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Abstract: In order to facilitate the monitoring of groundwater quality in France, the groundwater
bodies (GWB) in the Provence-Alpes-Côte d’Azur region have been grouped into 11 homogeneous
clusters on the basis of their physico-chemical and bacteriological characteristics. This study aims to
test the legitimacy of this grouping by predicting whether water samples belong to a given sampling
point, GWB or group of GWBs. To this end, 8673 observations and 18 parameters were extracted
from the Size-Eaux database, and this dataset was processed using discriminant analysis and various
machine learning algorithms. The results indicate an accuracy of 67% using linear discriminant
analysis and 69 to 83% using ML algorithms, while quadratic discriminant analysis underperforms
in comparison, yielding a less accurate prediction of 59%. The importance of each parameter in the
prediction was assessed using an approach combining recursive feature elimination (RFE) techniques
and random forest feature importance (RFFI). Major ions show high spatial range and play the main
role in discrimination, while trace elements and bacteriological parameters of high local and/or
temporal variability only play a minor role. The disparity of the results according to the characteristics
of the GWB groups (geography, altitude, lithology, etc.) is discussed. Validating the grouping of
GWBs will enable monitoring and surveillance strategies to be redirected on the basis of fewer,
homogeneous hydrogeological units, in order to optimize sustainable management of the resource by
the health agencies.

Keywords: groundwater bodies; machine learning; discriminant analysis; chemical composition;
bacteriological composition; PACA region; France

Hydrology 2023, 10, 230. https://doi.org/10.3390/hydrology10120230 https://www.mdpi.com/journal/hydrology

https://doi.org/10.3390/hydrology10120230
https://doi.org/10.3390/hydrology10120230
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/hydrology
https://www.mdpi.com
https://orcid.org/0000-0001-9977-8880
https://orcid.org/0000-0001-6485-0539
https://orcid.org/0000-0003-3187-095X
https://orcid.org/0009-0004-3904-4497
https://orcid.org/0000-0003-2516-7715
https://orcid.org/0000-0002-7285-4270
https://doi.org/10.3390/hydrology10120230
https://www.mdpi.com/journal/hydrology
https://www.mdpi.com/article/10.3390/hydrology10120230?type=check_update&version=1


Hydrology 2023, 10, 230 2 of 19

1. Introduction

Our societies are putting increasing pressure on water resources for a variety of
agricultural and industrial uses, but because they are less susceptible than surface water to
various forms of pollution, groundwater resources are an essential source for supplying
people with drinking water. The chemical and bacteriological composition and quality
of groundwater depend on factors such as geology [1], climate [2,3], land use [4] and
human activities [5,6]. A better understanding of the processes involved in the spatial
and temporal variability of water quality is a prerequisite for sustainable management of
the resource. In 2000, under the Water Framework Directive (WFD) [7–9], the European
Union encouraged the mapping of groundwater bodies (GWBs) on the basis of major
European river basins. A GWB is defined as a distinct volume of groundwater within one
or more aquifers, a specific portion of groundwater within a larger hydrogeological system,
typically delineated based on major hydrogeological characteristics, including depth, rock
nature, flow type, karstic nature, riverine or coastal proximity, free, confined, etc. [10]. The
mapping of these GWBs has stimulated considerable research efforts in the EU Member
States [11–15]. Groundwater bodies have thus been considered as management units for
the national implementation of the WFD. These units may consist of one, several or only
part of an aquifer, and may be superimposed. However, because of the diversity of criteria
used to designate these units (lithology, vertical and horizontal scale, catchment potential
depending on yield), they are described in a heterogeneous manner [16].

On the basis of physico-chemical and bacteriological criteria in large databases, re-
cent studies have proposed methods for homogeneously grouping these GWBs, using
dimensionality reduction techniques such as principal component analysis (PCA), a statisti-
cal technique that brings together redundant information from different parameters and
classifies sources of variability within the dataset [17]. Clustering methods, such as agglom-
erative hierarchical clustering (AHC) seeks to group similar data points into clusters based
on their characteristics. These methods have been successfully applied in various adminis-
trative regions of France [18,19] with the aim of facilitating quality monitoring for human
consumption for regional health agencies. Grouping into homogeneous groundwater bod-
ies enables the processes responsible for physico-chemical and bacteriological variability to
be better characterized [20]. The loss of information during the aggregation process from
the catchment scale to that of the GWB, and then to that of a group of GWBs, has been
quantified, and remains low compared with the total information initially contained in the
datasets [21]. Nevertheless, despite the prevailing scarcity of applications on larger spatial
scales, particularly within the scope of extensive European watersheds as suggested by the
WFD (Danube, Rhine, Rhône-Méditerrannée, Po, Loire, Seine, Adour-Garonne, etc.) that
encompass numerous groundwater bodies, this kind of applications should emerge as an
alternative strategy for most state water agencies, which primarily adopt a sampling point
as their main monitoring scale strategy. We should note that a recent work carried out in
the Occitanie region, straddling the Rhône-Méditerranée and Adour-Garonne basins, has
shown the relevance of separating these two basins when processing data [22]. Further
work focused on the possibility of discriminating temporal and spatial variability within
each group of GWBs, highlighting that each (spatial and temporal variability) varied ac-
cording to the parameter considered. However, the proportion of each groundwater quality
parameter within the GWB grouping has not been assessed, which impacts our overall
understanding of the characteristics of these groundwater bodies. This research should be
seen as a further step in this field.

The introduction of methods such as discriminant analysis, and more recently ma-
chine learning, has made a considerable contribution to the assessment and management
(monitoring and surveillance) of groundwater resources [23]. Progress includes innovative
applications of geographic information systems and statistical methods, improving contam-
inant management in particular [24,25]. The adoption of multivariate analysis and machine
learning techniques, in particular ensemble learning [26,27], has improved the accuracy
and efficiency of groundwater quality assessments, setting new benchmarks for robust and
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accurate classification in diverse regions. Furthermore, examining the impacts of climate
change on groundwater levels using advanced techniques such as geodesic observations
and neural networks has revealed complex relationships between environmental changes
and groundwater dynamics [28]. In addition, the integration of real-time data, stable water
isotopes and microbial community analysis has significantly advanced monitoring method-
ologies beyond traditional practices [29]. These collective contributions mark an evolution
in hydrogeology towards more nuanced, data-driven approaches to understanding and
managing groundwater resources. These methods could be suitable for predicting whether
a given water sample belongs to a GWB or a group of GWBs on the basis of its chemical and
microbiological composition, and thus validating the procedure developed for grouping
homogeneous GWBs, a procedure designed to optimize, simplify and reduce the cost of
quality monitoring and surveillance by the regional health agencies. Dealing with multiple
parameters, such as water quality in this case, requires the use of advanced statistical
methods, such as linear discriminant analysis (LDA) and quadratic discriminant analysis
(QDA) [30], which allow a thorough examination of linearity and non-linearity within the
dataset. This analysis is necessary to guide the selection of machine learning methods
suited to the complex and varied nature of the information contained in the dataset. A
multi-faceted approach was then employed, combining ensemble methods [31,32] capable
of handling both linear and non-linear relationships, here in a variety of hydrogeologi-
cal contexts. Decision-based algorithms [33] were used for their accuracy in interpreting
linear relationships, in order to disentangle simple environmental correlations. Neural
networks [34] were deployed for their ability to model complex, non-linear interactions.
Gradient enhancement methods, because of their versatility and high accuracy, were used
to navigate efficiently through the various linearities of the regional data. This analytical
arsenal has been reinforced by proximity-based models and probabilistic approaches [35],
adapting to the linear and non-linear dynamic characteristics of the environmental data.
Given the spatio-temporal variations in water quality at this regional scale, the accuracy
of these various methods needed to be rigorously examined to ensure a complete and
reliable analysis.

In this context, this study was carried out in the PACA region (south-east France)
using a previously exploited database [21]. The aims of the study were twofold. The first
was to identify the critical parameters for water quality classification at three distinct scales,
namely that of observation points (sampling point), that of groundwater bodies (GWBs)
and that of groups of GWBs. The second aim was to validate the grouping of GWBs by
predicting the classification of water samples using discriminant analysis and Machine
Learning methods.

2. Materials and Methods
2.1. Study Area

The study area is the administrative region of Provence-Alpes-Côte d’Azur (PACA),
covering an area of 31,400 km2 in the extreme south-east of France [20]. It has a diverse
geological landscape, comprising coastal and high-altitude crystalline massifs, alluvial
plains, a vast Jurassic and Cretaceous sedimentary formation composed of limestone
marls with karst development and other sedimentary formations (Figure 1). In terms of
topography, altitudes range from sea level to 3143 metres in the Mercantour crystalline
massif. This wide range of altitudes is reflected in a wide diversity of natural environments
and agricultural activities. For more details on the study site, readers can refer to our
previous works on this region [17].
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Figure 1. Study area (Provence—Alpes—Côte d’Azur region) in south-eastern France and location of
the groundwater observation points.

2.2. SISE EAUX Database and Preliminary Processing

The SISE EAUX database [36,37] supplied by the Regional Health Agencies as part
of health monitoring, contains analyses of water intended for human consumption. It
includes both raw, untreated water analysis data and data on water after treatment. For
the purposes of this study, only data relating to raw water was taken into account. These
geo-referenced and dated data include a wide range of quality parameters. Database
extraction over 15 years (2006–2020) resulted in 9121 analyses and 24 parameters. Sorting
of the data produced a full matrix comprising 8673 analyses on 18 parameters, namely:

• Classical physico-chemical parameters (Electrical conductivity at 25 ◦C, pH, Total
Dissolved Solids);

• Major ions (Ca2+, Mg2+, Na+, K+, HCO3
−, SO4

2−, Cl−, NO3
−) resulting from water-

rock interactions and urban/agricultural pollution;
• Bacteriological parameters (Enterococcus, Escherichia coli), major indicators of faecal

contamination.
• Trace elements such as metallic contaminants (Fe, Mn) sensitive to redox conditions,

metalloids (As, B), and fluorine F.

This complete matrix comprises 1765 sampling points, equivalent to an average of
4.9 water analyses per observation point. In this way, the potential temporal variability of
water quality at each point is taken into account. The observation points in the SISE-Eaux
database were assigned to a groundwater body by cross-referencing with the French refer-
ence system for groundwater bodies (https://www.sandre.eaufrance.fr/jeu-de-donnees/
param%C3%A8tres-sise-eau, accessed on 17 March 2022), on the basis of their geographical
coordinates and the depth of the catchment. These 1765 sampling points are distributed
in 63 GWB throughout the PACA region. The map showing the distribution of sampling
points is presented in Figure 1.

This dataset was the subject of a previous study in order to obtain a grouping of
homogeneous groundwater bodies, characterized by similar characteristics and similar
processes responsible for the variability in chemical and bacteriological composition [21].
The procedure was as follows: Kolmogorov–Smirnov normality tests were carried out to

https://www.sandre.eaufrance.fr/jeu-de-donnees/param%C3%A8tres-sise-eau
https://www.sandre.eaufrance.fr/jeu-de-donnees/param%C3%A8tres-sise-eau
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determine whether the data had a normal distribution; following this test, a logarithmic
conditioning of the data was performed according to the formula: y = log(x + DL), x being
the value of the physico-chemical or bacteriological parameter X, and DL the detection
limit of this same parameter; the log-transformation was applied to all the data (except pH
which is already on a logarithmic scale), with two objectives, i.e., to approximate a normal
distribution and to reduce the weight of extreme values, which, during analysis, could
mask or blur certain processes responsible for the variability of the water, thereby making
the analysis more delicate [18].

A principal component analysis (PCA) was performed on all the data and the centroid
coordinates of each GWB on the factorial axes (CPs) were calculated. The factorial axes
(CPs) accounting for 85% of the total variance were retained, considering that the remaining
15% corresponded mainly to statistical background noise [38]. A hierarchical clustering
was performed to group the GWBs into homogeneous sets [39]. It resulted in 11 GWB
groups presented in Figure 2.
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2.3. Statistical and Machine Learning Methods

Discriminant analysis and various machine learning algorithms were used to predict
the membership of a given water sample to an observation point (sampling point), a ground-
water body or a group of groundwater bodies on the basis of chemical and bacteriological
composition. At each scale, the classification of each observation was considered as the
dependent variable and various groundwater quality parameters as explanatory variables.

2.3.1. Discriminant Analysis Method

Discriminant analysis (DA) was performed to determine which variables best discrimi-
nate between groups or classes based on a set of parameters [40]. DA creates a combination
of parameters that maximizes the separation between groups. It then uses this combination
to make predictions of belonging of new observations to a given class. DA has been widely
used for the water quality assessment [41–44] because it can handle both continuous and
categorical variables. Here, discriminant function analysis were used to identify the most
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significant parameters affecting groundwater characteristics and their contribution to GWB
classification [45,46].

Two types of discriminant analysis methods have been used: linear discriminant
analysis (LDA), which produces a linear boundary between classes and assumes that
the data follow a normal distribution, and quadratic discriminant analysis (QDA), which
produces a quadratic decision boundary and assumes that each class has its own covariance
matrix [30]. In the realm of discriminant analysis, both linear discriminant analysis (LDA)
and quadratic discriminant analysis (QDA) find their roots in the foundational principles
of Bayes’ theorem. The theorem, expressed as:

∀k ∈ [1, K] : P(Y = K|X = x) =
P(X = x|Y = k)·P(Y = k)

P(X = x)
. (1)

This equation underpins the probabilistic approach to discerning class memberships,
with: P(X = x|Y=K) is the likelihood, modelled as a multivariate Gaussian distribution;
P(Y = K) is the prior probability of class, it is equal to πk which is the estimated prior proba-
bility of class k; and P(X = x) is the marginal probability of observing features x across all
classes. The crux of discriminant analysis lies in the likelihood function, P(X = x|Y = K) ,
which quantifies the probability of observing features x given class K. Within a Gaussian
context, this likelihood is mathematically framed as:

∀k ∈ [1, K] : P(X = x|Y = K) ∝ e−
1
2 (x−µk)

t ∑−1
k (x−µk), (2)

which incorporates the mean vector µk ∈ Rd and covariance matrix Σk. The discriminant
functions δk(x) emerge as pivotal tools for classifying observations; for LDA, assuming a
common covariance matrix Σ, the discriminant function takes the form:

∀k ∈ [1, K] : δk(xi) = xTΣ−1 µk −
1
2

µT
k Σ−1 µk + log(πk). (3)

For QDA, conversely, accommodating distinct covariance matrices adopts the discrim-
inant function:

δk(xi) = −
1
2

log(|Σk|)−
1
2
(xi − µk)

TΣ−1
k (xi − µk) + log(πk), (4)

where xi is an unknown measurement vector for a sample i.
To facilitate optimal classification, the log-ratio of posterior to prior probabilities is

deployed in scikit-learn’s implementation of discriminant analysis. It is implicitly used
through the decision function or predict log-proba methods to facilitate decision-making in
the classification process. For each class k∈[1,K], this is expressed as follows:

δk(xi) = log
(

P(Y = k|X = xi)

P(Y = j|X = xi)

)
, (5)

Which encapsulates the logarithmic odds ratio of the posterior probability of class k to
the prior probability of each of j∈ [1,k] classes.

While the discriminant function is used for classification, the log-likelihood function
is part of the probabilistic framework. In the scikit-learn implementation, in addition to
Equations (3) and (4) which are the original forms of the LDA and QDA, the log-likelihood
plays a pivotal role in the decision-making process for both LDA and QDA. The log-
likelihood for class k, denoted as log(P(Y = k|X = x)) is expressed differently for LDA
and QDA:

For LDA:

log(P(Y = k|X = x)) = xTΣ−1 µk −
1
2

µT
k Σ−1 µk + log(πk) + Cst, (6)
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Here, Σ is a shared covariance matrix among all classes. For QDA:

log(P(Y = k|X = x)) = − 1
2 log(|Σk|)− 1

2 (x− µk)
TΣ−1

k (x− µk)
+log(πk) + Cst

(7)

Here, each class k has its own covariance matrix Σk, and log(|Σk|) is the natural loga-
rithm of determinant of variance-covariance matrix Σk. These mathematical formulations
extend across k distinct classes, accommodating the intricacies of various groundwater bod-
ies in our specific case. LDA and QDA are limited in their ability to handle high-dimensional
datasets, with performance degrading as the number of parameters increases [47].

2.3.2. Machine Learning Methods

A selection of ML algorithms was used to perform multi-class classification, choosing
the algorithm based on the characteristics of the problem and the available data. These
algorithms belong to different categories: tree-based, linear, non-parametric, kernel-based,
probabilistic, deep learning and ensemble methods. Tree-based models such as decision
trees [33] partition the feature space to predict the values of target variables, and despite
their potential for over-fitting, this can be mitigated through pruning or ensemble methods.
Linear models such as logistic regression [48] assume a linear correlation between the
input features and the target variable and, although computationally efficient, can be
hampered by complex non-linear relationships. Non-parametric models, such as K-nearest
neighbours [49], estimate the relationship between the input features and the target variable
without any a priori assumptions about the functional form of the relationship, allowing
them to capture complex patterns in the data. Kernel models, notably the support vector
machine [50] and Kernel SVM [51], are able to identify complex non-linear correlations
through transformation of input features into a high-dimensional space. Probabilistic
models, such as Gaussian Naive Bayes and Bernoulli Naive Bayes [35], compute the
probability of the target variable with respect to the input features, providing insight
into the uncertainty of the prediction. Deep learning models, including neural networks
(multilayer perceptron) [34], use complex functions for predictions, allowing intricate data
patterns to be captured. Finally, ensemble methods combine multiple prediction models to
enhance accuracy and robustness by reducing the variance and bias of individual models.
Examples of these include Random Forest, XGBoost [32], LightGBM [52] and Subspace
KNN [53].

The weight of the various parameters in determining the prediction of whether obser-
vations belong to their group of GWB, GWB and sampling point, with maximum accuracy,
was evaluated using a hybrid approach [54] combining, on the one hand, recursive feature
elimination (RFE) techniques, i.e., is a systematic and iterative feature selection technique
in machine learning that progressively removes the least important features from a dataset,
until an optimal accuracy is obtained [55] and on the other hand, the random forest feature
importance (RFFI) estimated from the average decrease in the Gini impurity [56] for each
node of the decision tree. The Gini impurity of a node can be defined as follows:

Gini impurity (i) = 1−
C

∑
j=1

[p(j|i)]2 , (8)

where p(j|i) denotes the probability of an instance in node i being classified as class j, and
C refers to the number of classes in the dataset. The average decrease in the Gini impurity
can be defined as:

∆Gini(k) = ∑
i

Gini(i)− Gini( f ), (9)

where Gini(i) is the Gini impurity of a node before the split, and Gini(f) is the weighted sum
of the Gini impurities of the two daughter nodes created by the split.
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3. Results
3.1. Discriminant Analysis

The first three discriminant functions (LD1, LD2 and LD3) accounted for 56%, 24%
and 10% of the inertia (the part of the overall differences in groundwater characteristics that
is explained), respectively (Figure 3), totalling 90% of the discrimination of the 11 groups of
groundwater bodies.
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Figure 3. Scree-Plot of the discriminant analysis performed on 8673 observations and 18 parameters.

Figure 4 illustrates the relative contribution of various water quality parameters to
discrimination between groups. The orientation and magnitude of the parameter vec-
tors indicate their influence on the discriminant functions. In the first discriminant plane
(LD1-LD2), total dissolved solids (TDS), Ca, Cl and pH play a major role in the discrimina-
tion. More specifically, it is the differential between TDS, on the one hand, and Ca, Cl and
pH on the other, which accounts for almost (80%) of the discrimination. Trace elements,
such as As, and bacteriological indicators, although important for assessing water qual-
ity, have less discriminating power due to their greater local and temporal variability, as
reflected by their shorter vectors.
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Graphs of the discriminant functions are shown in Figure 5. For the sake of readability,
four parameters were selected, namely Escherichia coli characterising bacterial contamina-
tion, total dissolved solids (TDS), i.e., approximately the sum of the major ions, iron (Fe), a
common metallic contaminant sensitive to redox processes, and nitrates (NO3), an indicator
of anthropogenic pollution. The bivariate plots involving TDS showed fairly uniform
zones occupied by the classes. No class occupied more than 45% of the bivariate region,
i.e., the space between the minimum and maximum value of each parameter. Evaluation
of these pairs of parameters highlights varying degrees of differentiation. For the pair
E. coli vs. TDS, the decision limits were well defined, suggesting a fairly good degree of
differentiation between GWB groups. In contrast, for the pairs E. coli vs. Fe and TDS vs. Fe,
the decision limits appeared to be very close to each other, supporting a limited potential
for discrimination. Concerning the pair E. coli vs. NO3, a more obvious separation between
the groups was observed, whereas overlaps persisted for the pair TDS vs. NO3. Finally, the
decision boundaries for the pair Fe vs. NO3 were very close to each other, suggesting that
it is very difficult to achieve a clear differentiation of the groups along this axis.
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Figure 5. Graphical representation of the discrimination functions of each GWB group by linear
discriminant analysis for 4 pairs of selected parameters (E. coli, TDS, Fe, NO3). On the background
of each biplot, the colour palette delimits the boundaries of the discriminant functions, i.e., the
decision limits separating the different classes. Ellipses represent covariance ellipsoids for each group
(log units).

The confusion matrix for the LDA, based on 1765 water samples that correspond
to 20% of the dataset, is presented in Table 1. About 67% of the samples were correctly
classified but disparities were observed between groups. Groups 5, 6 and 7 had a high rate
of good classification (89%, 83% and 100%, respectively), while GWB groups 8, 10 and 11
were the least well discriminated, partially overlapping mainly with GWB group 9. GWB
groups 4 and 5, which corresponded to medium mountain areas and accounted for more
than half of the water analyses, achieved correct classification rates of about 70% and 89%,
respectively. Results of the LDA performed not on groups but on GWB showed a lower
rate of well classified, around 38%.
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Table 1. Confusion matrix for the LDA test sample. The last column is the percentage of well
classified samples.

GWB Groups

1 2 3 4 5 6 7 8 9 10 11 %

1 6 0 0 0 0 0 0 0 2 0 0 75
2 2 12 1 6 2 0 0 0 0 0 0 52.2
3 0 4 70 53 9 0 0 0 13 1 15 42.4
4 0 32 45 307 18 1 0 0 24 4 8 69.9
5 1 0 0 0 446 2 0 1 33 4 15 88.8
6 0 0 0 0 0 10 0 0 2 0 0 83.3
7 0 0 0 0 0 0 2 0 0 0 0 100
8 0 0 0 2 3 1 0 12 15 0 5 31.6
9 1 1 3 2 10 10 2 5 215 1 36 75.2

10 4 2 2 5 19 1 0 0 26 12 11 14.6
11 0 0 11 27 9 3 0 5 54 4 65 36.5

3.2. QDA Results

Quadratic discriminant analysis (QDA) is likely to take into account more complex
relationships between parameters for group differentiation (Figure 6). For the Escherichia
coli vs. Total dissolved solids pair, complex decision boundaries emerged, but the ability to
distinguish GWB groups based on these parameters remained moderate. Similarly, for the
Escherichia coli vs. iron, Escherichia coli vs. nitrate, and Iron vs. nitrate pairs, the complex
decision boundaries suggested that the quadratic nature of QDA may offer a better fit and
potential differentiation between groups compared to LDA. Furthermore, for the TDS vs.
iron pair, the LDA showed high degrees of overlap between groups, and the QDA decision
boundaries showed greater flexibility. The confusion matrix is shown in Table 2.
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Table 2. Confusion matrix for the QDA test sample. The last column is the percentage of well
classified samples.

GWB Groups

1 2 3 4 5 6 7 8 9 10 11 %

1 2 0 0 0 0 0 0 1 1 4 0 25
2 0 16 2 3 0 0 0 0 0 2 0 70
3 0 3 122 14 7 0 0 2 11 4 2 74
4 0 23 173 185 3 0 0 2 36 7 10 42
5 1 0 1 3 455 0 0 10 24 6 2 91
6 0 0 0 0 0 9 0 0 3 0 0 75
7 0 0 0 0 2 0 0 0 0 0 0 0
8 0 0 2 0 3 0 0 27 5 1 0 71
9 0 1 10 2 30 3 0 55 172 6 7 60

10 0 2 5 2 28 1 0 1 18 21 4 26
11 0 0 32 11 7 3 0 28 76 8 13 7

QDA’s ability to potentially capture more complex patterns within the data could
enable better differentiation of GWB groups. However, group differentiation remained
difficult to estimate from a 2-dimensional projection of an 18-dimensional space. Compared
with the LDA, there was a clear improvement for groups 2, 3, 5 and 8. The two well-ranked
samples in group 7, on the other hand, were confused with group 5, reducing the success
rate for this group from 100% to 0%. As with the LDA, there was a lot of confusion from
observations of group 10 and to groups 9 and 5. The overall comparison between LDA
and QDA is summarized in Table 3. In general, the results show that linear discriminant
analysis performs better at all scales. The prediction of a water sample belonging to a GWB
group fell from 67% to 59% between LDA and QDA, respectively. In addition, while LDA
was able to predict with an accuracy of 41% whether an observation belonged to a sampling
point, the QDA results were practically nil.

Table 3. Accuracy scores of LDA and QDA classifications.

Classifier Observation ID GWB GWB Groups

LDA 0.41 0.40 0.67
QDA 0.001 0.17 0.59

3.3. Machine Learning Based Methods

At the scale of the collection point (Observation ID, Table 4), the best accuracy rates
were obtained with the Random Forest algorithm (0.44), followed by XGboost (0.34) and
Neural Network (0.33). The least efficient algorithms were Bernouilli Naive Bayes (0.057)
and Kernal SVM (0.059). Random Forest remained the best performing algorithm (0.67)
on the groundwater body scale, followed by XGboost (0.57) and Sub-space KNN (0.49).
Finally, looking at the GWB groups scale, we observe that the highest accuracy score was
achieved using the Random Forest model (0.83), followed by the LightGBM (0.80) and
XGBoost (0.76) models.
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Table 4. Accuracy results for the different ML methods at collection points, GWBs and GWB
groups scales.

Classifier
Scale

Observation ID GWB GWB Groups

Random Forest 0.43 0.67 0.83
Decision Tree 0.26 0.49 0.74

Neural Network 0.33 0.46 0.71
XGBoost 0.34 0.57 0.75

LightGBM 0.09 0.14 0.80
K-Nearest Neighbours 0.20 0.48 0.73

Ensemble (Subspace KNN) 0.20 0.49 0.72
Support Vector Machine 0.22 0.42 0.68

Kernal SVM 0.05 0.33 0.66
Logistic Regression 0.14 0.39 0.65

Gaussian Naive Bayes 0.19 0.19 0.62
Bernoulli Naive Bayes 0.05 0.28 0.56

Feature Contribution

Since Random Forest had the best accuracy score at all scales, this algorithm was
used to identify the key parameters for predicting whether a water sample belonged to an
observation point, GWB or group of GWBs. The random forest recursive feature elimination
(RF-RFE) method was applied in 18 iterations, adding up the parameters one by one. The
results are summarized in Tables 5–7 for observation points, GWBs and GWB groups,
respectively. Note that when considering GWB groups (Table 7), shifts appeared in the
matrix between 5 and 9 selected parameters in the recursive feature elimination (RFE)
parameter selection process. This is due to a change in the sequence due to the equality in
the order of importance of the selected parameters, as illustrated by the GINI index.

Table 5. Random forest feature importance per the number of RFE selected features (Observation
ID scale).

Selected Features

TDS Mg SO4 HCO3 Na Ca Cl NO3 EC25 pH K F E.
coli Ent. B Fe Mn As
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FE

pe
r

it
er
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n

1 1
2 0.57 0.43
3 0.37 0.32 0.31
4 0.26 0.26 0.24 0.24
5 0.21 0.21 0.2 0.19 0.19
6 0.17 0.18 0.17 0.16 0.17 0.15
7 0.14 0.16 0.15 0.14 0.14 0.14 0.13
8 0.13 0.14 0.13 0.13 0.12 0.12 0.12 0.11
9 0.11 0.13 0.12 0.12 0.11 0.11 0.1 0.1 0.1

10 0.1 0.12 0.11 0.1 0.1 0.1 0.1 0.1 0.09 0.08
11 0.1 0.11 0.1 0.1 0.09 0.09 0.09 0.09 0.08 0.08 0.07
12 0.09 0.11 0.1 0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.05
13 0.09 0.1 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.07 0.06 0.06 0.04
14 0.08 0.1 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.07 0.06 0.05 0.03 0.03
15 0.08 0.1 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.06 0.05 0.03 0.03 0.02
16 0.08 0.1 0.09 0.09 0.08 0.08 0.08 0.08 0.07 0.06 0.05 0.04 0.03 0.03 0.03 0.01
17 0.08 0.1 0.09 0.09 0.08 0.08 0.08 0.08 0.06 0.06 0.05 0.04 0.03 0.03 0.02 0.02 0.01
18 0.08 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.06 0.06 0.04 0.03 0.03 0.03 0.02 0.01 0.004



Hydrology 2023, 10, 230 13 of 19

Table 6. Random forest feature importance per the number of RFE selected features (GWB scale).

Selected Features

TDS Cl Mg SO4 HCO3 Na Ca NO3 EC25 pH K F E.
coli Ent. B Fe Mn As

To
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Pa
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1 1
2 0.6 0.4
3 0.36 0.33 0.32
4 0.27 0.26 0.24 0.24
5 0.19 0.23 0.21 0.19 0.18
6 0.17 0.18 0.18 0.17 0.16 0.15
7 0.14 0.16 0.16 0.14 0.14 0.14 0.13
8 0.12 0.14 0.14 0.13 0.12 0.13 0.12 0.10
9 0.10 0.13 0.14 0.12 0.11 0.12 0.10 0.09 0.09

10 0.09 0.13 0.13 0.11 0.10 0.11 0.09 0.09 0.08 0.08
11 0.08 0.12 0.12 0.10 0.09 0.10 0.09 0.08 0.08 0.08 0.07
12 0.08 0.11 0.11 0.10 0.09 0.09 0.08 0.07 0.07 0.07 0.07 0.05
13 0.08 0.11 0.10 0.09 0.09 0.09 0.08 0.07 0.07 0.07 0.07 0.05 0.04
14 0.08 0.10 0.10 0.09 0.08 0.09 0.08 0.07 0.07 0.07 0.07 0.05 0.03 0.03
15 0.08 0.10 0.10 0.09 0.08 0.08 0.07 0.07 0.07 0.06 0.06 0.05 0.03 0.03 0.03
16 0.07 0.10 0.10 0.09 0.08 0.09 0.07 0.07 0.07 0.06 0.06 0.05 0.03 0.03 0.02 0.01
17 0.07 0.10 0.10 0.09 0.08 0.08 0.07 0.07 0.07 0.06 0.06 0.05 0.03 0.03 0.02 0.01 0.01
18 0.07 0.10 0.10 0.09 0.08 0.08 0.07 0.07 0.07 0.07 0.06 0.05 0.03 0.03 0.02 0.01 0.01 0.006

Table 7. Random forest feature importance per the number of RFE selected features (GWB group
scale). Note that the RFE in this scale modifies the parameter elimination sequences from one iteration
to the next, which explains the shifts in the matrix.

Selected Features

TDS Cl Ca Na EC25 pH Mg HCO3 SO4 K NO3 F E.
coli Ent. B Fe Mn As

To
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Pa
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FE
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it
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1 1
2 0.57 0.43
3 0.33 0.38 0.29
4 0.26 0.28 0.24 0.22
5 0.19 0.26 0.19 0.18 0.18
6 0.16 0.22 0.16 0.17 0.13 0.15
7 0.15 0.21 0.12 0.16 0.12 0.12 0.12
8 0.12 0.19 0.12 0.14 0.11 0.11 0.10 0.11
9 0.10 0.18 0.10 0.13 0.10 0.11 0.10 0.11 0.09

10 0.10 0.17 0.09 0.12 0.09 0.10 0.09 0.09 0.08 0.08
11 0.10 0.16 0.08 0.11 0.08 0.09 0.08 0.08 0.08 0.08 0.06
12 0.09 0.15 0.08 0.11 0.08 0.09 0.07 0.09 0.08 0.07 0.06 0.04
13 0.08 0.15 0.08 0.10 0.08 0.08 0.07 0.08 0.07 0.07 0.06 0.04 0.03
14 0.08 0.14 0.08 0.10 0.08 0.08 0.07 0.08 0.07 0.07 0.06 0.04 0.03 0.02
15 0.08 0.13 0.08 0.11 0.08 0.08 0.07 0.07 0.07 0.07 0.06 0.04 0.03 0.02 0.02
16 0.07 0.14 0.08 0.11 0.08 0.08 0.07 0.08 0.07 0.07 0.06 0.04 0.03 0.02 0.02 0.01
17 0.08 0.14 0.07 0.10 0.08 0.08 0.07 0.07 0.07 0.07 0.05 0.04 0.03 0.03 0.02 0.01 0.01
18 0.07 0.14 0.07 0.10 0.08 0.08 0.07 0.07 0.07 0.08 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.006

The results show that major ions, electrical conductivity, nitrates and pH were the most
significant parameters for water samples classification at both the observation point and
GWB scales (Figure 7). On the other hand, at the GWB group level, electrical conductivity
and pH appeared as early as when the number of parameters selected by RFE was 5. The
weight of nitrates was much lower, appearing only when more than 10 parameters are
selected (Table 7 and Figure 6). Bacteriological parameters and trace element metals had
little influence on the classification of water samples, whatever the scale of observation. The
inclusion of these parameters only marginally improved the accuracy of the classification
from 0.44 to 0.46 at the observation point scale, from 0.65 to 0.66 at the GWB scale and from
0.82 to 0.83 at the GWB group scale.
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4. Discussion
4.1. Contrasting Water Quality

Linear discriminant analysis was used to assign a water sample to a GWB group with
a success rate of 67%. At the same time, the Random Forest algorithm had a success rate of
around 83%. Some machine learning methods give slightly better results than linear DA, but
these algorithms are known to favour discrimination efficiency over interpretability [57,58].
The results obtained by linear DA are more easily interpreted into an understanding of
the processes or parameters that differentiate spatial units. Overall, these results are very
satisfactory for a region as vast as the PACA region, with a wide diversity of environments
in terms of lithology, altitudinal gradient, land use, etc. In particular, these results are
much better than those obtained previously from a fairly similar extraction of the same
SISE-Eaux database [20]. This author mentioned a rate of well classified samples within
GWB groups of the order of 30% using the Naive Bayesian algorithm, whereas here we
obtain a rate of 62% using the same method. Several factors may explain this difference
in results: (1) a 15-year data series in our study compared with 10 years in the previous
study, resulting in a 30% larger matrix and therefore a more solid learning phase, (2) a
number of 18 parameters compared with only 15 in the previous study, even though the
added parameters (F, B) play only a very minor role in the discrimination of GWB groups
(Figure 6), and (3) the pre-processing of the data by log transformation, which reduces
the impact of extreme values [18,21] at different stages in the process of grouping the
groundwater bodies (PCA, calculation of the mean coordinate of each GWB on factorial
axis, hierarchical clustering). The good result, as well as the concentration of 90% of
the variance explained by LDA on the first 3 discriminant functions, shows the strong
structuring of the space in terms of water quality, which is reflected by heterogeneity
within the dataset. The first discriminant axis clearly illustrates the contrast between
calcic, mineralised carbonate waters and much more dilute waters showing signs of faecal
contamination. This major contrast in groundwater quality has already been noted in
previous studies of the PACA region [17,21], more specifically in the riverine aquifers, but
also in the Occitanie region in southwest France [22]. In these diluted waters, the high
levels of potassium and chloride ions suggest the influence of sewage plant effluents, which
generally contribute to runoff. These results show that vulnerability to contamination varies
greatly from one region to another. Karst aquifers are generally sensitive to pollutants due
to their specific characteristics. The epikarst zone has thin layers of soil that generally do
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not provide adequate filtration and allow rapid transit of contaminants [59]. Colloidal
ferric iron is a carrier for bacteria, which can be rapidly transported through the vast
network of fractures and conduits typical of these systems. The high degree of connectivity
within these aquifers further exacerbates the risk, leading to episodes of widespread
contamination that can affect vast areas and significantly compromise water quality. In
contrast, deep aquifers with moderate porosity and thicker layers of soil and rock are much
less vulnerable to contamination. These aquifers benefit from natural attenuation processes
during a much longer transfer, through soils that filter pollutants more effectively before
they reach the water table [19]. This distinction is essential when considering monitoring
strategies and protection measures for groundwater resources. Sustainable groundwater
management therefore necessarily involves approaches that are adapted to the increased
risks of contamination, implementing rigorous protection protocols to safeguard these
fragile systems.

The selection of various machine learning methods revealed the supremacy of en-
semble methods in terms of classification accuracy. Their robustness in handling complex
linear and non-linear relationships may be a consequence of the diversity of parameters
in the dataset, including major ions, trace elements, and bacteriological parameters, each
resulting from distinct processes, and manifested by distinct statistical distributions.

This good overall result, which validates the GWB grouping method, nevertheless
conceals disparities. The success rate is high for sedimentary aquifers in coastal areas
in the southwest of the PACA region (group 5). This good result can be explained by
the specific nature of these aquifers, which are the most mineralised in the region and
contain stagnant water in reducing conditions. On the other hand, the riverine aquifers,
particularly in the downstream part of rivers, are largely confused with the water resources
of the slopes that border them. This confusion reflects the degree of similarity in terms
of hydrochemistry and vulnerability to bacterial contamination and is illustrated by the
confusion between geographically and geologically neighbouring GWB groups 9 and 10.
Group 10 corresponds to the aquifers that accompany the lower valleys of the Rhône and
Durance rivers and some of their tributaries, while group 9 corresponds to the middle
valleys of the Durance and some of its tributaries, the riverine aquifers of mid-mountain
and hilly rivers, and the porous medium aquifers of the region’s lower valleys. Groups 2
and 3 show a proportion of observations that are misclassified by most ML algorithms
and by LDA analysis. These groups contain mountain and high mountain GWBs, with
consequent high temporal variability in mineral load. The water is much diluted when the
snow melts, particularly in group 2, which is located on crystalline rock, whereas it can be
much more mineralized at the end of the summer. The alternating mineral content of the
water may be the reason for the misclassification. To this must be added a high vulnerability
to contamination, the temporal variability of which is difficult for the algorithms to take
into account.

4.2. Disparities in Discrimination Depending on Parameters

The good prediction result also highlights that the linearity of the discriminant analysis
is not a major constraint to the recognition of aquifer types (GWB groups) based on
water quality. Quadratic discriminant analysis, although better able to capture complex
boundaries between GWB groups in the data hyperspace, does not improve prediction,
suggesting that it is not necessary to consider a specific variance for each parameter. If
QDA shows more distinct decision limits than LDA, this means that discrimination is
better with a non-linear model. This should guide us towards a learning model suitable
for discrimination according to this pair of variables. Here, while TDS is a key variable in
discrimination (Figure 4) and follows a linear aspect (Figure 5), this is not the case for Fe
and NO3, which have a much lower weight in discrimination between groups of GWBs.
This explains the good results obtained with LDA. As the different parameters do not
depend on the same processes responsible for variability in water composition, they are not
affected in a similar way by the linearity or non-linearity of the discrimination method. The
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results of both the LDA and ML algorithms suggest the major ions that account for most
of the discrimination, since they determine more than 80% of the discrimination between
GWB groups. These are essentially lithologically determined parameters with a high spatial
range [21,22]. In contrast, metals and metalloids generally show very local variability, at the
scale of the observation point. Arsenic, for example, was identified as contributing around
8% of the variance in the dataset [20] but plays virtually no role in group discrimination.
This is due to a local variability that relates to only a few sampling points, but does not
concern an entire GWB, let alone a group of GWBs. The same applies to bacteriological
parameters. The variability is not only local, but also seasonal, with contamination often
caused by late summer storms, a classic meteorological phenomenon occurring in the
Mediterranean climate, inducing run-off of turbid water that can carry a large bacterial
load. Thus, although these parameters play a significant role in the variability of the dataset
on a regional scale, they contribute very little to the discrimination of GWB groups. In
addition to this seasonal aspect, groundwater contamination is multifactorial. The presence
of E. coli is linked to suspended matter, generally clay particles, but can also be associated
with iron particles. Transport to the water table depends on the soil’s filtration capacity, its
mineralogical nature, which is particularly slowed by the presence of flocculent cations,
and human activities (agriculture, livestock farming, quality of water treatment plants,
etc.). Nitrates make a moderate contribution to discrimination, which is consistent with an
intermediate spatial range between major ions on the one hand, and trace elements and
bacteriological parameters on the other. When considering the Fe vs. NO3 couple, these
two parameters are frequently in opposition due to redox conditions. [19,20,22]. NO3 is
stable under oxidizing conditions and is reduced during denitrification under reducing
conditions. Dissolved iron is soluble in reducing environments and insoluble in oxidizing
environments, although it can be found in colloidal form in oxidizing environments (for
example karst). The closeness of the decision limits for the Fe vs. NO3 pair suggests that the
range of redox conditions is not an axis allowing clear discrimination between the groups.

The disparity in the importance of the parameters for GWB group discrimination
is an aspect that has already been addressed in earlier stages of the development of this
procedure, notably by Tiouiouine et al. [20], but only implicitly. Here, we explicitly show
this disparity, which stems from the range of each parameter, but also from the redundancy
of the information carried by each of these parameters. Major ions, TDS and EC reflect
lithology, a key feature not only in the acquisition of the chemical characteristics of water,
but also sometimes in land use, which can have an impact on vulnerability to various
forms of pollution (nitrates, faecal contamination, etc.). Thus, classifying observations
within GWB groups is mainly based on major ions, which have low temporal variability
and high spatial range. The findings thus underscore the importance of recognizing the
unique statistical characteristics and local/broad or even regional behaviours of parameters
when employing various machine learning methods for the classification of groundwater
quality. It is based on all these interrelations, taken into account in the grouping into
homogeneous GWBs, that the monitoring and surveillance of the quality of the resource
must be considered.

5. Conclusions

In order to facilitate the monitoring of groundwater resources in France, a multi
parametric classification of groundwater bodies has been carried out, based on physico-
chemical and bacteriological characteristics. In the Provence-Alpes-Côte d’Azur (PACA)
region, previous studies have shown that the classification into 11 groups of GWBs obtained
made sense, grouping together GWBs where the processes responsible for the variability
of characteristics were similar. Based on a 15-year sampling of 8673 observations (water
samples) and 18 parameters, we establish the legitimacy of this grouping using various
techniques for classifying observations within the 11 groups, with a success rate of between
67% and 83%. The multi parametric clustering method proposed by Touiouine et al. [20] and
improved by Jabrane et al. [18] and Mohsine et al. [21] is robust and efficient. For the health
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agencies responsible for monitoring the quality of groundwater resources, each group of
GWBs with a well-defined specificity is a relevant spatial unit. Despite the relatively large
number and disparity of parameters, the study shows that the number of discriminant
functions required to establish GWB groups is relatively low. The major ions, including
the two related parameters, namely total dissolved charge and electrical conductivity,
exhibit low temporal variability and high spatial range. They are the key parameters in the
discrimination of GWB groups. Although trace elements and bacteriological parameters
play a significant role in the variability of water quality in the dataset and account for most
of the non-conformities in water intended for human consumption, they have only a very
marginal influence on the establishment of groups due to their local and high temporal
variability. The GWBs delineated by the French Geological Survey in accordance with
the guidelines of the European Union’s Water Framework Directive are too numerous to
be a practical unit for monitoring groundwater quality by health agencies. However, a
better understanding of the factors influencing groundwater quality, based on GWB groups,
which are fewer and more homogeneous units, opens the way to improved monitoring and
protection strategies, to ensure the sustainability of the resource.
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