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∗Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, Spain.
Research supported under grants MTM2013-42538-P (MINECO, ES) and MTM2016-
78995-P (AEI/FEDER, UE). frutos@mac.uva.es
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1 Introduction

We analyze a modified Chorin-Teman (Euler non-incremental) projection
method for non inf-sup stable mixed finite elements with a pressure space
Qh ⊂ H1(Ω). As a particular case we obtain the analysis of the classical
Chorin-Temam method. We prove that both the modified and the standard
methods have an inherent stabilization of PSPG type that allow the use of
non inf-sup stable mixed finite elements without any kind of extra added
stabilization. This result was known in the literature, see for example [11],
but to our knowledge there were no available error bounds for the case of
non inf-sup stable elements (see below for related results in [3]). In refer-
ence [9] we considered the case of the transient Stokes equations assuming
enough regularity for the solution. In the present paper the analysis is ap-
plied to the evolutionary Navier-Stokes equations without assuming non-local
compatibility conditions. We consider a explicit treatment of the nonlinear
convection term since this is easier to implement in practice, although our
analysis, if slightly modified, also covers the case of a fully implicit treat-
ment of the nonlinear term. The analysis of the Chorin-Temam method
holds under condition ∆t ≥ Ch2 (and assuming also ∆t = O(h)) which is in
agreement with the error bounds in [3] where the authors prove error bounds
for the Euler non-incremental scheme for LBB stable elements assuming also
∆t ≥ Ch2. This result is also in agreement with the fact that had been
observed in the literature that the standard Euler non-incremental scheme
provides computed pressures that behave unstably for ∆t small and fixed h
if non inf-sup stable elements are used, see [7]. With our error analysis we
clarify this question since we show that, when ∆t → 0, the inherent PSPG
stabilization of the method disappears. On the other hand, for the modified
Euler non-incremental method that we propose, the PSPG stabilization does
not disappear when ∆t → 0, which allows to use ∆t as small as desired in
this modified method. Our results are also in agreement with the classical
results for the continuous in space Euler non-incremental method (see for
example [12]) since we prove that the rate of convergence in terms of ∆t in
the L2 norm of the velocity is one and the rate of convergence in the H1

norm of the velocity and the L2 norm of the pressure is one half.
It is well-known (see e.g., [15, Corollary 2.1]) that the solution of the

Navier-Stokes equations, no matter how smooth the initial velocity and
the forcing term are, cannot be expected to have third spatial derivatives
bounded up to t = 0, unless certain nonlocal compatibility conditions (which
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are difficult to check in practice and cannot be realistically assumed) are
satisfied. For the pressure, the same can be said for second spatial deriva-
tives. To cope with this fact in this paper we obtain error bounds that do
not require the above-mentioned compatibility conditions to be satisfied.

Of course, the Chorin-Temam projection method is well known and this
is not the first paper where the analysis of this method is considered. The
analysis of the semidiscretization in time is carried out in [23], [24], [22], [21],
[14]. In [7] the stability of the Chorin-Temam projection method is considered
and, in case of non inf-sup stable mixed finite elements, some a priori bounds
for the approximations to the velocity and pressure are obtained but no error
bounds are proven for this method. In [3] the Chorin-Teman method is
considered together with both non inf-sup stable and inf-sup stable mixed
finite elements. In case of using non inf-sup stable mixed finite elements a
local projection type stabilization is required in [3] to get the error bounds of
the method. Both in the present paper and in [9], however, we get optimal
error bounds without any extra stabilization for non inf-sup stable mixed
finite elements.

For the Euler incremental scheme the analysis of the semidiscretization
in time can be found in [21]. The Euler incremental scheme with a spatial
discretization based on inf-sup stable mixed finite elements is analyzed in
[13]. To our knowledge there is no error analysis for this method in case of
using non-inf-sup stable elements other than the one in [9]. Some stability
estimates can be found in [7] for the method with added stabilization terms
more related to local projection stabilization than to the PSPG stabilization
we consider in the present paper. A stabilized version of the incremental
scheme is also proposed in [20] although no error bounds are proved. Finally,
for an overview on projection methods we refer the reader to [12].

Being the Chorin-Temam projection method an old one, it has seen the
appearance of many alternative methods during the years, many of which
possess better convergence properties. The purpose of the present paper is
not to discuss its advantages of disadvantages with respect to newer methods,
but just to analyze the method when used in combination with non inf-sup
stable elements, a task not fully carried out in the previous literature.

The outline of the paper is as follows. In the first section we introduce
some notation. In Section 3 we state some results about a stabilized Stokes
approximation that was introduced in [9]. In Section 4 we get the error
analysis of the method for the transient Stokes equations. Finally, in the
last section we prove the error bounds for the method for the Navier-Stokes
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equations. The analysis is based on a stability plus consistency arguments
with stability restricted to h-dependent thresholds and is strongly based on
the results for the transient Stokes equations obtained in Section 4.

2 Preliminaries and notation

Throughout the paper, standard notation is used for Sobolev spaces and
corresponding norms. In particular, given a measurable set ω ⊂ Rd, d = 2, 3,
its Lebesgue measure is denoted by |ω|, the inner product in L2(ω) or L2(ω)d

is denoted by (·, ·)ω and the notation (·, ·) is used instead of (·, ·)Ω. The semi
norm in Wm,p(ω) will be denoted by | · |m,p,ω and, following [8], we define the
norm ‖·‖m,p,ω as

‖f‖pm,p,ω =
m∑
j=0

|ω|
p(j−m)

d |f |pj,p,ω ,

so that ‖f‖m,p,ω |ω|
m
d
− 1

p is scale invariant. We will also use the conventions
‖ · ‖m,ω = ‖ · ‖m,2,ω and ‖ · ‖m = ‖ · ‖m,2,Ω. As it is usual we will use the
special notation Hs(ω) to denote W s,2(ω) and we will denote by H1

0 (Ω) the
subspace of functions of H1(Ω) satisfying homogeneous Dirichlet boundary
conditions. Finally, L2

0(Ω) will denote the subspace of function of L2(Ω) with
zero mean.

Let us denote by Th a triangulation of the domain Ω, which, for simplicity,
is assumed to have a Lipschitz polygonal boundary. On Th, we consider the
finite element spaces Vh ⊂ V = H1

0 (Ω)d and Qh ⊂ L2
0(Ω) ∩H1(Ω) based on

local polynomials of degree k and l respectively. Equal degree polynomials
for velocity and pressure are allowed. In the sequel it will be assumed that
the family of meshes are regular.

Concerning the discretization, we shall assume that the family of meshes
is quasi-uniform that is for a constant Λ ≥ 1, the following inequality holds

h/hK ≤ Λ, ∀K ∈ Th, (1)

where hK is the diameter of the K ∈ Th and h = maxK∈Th hK .
We shall also assume that the triangulations are regular enough so that

for a constant cinv > 0 the following inequality holds for each vh ∈ Vh, see
e.g., [6, Theorem 3.2.6],

‖vh‖Wm,p(K) ≤ cinvh
l−m−d( 1

q
− 1

p)
K ‖vh‖W l,q(K), (2)
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where 0 ≤ l ≤ m ≤ 1, 1 ≤ q ≤ p ≤ ∞, and hK is the size (diameter) of the
mesh cell K ∈ Th.

We will denote by Ihu ∈ Vh the Lagrange interpolant of a continuous
function u. The following bound can be found in [6, Theorem 3.1.6]

|u− Ihu|Wm,p(K)d ≤ cinth
l′−m−d( 1

q
− 1

p)|u|W l′,q(K)d , 0 ≤ m ≤ 1 ≤ l′, (3)

where l′ > d/q when 1 < q ≤ ∞ and l′ ≥ d when q = 1.
Let λ be the smallest eigenvalue of A = −∆ subject to homogeneous

Dirichlet boundary conditions, ∆ being the Laplacian operator in Ω. Then,
it is well-known that there exists a scale-invariant positive constant c−1 such
that

‖v‖−1 ≤ c−1λ
−1/2 ‖v‖0 , v ∈ L2(Ω)d, (4)

and, also,

‖v‖0 ≤ λ−1/2 ‖∇v‖0 , v ∈ H1
0 (Ω)d,

this last inequality also known as the Poincaré inequality. As a consequence
of the above, there exist a scale-invariant constant cP > 0 such that

‖v‖1 ≤ cP ‖∇v‖0 , v ∈ H1
0 (Ω)d, (5)

We will use the following well-known inequalities:

i) Sobolev’s inequality, [1]: For s > 0 there exist a scale-invariant constant
cs > such that for p ∈ [1,∞) satisfying 1

p
≥ 1

2
− s

d
, the following

inequality holds

‖v‖Lp(Ω) ≤ cs |Ω|
s
d
− 1

2
+ 1

p ‖v‖s, v ∈ Hs(Ω). (6)

For p =∞, the relation is valid if 0 > 1
2
− s

d
.

ii) Agmon’s inequality,

‖v‖∞ ≤ cA

{
‖v‖1/2

0 ‖v‖
1/2
2 , d = 2,

‖v‖1/2
1 ‖v‖

1/2
2 , d = 3,

v ∈ H2(Ω). (7)

The case d = 2 is a direct consequence of [2, Theorem 3.9]. For d = 3,
a proof for domains of class C2 can be found in [8, Lemma 4.10], but
thanks to the Calderón extension theorem (see e.g., [1, Theorem 4.32]
the proof is valid for bounded Lipschitz domains.
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iii) The following version of Hölder’s inequality∣∣∣∫
Ω

v1v2v3 dx
∣∣∣ ≤ ‖v1‖Lp1 (Ω) ‖v2‖Lp2 (Ω) ‖v3‖Lp3 (Ω) ,

1

p1

+
1

p2

+
1

p3

= 1.

(8)
We shall frequently apply this inequality with p1 = 2, p2 = 2d/(d− 1)
and p3 = 2d, or p1 =∞, and p2 = p3 = 2.

iv) The following inequality

‖v‖
L

2d
d−1 (Ω)

≤ c
1/2
1 ‖v‖

1/2
0 ‖∇v‖

1/2
0 , v ∈ H1(Ω). (9)

which is a consequence of Sobolev’s inequality and the convexity in-
equality (see e. g., [10, § II.1]).

All previous inequalities are also valid for vector-valued functions.

3 A Stabilized Stokes approximation

Let us consider the Stokes problem

−ν∆s +∇z = ĝ, in Ω

∇ · s = 0, in Ω (10)

s = 0, in ∂Ω.

As in [9] we define the stabilized Stokes approximation to (10) as the mixed
finite element approximation (sh, zh) ∈ (Vh, Qh) satisfying

ν(∇sh,∇χh) + (∇zh,χh) = (ĝ,χh), ∀χh ∈ Vh, (11)

(∇ · sh, ψh) = −δ(∇zh,∇ψh), ∀ψh ∈ Qh, (12)

where δ is a constant parameter. Observe that from (10) and (11) it follows
that the errors sh − s and zh − z satisfy that

ν(∇(sh − s),∇χh) + (∇(zh − z),χh) = 0, ∀χh ∈ Vh. (13)

From now on we will use C to denote a generic non-dimensional constant.
We now state two lemmas that will be used in the sequel. The proof of

the following lemma can be found in [4, Lemma 3], see also [17, Lemma 2.1].
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Lemma 1 For ψh ∈ Qh it holds

‖ψh‖0 ≤ Ch‖∇ψh‖0 + C sup
χh∈Vh

(ψh,∇ · χh)
‖χh‖1

.

Lemma 2 There exist a constant C > 0 such that for any v ∈ H1
0 (Ω)d with

div(v) = 0, q ∈ L2
0(Ω), vh ∈ Vh and qh ∈ Qh satisfying

ν(∇(vh − v),∇χh) + (∇(qh − q),χh) = 0, ∀χh ∈ Vh, (14)

(∇ · (vh − v), ψh) + δ(∇qh,∇ψh) = 0, ∀ψh ∈ Qh, (15)

the following bounds hold:

ν1/2 ‖∇vh‖0 + δ1/2 ‖∇qh‖0 ≤ C
(
ν1/2 ‖∇v‖0 + ν−1/2 ‖q‖0

)
, (16)

‖vh − v‖0 ≤ C
(
h
(
‖∇(v − vh)‖0 + ν−1 ‖q − qh‖0

)
+ δ ‖∇qh‖0

)
. (17)

Proof Observe that since div(v) = 0, relation (15) can be written in the
form (∇·vh, ψh)+δ(∇qh,∇ψh) = 0, for all ψh ∈ Qh. Then taking ψh = qh in
this relation, χh = vh in (14) and summing both equations, the bound (16)
easily follows. The proof of (17) can be found in [9, Lemma 2]. �

In the sequel we will assume

1

νρ2
1

h2 ≤ δ, (18)

for a positive constant ρ1. The following bounds hold for the stabilized Stokes
approximation solving (11)-(12) assuming condition (18) holds, see [9].

ν1/2‖∇(s− sh)‖0 + δ1/2‖∇(z − zh)‖0

≤ C
h

ν1/2
(ν‖s‖2 + ‖z‖1) + Cδ1/2‖z‖1,

‖z − zh‖0 ≤ Ch(ν‖s‖2 + ‖z‖1) + C(νδ)1/2‖z‖1

‖s− sh‖0 ≤ C
h2

ν
(ν‖s‖2 + ‖z‖1) + Cδ‖z‖1.

(19)
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3.1 A priori bounds for the stabilized Stokes approxi-
mation

We will get some a priori bounds for the stabilized Stokes approximation
that will be needed in the sequel. They are a consequence of Lemma 2. In
fact applying this result with vh = sh and qh = zh, (16) implies that

ν‖∇sh‖2
0 + δ‖∇zh‖2

0 ≤ C
(
ν‖∇s‖2

0 + ν−1‖z‖2
0

)
. (20)

Similarly, from (17) it follows that

‖sh − s‖0 ≤ C
(
h
(
‖∇(sh − s)‖0 + ν−1 ‖z − zh‖0

)
+ δ ‖∇zh‖0

)
≤ Ch

(
‖∇sh‖0 + ‖∇s‖0 + ν−1 (‖z‖0 + ‖zh‖0)

)
+ Cδ ‖∇zh‖0

≤ Ch
(
‖∇s‖0 + ν−1 (‖z‖0 + ‖zh‖0)

)
+ Cδ1/2

(
ν1/2 ‖∇s‖0 + ν−1/2 ‖z‖0

)
,

(21)

where in the last inequality we have applied (20). Now observe that from Lemma 1
and (13) it follows that

‖zh‖0 ≤ Chδ−1/2δ1/2‖∇zh‖0 + sup
χh∈Vh

(zh,∇ · χh)
‖χh‖1

≤ Chδ−1/2δ1/2‖∇zh‖0 + ‖z‖0 + ν ‖∇(s− sh)‖0 .

Recalling (18) and applying (20) we have

‖zh‖0 ≤ C
(
ν ‖∇s‖0 + ‖z‖0

)
. (22)

To bound ‖∇zh‖0 we add and subtract ∇z and apply (19) and (18) to obtain

‖∇zh‖0 ≤ ‖∇(zh − z)‖0 + ‖∇z‖0 ≤ δ−1/2C
h

ν1/2
(ν‖s‖2 + ‖z‖1) + ‖z‖1

≤ C(ν‖s‖2 + ‖z‖1). (23)

From (21) and (22) we get

‖sh‖0 ≤ Ch
(
‖∇s‖0 + ν−1 ‖z‖0

)
+ C ‖s‖0 . (24)

Finally, we will also use the following bound

‖s− sh‖0 ≤ C(h+ ν1/2δ1/2)
(
‖s‖1 + ν−1‖z‖0

)
. (25)

8



To prove (25) we first observe that taking into account (20) and (22) and
adding and subtracting s and z respectively we get

ν1/2‖∇(s− sh)‖0 ≤ C(ν1/2‖s‖1 + ν−1/2‖z‖0), (26)

‖zh − z‖0 ≤ C(ν‖s‖1 + ‖z‖0).

Applying the bound (17) to (vh, qh) = (sh, zh) together with (26) and (20)
we reach (25).

4 Transient Stokes equations

We now consider the evolutionary Stokes equations

vt − ν∆v +∇q = g, in Ω

∇ · v = 0, in Ω (27)

v = 0, on ∂Ω,

v(0,x) = v0(x), in Ω.

We shall assume that there are positive constants M1 and M2 such that for
t ∈ [0, T ],

‖v(t)‖1 + ν−1 ‖q(t)‖0 ≤M1, ‖v(t)‖2 + ν−1 (‖q(t)‖1 + ‖vt(t)‖0) ≤M2,
(28)

and, following the analysis in [15], for k ≥ 2 integer, we shall assume that
the following quantities are finite

Mk,1 = max
0≤t≤T

(t/T )k/2−1
(
‖v(t)‖k + ν−1 ‖q(t)‖Hk−1/R

)
, (29)

Mk,2 = max
0≤t≤T

(t/T )k/2−1
(
ν−1 ‖vt(t)‖k−2 + ν−2 ‖qt(t)‖Hk−3/R

)
, (30)

K2
k,2 =

∫ T

0

( t
T

)k−3(
ν−2 ‖vt(t)‖2

k−2 + ν−4 ‖qt(t)‖2
Hk−3/R

)
dt, (31)

together with,

K2
4,3 = ν−4

∫ T

0

t

T
‖vtt‖2

0 dt, (32)

and

K̂2
3 = ν−2

∫ T

0

‖gt‖
2
0 dt. (33)
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We consider the modified Euler non-incremental scheme that has been
introduced in [9]. We will denote by (vnh, ṽ

n
h, q

n
h), n = 1, 2, . . . , ṽnh ∈ Vh,

qnh ∈ Qh and vnh ∈ Vh+∇Qh the approximations to the velocity and pressure
at time tn = n∆t, ∆t = T/N , N > 0 obtained with the modified Euler
non-incremental scheme(

ṽn+1
h − vnh

∆t
,χh

)
+ ν(∇ṽn+1

h ,∇χh) = (gn+1,χh), ∀χh ∈ Vh

(∇ · ṽn+1
h , ψh) = −δ(∇qn+1

h ,∇ψh), ∀ψh ∈ Qh, (34)

vn+1
h = ṽn+1

h − δ∇qn+1
h .

Let us observe that for δ = ∆t in (34) we have the classical Chorin-Temam
(Euler non-incremental) scheme [5], [25]. In case δ = ∆t we can remove vnh
from (34) inserting the expression of vnh from the last equation in (34) into
the first equation to get(

ṽn+1
h − ṽnh

∆t
,χh

)
+ ν(∇ṽn+1

h ,∇χh) + (∇qnh ,χh) = (gn+1,χh), ∀χh ∈ Vh (35)

(∇ · ṽn+1
h , ψh) = −δ(∇qn+1

h ,∇ψh), ∀ψh ∈ Qh. (36)

The method we propose is (35) for δ, in general, different from ∆t. We suggest
to take δ satisfying (18). As a consequence of the error analysis of this section
we will get the error bounds for the classical Euler non-incremental scheme
assuming in that case δ = ∆t.

To get the error bounds of the method we compare the approximation
(ṽnh, q

n
h) defined in (35)-(36) with the stabilized Stokes approximation de-

fined in the previous section. More precisely, let us denote by (snh, z
n
h) =

(sh(tn), zh(tn)) ∈ Vh×Qh the stabilized Stokes approximation of the solution
(v, p) of (27) at time tn satisfying

ν(∇sh,χh) + (∇zh,χh) = (ĝ,χh), χh ∈ Vh, (37)

(∇ · sh, ψh) = −δ(∇zh,∇ψh), ∀ψh ∈ Qh,

where ĝ = g − vt. Let us observe that the error bounds of Section 3.1 hold
with (s, z) = (v, q). Taking time derivatives in (20) and (24) we also reach

‖(sh)t‖0 ≤ Ch
(
‖∇st‖0 + ν−1 ‖zt‖0

)
+ C ‖st‖0 . (38)

In the sequel we will denote by

ẽnh = ṽnh − snh, rnh = qnh − znh .
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From (35), (36) and (37) one obtains the following error equation for all
χh ∈ Vh, ψh ∈ Qh( ẽn+1

h − ẽnh
∆t

,χh

)
+ ν(∇ẽn+1

h ,∇χh)+(∇rnh ,χh) =

(τnh ,χh)− (∇(znh − zn+1
h ),χh),

(∇ · ẽn+1
h , ψh)+δ(∇rn+1

h ,∇ψh) = 0. (39)

where

τnh = vn+1
t − sn+1

h − snh
∆t

= (vn+1
t − (sh)

n+1
t ) +

(
(sh)

n+1
t − sn+1

h − snh
∆t

)
. (40)

To estimate the errors ẽnh and rnh we will use the following stability result.

Lemma 3 Let (wn
h)∞n=0 and (bnh)∞n=0 sequences in Vh and (ynh)∞n=0 and (dnh)∞n=0

sequences in Qh satisfying for all χh ∈ Vh and ψh ∈ Qh(
wn+1
h −wn

h

∆t
,χh

)
+ ν(∇wn+1

h ,∇χh) + (∇ynh ,χh) =(bnh +∇dnh,χh),

(∇ ·wn+1
h , ψh) + δ(∇yn+1

h ,∇ψh) =0.

Assume condition
∆t ≤ δ (41)

holds. Then, for 0 ≤ n0 ≤ n − 1 there exits a non-dimensional constant c0

such that the following bounds hold

‖wn
h‖2

0 +
n−1∑
j=n0

‖wj+1
h −wj

h‖
2
0 + ∆t

n−1∑
j=n0

(
ν‖∇wj+1

h ‖
2
0 + δ‖∇yj+1

h ‖
2
0

)
≤ c0

(
‖wn0

h ‖
2
0 + ∆t

n−1∑
j=n0

(
ν−1‖bjh‖

2
−1 + δ‖∇djh‖

2
0

))
.

(42)

tn‖wn
h‖2

0 +
n−1∑
j=n0

tj+1‖wj+1
h −wj

h‖
2
0 + ∆t

n−1∑
j=n0

tj+1

(
ν‖∇wj+1

h ‖
2
0 + δ‖∇yj+1

h ‖
2
0

)
≤ c0

(
tn0‖wn0

h ‖
2
0 + ∆t

n∑
j=n0

‖wj
h‖

2
0 + ∆t

n−1∑
j=n0

tj+1

(
tj+1‖bjh‖

2
0 + δ‖∇djh‖

2
0

))
.

(43)
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n−1∑
j=n0

∆t

∥∥∥∥wj+1
h −wj

h

∆t

∥∥∥∥2

0

+ ν‖∇wn
h‖2

0 + δ‖∇ynh‖2
0 + ν

n−1∑
j=n0

‖∇(wj+1
h −wj

h)‖
2
0

≤ c0

(
ν‖∇wn0

h ‖
2
0 + δ‖∇yn0

h ‖
2
0 + ∆t

n−1∑
j=n0

(
‖bjh‖

2
0 + ‖∇djh‖

2
0

))
(44)

and

n−1∑
j=n0

tj+1∆t

∥∥∥∥wj+1
h −wj

h

∆t

∥∥∥∥2

0

+ νtn‖∇wn
h‖2

0 + δtn‖∇ynh‖2
0

≤ c0

(
∆t

n−1∑
j=n0

tj+1

(
‖bjh‖

2
0 + ‖∇djh‖

2
0

)
+ ∆t

n−1∑
j=n0

(
ν‖∇wj

h‖
2
0 + δ‖∇yjh‖

2
0

))
.

(45)

Proof The proof of (42), (43) and (44) can be found in [9, Lemma 3]. The
proof of (45) can be easily reached arguing as in the proof of (44). �

Remark 1 As commented in [9], it is possible to change condition (41) by
∆t < 2δ, but this requires a more elaborate proof than that presented in [9].

In the sequel, although it is not strictly necessary to prove our results,
we will assume that

δ ≤ T. (46)

to simplify some of the expressions below.

Theorem 1 Let (v, q) be the solution of (27) and let (ṽnh, q
n
h), n ≥ 1, be the

solution of (35)-(36). Assume δ satisfies condition (18) and (46), and that
∆t satisfies condition (41). Then, the following bounds hold

tn‖ṽnh − v(tn)‖2
0 ≤ Ctn

(
‖ṽ0

h − v(0)‖2
0 + ∆t2

∥∥∇r0
h

∥∥2

0

)
+C1tn∆t2 + C2tn(h4 + δ2ν2), (47)

where C1 and C2 are defined as

C1 = Cν2
(
C2 + ν2K2

4,3T + K̂2
3T +M2

2,2

)
, (48)

C2 = C
(
ν2K2

4,2T + νK2
3,2 +M2

2,1

)
, (49)
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Moreover, it also holds,

∆t
n∑
j=1

(
ν‖∇(ṽjh − v(tj))‖2

0 + δ‖∇(qjh − q(tj))‖
2
0

)
≤ C‖ṽ0

h − v(0)‖2
0 + C̃1∆t+ C̃2(h2 + νδ).

(50)

where, assuming (46),

C̃1 = C1((νλ)−1 + T ), (51)

C̃2 = C2(λ−1 + diam(Ω)2 + νT ). (52)

Proof In view of (39) we can apply (43) for wn
h = ẽnh, ynh = rnh , bnh = τnh

and dnh = zn+1
h − znh . It follows that

tn‖ẽnh‖2
0 + ∆t

n∑
j=1

tj
(
ν‖∇ẽjh‖

2
0 + δ‖∇rjh‖

2
0

)
≤ c0

(
∆t

n∑
j=0

‖ẽjh‖
2
0 +

n−1∑
j=0

∆t
(
t2j+1‖τ

j
h‖

2
0 + δtj+1‖∇(zj+1

h − zjh)‖
2
0

))
.

(53)

To bound the second term on the right-hand side of (53), we notice that
tj+1/tj ≤ 2 for j = 1, . . . , n− 1, so that we may write

∆t
n−1∑
j=0

t2j+1‖τ
j
h‖

2
0 ≤ Ctn∆t

n−1∑
j=0

t′j‖τ
j
h‖

2
0,

where t′j = max(∆t, tj). From definition (40) we may write

‖τ jh‖
2
0 ≤ 2

∥∥∥∥vj+1
t − vj+1 − vj

∆t

∥∥∥∥2

0

+
2

∆t2
∥∥(vj+1 − sj+1

h )− (vj − sjh)
∥∥2

0
. (54)

To bound the first term on the right-hand side of (54), after taking Taylor
expansion with integral reminder and applying Hölder’s inequality we have

∆t
n−1∑
j=0

t′j

∥∥∥∥vj+1
t − vj+1 − vj

∆t

∥∥∥∥2

0

≤
n−1∑
j=0

t′j

∫ tj+1

tj

(s− tj)2‖vss‖2
0.

13



Now, for j ≥ 1, we write t′j(s − tj)2 = tj(s − tj)2 ≤ tj∆t
2 ≤ s∆t2, and, for

j = 0, t′0(s− tj)2 = ∆t(s)2 ≤ s∆t2, so that applying (32) we get

∆t
n−1∑
j=0

t′j

∥∥∥∥vj+1
t − vj+1 − vj

∆t

∥∥∥∥2

0

≤ ∆t2
∫ tn

t0

s‖vss‖2
0 ≤ ∆t2Tν4K2

4,3. (55)

To bound the second term on the right-hand side of (54) we observe that

∥∥(vj+1 − sj+1
h )− (vj − sjh)

∥∥2

0
=
∥∥∥∫ tj+1

tj

(v − sh)s ds
∥∥∥2

0

≤ ∆t

∫ tj+1

tj

‖(v − sh)s‖2
0 ds,

where, in the last inequality we have applied Hölder’s inequality. Now, for
j ≥ 1 we write t′j = tj ≤ s and apply (19) to bound ‖(v − sh)s‖2

0, and, for
j = 0, t′0 = ∆t and apply (25), so that we have

1

∆t

n−1∑
j=0

t′j
∥∥(vj+1 − sj+1

h )− (vj − sjh)
∥∥2

0

≤ C

∫ tn

t1

(h4 + δ2ν2)s
(
‖vs‖2

2 + ν−2‖qs‖2
1

)
ds

+ C

∫ t1

0

(
ν∆t2 +

h4

ν
+ νδ2

)(
‖vs‖2

1 + ν−2‖qs‖2
0

)
ds

≤ C(h4 + ν2(∆t2 + δ2)(ν2K2
4,2T + νK2

3,2), (56)

where in the last inequality we have applied (31). Thus, from (54), (55) and
(56) we finally reach

∆t
n−1∑
j=0

t′j‖τ
j
h‖

2
0 ≤ C

(
∆t2ν4TK2

4,3 + (h4 + ν2(∆t2 + δ2)(ν2K2
4,2T + νK2

3,2)
)
,

(57)
so that for the second term on the right-hand side of (53) we write

∆t
n−1∑
j=0

t2j+1‖τ
j
h‖

2
0 ≤Ctn∆t2ν4TK2

4,3

+ Ctn(h4 + ν2(∆t2 + δ2)(ν2K2
4,2T + νK3,2).

(58)
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Let us also observe that by writing ∆t−1t′j ≥ 1 and using (54), and repeating
the arguments to prove (56), but using (25) instead of (19) for j ≥ 1 we get

∆t
n−1∑
j=0

‖τ jh‖
2
0 ≤ C

(
∆tν4T (K2

4,2 +K3
4,3) + (h2 + νδ)ν2K2

3,2

)
, (59)

For the last term on the right-hand side of (53), applying Hölder’s in-
equality and (16), we may write

δ‖∇(zj+1
h − zjh)‖

2
0 = δ

∥∥∫ tj+1

tj

(∇zh)s
∥∥2

0
≤ ∆t

∫ tj+1

tj

δ‖(∇zh)s‖2
0 ds

≤ C∆t

∫ t1

0

(ν‖vs‖2
1 + ν−1‖qs‖2

0) ds. (60)

Thus,

∆t
n−1∑
j=0

‖∇(zj+1
h − zjh)‖

2
0 ≤

∆t2

δ

∫ tn

0

(ν‖vs‖2
1 + ν−1‖qs‖2

0) ds,

(61)

and, consequently, for the last term on the right-hand side of (53), using
also (31), we have

∆tδ
n−1∑
j=0

tj+1‖∇(zj+1
h − zjh)‖

2
0 ≤ Cν3∆t2K2

3,2tn+1. (62)

To conclude we need to bound the first term on the right-hand side of (53).
For this purpose we denote

Sh(t) =

∫ t

0

sh(s) ds, Ṽ
n
h = ∆t

n∑
j=1

ṽjh, P
n
h = ∆t

n∑
j=1

qjh, G(t) =

∫ t

0

g(s) ds

and integrate (37) with respect to time taking into account that ĝ = g− vt.
Thus,

(v(t),χh) + ν(∇Sh,∇χh) + (∇
∫ t

0

zh ds,χh) = (G+ v(0),χh), ∀χh ∈ Vh,

(63)

(∇ · Sh, ψh) + δ(∇
∫ t

0

zh ds,∇ψh) = 0, ∀ψh ∈ Qh. (64)
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We also define

Ẽn
h = Ṽn

h − Sh(tn), Rn
h = P n

h −
∫ tn

0

zh ds,

and

Υn
h = (ṽ0

h − v(0)) +
(

∆t
n+1∑
j=1

g(tj)−G(tn+1)
)

+
( 1

∆t

∫ tn+1

tn

sh(s) ds− v(tn+1)
)
.

(65)

We multiply (35)-(36) by ∆t, sum from j = 0 to n, and subtract from (63)-
(64) evaluated at t = tn+1 to get(

Ẽn+1
h − Ẽn

h

∆t
,χh

)
+ν(∇Ẽn+1

h ,∇χh) + (∇Rn
h,χh)

= (Υn
h,χh)− (∇Dn

h ,χh), ∀χh ∈ Vh,
(∇ · Ẽn+1

h , ψh) + δ(∇Rn+1
h ,∇ψh) = 0, ψh ∈ Qh,

where

Dn
h = ∆tq0

h −
∫ tn+1

tn

zh(s) ds = ∆tr0
h + ∆tzh(0)−

∫ tn+1

tn

zh(s) ds. (66)

We notice that

Ẽn+1
h − Ẽn

h

∆t
= ẽn+1

h +

(
sn+1
h − 1

∆t

∫ tn+1

tn

sh(s) ds

)
, Ẽ0

h = 0, R0
h = 0

so that applying (44) for wn
h = Ẽn

h, ynh = Rn
h, bnh = Υn

h and dnh = Dn
h we get

n−1∑
j=0

∆t
∥∥∥Ẽn+1

h − Ẽn
h

∆t

∥∥∥2

0
≤ c0∆t

n−1∑
j=0

(‖Υj
h‖

2
0 + ‖∇Dj

h‖
2
0)

and then

n∑
j=1

∆t‖ẽnh‖2
0 ≤ C

(
∆t

n−1∑
j=0

(
‖Υj

h‖
2
0 + ‖∇Dj

h‖
2
0 +
∥∥sj+1

h − 1

∆t

∫ tj+1

tj

sh(s) ds
∥∥2

0

))
.

(67)
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We now bound the right-hand side of (67). We start with the second term
of Υj

h in (65). We notice that∫ tj+1

tj

g(t) dt−∆tg(tj) =

∫ tj+1

tj

(g(t)− g(tj)) dt

so that by successively applying Hölder’s inequality and the mean value the-
orem we have∥∥∫ tj+1

tj

g(t) dt−∆tg(tj)
∥∥2

0
≤ ∆t

∫ tj+1

tj

‖g(t)− g(tj)‖2
0 dt

≤ ∆t

∫ tj+1

tj

∥∥∫ t

tj

gs(s)
∥∥2

0
dt

≤ ∆t

∫ tj+1

tj

(t− tj)
∫ t

tj

‖gs(s)‖
2
0 ds dt

≤ ∆t

∫ tj+1

tj

‖gs(s)‖
2
0 ds

∫ tj+1

tj

(t− tj) dt

≤ 1

2
∆t3

∫ tj+1

tj

‖gs(s)‖
2
0 ds.

Thus, applying Hölder’s inequality we have

∥∥∥∆t

j+1∑
l=1

g(tl)−G(tj+1)
∥∥∥2

0
=
∥∥∥ j+1∑
l=1

∆tg(tl)−
∫ tl

tl−1

g(t) dt
∥∥∥2

0

≤ (j + 1)

j+1∑
l=1

∥∥∥∆tg(tl)−
∫ tl

tl−1

g(t) dt
∥∥∥2

0

≤ tj+1
1

2
∆t2

∫ tj+1

0

‖gt(t)‖
2
0 dt.

And then

n−1∑
j=0

∆t
∥∥∥ j+1∑
l=1

∆tg(tl)−G(tj+1)
∥∥∥2

0
≤ Ct2n∆t2

∫ tn

0

‖gt(t)‖
2
0 dt ≤ Ct2n∆t2ν2K̂2

3 ,

(68)
where in the last inequality we have applied (33).
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To bound the third term of Υj
h in (65) we observe that

n−1∑
j=0

∆t
∥∥ 1

∆t

∫ tn+1

tn

sh(s) ds− v(tn+1)
∥∥2

0

=
n−1∑
j=0

1

∆t

∥∥∫ tn+1

tn

(sh(s)−∆tv(tn+1)) ds
∥∥2

0

≤
n−1∑
j=0

2

∆t

∥∥∥∫ tn+1

tn

(sh(s)−∆ts(tn+1)) ds
∥∥2

0

+
n−1∑
j=0

2∆t
∥∥sh(tn+1)− v(tn+1)

∥∥2

0
.

(69)

For the first term on the right-hand side of (69) arguing as in (68) and then
applying (38), (30) and (31) we finally get

n−1∑
j=0

2

∆t

∥∥∥∫ tn+1

tn

(sh(s)−∆ts(tn+1)) ds
∥∥∥2

0
≤ 2

n−1∑
j=0

∆t2
∫ tn+1

tn

‖(sh)s‖2
0 ds

≤ C∆t2ν2
(
K2

3,2h
2 +M2

2,2tn
)
. (70)

For the second term on the right-hand side of (69) applying (19) and (29) we
get

n−1∑
j=0

2∆t ‖sh(tn+1)− v(tn+1)‖2
0 ≤ 2tn max

t1≤s≤tn
‖sh(s)− v(s)‖2

0

≤ Ctn(h4 + δ2ν2)M2
2,1. (71)

Inserting (70) and (71) in (69) we obtain

n−1∑
j=0

∆t
∥∥∥ 1

∆t

∫ tn+1

tn

sh(s) ds− v(tn+1)
∥∥∥2

0
≤ C∆t2ν2

(
K2

3,2h
2 +M2

2,2tn
)

+Ctn(h4 + δ2ν2)M2
2,1. (72)

Then, from (68) and (72) and taking into account the definition of Υj
h in (65)

we finally reach

∆t
n−1∑
j=0

‖Υj
h‖

2
0 ≤ C

(
tn‖ṽ0

h − v(0)‖2
0 + t2n∆t2ν2K̂2

3

)
(73)

+C
(
∆t2ν2

(
K2

3,2h
2 +M2

2,2tn
)

+ tn(h4 + δ2ν2)M2
2,1

)
.
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To bound the second term on the right-hand side of (67) we notice that using
definition (66) we get

‖∇Dj
h‖

2
0 ≤ 4

∥∥∥∫ tj+1

tj

∇zh(s) ds
∥∥∥2

0
+ 4∆t2 ‖∇zh(0)‖2

0 + 2∆t2
∥∥∇r0

h

∥∥2

0

≤ 4∆t

∫ tj+1

tj

‖∇zh(s)‖2
0 ds+ 4∆t2 ‖∇zh(0)‖2

0 + 2∆t2
∥∥∇r0

h

∥∥2

0
.

Thus, applying (23) and (29) we obtain

∆t
n−1∑
j=0

‖∇Dj
h‖

2
0 ≤ C∆t2

(∫ tn

0

‖∇zh(s)‖2
0 ds+ tn ‖∇zh(0)‖2

0 + tn
∥∥∇r0

h

∥∥2

0

)
≤ C∆t2tn

(
max

0≤t≤tn
‖∇zh(t)‖2

0 +
∥∥∇r0

h

∥∥2

0

)
≤ C∆t2tn

(
ν2M2

2,1 +
∥∥∇r0

h

∥∥2

0

)
. (74)

On the other hand, for the last term in (67) we get∥∥sj+1
h − 1

∆t

∫ tj+1

tj

sh(s) ds
∥∥2

0
=
∥∥(Sh)

j+1
t − Sj+1

h − Sjh
∆t

∥∥2

0

=
∥∥ 1

∆t

∫ tj+1

tj

(tj − s)(Sh)ss ds
∥∥2

0

≤ ∆t

∫ tj+1

tj

‖(sh)s‖2
0 ds

≤ C∆t

∫ tj+1

tj

h2
(
‖∇vt‖2

1 + ν−2‖qt‖2
0 ds+ ‖vt‖2

0

)
ds,

where in the last inequality we have applied (38). Consequently, using (30)
and (31) we reach

∆t
n−1∑
j=0

∥∥∥sj+1
h − 1

∆t

∫ tj+1

tj

sh(s) ds
∥∥∥2

0

≤ C∆t2
∫ tn

0

(
h2
(
‖∇vt‖2

1 + ν−2‖qt‖2
0 ds

)
+ ‖vt‖2

0

)
ds

≤ C∆t2ν2(K2
3,2h

2 +M2
2,2tn). (75)
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Thus, in view of (67), (73), (74) and (75) we get

n∑
j=1

∆t‖ẽjh‖
2
0 ≤C

(
tn‖ṽ0

h − v(0)‖2
0 + tn∆t2

∥∥∇r0
h

∥∥2

0
+ ν2t2nK̂

2
3∆t2

)
+C

(
∆t2ν2

(
K2

3,2h
2 + tn(M2

2,1 +M2
2,2)
)

+ tn(h4 + δ2ν2)M2
2,1

)
.

(76)

Going back to (53) and inserting (58), (62) and (76) we finally reach

tn‖ẽnh‖2
0 + ∆t

n∑
j=1

tj
(
ν‖∇ẽjh‖

2
0 + δ‖∇rjh‖

2
0

)
≤ C

(
tn‖ṽ0

h − v(0)‖2
0 + ∆t‖ẽ0

h‖2
0 + tn(∆t)2

∥∥∇r0
h

∥∥2

0
+ t2n∆t2ν2K̂2

3

)
+ C

(
tn(h4 + δ2ν2)(ν2K2

4,2T + νK2
3,2 +M2

2,1)
)

+ C∆t2
(
ν4T (K2

4,2 +K2
4,3)tn + tn+1ν

3K2
3,2

)
+ C∆t2

(
ν2
(
K2

3,2h
2 + tn(M2

2,1 +M2
2,2)
))

≤ Ctn

(
‖ṽ0

h − v(0)‖2
0 + ‖ẽ0

h‖2
0 + ∆t2

∥∥∇r0
h

∥∥2

0

)
+ C1tn∆t2 + C2tn(h4 + δ2ν2), (77)

where C1 and C2 are the constants in (48) and (49) and we have used the
bounds tn+1 ≤ Ctn, ∆t ≤ tn and that (∆t)2ν2K2

3,2h
2 ≤ tn(∆t)ν2K2

3,2h
2 ≤

tn((∆t)2ν3 + h4ν)K2
3,2.

To conclude (47) we apply (77) together with triangle inequality, (19) and
(29).

Finally to prove (50) we apply (42) instead of (43). Then, using (4) and
then applying (59), (61) and (31), we have that

∆t
n∑
j=1

(
ν‖∇ẽhh‖2

0 + δ‖∇rh‖2
0

)
≤ C

(
‖ṽ0

h − v(0)‖2
0 +M2

2,1(h4 + (νδ)2)
)

+
C

νλ

(
ν4(K2

4,2 +K2
4,3)T∆t+ ν2K3,2(h2 + νδ + ν2λ∆t2

)
≤ C(‖ṽ0

h − v(0)‖2
0

+ C
(
C1∆t

(
(νλ)−1 + ∆t

)
+ C2(λ−1(h2 + νδ) + h4 + (νδ)2

)
≤ C‖ṽ0

h − v(0)‖2
0 + C̃1∆t+ C̃2(h2 + νδ), (78)
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where C̃1 and C̃2 are the constants in (51) and (52). Taking into account (19)
the estimate (50) follows.

�

Remark 2 Let us observe that taking δ = ∆t the analysis carried out applies
to the standard Euler non-incremental scheme. However, since condition (18)
implies

1

νρ2
1

h2 ≤ ∆t, (79)

the analysis for the standard Euler non-incremental scheme holds under con-
dition (79). This result is in agreement with the error bounds in [3] where the
authors prove error bounds for the Euler non-incremental scheme for LBB
stable elements assuming ∆t ≥ Ch2. It is also in agreement with the classi-
cal results for the continuous in space Euler non-incremental method (see for
example [12]) since for δ = ∆t the rate of convergence in terms of ∆t in the
L2 norm of the velocity is one and the rate of convergence in the H1 norm
of the velocity and the L2 norm of the pressure is one half, see (47)-(50).
Remark 3 In view of (47) and (50) any initial approximation ṽ0

h based on
linear elements such us the linear interpolant of the initial condition gives
the optimal order for the term ‖ṽ0

h − v(0)‖0. For the initial pressure any
initial pressure giving ‖∇r0

h‖0 = O(1) keeps the optimal rate of convergence.
In particular, choosing q0

h = 0 which means taking in (34) v0
h = ṽ0

h gives
‖∇r0

h‖0 = ‖∇zh‖0 that is bounded thanks to (23).
Remark 4 As commented in [9], the restriction (41) for the modified Euler
non-incremental scheme is not just a requirement of the proof but, as it can
be easily checked in practice, the method becomes unstable if ∆t is taken
larger than 2δ.
We will now prove a bound for the pressure error.

Theorem 2 Under the assumptions of Theorem 1 the following bound holds

∆t
n∑
j=1

tj‖qjh − q(tj)‖
2
0 ≤C(tn+1ν + λ−1)‖ṽ0

h − v(0)‖2
0

+ Ctn+1ν
(
‖ẽ0

h‖2
0 + ∆t2‖∇r0

h‖2
0

)
+ C3∆t+ C4(h2 + νδ), (80)
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where, (assuming (46)),

C3 = C(νT + λ−1)C̃1 (81)

C4 = C
(
νT + λ−1)C̃2, (82)

and where C̃1 and C̃2 are the constants in (51) and (52) respectively.

Proof Applying Lemma 1 and (39) it is easy to obtain

∆t
n∑
j=1

tj‖rjh‖
2
0 ≤ C∆t

n∑
j=1

tjνδ‖∇rjh‖
2
0

+ C∆t
n∑
j=1

tj

∥∥∥ ẽj+1
h − ẽjh

∆t

∥∥∥2

−1
+ C∆t

n∑
j=1

tj‖τ jh‖
2
−1

+ C∆t
n∑
j=1

tjν
2‖∇ẽj+1

h ‖
2
0 + C∆t

n∑
j=1

tj‖(zjh − z
j+1
h )‖2

0.

(83)

We will bound all the terms on the right-hand side of (83). We first observe
that the first and forth terms are already bounded in (77) and then

C∆t
n∑
j=1

tjνδ‖∇rjh‖
2
0 + C∆t

n∑
j=1

tjν
2‖∇ẽj+1

h ‖
2
0

≤ Ctn+1ν
(
‖ṽ0

h − v(0)‖2
0 + ‖ẽ0

h‖2
0 + ∆t2‖∇r0

h‖2
0

)
+ νtn+1

(
C1∆t2 + C2(h4 + (νδ)2)

)
. (84)

To bound the third term on the right-hand side of (83) we first apply (4) and
then (57) to get

∆t
n∑
j=1

tj‖τ jh‖
2
−1 ≤

C

λ
∆t

n∑
j=1

tj‖τ jh‖
2
0

≤ C

λ

(
∆t2ν4TK2

4,3 + (h4 + ν2(∆t2 + δ2))(ν2K2
4,2T + νK2

3,2)
)

≤ Cλ−1
(
C1∆t2 + C2(h4 + (νδ)2)

)
.

(85)

For the last term on the right-hand side of (83) arguing as in (60) and ap-
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plying (22) to the time derivative ‖(zh)t‖0, and (31) we get

∆t
n∑
j=1

tj‖(zjh − z
j+1
h )‖2

0 ≤ ∆t2
n∑
j=1

tj

∫ tj+1

tj

‖(zh)s‖2
0 ds

≤ ∆t2Ctn

∫ tn+1

t1

s
(
ν2‖vs‖2

1 + ‖qs‖2
0

)
≤ Ctn∆t2ν4K2

3,2

≤ CνTC1∆t2.

(86)

To conclude we will bound the second term on the right-hand side of (83).
Since tj ≤ tj+1 and taking into account (4) we can write

∆t
n∑
j=1

tj

∥∥∥ ẽj+1
h − ẽjh

∆t

∥∥∥2

−1
≤ ∆t

n∑
j=1

tj+1

∥∥∥ ẽj+1
h − ẽjh

∆t

∥∥∥2

−1

≤ Cλ−1∆t
n∑
j=1

tj+1

∥∥∥ ẽj+1
h − ẽjh

∆t

∥∥∥2

0
.

Applying (45) we get

λ−1∆t
n∑
j=1

tj+1

∥∥∥ ẽj+1
h − ẽjh

∆t

∥∥∥2

0

≤ c0λ
−1
(

∆t
n∑
j=1

tj+1‖τ jh‖
2
0 + ∆t

n∑
j=1

tj+1‖∇(zj+1
h − zjh)‖

2
0

+ ∆tν
n∑
j=1

‖∇ẽjh‖
2
0 + ∆tδ

n∑
j=1

‖∇rjh‖
2
0

)
. (87)

To conclude we will bound the four terms on the right-hand side of (87). For
the first one recalling that tj+1/tj ≤ 2 for j ≥ 1 and applying (57) we get

∆t
n∑
j=1

tj+1‖τ jh‖
2
0 ≤ C

(
∆t2ν4TK2

4,3 + (h4 + ν2(∆t2 + δ2))(ν2K2
4,2T + νK2

3,2)
)

≤ Cλ−1
(
C1∆t2 + C2(h4 + (νδ)2)

)
. (88)
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To bound the second term on the right-hand side of (87) arguing as usual
and applying (61),(41) and (31) we get

∆t
n∑
j=1

tj+1‖∇(zj+1
h − zjh)‖

2
0 ≤ Ctn+1∆tν3K2

3,2 ≤ CTC1∆t ≤ CC̃1∆t. (89)

To conclude we observe that the last two terms in (87) have been bounded
in (78). Then

∆tν
n∑
j=1

‖∇ẽjh‖
2
0 + ∆tδ

n∑
j=1

‖∇rjh‖
2
0 ≤ C‖ṽ0

h − v(0)‖2
0 + C̃1∆t+ C̃2(h2 + νδ).

(90)

Thus, inserting (88), (89) and (90) into (87) we have

λ−1∆t
n∑
j=1

tj+1

∥∥∥ ẽj+1
h − ẽjh

∆t

∥∥∥2

0
≤Cλ−1

(
‖ṽ0

h − v(0)‖2
0 + C̃1∆t

)
+ Cλ−1

(
(h2 + νδ)C̃2 + C1∆t2

)
(91)

+ λ−1C2(h4 + (νδ)2)

≤Cλ−1
(
‖ṽ0

h − v(0)‖2
0 + C̃1∆t+ C̃2(h2 + νδ)

)
.

Finally, inserting (84), (85), (86) and (91) in (83) we obtain for the modified
Euler non-incremental method

∆t
n∑
j=1

tj‖rjh‖
2
0 ≤C(tn+1ν + λ−1)‖ṽ0

h − v(0)‖2
0 + Ctn+1ν

(
‖ẽ0

h‖2
0 + ∆t2‖∇r0

h‖2
0

)
+ Cλ−1

(
C̃1∆t+ C̃2(h2 + νδ)

)
+ C(νtn+1 + λ−1)

(
C1∆t2 + C2(h4 + (νδ)2)

)
≤ C(νT + λ−1)

(
‖ṽ0

h − v(0)‖2
0 + ‖ẽ0

h‖2
0 + ∆t2‖∇r0

h‖2
0

)
+ C(νT + λ−1)

(
C̃1∆t+ C̃2(h2 + νδ)

)
(92)

Now observing that due to (19) we have

‖zjh − q(tj)‖
2
0 ≤ ν2M2

2,1(h2 + νδ) ≤ ν2C2(h2 + νδ) ≤ (ν/T )C̃2(h2 + νδ),

for j = 0, 1, . . . , N , applying the triangle inequality in (92), we finally reach (80).
�
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Remark 5 Let us observe that any initial approximation for the velocity
such that ‖ṽ0

h−v(0)‖0 = O(h2) and any initial approximation for the pressure
satisfying ‖∇r0

h‖0 = O(1) (which includes the choice q0
h = 0) keep the optimal

rate of convergence for the pressure O(h2 +∆t) for the Euler non-incremental
method or O(h2 + δ + ∆t) for the modified Euler non-incremental method.

We also observe that the error bounds (47) and (50) for the Euler non-
incremental method hold under assumption (79), h2/(νρ2

1) ≤ ∆t. This means
that for the Euler non-incremental method ∆t = O(h) could be a possible
choice.

On the other hand, the bounds (47) and (50) and (80) for the modified
Euler non-incremental method hold only under assumption ∆t ≤ δ. Then, for
the modified Euler non-incremental one can choose ∆t as small as possible,
and, in particular, one can make ∆t→ 0.

5 Navier-Stokes equations

We now consider the following initial value problem associated with the
Navier-Stokes equations.

∂tu− ν∆u + (u · ∇)u +∇p = f in (0, T )× Ω,

∇ · u = 0 in (0, T )× Ω, (93)

u(0, ·) = u0(·) in Ω,

and its discretization by the modified semi implicit Euler non-incremental
method,(

ũn+1
h − ũnh

∆t
,χh

)
+ ν(∇ũn+1

h ,∇χh)+(B(ũnh, ũ
n
h),χh) + (∇pnh,χh)

= (gn+1,χh), ∀χh ∈ Vh
(94)

(∇ · ũn+1
h , ψh) + δ(∇pn+1

h ,∇ψh) = 0, ∀ψh ∈ Qh,

together with the initial condition to be specified later. In (94) and in the
sequel, B(·, ·) denotes the following bilinear form

B(v,w) = u · ∇w +
1

2
(∇ · v)w, v,w ∈ V.
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Notice the well-known skew-symmetric property,

(B(v,w),y) = −(B(v,y),w), v,w,y ∈ V, (95)

so that in particular, (B(v,w),w) = 0.
The numerical approximation (ũnh, p

n
h) of (94) will be compared with the

solution (ṽnh, q
n
h) of (35)-(36) for

g = f −B(u,u). (96)

On the other hand, along this section we apply to (ṽnh, q
n
h) the error bounds

obtained in the previous section where (ṽnh, q
n
h) is compared with the stabi-

lized Stokes approximation (snh, z
n
h) defined in (11)-(12) for

ĝ = g − ut. (97)

Whenever ‖gt‖
2 is integrable in (0, T ], i.e. the constant K̂2

3 in (33) is finite,
this approximation will satisfy the error bounds (47), (50) and (80).

In the rest of this section we shall assume that f , ft, ftt ∈ L2(0, T ] and
that v = u, q = p satisfies the bounds (28–32). Since we now prove K̂2

3 in
(33) is finite all appearances of the constants in (28–33) will be for v = u
and q = p.

To prove K̂2
3 is finite we first observe that gt = ft − B(u,u)t ∈ L2(0, T )

if u · ∇ut ∈ L2(0, T ) and ut∇u ∈ L2(0, T ). We now show that this is so for
the more difficult case d = 3. Applying (7) we have

‖u · ∇ut‖0 ≤ ‖u‖∞ ‖∇ut‖0 ≤ cA ‖u‖1/2
1 ‖u‖

1/2
2 ‖∇ut‖0 ≤ cAM

1/2
1 M

1/2
2 ‖∇ut‖0.

Similarly, applying Hölder’s inequality with p = d and q = d/(d − 1), and
then (6) and (9), we have

‖ut · ∇u‖0 ≤ ‖ut‖L6 ‖∇u‖L3 ≤ c
3/2
1 ‖∇ut‖0 ‖∇u‖

1/2
0 ‖u‖

1/2
2

≤ c
3/2
1 M

1/2
1 M

1/2
2 ‖∇ut‖0 ,

so that ‖u · ∇ut‖L2(0,T ) + ‖ut · ∇u‖L2(0,T ) ≤ Cν(M1M2)1/2K3,2 and conse-

quently K̂2
3 in (33) is finite. We can state the following result.

Theorem 3 Let (u, p) be the solution of (93) and let (ṽnh, q
n
h) be the solu-

tion of (35)-(36) with g defined in (96) and (ṽ0
h, q

0
h) = (s0

h, z
0
h). Under the

assumptions of Theorem 1 the following bounds hold

max
0≤tn≤T

‖ṽnh − u(tn)‖2
0 ≤ C1(∆t)2 + C2(h4 + (νδ)2), (98)
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where C1 and C2 are the constants in (48) and (49), and, assuming for
simplicity that (46) holds,

∆t
n∑
j=1

(
ν‖∇(ṽjh − u(tj))‖2

0 + δ‖qjh − p(tj)‖
2
0

)
≤ C̃1∆t+ C̃2(h2 + νδ), (99)

∆t
n∑
j=1

tj
(
ν‖∇(ṽjh − u(tj))‖2

0 + δ‖qjh − p(tj)‖
2
0

)
≤ C1tn∆t2

+ C̃2tn(h2 + νδ). (100)

where C̃1 and C̃2 are the constants in (51) and (52).

Proof The error bounds (98), (99) follow from (47) and (50) respectively
taking into account that applying (19) and (29) ‖ṽ0

h − u(0)‖2
0 ≤ CM2

2,1(h4 +
δ2ν2) and ν‖∇(ṽ0

h − u(0))‖2
0 ≤ CνM2

2,1(h2 + δν) and that ‖∇r0
h‖0 = 0.

The error bound (100) follows from (77), the decomposition ṽjh − u(tj) =
ẽjh+sh(tj)−u(tj) and qjh−p(tj)) = rjh+zh(tj)−p(tj) and the error bound (19).
�

The error bounds for the discretization (94) will be obtained as a con-
sequence of several previous results that we now state. The first one is a
discrete Gronwall lemma whose proof can be easily obtained by induction
(see e.g., [16]).

Lemma 4 Let k, B, and an, bn, cn, γn be nonnegative numbers such that

an + k
n∑
j=0

bj ≤ k
n−1∑
j=0

γjaj + k
n∑
j=0

cj +B, n ≥ 0.

Then, the following bound holds

an + k

n∑
j=0

bj ≤ exp

(
k

n−1∑
j=0

γj

)(
k

n∑
j=0

cj +B

)
, n ≥ 0.

Remark 6 The statement of Lemma 4 above is very similar to Lemma 5.1
in [16], where the sum involving the terms γjaj includes also the term γnan.
In order to extend the analysis in the present paper to the fully implicit
backward Euler method, Lemma 4 must be replaced by [16, Lemma 5.1].
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Lemma 5 For v,w,φ ∈ V the following bounds hold

‖B(v,v)−B(w,w)‖0 ≤
(
‖∇v‖L2d/(d−1) + ‖∇w‖L2d/(d−1)

)
‖e‖L2d

+
(
‖v‖∞ + ‖w‖∞

)
‖∇e‖0 . (101)

|(B(v,v)−B(w,w),φ)| ≤ ‖e‖0

((
‖∇v‖L2d/(d−1) + ‖∇w‖L2d/(d−1)

)
‖φ‖L2d

+
(
‖v‖∞ + ‖w‖∞

)
‖∇φ‖0

)
, (102)

where e = v −w.

Proof From the identity

B(v,v)−B(w,w) = B(e,v) +B(w, e), (103)

and applying Hölder inequality we have

|B(e,v)| ≤ ‖e‖L2d ‖∇v‖L2d/(d−1) +
1

2
‖∇ · e‖0 ‖v‖∞ ,

|B(w, e)| ≤ ‖w‖∞ ‖∇e‖0 +
1

2
‖∇ ·w‖L2d/(d−1) ‖e‖L2d ,

and the bound (101) follows. To prove (102), we multiply (103) by φ ∈ H1
0

and integrate in Ω, integrating by parts adequately and using the skew-
symmetry property (95) we have

(B(v,v)−B(w,w),φ) =
1

2

(
(e · ∇v,φ)− (e · ∇φ,v)

)
+ (B(w,φ), e).

and the bound follows by applying Hölder inequality (8). �

Lemma 6 Let (ṽnh, q
n
h) be the solution of (35)-(36) with g defined in (96)

and (ṽ0
h, q

0
h) = (s0

h, z
0
h). Under the assumptions of Theorem 1, and assuming

also
νδ ≤ cMdiam(Ω)h, (104)

for a scale-invariant cM > 0, there exists a scale invariant constant cr > 0
depending on the constants cinv, cP and cA in (2), (5) and (7), respectively,
and constant Cth > 0 depending also on the constants in (99), ν−1, T , the
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constants M1 and M2 in (28), the constant cint in (3), and the constant
Λ in (1) (and also on max0≤t≤T ‖u(t)‖0 in the case d = 2) such that the

following bounds hold for all sequences (wn
h)
N=T/∆t
n=0 in Vh,

∆t
n∑
j=0

‖∇wj
h‖

2
L2d/(d−1) ≤

crΛ

h
∆t

n∑
j=0

‖∇(wj
h − ṽjh)‖

2
0 + Cth,

∆t
n∑
j=0

‖wj
h‖

2
∞ ≤

(
crΛ

h
∆t

n∑
j=0

‖∇(wj
h − ṽjh)‖

2
0 + Cth

)
|Ω|(3−d)/(2d) ,

and n = 0, 1, . . . , N = T/∆t.

Proof We start with the first bound. We write

wj
h = (wj

h − ṽjh) + (ṽjh − Ih(u(tj))) + (Ih(u(tj)))− u(tj)) + u(tj) (105)

We notice that for p = 2d/(d− 1) and q = 2 we have

d

(
1

q
− 1

p

)
= d

(
1

2
− d− 1

2d

)
=

1

2
,

so that applying (2) with m = 1, p = 2d/(d − 1), q = 2 and l = 1, and
using (1) and (105) we get

∥∥∇wj
h

∥∥
L2d/(d−1) ≤cinv

‖wj
h − ṽjh‖1 + ‖ṽjh − Ih(u(tj))‖1

(h/Λ)1/2

+ ‖∇(Ih(u(tj))− u(tj))‖L2d/(d−1) + ‖∇u(tj)‖L2d/(d−1) .

We notice that due to the interpolation bound (3) we have

‖∇(Ih(u(tj))− u(tj))‖L2d/(d−1) ≤ cinth
1/2 ‖u(tj)‖2 ≤ cinth

1/2M2,

and due to (9), ‖∇u(tj)‖L2d/(d−1) ≤ (c1 ‖∇u(tj)‖0 ‖u(tj)‖2)1/2 ≤ (c1M1M2)1/2.

The proof is finished by writing ṽjh − Ih(u(tj)) = (ṽjh − u(tj)) + (u(tj) −
Ih(u(tj))) and applying (3) and (99).

For the second bound we observe that from [15, Lemma 4.4] it follows

‖wh‖∞ ≤ Ch−1/2‖∇wh‖1 |Ω|(3−d)/(2d), where C depends on cinv and cA, and
then we argue as before. �
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In the sequel, for sequences (wn
h)Nn=0 of N + 1 terms in Vh we denote

9(wn
h)Nn=09δ,∆t = max

0≤n≤N

(
‖wn

h‖2
0 + ∆t

n−1∑
j=0

(
ν‖∇wj+1

h ‖
2
0 + δ‖∇Zhwj+1

h ‖
2
0

))1/2

,

where the mapping Zh : Vh → Qh is defined for every wh ∈ Vh as the solution
of

δ(∇Zhwh,∇ψh) = −(∇ ·wh, ψh), ∀ψh ∈ Qh.

The following result establishes the stability of discretization (94) re-
stricted to h-dependent thresholds, a concept due to López-Marcos and Sanz-
Serna [18] (see also [19]).

Lemma 7 Fix Γ1 > 0, ρ1 > 0 and Λ ≥ 1, and let (ṽnh, q
n
h) be the solution

of (35)-(36) with g defined in (96) and initial condition (v0
h, q

0
h) = (s0

h, z
0
h).

Then, under the assumptions of Lemma 6, there exist positive constants h0

and S (the stability constant given by (110) below) such that for any h ≤ h0,
and any two sequences (wn

1,h)
N
n=1 and (wn

2,h)
N
n=0 in Vh satisfying the threshold

condition(
∆t

N∑
j=0

ν‖∇(wj
i,h − ṽjh)‖

2
0

)1/2

≤ Γ1h
1/2, i = 1, 2, ∆t = T/N. (106)

the following bound holds

9(wn
h)Nn=09δ,∆t ≤ S

(
‖w0

h‖2
0 + ∆t

N∑
j=1

1

ν
‖τ jh‖

2
−1

)1/2

, (107)

where, for n = 0, 1, . . . , N , wn
h = wn

h,1 −wn
h,2, and τ nh is defined by

(τ nh,χh) =
(wn

h −wn−1
h

∆t
,χh

)
+ ν(∇wn

h,∇χh) + (∇Zhwn−1
h ,χh)

+
(
B(wn−1

1,h ,w
n−1
1,h )−B(wn−1

2,h ,w
n−1
2,h ),χh

)
, χh ∈ Vh.

Proof Applying (42) with dnh = 0 and

bnh = τ n+1
h −

(
B(wn

1,h,w
n
1,h)−B(wn

2,h,w
n
2,h)
)
,
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for n = 0, 1, . . . , N, we have that the left hand side of (107) can be bounded
by

‖w0
h‖2

0+∆t
n∑
j=1

1

ν
‖τ jh‖

2
−1+∆t

n−1∑
j=0

1

ν

∥∥B(wj
1,h,w

j
1,h)−B(wj

2,h,w
j
2,h)
∥∥2

−1
. (108)

We will now show that for some positive γ0, . . . , γN−1 and L > 0 satisfying

∆t
n−1∑
j=0

γj ≤ L,

the last sum in (108) can be bounded as

∆t
n−1∑
j=0

1

ν

∥∥B(wj
1,h,w

j
1,h)−B(wj

2,h,w
j
2,h)
∥∥2

−1
≤ ∆t

1

ν

n−1∑
j=0

γj‖wj
h‖

2
0, (109)

so that applying Lemma 4 the proof will be finished. We do this for the more
difficult case d = 3. For φ ∈ H1

0 (Ω)3, applying (102) we have(
B(wj

1,h,w
j
1,h)−B(wj

2,h,w
j
2,h),φ

)
≤ ‖wj

h‖0

((
‖wj

1,h‖∞ + ‖wj
2,h‖∞

)
‖∇φ‖0

+
(
‖∇wj

1,h‖L2d/(d−1) + ‖∇wj
2,h‖L2d/(d−1)

)
‖φ‖L2d

)
.

Applying Sobolev’s inequality we have that ‖φ‖L2d ≤ c1 ‖φ‖1, so that, we
can take

γj = 2
(
‖wj

1,h‖
2
∞ + ‖wj

2,h‖
2
∞
)

+ c2
1

(
‖∇wj

1,h‖L2d/(d−1) + ‖∇wj
2,h‖L2d/(d−1)

)
,

which, in view of Lemma 6 and the threshold condition (106) we see that (109)
follows with

L = 4
(
crΓ

2
1ν
−1Λ + Cth

)
(1 + c2

1).

Thus, we have that the statement of the Lemma holds with

S = exp(L/ν). (110)

�

To proof the convergence of the numerical approximation (ũnh)Nn=0 we will
apply the following result due to Stetter [26, Lemma 1.2.2].
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Lemma 8 Let (X, ‖·‖X) and (Y, ‖·‖Y ) be two normed linear spaces with
the same finite dimension. Let F : X → Y be a mapping continuous in
BX(xu, r1) = {x ∈ X | ‖x− xu‖X < r1}, for which there exist S > 0 and
r2 > 0 such that

‖x1 − x2‖X ≤ S ‖F (x1)− F (x2)‖Y , (111)

for every x1, x2 ∈ BX(xu, r1) satisfying ‖F (xj)− F (xu)‖Y ≤ r2, for j = 1, 2.
Then, for r0 = min(r2, r1/S) the mapping F−1 exists and is Lipschitz-

continuous in BY (F (xu), r0) with Lipschitz constant equal to S.

Before applying Lemma 8 we need to prove a consistency result.

Lemma 9 Let (u, p) be the solution of (93) and let (ṽnh, q
n
h) be the solution

of (35)-(36) with g defined in (96) and (ṽ0
h, q

0
h) = (s0

h, z
0
h). Then, there exists

a positive constant CB, depending on the Sobolev’s constant c1, cA in (7), Cth
in Lemma 6, M1, M2 in (28) and the ratio Λ in (1), such that the truncation
error

τ nh = PVh
(
B(ṽn−1

h , ṽn−1
h )−B(u(tn),u(tn))

)
, n = 0, . . . , N − 1

satisfies the following bounds

∆t
n∑
j=1

‖τ jh‖
2
0 ≤ C2

B

(
∆t

n−1∑
j=0

‖∇(ṽjh − u(tj))‖2
0 + ν2∆t2K2

3,2

)
,

∆t
n∑
j=1

‖τ jh‖
2
−1 ≤ C2

B

(
tn max

0≤j≤n−1
‖ṽjh − u(tj)‖2

0 + ν2∆t2K2
2,2

)
.

Proof We concentrate on the more difficult case d = 3. We write τ nh =
τ n1,h + τ n2,h, were

τ n1,h = PVh
(
B(ṽn−1

h , ṽn−1
h )−B(u(tn−1),u(tn−1))

)
,

τ n2,h = PVh
(
B(u(tn−1),u(tn−1))−B(u(tn),u(tn))

)
.

For τ n1,h, applying Lemma 5 and denoting e = ṽn−1
h − u(tn−1), we have that

it can be bounded by

‖τ 1,h‖0 ≤‖e‖L2d

(
‖∇u(tn−1)‖L2d/(d−1) + ‖∇ṽn−1

h ‖L2d/(d−1)

)
+ ‖∇e‖0

(
‖u(tn−1)‖∞ +

∥∥ṽn−1
h

∥∥
∞

)
.
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Arguing similarly with τ n2,h, and denoting ê = ũ(tn−1) − u(tn), it can be
bounded by

‖τ 2,h‖0 ≤‖ê‖L2d

(
‖∇u(tn)‖L2d/(d−1) + ‖∇u(tn−1)‖L2d/(d−1)

)
+ ‖∇ê‖0

(
‖u(tn)‖∞ + ‖u(tn−1)‖∞

)
.

Applying Agmon’s inequality (7), (9) and Lemma 6, and noticing that due
to Hölder’s inequality we can write

‖∇ê‖0 =

∥∥∥∥∫ tn

tn−1

∇ut(t) dt
∥∥∥∥

0

≤ ∆t1/2
(∫ tn

tn−1

‖∇ut‖2
0 dt

)1/2

,

then it follows that

‖τ nh‖0 ≤ C0
B

(
‖∇(ṽn−1

h − u(tn−1))‖0 + ∆t1/2
(∫ tn

tn−1

‖∇ut‖2
0 dt

)1/2
)
,

where
C0
B = 2(cA + c

3/2
1 )(M1M2)1/2 + Cth(1 + c1). (112)

Recalling now the definition of K3,2 in (31), the bound for the L2 norm follows
with constant CB = C0

B

√
2.

To prove the estimate in the negative norm, we recall that due to Sobolev’s
inequality we have that for φ ∈ H1(Ω)3, we have that ‖PVhφ‖L6 ≤ c1 ‖PVhφ‖1.
Taking into account that ‖PVhφ‖1 ≤ C‖φ‖1 from (102) it follows that

‖τ n1,h‖−1 ≤C ‖e‖0

(
c1 ‖∇u(tn−1)‖L2d/(d−1) + ‖u(tn−1)‖∞

)
+ ‖e‖0

(
‖ṽn−1

h ‖∞ + c1‖∇ṽn−1
h ‖L2d/(d−1)

)
,

and a similar result for τ n2,h with ṽn−1
h replaced by u(tn), from where the

result for the negative norm follows easily with a constant C1
B proportional

to C0
B in (112). The proof of the lemma finishes taking CB = max(C0

B, C
1
B).

�

Theorem 4 Under the assumptions of Lemma 6, assuming also (104), then
the solution (ũnh, p

n
h) of (94) with initial condition (ũ0

h, p
0
h) = (s0

h, z
0
h) satisfies

the following bounds for n = 1, . . . , N and for h small enough:

tn‖ũnh − u(tn)‖2
0 ≤ Ĉ1tn∆t2 + Ĉ2tn(h4 + (νδ)2)) (113)
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where

Ĉ1 =
(
1 + (SCB)2Tν−1

)
C1 + ν(SCB)2K2

2,2 (114)

Ĉ2 =
(
1 + (SCB)2Tν−1

)
C2, (115)

C1 and C2 being the constants in (48) and (49). Also, assuming for simplicity
that (46) holds,

∆t
n∑
j=1

(
ν‖∇(ũjh − u(tj))‖2

0 + δ‖∇(qjh − q(tj))‖
2
0

)
≤ C̃1∆t+ C̃2(h2 + νδ) + Ĉ1∆t2 + Ĉ2(h4 + (νδ)2),

(116)

where C̃1 and C̃2 are the constants in (51) and (52).

Proof We apply Lemma 8 with X = Y = V N+1
h , ‖·‖X = 9 · 9δ,∆t,

‖(τ nh)Nn=0‖Y =
(
‖τ 0

h‖2
0 + ∆t

N∑
j=1

1

ν
‖τ jh‖

2
−1

)1/2

.

and xu = (ṽnh)Nn=0 where (ṽnh, q
n
h) is the solution of (35)-(36) with g defined in

(96) and initial condition (ṽ0
h, q

0
h) = (s0

h, z
0
h). We take r2 = 1 and r1 = Γ1h

1/2,
and F defined by F ((wn

h)Nn=0) = (Fn
h)Nn=0 where

F0
h = w0

h − ṽ0
h, (117)

and for n = 1, . . . , N , Fn
h is the element in Vh satisfying

(Fn
h,χh) =

(wn
h −wn−1

h

∆t
,χh

)
+ ν(∇wn

h,∇χh) + (∇Zhwn−1
h ,χh)

+
(
B(wn−1

h ,wn−1
h )− f(tn),χh

)
, χh ∈ Vh. (118)

We notice that the truncation error (τ nh)Nn=0 = F ((ṽnh)Nn=0) is

τ 0
h = 0,

τ nh = PVh
(
B(ṽn−1

h , ṽn−1
h )−B(u(tn),u(tn))

)
, n = 1, . . . , N.

The assumption (111) holds due to Lemma 7.
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For the mapping F defined in (117)-(118) from Lemma 9 and (98) it
follows that

‖F ((ṽnh)Nn=0)‖Y ≤ CB

(
(Tν−1)

(
C1∆t2 + C2(h4 + (νδ)2)

)
+ ν∆t2K2

2,2

)1/2

.

Then, in view of condition (104), we have

‖F ((ṽnh)Nn=0)‖Y ≤ CB

(
(Tν−1)

(
C1+C2ν

2)+νK2
2,2

)1/2

diam(Ω)cMν
−1h+O(h2).

and, thus, decays faster with h than r1 = Γ1h
1/2. Consequently, for h

sufficiently small, the null element in V N+1
h belongs to the ball centered

at F ((ṽnh)Nn=0) and with radius min(r2, r1/S). Observe that the null ele-
ment is the image by F of the numerical approximation with initial condi-
tion (ũ0

h, p
0
h) = (s0

h, z
0
h), that is 0 = F ((ũnh)Nn=0). Since, according to Lemma 8,

the mapping F has inverse in this ball, then the differences ε̃nh = ũnh − ṽnh,
n = 0, . . . , N satisfy the bound

9(ε̃nh)Nn=09δ,∆t ≤ S‖F ((ṽnh)Nn=0)− 0‖Y

≤ SCB

(
(Tν−1)

(
C1∆t2 + C2(h4 + (νδ)2)

)
+ ν∆t2 K2

2,2

)1/2

(119)

Let us denote by ε̃n = ũnh − u(tn) and %n = pnh − p(tn), n = 0, . . . , N . The
proof is finished by writing ε̃n = ε̃nh+(ṽnh−u(tn)), and %nh = %n+(qnn−p(tn)),
n = 0, 1, . . . , N and applying the bounds (98) and (99). �

Remark 7 Although we have analyzed a semi implicit method, the anal-
ysis, with some minor changes that we now comment, applies also to the
fully implicit backward Euler method. First, using Lemma 5.1 in [16] in-
stead of Lemma 4, Lemma 7 can be easily extended to the fully implicit
method. Also, in the case of the fully implicit method, the truncation er-
ror τ nh in Lemma 9 would reduce to τ n+1

1,h , so that the constant CB can be
taken smaller. However, in the case of the fully implicit method, existence of
the numerical solution has to be proved, but this, as the arguments leading
to (119) above show, would be a consequence of the null element belonging
to the ball in V N+1

h centered at F ((ṽnh)Nn=0) and with radius min(r2, r1/S),
where the inverse of F exists. Taking into account these three details, the
reader will find no difficulty in extending the results of this paper to the fully
implicit method.
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Remark 8 Let us observe that for (ũnh, p
n
h) we take as initial condition

(ũ0
h, p

0
h) = (ṽ0

h, q
0
h). Although for simplicity we have assumed in Theorem 3

that ṽ0
h = s0

h, q
0
h = z0

h, with (snh, q
n
h) the stabilized Stokes approximation

defined in (11)-(12) with g defined in (97) other initial approximations can be
chosen. For example, we can choose ṽ0

h = Ihu0, the interpolant of the initial
velocity, and define q0

h as the pressure obtained solving (36) for n = −1.
With this choice the initial pressure error r0

h = q0
h − z0

h satisfies

(∇ · (Ihu0 − s0
h), ψh) = δ(∇r0

h,∇ψh), ∀ψh ∈ Qh,

from which ‖∇r0
h‖0 ≤ δ−1‖Ihu0 − s0

h‖0. Now, since both δ and ‖Ihu0 − s0
h‖0

are O(h2) we get ‖∇r0
h‖0 is bounded by a constant. In view of (47)-(50) this

choice keeps the optimal rate of convergence for the approximation (ṽnh, q
n
h)

since the term ∆t2‖∇r0
h‖2

0 is O(∆t2).
To conclude we obtain a bound for the pressure. We need a previous

result that we now state

Lemma 10 Let (ũnh, p
n
h) be the solution of (94) with (ũ0

h, p
0
h) = (s0

h, z
0
h) and

assume δ satisfies condition (104). Then, there exists a positive constant C∗B,
depending on the Sobolev’s constant c1, cA in (7), Cth and cr in Lemma 6,
M1, M2 in (28), the ratio Λ in (1) and the constants Ĉn

1 and Ĉ2 in (114–115),
such that that the error

(τ ∗)nh = PVh
(
B(ũn−1

h , ũn−1
h )−B(u(tn),u(tn))

)
, n = 1, . . . , N (120)

satisfies the following bounds

∆t
n∑
j=1

‖(τ ∗)jh‖
2
0 ≤ (C∗B)2

(
∆t

n−1∑
j=0

‖∇(ũjh − u(tj))‖2
0 + ν2∆t2K2

3,2

)
,

∆t
n∑
j=1

‖(τ ∗)jh‖
2
−1 ≤ (C∗B)2

(
tn max

0≤j≤n−1
‖ũjh − u(tj)‖2

0 + ν2∆t2K2
2,2

)
.

Proof We concentrate on the more difficult case d = 3. Arguing exactly as
in the proof of Lemma 9 and using (119) we have that the result for the L2

norm holds with the constant C∗B replaced by

(cA + c
3/2
1 )(M1M2)1/2 + (1 + c1)

(
Cth + crh

−1Λ
(
Ĉ1∆t2 + Ĉ2(h4 + (νδ)2)

))
,
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which taking into account that ∆t ≤ δ < Ch can be bounded by

(C∗,0B )2 =(cA + c
3/2
1 )(M1M2)1/2

+ (1 + c1)
(
Cth + crΛ

(
ν−2Ĉ1 + Ĉ2

)
c2
Mdiam(Ω)3

)
,

The result for the negative norm follows also arguing as in Lemma 9, for an
appropriate constant C∗,1B . The proof concludes taking C∗B = max(C∗,0B , C∗,1B ).
�

Theorem 5 Under the assumptions of Theorem 4 the following bound holds

∆t
n∑
j=1

tj‖pjh − p(tj)‖
2
0 ≤ Ĉ3∆t+ Ĉ4(h2 + νδ), (121)

where Ĉ3 and Ĉ4 are defined by

Ĉ3 = C3 + CT
(
c0λ
−1(C∗B)2ν−1C̃1 + (C∗B)2ν2K2

2,2T )

+ C(c0λ
−1 + νT )(1 + (C∗B)2ν−1T )Ĉ1T,

Ĉ3 = C4 + CT
(
c0λ
−1(C∗B)2ν−1C̃2

+ C(c0λ
−1 + νtn+1)(1 + (C∗B)2ν−1tn+1)Ĉ2(diam(Ω2)(1 + cM),

where C̃1, C̃2, C3, C4, Ĉ1 and Ĉ2 and C6 in (51), (52), (81), (82), (114)
and (115) respectively, C∗B is the constant in Lemma 10, and cM is the con-
stant in (104)

Proof For the proof we argue as in the proof of Theorem 2. We first observe
that ε̃nh = ũnh − ṽnh and %nh = pnn − qnh satisfy the following relations( ε̃n+1

h − ε̃nh
∆t

,χh

)
+ ν(∇ε̃n+1

h ,∇χh) + (∇%nh,χh) = ((τ ∗)n+1
h ,χh), ∀χh ∈ Vh

(∇ · ε̃n+1
h , ψh) + δ(∇%n+1

h ,∇ψh) = 0, ∀ψh ∈ Qh, (122)

where (τ ∗)n+1
h is defined in (120). Applying Lemma 1 and (122) it is easy to

obtain

∆t
n∑
j=1

tj‖%jh‖
2
0 ≤C∆t

n∑
j=1

tjνδ‖∇%jh‖
2
0 + C∆t

n∑
j=1

tj

∥∥∥ ε̃j+1
h − ε̃jh

∆t

∥∥∥2

−1

+ C∆t
n∑
j=1

tj‖(τ ∗)jh‖
2
−1 + C∆t

n∑
j=1

tjν
2‖∇ε̃j+1

h ‖
2
0. (123)
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We will bound all the terms on the right-hand side of (123). We first observe
that the first and forth terms can be bounded by

Cνtn∆t
n∑
j=0

(
ν‖∇ε̃j+1

h ‖
2
0 + δ‖∇%jh‖

2
0

)
and then applying (119) and taking into account the value of the constants
Ĉ1 and Ĉ2 in (114) and (115) we have

C∆t
n∑
j=1

tjνδ‖∇%jh‖
2
0+C∆t

n∑
j=1

tjν
2‖∇ε̃j+1

h ‖
2
0 ≤ Cνtn

(
Ĉ1∆t2+Ĉ2(h4+(νδ)2)

)
.

(124)
To bound the third term we apply Lemma 10 and (113) to get

∆t
n∑
j=1

tj‖(τ ∗)jh‖
2
−1 ≤ (C∗B)2tn

(
tn max

0≤j≤n−1
‖ũjh − u(tj)‖2

0 + ν2∆t2K2
2,2

)
(125)

≤ (C∗B)2tn
(
Ĉ1tn∆t2 + Ĉ2tn(h4 + (νδ)2) + ν2∆t2K2

2,2

)
.

To conclude we will bound the second term on the right-hand side of
(123). Since tj ≤ tj+1 and taking into account (4) we can write

∆t
n∑
j=1

tj

∥∥∥ ε̃j+1
h − ε̃jh

∆t

∥∥∥2

−1
≤ ∆t

n∑
j=1

tj+1

∥∥∥ ε̃j+1
h − ε̃jh

∆t

∥∥∥2

−1

≤ Cλ−1∆t
n∑
j=1

tj+1

∥∥∥ ε̃j+1
h − ε̃jh

∆t

∥∥∥2

0
.

Applying (45) we get

λ−1∆t
n∑
j=1

tj+1

∥∥∥ ε̃j+1
h − ε̃jh

∆t

∥∥∥2

0
≤ c0λ

−1
(

∆t
n∑
j=1

tj+1‖(τ ∗)jh‖
2
0

+ ∆tν
n∑
j=1

‖∇ε̃jh‖
2
0 + ∆tδ

n∑
j=1

‖∇%jh‖
2
0

)
. (126)

To conclude we will bound the three terms on the right-hand side of (126).
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For the first one we apply Lemma 10 and (116) to get

∆t
n∑
j=1

tj+1‖(τ ∗)jh‖
2
0 ≤(C∗B)2tn+1

(
∆t

n−1∑
j=0

‖∇(ũjh − u(tj))‖2
0 + ν2∆t2K2

3,2

)
≤(C∗B)2 tn+1

ν

(
C̃1∆t+ C̃2(h2 + νδ)

+ Ĉ1∆t2 + Ĉ2(h4 + (νδ)2)
)
, (127)

where C̃1, C̃2, Ĉ1 and Ĉ2 are the constants in (51), (52), (114) and (115)
respectively. Finally to bound the last two terms on the right-hand side of
(126) we apply (119) to obtain

∆tν
n∑
j=1

‖∇ε̃jh‖
2
0 + ∆tδ

n∑
j=1

‖∇%jh‖
2
0 ≤ Ĉ1∆t2 + Ĉ2(h4 + (νδ)2). (128)

Inserting (127) and (128) in (126) we get

∆t
n∑
j=1

tj

∥∥∥ ε̃j+1
h − ε̃jh

∆t

∥∥∥2

−1
≤ c0λ

−1
(

(C∗B)2ν−1tn+1

(
C̃1∆t+ C̃2(h2 + νδ)

)
(129)

+
(
1 + (C∗B)2ν−1tn+1

)(
Ĉ1∆t2 + Ĉ2(h4 + (νδ)2)

))
.

Inserting (124), (125) and (129) into (123) we get

∆t
n∑
j=1

tj‖%jh‖
2
0 ≤ Cc0λ

−1(C∗B)2ν−1tn+1

(
C̃1∆t+ C̃2(h2 + νδ)

)
+ C(c0λ

−1 + νtn+1)(1 + (C∗B)2ν−1tn+1)
(
Ĉ1∆t2 + Ĉ2(h4 + (νδ)2)

)
+ C(C∗B)2tnν

2K2
2,2∆t2.

Applying triangle inequality together with (80) we finally reach (121). �
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