of the vec-
tors have been counted.
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segmentation takes approximately 1–3 min per 20000 3

20 000 pixel 1-km2 image depending on the number of trees in
each image. The time to determine the treefall directions and
produce an area-averaged treefall vector map is an additional
1–2 min per image depending on the number of trees in each
image and the averaging method selected. As an example, the
imagery for the Alonsa, Manitoba, tornado contained thirty-
seven 20 000 3 20000 pixel 1-km2 images and took just under
2 h to complete. For comparison, the same process of identify-
ing all treefall directions manually would typically take weeks.

The model requires imagery that is of a high enough resolu-
tion and quality to clearly distinguish between trees, generally
5 cm 3 5 cm per pixel or better, which currently limits the
model to using imagery collected from aircraft or UAVs. As
the resolution of satellite imagery improves in the future to
the point where individual trees and their treefall direction
can be resolved (reducing the reliance on expensive aircraft
or UAVs), this method will become a relatively inexpensive,
globally available way to analyze treefall damage from torna-
does. Currently, no commercially available satellite imagery is
capable of this high resolution. Additionally, if aircraft or
UAV imagery improves in the future, this method could po-
tentially be applied to analyzing crop damage, in the manner
demonstrated in Baker et al. (2020). The higher resolution is
required to detect the thin stems of the crops. An additional
limitation is the use of the model in forest areas surrounding
or incorporated into urban areas. Often the model incorrectly
identifies many brightly colored linearly shaped objects in-
cluding road lines, roof edges, and wooden fences, as trees.

Future improvements will be made to both the treefall se-
mantic segmentation and direction models by adding addi-
tional imagery from other tornadic events in order to increase
the size and diversity of the training datasets. Moreover, im-
provements are planned to design a more robust tree instance
segmentation algorithm with a higher precision, and Dice
score. Additionally, automated detection and segmentation of
damaged areas, along with the automated fitting of tornado
convergence lines will also be examined in the future.
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APPENDIX

Implementing the Automated Treefall Model for
TrIDA Maps

The following step-by-step process describes how to gen-
erate a TrIDA map with the assistance of the automated
model, starting after the acquisition and processing of the
aerial orthomosaic imagery.

1) Identify all the treefall damage in the imagery by drawing
contours around the areas with fallen trees that appear to
be from the severe wind event being analyzed. Note that
it is possible to perform this step using the automated
model, but performing the task manually results in more
precise contours and fewer false positives such as fallen
trees unrelated to the severe wind event being analyzed.

2) Based on the damage contours, identify the damage cen-
terline, maximum width, and worst box of damage along
the damage path.

3) Use the automated model to identify all fallen trees in the
imagery, as well as their direction.

4) Make any manual edits necessary to the automatically
identified trees. This involves deleting false positives,
which primarily consist of mistakenly identified trees from
features such as buildings and roads.

5) Use the automated model to produce area-averaged tree-
fall directions using one or several specified area-averaging
methods and grid sizes. When multiple distinct clusters of
treefall directions are observed in a grid space, this will be
represented as two overlapping area-averaged treefall
vectors.

6) If necessary, manually adjust any inaccurate area-averaged
treefall directions.

7) Using the automated area-averaged treefall directions as
a guide, identify areas of tornadic and straight-line wind
damage.

8) Using the automated area-averaged tree directions as a
guide, manually draw the tornado convergence line, if
applicable.

A visual comparison between TrIDA maps produced man-
ually and with the automated treefall vector field can be seen
in Figs. A1–A3. The important takeaway from these figures is
that the TrIDA maps generated with the help of the auto-
mated model produce equally accurate and more organized
treefall directions, while significantly reducing the manual
time and labor otherwise required to generate these maps
without the help of the automated model. Including any pre-
processing of imagery and manual adjustments needed to gen-
erate a final TrIDA map, this whole process typically only
takes 1–2 days, whereas generating a complete TrIDA map
manually often takes a week or more.
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FIG. A2. (left) Manual and (right) automated TrIDA maps for a 2.6 km 3 2.6 km section of the Alonsa, Manitoba, tornado with a
120-m grid size.

FIG. A1. (left) Manual and (right) automated TrIDA maps for a 4.25 km 3 4.25 km section of the Brooks Lake, Ontario, tornado with
a 250-m grid size. This section of the Brooks Lake tornado does not overlap with any images used for training or validation of the auto-
mated model.
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