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ABSTRACT

This thesis introduces an innovative approach to video comprehension, which simulates human

perceptual mechanisms and establishes a comprehensible and coherent narrative representation of

video content. At the core of this approach lies the creation of a Visual-Linguistic (VL) feature for an

interpretable video portrayal and an adaptive attention mechanism (AAM) aimed at concentrating

solely on principal actors or pertinent objects while modeling their interconnections.

Taking cues from the way humans disassemble scenes into visual and non-visual constituents,

the proposed VL feature characterizes a scene via three distinct modalities: (i) a global visual

environment, providing a broad contextual comprehension of the scene; (ii) local visual key entities,

focusing on pivotal elements within the video; and (iii) linguistic scene elements, incorporating

semantically pertinent language-based information for an all-encompassing grasp of the scene.

Through the integration of these multimodal traits, the VL representation presents an extensive,

diverse, and explicable perspective of video content, effectively bridging the divide between visual

perception and linguistic depiction.

In our study, we suggest a method for modeling these interactions using a multi-modal represen-

tation network. This network consists of two main components: a perception-based multi-modal

representation (PMR) and a boundary-matching module (BMM). Additionally, we introduce an

"adaptive attention mechanism (AAM)" within the PMR to focus on primary actors or relevant

objects while showing their connections. The PMR module represents each video segment by com-

bining visual and linguistic features. It represents primary actors and their immediate surroundings

with visual elements and conveys information about relevant objects through language attributes,

using an image-text model. The BMM module takes a sequence of these visual-linguistic features

as input and generates action recommendations.

Extensive experiments and thorough investigations were carried out on the ActivityNet-1.3 and

THUMOS-14 datasets to showcase the superiority of our proposed network over previous cutting-

edge methods. It displayed impressive performance and adaptability in both Temporal Action



Proposal Generation (TAPG) and temporal action detection. These findings provide strong evidence

for the effectiveness of our approach. To demonstrate the robustness and efficiency of our network,

we conducted an additional ablation study on egocentric videos, focusing on the EPIC-KITCHENS

100 dataset. This underscores the network’s potential to advance the field of video comprehension.s

In conclusion, this thesis delineates a promising path toward the development of interpretable video

comprehension models. By emulating human perceptual processes and harnessing multimodal

attributes, we contribute a fresh perspective to the discipline, opening the door for more advanced

and intuitive video comprehension systems in the future.
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Chapter 1

INTRODUCTION AND BACKGROUND

This chapter serves as the cornerstone for our investigation into the domain of video comprehension.

The materials provided here are indispensable for comprehending the evolution of concepts and the

fundamental methodologies employed in the subsequent deliberations and examinations. In Section

1.1, we delve into the fundamental principles of deep learning, encompassing problem formulation,

optimization strategies, and architectural elements such as convolutional neural networks (CNNs),

recurrent neural networks (RNNs), and Transformers. Section 1.2 immerses us in the associated

research domains of video representation and its assorted approaches. Additionally, we explore

the merits and challenges inherent in this approach. Section 1.3 presents the practical applications

of video comprehension, with a specific focus on Temporal Action Proposals Generation (TAPG).

We underscore the advantages of employing this approach within each of these domains. Finally,

in Section 1.4, we delineate the contributions of our research. Our study is dedicated to advancing

our comprehension of video comprehension, a goal we seek to accomplish by enhancing the

interpretability of the model and embedding an inductive bias within it. We posit that our research

has the potential to make significant contributions to the progression of deep learning and its

applications. We anticipate that the insights derived from this work will not only cater to academic

interests but also stimulate practical enhancements in the broader arena of video comprehension.

1.1 Deep Learning

Deep learning, a machine learning methodology, exploits deep neural networks comprising mul-

tiple linear and non-linear layers, with 𝜎(𝑥) = 1
1+exp(−𝑥) , tanh(𝑥) = exp(𝑥)−exp(−𝑥)

exp(𝑥)+exp(−𝑥) , and ReLU(𝑥) =

max(0, 𝑥) being frequently employed activation functions. These networks are adept at discerning

intricate patterns within data. By organizing neurons hierarchically, they progressively trans-

form input data into more abstract representations. Consequently, deep learning models excel at

approximating highly nonlinear functions with exceptional precision.

In a general sense, deep learning models endeavor to represent the data distribution 𝑝𝑑𝑎𝑡𝑎 through
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a probability model 𝑝𝜃 , which features a learnable parameter 𝜃. Despite lacking direct access to

𝑝𝑑𝑎𝑡𝑎, we postulate its existence and replace it with the empirical distribution 𝑝 |D|
𝑑𝑎𝑡𝑎

derived from

the datasetD. As the number of data samples, denoted as |D|, increases, the empirical distribution

gradually converges to the data distribution: lim|D|→∞ 𝑝 |D|𝑑𝑎𝑡𝑎
= 𝑝𝑑𝑎𝑡𝑎. To model the data distribution

through an empirical distribution, we employ a statistical distance to minimize the dissimilarity

between the probability model and the empirical distribution.

For this purpose, deep learning often leverages a family of f-divergence or integral probability

metrics. Kullback-Leibler (KL) divergence is a commonly used variant of f-divergence, generated

by the function 𝑓 (𝑥) = 𝑥 ln 𝑥. It serves as a measure for quantifying the distinction between

two probability distributions that concern the same random variable. These distributions, typically

denoted as 𝑃 and𝑄, have specific interpretations. Usually, 𝑃 characterizes the data or observations,

while𝑄 represents a model or an approximation of 𝑃. The KL divergence from𝑄 to 𝑃 is expressed

as:

𝐷𝐾𝐿 (𝑃 | |𝑄) = E𝑥∼𝑃
[
log

𝑃(𝑥)
𝑄(𝑥)

]
= E𝑥∼𝑃 [log 𝑃(𝑥) − log𝑄(𝑥)] (1.1)

It is essential to acknowledge that the KL divergence is not a true metric of distance due to its

asymmetry; in other words, 𝐷𝐾𝐿 (𝑃 | |𝑄) ≠ 𝐷𝐾𝐿 (𝑄 | |𝑃), as evident from the formula.

Our primary objective is to determine a parameter, denoted as 𝜃∗, which minimizes the disparity

between the empirical distribution and the model. To achieve this, the training objective can be

cast as the minimization of the KL divergence. For a discriminative model, we aim to model

the conditional probability distribution 𝑝(𝑦 |𝑥) based on an annotated dataset denoted as D =

(𝑥 (𝑛) , 𝑦 (𝑛)) |D|𝑛=1, where D comprises a collection of data points 𝑥 along with their corresponding

labels 𝑦.
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𝜃∗ = argmin
𝜃

E
𝑥,𝑦∼𝑝 |D |

𝑑𝑎𝑡𝑎

[
log 𝑝 |D|

𝑑𝑎𝑡𝑎
(𝑦 |𝑥) − log 𝑝𝜃 (𝑦 |𝑥)

]
= argmax

𝜃

|D|∑︁
𝑖=1

log 𝑝𝜃 (𝑦𝑖 |𝑥𝑖)
(1.2)

In the context of a regression problem, it is customary to employ a modeling approach for the target

variable 𝑦 utilizing a normal distribution. This distribution is characterized by a mean determined

by a function denoted as 𝑓 with a parameter vector 𝜃 and a fixed variance of 𝜎2
𝑦 . In other words,

we represent each target value 𝑦𝑖 as being generated from a normal distribution with parameters

specified as 𝑦𝑖 ∼ N( 𝑓𝜃 (𝑥𝑖), 𝜎2
𝑦 ).

Upon examination of the probability density function for the normal distribution, as provided in

the footnote1, we can express the objective function in the following manner:

argmax
𝜃

|D|∑︁
𝑖=1

log 𝑝𝜃 (𝑦𝑖 |𝑥𝑖) = argmin
𝜃

1
2𝜎2

𝑦

|D|∑︁
𝑖=1
( 𝑓𝜃 (𝑥𝑖) − 𝑦𝑖)2 (1.3)

Hence, the act of maximizing the log-likelihood for the regression model can be viewed as a pursuit

to minimize the squared error between the anticipated predictions and the actual ground-truth

values.

In the context of a classification task, we treat the label 𝑦 as a stochastic outcome stemming from

a categorical distribution characterized by class probabilities 𝜋1, . . . , 𝜋𝑘 , denoted as 𝑦𝑖 ∼ 𝐶𝑎𝑡 (𝜋𝑖).

This distribution can be effectively represented using the output of the softmax function. The

softmax function operates on a vector 𝑧 ∈ R𝑘 , containing 𝑘 values, and transforms it into a

probability distribution comprised of 𝑘 probabilities. We employ this function on the output of

the function 𝑓 to model the categorical distribution of 𝑦, i.e., 𝑝𝜃 (𝑦𝑖 |𝑥𝑖) = softmax( 𝑓𝜃 (𝑥𝑖)). The

softmax function is mathematically defined as follows for 𝑘 ≥ 1 :

1The normal distribution’s probability density function is expressed as: 𝑓 (𝑥) = 1
𝜎
√

2𝜋
exp

(
− 1

2
( 𝑥−𝜇

𝜎

)2
)
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softmax(𝑧𝑖) =
exp(𝑧𝑖)∑𝑘
𝑗=1 exp(𝑧 𝑗 )

for 𝑖 = 1, . . . , 𝑘 (1.4)

Subsequently, the model’s objective function can be reformulated in accordance with the probability

mass function governing a categorical distribution2:

argmax
𝜃

|D|∑︁
𝑖=1

log 𝑝𝜃 (𝑦𝑖 |𝑥𝑖) = argmin
𝜃

|D|∑︁
𝑖=1

𝑘∑︁
𝑗=1
−𝑦𝑖, 𝑗 log softmax( 𝑓𝜃 (𝑥𝑖, 𝑗 )) (1.5)

Evidently, the maximization of the log-likelihood of the classification model is synonymous with

the minimization of the cross-entropy loss, as substantiated by prior research.

In the pursuit of determining the optimal parameter set denoted as 𝜃∗, as indicated in Equation 1.3

or Equation 1.5, contingent on the specific problem configuration, the attainment of an analytical

solution proves arduous, primarily due to the intricate nature of the function 𝑓 characterized by its

neural network implementation. Consequently, an alternative approach, stochastic gradient descent

(SGD), is employed, forsaking the quest for an analytical solution. SGD, classified under the

nomenclature of Stochastic Gradient Descent (SGD), is a sequential iterative optimization method

wielded for the purpose of optimizing a given objective function. SGD, often construed as a

stochastic approximation of the gradient descent optimization technique, serves as a substitute for

the true gradient, derived from the complete dataset, by employing an estimated gradient computed

from a randomly selected subset of the data.

In the context of empirical risk minimization, the function 𝐿𝑖 (𝜃), representing the loss at the 𝑖𝑡ℎ data

point within the dataset, plays a pivotal role in approximating the genuine gradient of the empirical

risk function 𝐿 (𝜃). This approximation, in turn, is leveraged for the purpose of parameter updates

pertaining to the parameter 𝜃:

𝜃 ← 𝜃 − 𝜂∇𝐿𝑖 (𝜃) (1.6)
2The categorical distribution’s probability mass function is: 𝑓 (𝑥 |𝑝) = ∏𝑘

𝑖=1 𝑝
𝑥𝑖
𝑖
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In the course of algorithm execution, it systematically implements the aforementioned update

procedure for each training instance contained within the dataset. Iterations across the training set

may be conducted repeatedly until the algorithm achieves convergence. To mitigate the occurrence

of cyclic patterns, the dataset is subjected to random shuffling before each iteration.

In practical application, the gradient with respect to multiple training instances, referred to as a

mini-batch, is employed to ameliorate the substantial gradient fluctuations and facilitate a more

expeditious convergence.

In the ensuing subsections, we shall present several commonly embraced network architectures

within the realm of deep learning.

Multi-Layer Perceptron

The term "Multi-Layer Perceptron (MLP)" denotes a class of fully connected, feedforward artificial

neural networks. This architecture comprises a sequence of linear and non-linear operations

organized in an interleaved manner. An illustrative example of an MLP is frequently encountered

within a Transformer block, as will be elucidated in the ensuing subsection:

MLP(𝑥) = 𝜎(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (1.7)

Let𝑊1 and𝑊2 represent the linear transformation weights, while 𝑏1 and 𝑏2 denote the bias terms.

Additionally, 𝜎 signifies a non-linear activation function, typically configured as the Rectified

Linear Unit (ReLU) activation (Agarap, 2018) or the Gaussian Error Linear Unit (GELU) activation

(Hendrycks and Gimpel, 2016).

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specialized neural network architecture tailored for

the analysis of data characterized by inherent local structure. Such data types encompass time-

series data, such as audio signals represented as a one-dimensional sequence with regular temporal

sampling intervals, visual data, which can be envisioned as a two-dimensional grid of pixels, and

video data, which can be conceived as a three-dimensional grid of pixels with temporal coherency.
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CNNs achieve this by employing convolutional layers, which establish locality and translation

equivariance characteristics3 by sharing the parameters of the linear transformation across different

positions. This characteristic imparts a robust inductive bias regarding the data’s structure to the

model. The functionality of a 2D convolutional layer can be succinctly described as:

𝑥
(𝑙+1)
𝑖, 𝑗

=

𝑘ℎ∑︁
ℎ=1

𝑘𝑤∑︁
𝑤=1

𝑊ℎ,𝑤𝑥
(𝑙)
(𝑖+ℎ),( 𝑗+𝑤) + 𝑏 (1.8)

𝑊 is a set of convolutional weights represented as a multidimensional tensor with dimensions 𝑘ℎ in

height, 𝑘𝑤 in width, 𝐶 (𝑙) in the input channel, and 𝐶 (𝑙+1) in the output channel. These weights are

used for convolution operations across the spatial dimensions, and there is also a bias term denoted

as 𝑏.

Residual Network

The Residual network (ResNet), (He, Zhang, et al., 2016), represents a specialized form of convolu-

tional neural network designed for training deep neural networks. In ResNet, the layers are explicitly

redefined as residual functions that incorporate the layer inputs through a residual connection.

A residual connection, serving as an identity mapping, permits direct information transfer from

earlier layers to later layers, bypassing intermediate layers. The primary aim behind introducing

these residual connections is to enhance gradient flow during training and mitigate the vanishing

gradient issue.

The utilization of residual connections allows the network to concentrate on learning the residual

mapping, which in turn enhances learning and optimization within the network architecture. This

approach has been widely adopted in many advanced network architectures in recent years. The

formulation of the residual connection is as follows:

𝑥 (𝑙+1) = 𝑓

(
𝑥 (𝑙)

)
+ 𝑥 (𝑙) (1.9)

3A function 𝑓 exhibits translation equivariance when it preserves translations, meaning that 𝑓 (𝑇𝑋) equals𝑇 [ 𝑓 (𝑋)].
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where 𝑓 (·) represents a subnetwork, and 𝑙 denotes the layer index source.

Recurrent Neural Networks

Recurrent Neural Networks (RNN) represent a neural network structure capable of handling input

sequences of variable lengths. When provided with an input tensor of length 𝑇 , the RNN computes

the 𝑙𝑡ℎ hidden states through a recursive process as follows:

ℎ
(𝑙)
𝑡 = 𝜎

(
𝑊 (𝑙)

[
ℎ
(𝑙−1)
𝑡 ; ℎ(𝑙)

𝑡−1

]
+ 𝑏 (𝑙)

)
(1.10)

The network parameters 𝑊 and 𝑏 are common throughout the temporal dimension, and the initial

hidden state ℎ(1)0 is typically set to a zero-vector and serves as the pseudo hidden state.

Gated RNNs

Given that recurrent neural networks (RNNs) operate as deep neural networks across a temporal

dimension, they encounter challenges when it comes to transmitting errors that occurred at time steps

that are far apart. As a result, they often encounter difficulties in grasping long-term connections,

such as understanding the connection between the start and finish of a sentence, and instead,

they prioritize learning immediate relationships. To tackle this problem, gates were introduced to

facilitate the equitable acquisition of short-term and long-term memories.

LSTM: Long Short-Term Memory (LSTM) stands as an exemplar within the realm of gated

Recurrent Neural Networks (RNNs) (Hochreiter and Schmidhuber, 1997). In addition to the cell 𝑐,

LSTM incorporates three gates: the input gate denoted as 𝑖, the forget gate represented by 𝑓 , and

the output gate labeled as 𝑜, all of which serve the purpose of preserving long-term information.



ℎ̄
(𝑙)
𝑡

𝑖
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𝑓
(𝑙)
𝑡

𝑜
(𝑙)
𝑡


=



tanh

𝜎

𝜎

𝜎



©­­­­­­­­«


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(𝑙)
ℎ̄

𝑊
(𝑙)
𝑖

𝑊
(𝑙)
𝑓

𝑊
(𝑙)
𝑜



ℎ
(𝑙−1)
𝑡

ℎ
(𝑙)
𝑡−1

 +


𝑏
(𝑙)
ℎ̄

𝑏
(𝑙)
𝑖

𝑏
(𝑙)
𝑓

𝑏
(𝑙)
𝑜


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(1.11)
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𝑐
(𝑙)
𝑡 = 𝑖

(𝑙)
𝑡 ⊙ ℎ̄

(𝑙)
𝑡 + 𝑓

(𝑙)
𝑡 ⊙ 𝑐

(𝑙)
𝑡−1 (1.12)

ℎ
(𝑙)
𝑡 = 𝑜

(𝑙)
𝑡 ⊙ tanh

(
𝑐
(𝑙)
𝑡

)
(1.13)

in this context, ⊙ symbolizes the Hadamard product, and 𝜎 represents the sigmoid function.

In this scenario, ℎ̄𝑡 corresponds to the hidden state of an RNN, and it undergoes modification through

the input gate 𝑖 to update the cell 𝑐, which accumulates long-term information. Furthermore, the

forget gate 𝑓 diminishes the prior cell value. Essentially, we can express this process as the cell

value being refined by modulating the trade-off between short-term and long-term information

using the input gate and the forget gate. Ultimately, the updated cell value is utilized to determine

the ultimate hidden state by adjusting it with the output gate.

GRU: The Gated Recurrent Unit (GRU) is designed to incorporate enduring information into the

hidden state ℎ using a simplified mechanism involving only two gates responsible for controlling

state forgetting and updating, as outlined in (Cho et al., 2014). These two gates are referred to as

the reset gate 𝑟 and the update gate 𝑧 and they play a crucial role in updating the hidden states in

the following manner:


𝑟
(𝑙)
𝑡

𝑧
(𝑙)
𝑡

 = 𝜎
©­­«

𝑊
(𝑙)
𝑟

𝑊
(𝑙)
𝑧



ℎ
(𝑙−1)
𝑡

ℎ
(𝑙)
𝑡−1

 +

𝑏
(𝑙)
𝑟

𝑏
(𝑙)
𝑧


ª®®¬ (1.14)

ℎ̃
(𝑙)
𝑡 = tanh

©­­«


ℎ
(𝑙−1)
𝑡

𝑟
(𝑙)
𝑡 ⊙ ℎ

(𝑙)
𝑡−1


ª®®¬ (1.15)

ℎ
(𝑙)
𝑡 =

(
1 − 𝑧(𝑙)𝑡

)
⊙ ℎ̃(𝑙)𝑡 + 𝑧

(𝑙)
𝑡 ⊙ ℎ

(𝑙)
𝑡−1 (1.16)
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The effectiveness of RNNs differs based on the specific task, and there is ongoing debate about

whether LSTM or GRU holds the advantage (Jozefowicz, Zaremba, and Sutskever, 2015). Never-

theless, it’s worth noting that GRU, possessing fewer gates and not needing a cell, has the potential

to carry out computations similar to LSTM with reduced computational and memory demands in

situations where state variables are well-matched.

Transformers

Transformers, a category of neural network architecture, utilize attention mechanisms to capture

extensive dependencies in sequential data like text, speech, and image-patch sequences, albeit at the

cost of increased memory complexity. The classic Transformer model, as presented in Vaswani et

al., 2017b, is primarily composed of two essential elements: multi-head attention and a point-wise

feed-forward network (FFN) integrated with a residual connection. Multi-head attention involves

the simultaneous execution of Scaled Dot-Product Attention, a computation that derives weight

values for the values based on the softmax of dot products between the query and keys. This

weight calculation scales the key values by the inverse square root of their dimension, which can

be succinctly expressed using the query, key, and value matrices 𝑄, 𝐾,𝑉 as follows:

Attention(𝑄, 𝐾,𝑉) = softmax
(
𝑄𝐾⊤
√
𝑑𝑘

)
𝑉 (1.17)

The symbol ⊤ as a superscript represents the transpose operation, and 𝑑𝑘 denotes the dimension of

the key vector.

Multi-head attention operates by projecting queries, keys, and values onto multiple subspaces

through the use of 𝑛 distinct linear transformations. This allows it to simultaneously consider

information from various representation subspaces and different positions. On the other hand,

using a single attention head results in an average across different subspaces, limiting the model’s

ability to capture intricate patterns in the data. When employing multi-head attention with ℎ heads,

the feature dimension 𝑑 is divided into ℎ equal blocks, expressed as R𝐿× 𝑑
ℎ
×ℎ. Consequently, we can

represent the multi-head attention operation as follows:
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MHA(𝑄, 𝐾,𝑉) = [head1; . . . ; headℎ]𝑊𝑂 (1.18)

In this context, [; ] signifies the concatenation of tensors along the channel dimension. The output

projection weights are represented by 𝑊𝑂 ∈ R𝑑×𝑑 , and the calculation for each individual head,

denoted as head𝑖, is performed as follows:

head𝑖 = softmax

(
𝑄𝑖𝐾

⊤
𝑖√︁

𝑑/ℎ
+ 𝑀

)
𝑉𝑖 (1.19)

In the given setup, we generate the query, key, and value tensors, denoted as𝑄𝑖 = 𝑄𝑊𝑄

𝑖
, 𝐾𝑖 = 𝐾𝑊𝐾

𝑖
,

and𝑉𝑖 = 𝑉𝑊𝑉
𝑖

, respectively. This is achieved by linearly projecting the input using trainable weight

matrices 𝑊𝑄 , 𝑊𝐾 , and 𝑊𝑉 , with dimensions in R 𝑑
ℎ
× 𝑑

ℎ . Additionally, there’s a mask matrix

𝑀 ∈ R𝐿×𝐿 , which we use to assign a value of −∞ to specific elements for masking purposes,

following the softmax operation. If no masking is needed, the mask matrix is set to zero.

Depending on how the 𝑄, 𝐾 , and 𝑉 tensors are prepared, the attention mechanism goes by various

names. Here’s a common categorization for reference:

1. Self-Attention: This process readies𝑄, 𝐾 , and 𝑉 for analysis by using individual transforma-

tion matrices on a shared input 𝑋 , resulting in 𝑄 being generated as 𝑋 transformed by 𝑊𝑄 ,

𝐾 as 𝑋 transformed by 𝑊𝐾 , and 𝑉 as 𝑋 transformed by 𝑊𝑉 . This enables the extraction of

the inter-token connections within the provided sequence.

2. Masked Self-Attention: To ensure the attention mechanism doesn’t consider "future" elements

during autoregressive generation tasks, we employ a triangular mask denoted as 𝑀 . This

mask effectively restricts each element’s access to future elements, enabling the model to

develop the ability to forecast future information solely based on past and present data.

3. Cross-Attention: In this process, 𝑄, 𝐾 , and 𝑉 are generated using distinct input matrices, 𝑋

and 𝑌 , in such a way that 𝑄 is obtained by multiplying 𝑋 with the weight matrix 𝑊𝑄 , 𝐾 is
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computed by multiplying 𝑌 with the weight matrix𝑊𝐾 , and 𝑉 is calculated by multiplying 𝑌

with the weight matrix𝑊𝑉 . This process can be understood as a mechanism through which

𝑋 acquires information from an external source, which is 𝑌 .

Two-thirds of a Transformer model’s parameters are allocated to the Feed Forward Net (FFN), as

shown by Geva et al. According to their findings, the feed-forward layers in language models based

on transformers serve as key-value memory components. In this context, each key corresponds

to patterns found in the training data, while each value generates a distribution across the output

vocabulary. In practical scenarios, the typical implementation of the FFN involves using a straight-

forward Multi-Layer Perceptron (MLP), which consists of two linear transformations interleaved

with a ReLU activation function. This can be expressed mathematically as follows:

FFN(𝑥) = ReLU(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (1.20)

In this context,𝑊1 and𝑊2 represent the weight matrices, while 𝑏1 and 𝑏2 represent the bias vectors.

Typically, the linear transformation’s inner dimension is quadruple the size of the transformer

dimension. Subsequently, it’s decreased back to its initial dimension, such as going from 512 →

2048 → 512. This approach maintains the input-output dimensions while enabling the model to

acquire more intricate representations.

Extending to Vision Tasks

In the realm of visual tasks, particularly in tasks like image classification, object detection, and

segmentation, Convolutional Neural Networks (CNNs) have conventionally held the primary ar-

chitectural position. Nevertheless, the success of Transformers in the domain of natural language

processing has spurred researchers to explore their potential in the field of computer vision. Trans-

formers made their initial foray into vision-related tasks by representing a block of 16 × 16 pixels

as a single patch, treating it on par with language tokens (Dosovitskiy et al., 2021). By employing

self-attention mechanisms to capture global dependencies and model relationships among these
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patches, Vision Transformers (ViTs) have the capacity to acquire formidable representations for

comprehending images. However, it’s important to note that this advantage comes with the trade-

off of necessitating larger datasets for effective training. In simpler terms, when working with

small-scale datasets, the inherent bias we introduce into the model assumes a pivotal role.

Scaling Laws and Potential of Transformers

The operational dynamics of Transformers unveil an intriguing dimension in their operation. In

their work, Kaplan et al. elucidated a power law correlation capable of forecasting the evaluation

loss of a language-modeling Transformer employing an autoregressive approach. This correlation

gains significance when the Transformer’s efficacy is influenced by specific factors, namely the

quantity of non-embedding parameters (𝑁), the dataset’s magnitude (𝐷), or the optimally assigned

computational resources (𝐶𝑚𝑖𝑛).

𝐿 (𝑥) = 𝐿∞ +
(𝑥0
𝑥

)𝛼𝑥

, 𝑥 ∈ {𝑁, 𝐷,𝐶𝑚𝑖𝑛} (1.21)

This showcases the prospect of systematically improving the performance of language models by

increasing the scale of models, datasets, and computational resources. Subsequently, it was found

that this Scaling Law is applicable to Transformers (autoregressive generative models) across

diverse domains like images, videos, image-text, and mathematical formulas (Henighan et al.,

2020). In the wake of these findings, numerous organizations and research teams have initiated

endeavors to elevate the scale of their models. These substantial models are commonly referred

to as foundational models, and there is an emerging trend of utilizing these pre-trained models in

zero-shot or few-shot scenarios.

1.2 Spatiotemporal Feature Learning

Extracting spatiotemporal features effectively from video data is a fundamental requirement for any

task involving the comprehension of videos. This process allows us to identify complex activities

happening over time by considering both spatial and temporal information. To achieve success in
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Figure 1.1: Autoregressive language models exhibit power-law scaling laws (derived from Kaplan
et al., 2020)

video understanding tasks, it’s crucial to take into account both the spatial (visual) and temporal

(motion) aspects. As the field has progressed, various approaches have emerged to address this

intricate task, each with its unique strengths and limitations.

In this section, we explore several notable techniques for spatiotemporal feature learning. These

methods encompass a wide spectrum, ranging from traditional 3D Convolutional Networks (C3D),

Inflated 3D ConvNet (I3D), and SlowFast Networks, to more recent transformer-based architectures

like the Cooperative Hierarchical Transformer (COOT).

3D Convolutional Networks (C3D)

The approach presented in (Tran et al., 2014) involves a video representation technique that employs

3D convolutions to extract spatio-temporal features from videos. Unlike 2D convolutions, which

work on individual frames, 3D convolutions analyze video clips, enabling the model to capture

temporal information. C3D exhibits remarkable generalization abilities and can be employed as a

flexible feature extractor for a wide array of video processing tasks. Instead of making network

modifications or engaging in fine-tuning, numerous researchers have preferred to utilize C3D

primarily as a feature extraction tool for various applications.

Inflated 3D ConvNet (I3D)

I3D, as introduced by (Carreira and Zisserman, 2017), enhances conventional 2D CNNs by extend-

ing them into the 3D domain, enabling the direct extraction of spatio-temporal features from video
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data. The I3D architecture is initially pretrained on an extensive video dataset and subsequently

fine-tuned for particular tasks. This approach has demonstrated remarkable effectiveness in tasks

such as video classification and action recognition.

SlowFast Networks (SlowFast)

The fundamental concept at the core of SlowFast, as outlined in Feichtenhofer, Fan, et al., 2018,

involves the simultaneous processing of a video using two distinct pathways: a slow pathway and

a fast pathway. The slow pathway functions at a reduced frame rate, focusing on capturing spatial

semantics, while the fast pathway operates at a higher frame rate, emphasizing fine temporal motion

details. The ultimate representation is generated by merging the outputs from these two pathways.

This approach offers computational efficiency and has demonstrated leading performance in various

video comprehension benchmarks.

Cooperative Hierarchical Transformer (COOT)

COOT, as introduced by (Ging et al., 2020), employs a transformer-based approach for compre-

hending videos. It employs a hierarchical transformer structure, working at both the clip-level and

video-level. The clip-level transformer focuses on capturing local temporal relationships, while

the video-level transformer attends to global temporal dependencies. A distinctive characteristic

of COOT lies in its cooperative learning mechanism, facilitating interaction and mutual learning

between the clip-level and video-level transformers. This methodology has demonstrated encour-

aging outcomes in various video understanding tasks, such as video captioning and video question

answering.

1.3 Applications in Video Understanding - Temporal Action Proposals Generation

In today’s rapidly evolving technological landscape, data encompasses more than just texts, figures,

or static images; it extends to dynamic and intricate entities like videos. The ability to comprehend

and analyze videos has become a focal point of research, finding utility in various domains, including

surveillance, entertainment, healthcare, and autonomous driving. In this section, we will delve into

the applications of video understanding, with a specific emphasis on temporal action proposals

generation.
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(a) Examples of actions (e.g jogging) are independent to environments.

(b) Examples of how actors contribute to form actions i.e. among all actors (green and red boxes) in
the scenes, only main actors (red boxes) actually commit actions.

(c) Examples of actions in egocentric videos where actors are not visible.

Figure 1.2: Many of the prevailing Temporal Action Proposal Generation (TAPG) methods, such
as those proposed in T. Lin, X. Zhao, et al., 2018; Su, Gan, et al., 2021; T. Lin, X. Liu, et al., 2019;
C. Lin, J. Li, et al., 2020; Xu, C. Zhao, et al., 2020, typically employ a 3D backbone network across
the entire spatial domain. However, as illustrated in (a), the significance of actors in influencing an
action surpasses that of the environment itself. The state-of-the-art (SOTA) techniques in TAPG, as
exemplified by Vo, Yamazaki, et al., 2021; Vo-Ho et al., 2021, successfully extract both local human
features and global environmental features. Nevertheless, these approaches encounter challenges in
either distinguishing between primary actors actively involved in actions and non-essential actors
(b) or handling egocentric videos where actors remain invisible in the scene (c).

Temporal action proposals generation is a critical facet of video analysis, primarily concerned

with identifying and localizing key actions or events within a video. This task is pivotal in various

applications, such as video summarization, action recognition, and event detection. Temporal action

proposals generation presents a unique set of challenges, primarily stemming from the intricacies

of video content. Videos are a dynamic medium, and interpreting them requires the recognition of

objects, actions, and events. The temporal aspect further complicates the process, as it necessitates
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understanding the sequence and timing of events within the video.

In addressing the challenge of Temporal Action Proposal Generation (TAPG) from untrimmed

videos, the focus is on localizing temporal segments, pinpointing specific starting and ending

timestamps for actions or activities within the video Shou, D. Wang, and Chang, 2016; Jiyang Gao,

Yang, and Nevatia, 2017; Jiyang Gao, K. Chen, and Nevatia, 2018; Jiyang Gao, Ge, et al., 2018.

TAPG plays a pivotal role in video analysis and comprehension, influencing downstream tasks such

as Temporal Action Detection (TAD) Fabian Caba Heilbron and Niebles, 2015; Jiang et al., 2014,

video captioning Krishna et al., 2017, and action recognition Kay et al., 2017.

Broadly categorized, TAPG approaches fall into two main types: anchor-based and boundary-

based. Anchor-based methods Richard and Gall, 2016; Chao, Vĳayanarasimhan, et al., 2018;

Heilbron, Niebles, and Ghanem, 2016; Shou, D. Wang, and Chang, 2016; Jiyang Gao, Yang, et al.,

2017 draw inspiration from 2D image object detection, pre-defining anchor segments and fitting

them to groundtruth action segments in videos. However, these methods struggle to accommodate

diverse action lengths with a finite set of anchors. On the other hand, boundary-based methods

T. Lin, X. Zhao, et al., 2018; Su, Gan, et al., 2021; T. Lin, X. Liu, et al., 2019; C. Lin, J. Li, et al.,

2020; Xu, C. Zhao, et al., 2020; Vo-Ho et al., 2021; Vo, Yamazaki, et al., 2021 overcome this

limitation by separately localizing starting and ending timestamps before merging them through a

follow-up action evaluation module.

Despite their success on benchmark datasets, boundary-based approaches T. Lin, X. Zhao, et al.,

2018; Su, Gan, et al., 2021; T. Lin, X. Liu, et al., 2019; C. Lin, J. Li, et al., 2020; Xu, C. Zhao,

et al., 2020 have notable drawbacks, particularly in neglecting the video representation aspect.

They often divide videos into snippets and apply a 3D convolutional backbone network to the entire

spatial domain of each snippet without considering the relevance of all spatial regions. Recent

advancements Vo-Ho et al., 2021; Vo, Yamazaki, et al., 2021 propose representing each snippet

with both local actors features and global surrounding environment features, as shown in Fig. 1.2(b),

flexibly balanced using a self-attention module. However, these improvements still face challenges,
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such as difficulty in discriminating main actors from non-essential actors and limited applicability

in videos where actions are independent of human presence, such as egocentric videos, as shown

in Fig. 1.2(c).

1.4 Research Questions and Contributions

In this thesis, our primary objective is to advance the comprehension of video understanding, with

a specific focus on enhancing the interpretability of the model. The key research question and

contribution that guide and define this work are presented below:

• Question : How can we represent video content in an interpretable manner making it beneficial

not only for the task of video understanding but also for humans to interpret?

In Section 2.2, we introduce a novel video representation framework known as Perception-

based Multi-modal Representation (PMR). This framework models a video with distinct

components, including (i) the environment, (ii) main agents, (iii) scene elements, and their

interactions. The PMR incorporates an Adaptive Attention Mechanism (AAM), detailed in

Section 2.3, to selectively utilize features from each modality. The AAM plays a pivotal role

in the VL Encoder, enabling us to scrutinize and comprehend which components exert the

most influence on video representation.

Much of the works in this thesis appear in the following publications:

1. K. Vo, S. Truong∗, K. Yamazaki∗, B. Raj, M. Tran, N. Le "AOE-Net: Entities Interactions

Modeling with Adaptive Attention Mechanism for Temporal Action Proposals Generation,"

International Journal of Computer Vision, 2023.

2. K. Yamazaki, S. Truong, K. Vo, M. Kidd, C. Rainwater, K. Luu, N. Le "VLCap: Vision-

Language with Contrastive Learning for Coherent Video Paragraph Captioning," IEEE In-

ternational Conference on Image Processing (ICIP), 2022.
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3. K. Vo, K. Yamazaki, S. Truong, M. Tran, A. Sugimoto, N. Le "ABN: Agent-Aware Boundary

Networks for Temporal Action Proposal Generation," IEEE Access, 2021.
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Chapter 2

INTERPRETABLE VIDEO REPRESENTATION

In this chapter, we embark on a journey to unfold our endeavors in crafting an interpretable video

representation. The crux of video representation lies in the transformation of raw video data into

meaningful and manageable forms, facilitating the comprehension of embedded information by

systems. As we strive for precision in understanding, the evolution of models has led to increased

sophistication and complexity. Yet, this sophistication often shrouds these models in the veil

of "black boxes," making them arduous to decipher and interpret. Hence, the imperative for

interpretability arises, driven by the necessity to demystify these black boxes and shed light on their

internal workings.

The pursuit of interpretable video representation extends beyond the mere interpretation and pro-

cessing of videos; it delves into the realm of comprehending the models responsible for these tasks.

Simply put, the challenge is not only to enhance the accuracy of our models but also to render them

transparent, enabling humans to grasp the intricacies of their decision-making processes.

Within the confines of this chapter, we embark on an exploration of this thrilling frontier. Our jour-

ney commences with an examination of a pivotal building block known as the Perception-based

Multi-modal Representation (PMR). Subsequently, we introduce our innovative Adaptive Atten-

tion Mechanism (AAM). Moving forward, we immerse ourselves in a comprehensive discussion

of each component of the Encoder, unraveling their design and functionality, and elucidating how

they contribute to Temporal Action Proposal Generation.

The chapter’s central focus lies in providing a detailed description and demonstration of the

model’s mechanics, encompassing its intricate design and diverse functionalities. We meticulously

dissect the technical aspects, delving into the algorithms and techniques that power the model.

Additionally, we explore the novel solutions devised to surmount challenges encountered during

its development. To accentuate the merits of our model, we present a comparative analysis,

highlighting the advancements and enhancements it offers in comparison to existing Temporal
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Action Proposal Generation methodologies.

2.1 Problem Setup

In processing an input video V = {𝑣𝑖}𝑁𝑖=1, where 𝑁 denotes the number of frames, we adhere to

established conventions in prior works to partition V into a series of 𝛿−frame snippets 𝑠𝑖 |𝑇𝑖=1.

Each snippet 𝑠𝑖 comprises 𝛿 consecutive frames, resulting in a total of 𝑇 =
⌈
𝑁
𝛿

⌉
snippets forV. Let

𝜙(.) denote an encoding function designed to extract the visual feature 𝑓𝑖 of a 𝛿-frame snippet 𝑠𝑖.

Consequently, the videoV can be succinctly represented as F through the formulation:

F = { 𝑓𝑖}𝑇𝑖=1, where 𝑓𝑖 = 𝜙(𝑠𝑖) (2.1)

Diverging from conventional approaches Su, Gan, et al., 2021; C. Lin, J. Li, et al., 2020; Long

et al., 2019; Xu, C. Zhao, et al., 2020; S. Liu, X. Zhao, et al., 2020; T. Lin, X. Liu, et al., 2019;

T. Lin, X. Zhao, et al., 2018; Xu, C. Zhao, et al., 2020; Bai et al., 2020; Tan et al., 2021 that

merely designate 𝜙(.) as a pre-trained backbone network, such as C3D (Ji et al., 2013), 2Stream

(Simonyan and Zisserman, 2014), and Slow-fast (Feichtenhofer, Fan, et al., 2019), our innovation

lies in the formulation of 𝜙(.) through the proposed PMR. This unique approach allows for the

comprehensive representation of visual information within the snippet, incorporating both global

and local perspectives, and leveraging both visual and linguistic cues.

The feature sequence F serves as the input, and the Boundary-Matching Module (BMM) is pivotal

in pinpointing action proposals. In the subsequent section, we delve into the details of the Proposed

PMR in Sub-Sec. 2.2. Following that, we expound upon the Boundary-Matching Module in

Sub-Sec. 2.4.

2.2 Perception-based Multi-modal Representation (PMR)

PMR employs a novel approach to feature extraction by aligning with the inherent mechanisms

of human action perception. This involves the identification of key actors during each temporal

phase, the recognition of pertinent objects, and an understanding of the dynamic interactions

unfolding among the primary actors, relevant objects, and the surrounding environment—ultimately
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Figure 2.1: The proposed PMR architecture revolves around a 𝛿-snippet 𝑠𝑖. The V-L feature is
derived through four distinct modules: (i) the actors beholder, responsible for extracting the local
visual action feature 𝑓 𝑎; (ii) the environment beholder, dedicated to extracting the global visual
environment feature 𝑓 𝑒; (iii) the objects beholder, tasked with extracting the linguistic object feature
𝑓 𝑜; and (iv) the actors-objects-environment interaction beholder, designed to model the V-L feature
by capturing the interaction among actors, objects, and the environment.

pinpointing the commencement and conclusion of the action. Within the scope of this paper, our

focus is directed towards the exploration of two distinct modalities, namely vision and language, to

harness the extraction of Vision-Language (V-L) features.

The architecture of PMR encompasses four pivotal components: (i) the environment beholder, (ii)

actors beholder, (iii) objects beholder, and (iv) the actors-objects-environment interaction beholder.

The comprehensive depiction of the PMR framework is illustrated in Fig. 2.1. Through the seamless

integration of these components, PMR endeavors to provide a nuanced understanding of actions,

encapsulating the intricate relationships between actors, objects, and the environment across various

temporal periods.

Environment Beholder:

The designated element in this system fulfills the function of acquiring the comprehensive visual

data of an input 𝛿-frame snippet. The strategy employed for extracting the spatio-temporal details

of the snippet involves utilizing a 3D network that has been pre-trained on benchmark datasets for

action recognition, serving as the foundational feature extractor. Initially, the snippet undergoes
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processing through all the convolutional blocks within the 3D network, resulting in the generation

of a feature map denoted as FM at the final block. Subsequently, an average pooling operator is

applied, leading to the formation of a spatio-temporal feature vector represented as 𝑓 𝑒.

Actors Beholder:

This component discreetly extracts representative visual features of main actors denoted as 𝑓 𝑎.

The occurrence of an action is typically contingent upon the presence of a human (main actor),

irrespective of environmental factors (Fig. 1.2(a)). However, the execution of an action does not

imply the involvement of every actor in the scene (Fig. 1.2(b)). To address this, the observer initially

localizes all actors within a 𝛿-frame snippet. Employing a human detector on the middle frame, it is

assumed that actors exhibit insufficient movement to be inaccurately located within a small 𝛿. The

set B = {𝑏𝑖}𝑁𝐵

𝑖=1 represents detected human bounding boxes, where 𝑁𝐵 ≥ 0. Subsequently, each

detected bounding box 𝑏𝑖 is aligned onto the feature map FM obtained by the 3D network backbone

from the environmental observer, utilizing RoIAlign He, Gkioxari, et al., 2017. Following this, the

feature of each bounding box is average-pooled to generate a singular feature vector 𝑓 𝑎
𝑖

. Ultimately,

a collection of actor features is obtained as F 𝑎 = { 𝑓 𝑎
𝑖
}𝑁𝐵

𝑖=1.

For the purpose of dynamically selecting an arbitrary number of main actors and extracting their

interrelations, our proposed Adaptive Actor Module (AAM), detailed in Sub-Sec. 2.3 and visually

depicted in Fig. 2.4, is applied.

Objects Beholder:

In the context of concealing objects within an environment, it is imperative to consider the unique

attributes of objects compared to the broader environment and actors. Objects may be minuscule,

represented by only a few pixels, leading to potential invisibility within the feature map FM . To

address this challenge, we advocate for the integration of linguistic information derived from relevant

objects, emphasizing its significance over visual information. Our approach involves harnessing the

capabilities of CLIP (Radford et al., 2021), a pre-trained model designed for extracting linguistic
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Figure 2.2: A comparison between objects identified using Mask-RCNN (He, Gkioxari, et al.,
2017) (on the left) and CLIP (on the right) is illustrated in the following images. Our Attention
Mechanism Module (AMM) highlights the most pertinent objects, which are emphasized in bold
red.

information.

CLIP (Radford et al., 2021) has undergone training using an extensive dataset comprising image and

description pairs. Consequently, it adeptly captures correlations between global scene information

and local scene elements. Given that numerous scene elements manifest as diminutive objects,

eluding detection by conventional object detectors, CLIP proves invaluable. By globally encoding

the entire scene information, CLIP facilitates the inference of scene elements, including the subtle

and easily overlooked small objects. This holistic scene capture ensures the comprehensive retrieval

of scene elements, even those challenging to discern through conventional means.

In the given example, the challenge of detecting small objects like a tennis ball using traditional

object detectors, such as Mask-RCNN (He, Gkioxari, et al., 2017), is highlighted. The inefficiency

of Mask-RCNN in capturing the tennis ball is illustrated in Fig. 2.2 (left), where it only identifies

humans and tennis rackets. In contrast, CLIP, designed for modeling diverse visual elements,

encodes the entire tennis scene, including the tennis ball, as depicted in Fig. 2.2 (right). CLIP

not only recognizes the tennis ball but also identifies related objects like baskets, courts, fences,

etc. For this illustration, the top 𝐾 = 40 detected objects by CLIP are selected. The most pertinent

objects identified by AMM are highlighted in bold red.



24

The initial step of the object text extraction process is depicted in Fig. 2.3. However, our focus

is specifically on human activities and their associated objects. To address this, we employ the

ActivityNet Captioning dataset corpus (Krishna et al., 2017) to construct the object text vocabulary

T = {T𝑖}𝐷𝑖=1.

The ActivityNet Captioning dataset (Krishna et al., 2017) annotates videos from ActivityNet-1.3

(Fabian Caba Heilbron and Niebles, 2015). In the training split, 37,447 sentences densely describe

each event in the videos, using a vocabulary of up to 10,648 words. To create a vocabulary

emphasizing objects and human activities, we filter out stop words, pronouns, numbers, and

infrequent words (appearing 5 times or less). Further, we exclude words not in the CLIP (Radford

et al., 2021) vocabulary, aligning with the byte pair encoding (Sennrich, Haddow, and Birch,

2016) used in CLIP (Radford et al., 2021). Consequently, our object beholder’s vocabulary, with

𝐷 = 3, 544 words, is derived from the ActivityNet Captioning dataset (Krishna et al., 2017).

Each wordT𝑖 ∈ T undergoes encoding by a Transformer network (Vaswani et al., 2017a), producing

a text feature T 𝑓

𝑖
. The text projection matrix 𝑊𝑡 , pretrained by CLIP, computes the embedding

text vocabulary as T 𝑒 = 𝑊𝑡 · T 𝑓 , where T 𝑓 = {T 𝑓

𝑖
}𝐷
𝑖=1. Simultaneously, an image projection

matrix 𝑊𝑖, also pretrained by CLIP, encodes the middle frame 𝐼 of the 𝛿-frame snippet using a

Vision Transformer (Dosovitskiy et al., 2021), resulting in visual feature 𝐼 𝑓 . The embedding is

then computed as 𝐼𝑒 = 𝑊𝑖 · 𝐼 𝑓 . Pairwise cosine similarities between 𝐼𝑒 and T 𝑒 are calculated, and

the top 𝐾 similarity scores represent the output objects’ text features F 𝑜 = {T 𝑓

𝑖
}𝐾
𝑖=1. Sub-Sec 2.6

discusses an ablation study on 𝐾 . Similar to the actors beholder, the proposed AAM (described

in Sub-Sec. 2.3) is applied to select relevant objects from F 𝑜, model their semantic relations, and

ultimately obtain the linguistic feature 𝑓 𝑜.

Actors-Objects-Environment (AOE) Beholder:

In order to obfuscate the detection of this component, a strategic concealment strategy is imple-

mented. This involves the intricacies of modeling relations between the global visual environment

feature 𝑓 𝑒, local visual features of main actors 𝑓 𝑎, and linguistic features of relevant objects 𝑓 𝑜.
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Figure 2.3: The object text extraction process is exemplified in the context of pre-trained models,
namely Encoding, Embedding, and CLIP, sourced from Vaswani et al., 2017a, Dosovitskiy et al.,
2021, Radford et al., 2021, respectively.

Visual Main 

Actors  Feature

Main Actor
Selection

Feature
Fusion

Mask
1 2 3

+ ×

1 2 3

32

MLP
1 2 3

1

MLP

Figure 2.4: The proposed AAM (Adaptive Attention Mechanism) is exemplified using actor features
𝐹𝑎 and environment feature 𝑓 𝑒. AAM’s objective is to identify key actor features, fuse these selected
features arbitrarily, and thereby generate the visual main actor representation 𝑓 𝑎

The concealment process begins with the amalgamation of three feature types, namely 𝑓 𝑎, 𝑓 𝑜, and

𝑓 𝑒, collectively denoted as F 𝑎𝑜𝑒 = [ 𝑓 𝑎, 𝑓 𝑜, 𝑓 𝑒]. Subsequently, a self-attention model Vaswani

et al., 2017a is discreetly employed, followed by a covert average pooling layer, shrouding the trans-

formation of the feature stack F 𝑎𝑜𝑒 into the surreptitious 𝑓𝑖. This clandestine 𝑓𝑖 serves as a V-L

feature, surreptitiously encapsulating the essence of the input snippet 𝑠𝑖 by ingeniously intertwining

both visual (encompassing environment and actors modalities) and linguistic (pertaining to objects

modality) dimensions.
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2.3 Adaptive Attention Mechanism (AAM)

In the context of the provided input snippet, a crucial consideration revolves around the identification

of significant actors or objects from a pool of 𝑀 entities. These entities may vary in relevance, and

the exact number of main contributors, denoted as 𝑀̂ , remains elusive and dynamically fluctuates

throughout the duration of the input video. To address this uncertainty, we introduce the Adaptive

Attention Mechanism (AAM). AAM draws inspiration from the adaptive hard attention concept

(Malinowski et al., 2018 )and leverages its advantageous characteristics. This mechanism facilitates

the selection of an indeterminate yet crucial subset of main actors or objects. Simultaneously, AAM

incorporates a soft self-attention mechanism, inspired by the principles outlined in Vaswani et al.,

2017a. This soft self-attention mechanism serves the purpose of capturing and extracting intricate

relationships among the identified main actors or objects.Consider the example of actors in a visual

context, where the AAM can be exemplified through the perspective of an actors beholder, as

depicted in Fig. 2.4. This illustration visually represents the functionality of the AAM, showcasing

its ability to dynamically identify and focus on relevant actors or objects within the given context.

Initiating the process, the embedding of the environment feature 𝑓 𝑒 and actors features F 𝑎 into a

unified dimensional space is facilitated through the application of multi-layer perceptrons (MLPs).

These MLPs are intricately parameterized by 𝜃𝑒 and 𝜃𝑎 to ensure a seamless integration:

𝑓 𝑒 = 𝑀𝐿𝑃𝜃𝑒 ( 𝑓 𝑒) (2.2)

𝐹̂𝑎 = { 𝑓 𝑎𝑖 }𝑀𝑖=1 where 𝑓 𝑎𝑖 = 𝑀𝐿𝑃𝜃𝑎 ( 𝑓 𝑎𝑖 ) (2.3)

Subsequently, the addition of 𝑓 𝑒 and each feature 𝑓 𝑎
𝑖

from 𝐹̂𝑎 is carried out through element-

wise addition, denoted as ⊕, resulting in the creation of a collaborative feature. Following this,

the attention score ℎ𝑎
𝑖

associated with 𝑓 𝑎
𝑖

can be determined by calculating the L2-norm of its

respective collaborative feature. These computational procedures are succinctly expressed by the

following equation:

ℎ𝑎𝑖 =| | 𝑓 𝑎𝑖 ⊕ 𝑓 𝑒 | |2 (2.4)
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As demonstrated in Malinowski et al., 2018, features possessing higher L2-norm values encapsulate

more significant information and make a more substantial contribution to subsequent modules.

Following this, we normalize all L2-norm values using the softmax function to ensure a cumulative

sum of 1.0, as L2-norm values are inherently unbounded:

𝐻𝑎 = {ℎ𝑎𝑖 }𝑀𝑖=1, where ℎ𝑎𝑖 =
𝑒ℎ

𝑎
𝑖

Σ𝑀
𝑖=1𝑒

ℎ𝑎
𝑖

(2.5)

In order to extract the characteristics of any given number of primary actors, an adaptive threshold

is established based on the total number of actors, denoted as 𝜏 = 1
|F 𝑎 | . Subsequently, we selectively

retrieve features 𝑓 𝑎
𝑖
∈ F 𝑎 only if their associated scores surpass 𝜏:

F̃ 𝑎 = { 𝑓 𝑎𝑖 | ℎ𝑎𝑖 ≥ 𝜏} (2.6)

Following this step, we combine a collection of feature vectors for primary actors, denoted as F̃ 𝑎,

using the self-attention Transformer Encoder introduced in Vaswani et al., 2017a, resulting in a

consolidated feature vector 𝑓 𝑎.

For the objects beholder scenario, the input actors features F 𝑎 are substituted with the features of

objects, denoted as F 𝑜.

2.4 Boundary-Matching Module (BMM)

The BMM module plays a crucial role in localizing action boundaries and proposing actions within

videos. In our AOE-Net framework, we have incorporated the BMM module, drawing inspiration

from established works such as BSN (T. Lin, X. Zhao, et al., 2018), BMN (T. Lin, X. Liu, et al.,

2019), ABN (Vo-Ho et al., 2021), AEN (Vo, Yamazaki, et al., 2021), and AEI (Vo, Joo, et al.,

2021) due to its standardized and straightforward design. The BMM module takes the output V-L

features sequence F = { 𝑓𝑖}𝑇𝑖=1 from the PMR module as input. Our BMM module consists of

three integral components: semantic modeling, temporal estimation (TE), and proposal estimation

(PE), as illustrated in Fig. 2.5. The initial component is dedicated to modeling the semantic
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Table 2.1: The architecture of BMM comprises three components: F , which represents the input
feature derived from PMR; 𝑇 , indicating the temporal length of the video; and 𝐷, representing the
maximum duration of proposals in terms of the number of snippets.

Layers Input Output
1DConv.
256 × 3/1, ReLU

F : 𝐹 × 𝑇 𝑂1 : 256 × 𝑇

1DConv.
128 × 3/1, ReLU

𝑂1 : 256 × 𝑇 𝑂2 : 128 × 𝑇

1DConv.
256 × 3/1, ReLU

𝑂2 : 128 × 𝑇 𝑂3 : 256 × 𝑇

1DConv.
2 × 3/1 , Sigmoid

𝑂3 : 256 × 𝑇 𝑂𝑇 : 2 × 𝑇

Matching layer 𝑂2 : 128 × 𝑇 𝑂5 : 128× 32×
𝐷 × 𝑇

3DConv.
512 × 32 × 1 ×
1/(32, 0, 0) , ReLU

𝑂5 : 128 × 32 ×
𝐷 × 𝑇

𝑂6 : 512 × 1 ×
𝐷 × 𝑇

squeeze 𝑂6 : 512×1×𝐷×
𝑇

𝑂7 : 512×𝐷×𝑇

2DConv.
128 × 1 × 1/(0, 0) ,
ReLU

𝑂7 : 512×𝐷 ×𝑇 𝑂8 : 128×𝐷×𝑇

2DConv.
128 × 3 × 3/(1, 1) ,
ReLU

𝑂8 : 128×𝐷 ×𝑇 𝑂9 : 128×𝐷×𝑇

2DConv.
2× 1× 1/(0, 0) , Sig-
moid

𝑂9 : 128×𝐷 ×𝑇 𝑂𝑃 : 1 × 𝐷 × 𝑇

relationships among video snippets. The TE component evaluates each snippet 𝑠𝑖 |𝑇𝑖=1 to determine

the probabilities of action starting (𝑃𝑆
𝑖
) and action ending (𝑃𝐸

𝑖
) within 𝑠𝑖. Simultaneously, the

PE component assesses every interval [𝑖, 𝑗] in the video to estimate its actionness score 𝑃𝐴
𝑖,𝑑

,
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Figure 2.5: Our proposed AOE-Net encompasses two essential components: the perception-
based multi-model representation module (PMR) and the boundary-matching module (BMM),
contributing to its comprehensive architectural design.

where 𝑑 = 𝑗 − 𝑖. A detailed breakdown of the BMM architecture is presented in Table 2.1. The

semantic modeling component is realized through two 1-D Conv. layers, producing a feature map

𝑂2 ∈ 𝑅128×𝑇 . Subsequent components, TE and PE, take 𝑂2 as input, generating 𝑂𝑇 ∈ 𝑅2×𝑇 and

𝑂𝑃 ∈ 𝑅1×𝐷×𝑇 , respectively. The output 𝑂𝑇 signifies the probabilities of action starts (𝑃𝑆 ∈ 𝑅𝑇 )

and action ends (𝑃𝐸 ∈ 𝑅𝑇 ), while the output 𝑂𝑃 encompasses actionness scores 𝑃𝐴 ∈ 𝑅𝐷×𝑇 .

During the inference stage, a search is conducted through 𝑃𝑆 and 𝑃𝐸 to identify temporal locations

𝑖 with local maxima, forming sets of potential starting and ending temporal locations, denoted

as 𝑃𝑆
𝑖

and 𝑃𝐸
𝑖

respectively. Subsequently, pairing starting and ending locations (𝑠, 𝑒), where

𝑠 ≤ 𝑒 ≤ 𝑇 , results in the creation of candidate proposals. Each candidate proposal is assigned

a score 𝑠 = 𝑃𝑆𝑠 · 𝑃𝐸𝑒 · 𝑃𝐴𝑠,𝑒−𝑠. Finally, leveraging the timestamps and scores of these candidate

proposals, Non-Maximum Suppression (NMS) (Bodla et al., 2017; Neubeck and Van Gool, 2006)

is applied to generate the ultimate set of temporal action proposals.

2.5 Experiments

Datasets and Metrics

Datasets

Our experimentation involves TAPG and TAD , utilizing both ActivityNet-1.3 (Fabian Caba Heil-

bron and Niebles, 2015) and THUMOS-14 Jiang et al., 2014 datasets . ActivityNet-1.3 comprises

20,000 videos and 200 annotated activities, while THUMOS-14 includes 414 videos featuring 20
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distinct types of actions. Video preprocessing, with a snippet length of 𝛿 = 16, aligns with the

methodologies of previous studies T. Lin, X. Zhao, et al., 2018; T. Lin, X. Liu, et al., 2019; C. Lin,

J. Li, et al., 2020 across all experiments. To showcase the efficacy of our proposed AOE-Net on ego-

centric videos, we further extend our investigation to the TAPG task within the EPIC-KITCHENS

100 dataset (Damen, Doughty, et al., 2021) . This dataset encompasses 100 hours of video, span-

ning 20 million frames and 90,000 actions within 700 variable-length videos. The recordings were

captured in 45 diverse environments using head-mounted cameras.

Metrics

Within the framework of TAPG, the assessment of the proposed AOE-Net and its comparison

with state-of-the-art (SOTA) approaches relies on two commonly employed metrics: AR@AN

and AUC. The former, denoted as Average Recall (AR), is computed at a specific average number

of proposals (AN) preserved within each video. Meanwhile, the latter, Area Under the Curve

(AUC), represents the score derived from the curve plotting AR against AN. Notably, AR@100

and AUC stand out as the predominant metrics within the context of ActivityNet-1.3. In the case of

THUMOS-14, the evaluation solely incorporates AR@AN for method comparison, with multiple

AN selected from a predefined list comprising [50, 100, 200, 500, 1000].

In the realm of TAD, the benchmarking of approaches centers around the mean Average Precision

(mAP). Following established conventions, as outlined in previous works such as T. Lin, X. Zhao,

et al., 2018; C. Lin, J. Li, et al., 2020; T. Lin, X. Liu, et al., 2019; S. Liu, X. Zhao, et al., 2020;

P. Zhao, Xie, et al., 2020a, TAD methods undergo evaluation in the ActivityNet-1.3 dataset with

temporal Intersection over Union (tIoU) thresholds of {0.5, 0.75, 0.95}, culminating in an averaged

mAP. In contrast, TAD methods evaluated within the THUMOS-14 dataset are subjected to tIoU

thresholds of {0.3, 0.4, 0.5, 0.6, 0.7}.

Implementation Details

For the extraction of visual features from videos, the foundational network employed in all ex-

periments on ActivityNet-1.3 (Fabian Caba Heilbron and Niebles, 2015) and THUMOS-14 (Jiang
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Methods Venue & Year Feature AR@100 AUC(val) AUC(test)
TCN (Dai, Singh, et al., 2017) ICCV17 2Stream – 59.58 61.56
MSRA (Yao, Y. Li, Qiu, et al., 2017) CVPRW17 P3D – 63.12 64.18
SSTAD (Buch et al., 2017) BMVC17 C3D 73.01 64.40 64.80
CTAP (Jiyang Gao, K. Chen, and Nevatia, 2018) ECCV18 2Stream 73.17 65.72 –
BSN (T. Lin, X. Zhao, et al., 2018) ECCV18 2Stream 74.16 66.17 66.26
SRG (Eun et al., 2019) IEEE-TCSVT19 2Stream 74.65 66.06 –
MGG (Y. Liu, Ma, et al., 2019) CVPR19 I3D 74.54 66.43 66.47
BMN (T. Lin, X. Liu, et al., 2019) ICCV19 2Stream 75.01 67.10 67.19
DBG (C. Lin, J. Li, et al., 2020) AAAI20 2Stream 76.65 68.23 68.57
BSN++ (Su, Gan, et al., 2021) ACCV20 2Stream 76.52 68.26 –
TSI++ (S. Liu, X. Zhao, et al., 2020) ACCV20 2Stream 76.31 68.35 68.85
MR (P. Zhao, Xie, et al., 2020a) ECCV20 I3D 75.27 66.51 –
AEN (Vo-Ho et al., 2021) ICASSP21 C3D 75.65 68.15 68.99
ABN (Vo, Yamazaki, et al., 2021) IEEE-Access21 C3D 76.72 69.16 69.26
SSTAP (X. Wang et al., 2021) CVPR21 I3D 75.54 67.53 –
TCANet (Qing et al., 2021) CVPR21 2Stream 76.08 68.08 –
Zheng, et.al. (Zheng, D. Chen, and Hu, 2021) NPL21 2Stream 74.93 65.20 –
AEI (Vo, Joo, et al., 2021) BMVC21 C3D 77.24 69.47 70.09

AOE-Net
C3D 77.67 69.71 70.10
2Stream 76.32 68.35 69.00
SlowFast 76.95 68.95 69.86

Table 2.2: TAPG performance comparisons were conducted on ActivityNet-1.3 (Fabian Caba
Heilbron and Niebles, 2015) with a focus on AR@100 and AUC metrics. The evaluations were
carried out on both the validation set, considering AR@100 and AUC, and the testing set, focusing
on AUC.

et al., 2014) is a C3D network (Ji et al., 2013) pretrained on the Kinetics-400 dataset (Kay et al.,

2017). The dimensions of the features derived from the C3D backbone amount to 2048.

Within the realm of object perception, the extraction of object text relies on CLIP (Radford et al.,

2021), pretrained on a substantial dataset comprising 400 million image-text pairs sourced from

the Internet. Encoding of the text feature and image feature is carried out by Transformer (Vaswani

et al., 2017a) and Vision Transformer (Dosovitskiy et al., 2021) networks, respectively. For the

identification of humans in the actors’ domain, a Faster-RCNN model (Ren et al., 2015), pretrained

on the COCO dataset (T.-Y. Lin et al., 2014), is employed. The AOE-Net is trained using the Adam

optimizer, with an initial learning rate of 0.0001 for ActivityNet-1.3 and 0.001 for THUMOS-14.

In the context of ActivityNet-1.3, Soft-NMS (SNMS) (Bodla et al., 2017) is applied during post-

processing across all TAPG and TAD experiments. On THUMOS-14, in accordance with T. Lin,

X. Zhao, et al., 2018; T. Lin, X. Liu, et al., 2019, both Soft-NMS (Bodla et al., 2017) and NMS
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(Neubeck and Van Gool, 2006) are employed in the post-processing of TAPG, whereas TAD utilizes

only NMS. The subsequent presentation of experimental results highlights the best performance in

bold and the second-best performance in underline.

Performance and Comparison on TAPG

Table 2.2 showcases the TAPG comparison results on the validation and testing sets of ActivityNet-

1.3 (Fabian Caba Heilbron and Niebles, 2015). Our AOE-Net, utilizing C3D (Ji et al., 2013)

features, exhibits superior performance over existing methods, demonstrating a notable margin in

terms of AR@100 and AUC. The comparative analysis in Table 2.3 extends to THUMOS-14, where

AOE-Net competes favorably with other TAPG methods. Specifically, on SNMS, AOE-Net secures

the second-best position across all AR@ANs, except for AR@100, where it competes closely with

the top performer (50.26 vs. 50.67). On NMS, AOE-Net achieves the best performance on AR@100

and ranks second on AR@200 and AR@500, with minimal gaps compared to the state-of-the-art

(57.49 vs. 57.74 and 62.40 vs. 62.74, respectively). Notably, the TAPG performance of our AOE-

Net on both datasets stands out competitively, closely trailing AEI-B (Vo, Joo, et al., 2021) and

ABN (Vo, Yamazaki, et al., 2021), which also incorporate local actors and the global environment.

This experimentation strongly validates our choice of leveraging human perception principles for

analyzing human actions in untrimmed videos.

In addition to the exclusive assessment of AOE-Net on TAPG and TAD tasks, it is imperative to

explore the impact of various backbone features on our AOE-Net. The performance of our proposed

AOE-Net network is analyzed concerning different features, namely C3D (Ji et al., 2013), 2Stream

(Simonyan and Zisserman, 2014), and Slowfast (Feichtenhofer, Fan, et al., 2019), each possessing

feature dimensions of 2048, 2314, and 400, respectively. The outcomes are presented in the lower

section of Table 2.2 for the TAPG task within the ActivityNet-1.3 dataset (Fabian Caba Heilbron

and Niebles, 2015). Upon examination, it is evident that the performance using C3D (Ji et al.,

2013) features attains a state-of-the-art status, while the performance with SlowFast (Feichtenhofer,

Fan, et al., 2019) features closely trails behind. Conversely, the utilization of 2Stream (Simonyan

and Zisserman, 2014) features yields the least favorable performance among the three types of
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Methods Venue & Year Feature 0.50 0.75 0.95 Average
BSN (T. Lin, X. Zhao, et al., 2018) ECCV18 2Stream 46.45 29.96 8.02 30.03
GTAN (Long et al., 2019) CVPR19 P3D 52.61 34.14 8.91 34.31
BMN (T. Lin, X. Liu, et al., 2019) ICCV19 2Stream 50.07 34.60 8.29 33.85
GTAD (Xu, C. Zhao, et al., 2020) CVPR20 2Stream 50.36 34.60 9.02 34.09
P-GCN (Zeng et al., 2019) CVPR20 I3D 42.90 28.14 2.47 26.99
MR (P. Zhao, Xie, et al., 2020a) ECCV20 2Stream 43.47 33.91 9.21 30.12
TSI++ (S. Liu, X. Zhao, et al., 2020) ACCV20 2Stream 51.18 35.00 6.59 34.15
BC-GNN (Bai et al., 2020) ECCV20 2Stream 50.56 34.75 9.37 34.26
RTD (Tan et al., 2021) ICCV21 2Stream 47.21 30.68 8.61 30.83
ABN (Vo, Yamazaki, et al., 2021) IEEE-Access21 C3D 51.78 34.18 10.29 34.22
AEI-B (Vo, Joo, et al., 2021) BMVC21 C3D 52.3 34.5 9.7 34.7
AOE C3D 54.42 35.43 10.35 34.48

Table 2.4: Comparison of TAD Results on ActivityNet-1.3: The evaluation focuses on
mAP@tIoU and mAP metrics, with the integration of proposals alongside video-level classifi-
cation outcomes derived from Xiong et al., 2016.

backbone features.

In the context of TAPG, generalizability emerges as a crucial criterion for assessing the efficacy of a

method. Adhering to the experimental framework outlined in T. Lin, X. Zhao, et al., 2018; T. Lin, X.

Liu, et al., 2019; C. Lin, J. Li, et al., 2020; S. Liu, X. Zhao, et al., 2020; Vo, Yamazaki, et al., 2021,

our investigation unfolds within the domain of ActivityNet-1.3, encompassing two distinct subsets:

Seen comprising "Sports, Exercises, and Recreation," and Unseen encompassing "Socializing,

Relaxing, and Leisure." The training of our AOE-Net is executed on both Unseen+Seen and Seen

training sets independently. Subsequently, evaluations are conducted on the Seen and Unseen

validation sets. The performance comparison and visualization between AOE-Net and other state-

of-the-art (SOTA) methods are illustrated in Fig. 2.6. In each chart, the last columns depict the

performance of AOE-Net, showcasing its superiority over other SOTA methods. Notably, Fig. 2.6

underscores that AOE-Net consistently achieves commendable performances on the Seen validation

set, with an acceptable decline on the Unseen validation set in both training configurations. This

observation suggests the high generalizability of our AOE-Net to previously unseen action types.

Performance and Comparison on TAD

To ensure a fair comparison, we adhere to the experimental configurations outlined in prior works

T. Lin, X. Zhao, et al., 2018; T. Lin, X. Liu, et al., 2019; C. Lin, J. Li, et al., 2020; Xu, C. Zhao,



35

Methods
Evaluation

Seen Unseen
Training AR@100 AUC AR@100 AUC

BSN (T. Lin, X. Zhao, et al., 2018) Seen + Unseen 72.40 63.80 71.84 63.99
Seen 72.42 64.02 71.32 63.38

BMN (T. Lin, X. Liu, et al., 2019) Seen + Unseen 72.96 65.02 72.68 65.05
Seen 72.47 64.37 72.46 64.47

TSI++ (S. Liu, X. Zhao, et al., 2020) Seen + Unseen 74.69 66.54 74.31 66.14
Seen 73.59 65.60 73.07 65.05

DBG (C. Lin, J. Li, et al., 2020) Seen + Unseen 73.30 66.57 67.23 64.59
Seen 72.95 66.23 64.77 62.18

ABN (Vo, Yamazaki, et al., 2021) Seen + Unseen 74.58 66.96 75.25 67.49
Seen 74.40 66.69 73.66 65.49

AOE-Net Seen + Unseen 76.36 68.31 77.31 69.07
Seen 76.43 68.42 74.90 66.92

Figure 2.6: Generalizability assessment and comparisons were conducted on ActivityNet-1.3,
focusing on AR@100 and AUC metrics. The training methods were implemented on two distinct
sets: Unseen+Seen and Seen. The subsequent evaluation was carried out on both Seen (depicted
in the first two charts) and Unseen (depicted in the last two charts) validation sets. The top
section presents a detailed breakdown of the individual performance across various experimental
settings for each method. The bottom section features a visual representation of the generalizability
comparison between our proposed AOE-Net and other methods.

et al., 2020; Bai et al., 2020; Y. Liu, Ma, et al., 2019; Tan et al., 2021; Vo, Yamazaki, et al., 2021

when annotating action proposals generated by our AOE-Net. In the case of ActivityNet-1.3, we

utilize the top-1 video-level classification outcomes produced by the approach detailed in Xiong

et al., 2016 to label our proposals. Conversely, for THUMOS-14, we assign labels to our action
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Methods Year Feature 0.7 0.6 0.5 0.4 0.3 Average
U

nt
rim

m
ed

N
et

BSN (T. Lin, X. Zhao, et al., 2018) ECCV18 2Stream 20.0 28.4 36.9 45.0 53.5 36.76
BMN (T. Lin, X. Liu, et al., 2019 ) ICCV19 2Stream 20.5 29.7 38.8 47.4 56.0 38.48
MGG (Y. Liu, Ma, et al., 2019) CVPR19 2Stream 21.3 29.5 37.4 46.8 53.9 37.78
GTAN (Long et al., 2019) CVPR19 P3D – – 38.8 47.2 57.8 –
DBG (C. Lin, J. Li, et al., 2020 ) AAAI20 2Stream 21.7 30.2 39.8 49.4 57.8 39.78
GTAD (Xu, C. Zhao, et al., 2020) CVPR20 2Stream 23.4 30.8 40.2 47.6 54.5 39.30
TSI++ (S. Liu, X. Zhao, et al., 2020) ACCV20 2Stream 22.4 33.2 42.6 52.1 61.0 42.26
BC-GNN (Bai et al., 2020) ECCV20 2Stream 23.1 31.2 40.4 49.1 57.1 40.18
BU-TAL (P. Zhao, Xie, et al., 2020b) ECCV20 2Stream 28.5 38.0 45.4 50.7 53.9 43.30
TCANet (Qing et al., 2021) CVPR21 2Stream 26.7 36.8 44.6 53.2 60.6 44.38
RTD (Tan et al., 2021) ICCV21 2Stream 25.0 36.4 45.1 53.1 58.5 43.62
ABN (Vo, Yamazaki, et al., 2021) IEEE-Access21 C3D 25.6 37.0 46.1 54.0 59.9 44.51
AEI-B (Vo, Joo, et al., 2021) BMVC21 C3D 23.4 35.9 44.7 52.7 58.7 43.08
AOE-Net – C3D 25.8 38.8 48.4 57.3 63.4 46.74

P-
G

C
N BSN (T. Lin, X. Zhao, et al., 2018) ECCV18 I3D – – 49.1 57.8 63.6 –

MR (P. Zhao, Xie, et al., 2020a) ECCV20 2Stream – – 50.10 60.99 66.29 –
GTAD (Xu, C. Zhao, et al., 2020) CVPR20 2Stream 22.9 37.6 51.6 60.4 66.4 47.78
AOE-Net – C3D 23.5 37.4 50.9 60.6 67.1 47.89

Table 2.5: TAD evaluations were conducted on the THUMOS-14 dataset, assessing mAP@tIoU
with two distinct classifiers: UntrimmedNet (L. Wang et al., 2017) and P-GCN (Zeng et al., 2019).

proposals based on either UntrimmedNet (L. Wang et al., 2017) (leveraging top-2 classification

results) or P-GCN (Zeng et al., 2019).

Table 2.4 illustrates a comprehensive performance evaluation of TAD between AOE-Net and several

state-of-the-art (SOTA) methods on the ActivityNet-1.3 validation set. The outcomes highlight the

superiority of our method across various temporal Intersection over Union (tIoU) thresholds when

compared to other SOTA techniques. The experiment outcomes presented in Table 2.5 for the

THUMOS-14 test set further affirm the effectiveness of our AOE-Net, showcasing its superiority

over other SOTA methods across a majority of metrics when employing both classifiers.

2.6 Ablation Study

An extensive ablation study is undertaken to demonstrate the efficacy of individual components

within the proposed AOE-Net, along with assessing the resilience of AOE-Net in the context of

egocentric videos. Furthermore, we present findings on the network efficiency and AOE-Net

performance across various configurations of the hyper-parameter K. Further details of the ablation

study will be provided in the supplementary materials.
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Exp Setting TAPG Performance
Act. Env. Obj. AAM Soft-Att @50 @100 @200 @500 @1000

#1
√ × × × √

25.96 35.14 43.48 52.37 58.47
#2 × √ × × × 38.94 47.80 54.93 61.92 65.96
#3 × × √ × √

18.06 26.68 37.14 49.28 56.99
#4

√ √ × × √
40.87 49.09 56.24 63.53 67.29

#5
√ √ √ × √

42.60 49.86 56.87 63.76 67.60
#6

√ √ × √ × 43.79 49.67 56.73 63.49 67.36
#7

√ √ √ √ × 44.56 50.26 57.30 64.32 68.19

Table 2.6: The comparisons of TAPG across various network settings involve the examination of
actors (Act.), environment (Env.), and objects (Obj.) as beholders.

Attention THUMOS-14 ActivityNet-1.3
@50 @100 @200 @500 @1000 AR @100 AUC (val) AUC (test)

Hard (Malinowski et al., 2018) 43.74 49.24 56.63 63.46 67.25 77.11 69.02 69.56
Soft (Vaswani et al., 2017a) 42.60 49.86 56.87 63.76 67.60 76.93 69.06 69.23
AAM 44.56 50.26 57.30 64.32 68.19 77.67 69.71 70.10

Table 2.7: TAPG involves a comparison between AAM with attention, as discussed in Malinowski
et al., 2018 and Vaswani et al., 2017a.

AR@10 AR@100 AUC
BMN (T. Lin, X. Liu, et al., 2019) 11.59 34.26 25.14
AOE-Net 15.99 37.40 29.20

Table 2.8: In the realm of Temporal Action Proposal Generation (TAPG), we assess our AOE-Net
alongside BMN (T. Lin, X. Liu, et al., 2019) in the context of egocentric videos( Damen, Doughty,
et al., 2021).

Contribution of each beholder

We analyze the performance of TAPG on THUMOS-14 using various network settings, as outlined

in Table 2.6. Experiments (#1-3) showcase the individual contributions of each observer, while

experiments (#4-7) present different combinations of features, underscoring the significant role of

actors and objects in comprehending human action. Comparisons between experiments (#4 vs. #6)

and (#5 vs. #7) underscore the substantial impact of AAM.

In Exp.#1 and Exp.#3, the absence of the Environment Beholder precludes the application of AAM,
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which necessitates environment features. To address this, AAM is substituted with a straightforward

soft self-attention layer, followed by an average pooling operation to amalgamate multiple actors.

Similarly, in Exp.#4 and Exp.#5, the aforementioned substitution strategy is employed to accentuate

the effectiveness of AAM.

Effectiveness of AAM

We proceed with our investigation into the efficacy of the proposed AAM in the TAPG task,

evaluating its performance on both ActivityNet-1.3 and THUMOS-14. This assessment involves

comparing AAM with alternative attention mechanisms, namely soft self-attention (Vaswani et al.,

2017a) (Soft) and hard attention (Malinowski et al., 2018) (Hard), as depicted in Table.2.7.

In the case of the soft self-attention mechanism, we streamline our AAM by omitting the initial

hard attention component defined in Eq. 2.2-2.6. Instead, we directly input the set of actor features

F 𝑎 (or object features F 𝑜) into a self-attention mechanism.

Conversely, for the hard-attention mechanism, we replace the self-attention segment at the conclu-

sion of our AAM with a straightforward average pooling operation. This operation averages the

selected actor features 𝐹̃𝑎 (or selected object features 𝐹̃𝑜) into a singular representation 𝑓 𝑎 (or 𝑓 𝑜).

The superior performances evident on both datasets, as illustrated in Table 2.7, affirm the compelling

advantages of AAM over soft self-attention and hard attention mechanisms.

Performance of AOE-Net with different number of objects

The hyper-parameter 𝐾 , denoting the number of input objects for the objects beholder (see Sub-

section 2.2), plays a crucial role in influencing the performance of our AOE-Net. A larger value of

𝐾 introduces more noisy information into the overall model, stemming from inaccurately detected

objects. Conversely, a smaller value of 𝐾 results in an insufficient presentation of significant

information by the objects beholder, hindering its contribution to action comprehension.

In the conducted ablation study, we evaluate the performance of AOE-Net across various values of
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Number of Objects (K) AR@100 AUC (val) AUC (test)
0 77.02 68.98 69.72
1 77.15 69.17 69.95
5 77.45 69.43 69.96
10 77.24 69.26 69.56
20 77.67 69.71 70.10
30 77.55 69.63 69.96
40 77.67 69.86 70.22
50 77.24 69.17 69.81

Table 2.9: Assessing the TAPG performance of our AOE-Net on ActivityNet-1.3 (Fabian Caba
Heilbron and Niebles, 2015) using different K settings.

𝐾 in the context of the TAPG task, utilizing the ActivityNet-1.3 dataset Fabian Caba Heilbron and

Niebles, 2015. The comparative results are presented in Table 2.9.

The findings in Table 2.9 demonstrate a positive correlation between the increment of 𝐾 and

the improvement in the TAPG performance of AOE-Net. Nevertheless, beyond 𝐾 > 20, the

performance exhibits fluctuations and lacks robustness, attributed to an increased presence of

wrongly detected objects in each snippet. Consequently, we deduce that maintaining 𝐾 = 20

strikes the optimal balance between performance and robustness for our AOE-Net.

Robustness of AOE-Net to egocentric videos

To assess AOE-Net’s robustness in handling egocentric videos, we employ EPIC-KITCHENS 100

(Damen, Doughty, et al., 2021) as the benchmark for the TAPG task. The TAPG performance

is presented in Table 2.8, showcasing a comparison between our AOE-Net and BMN (T. Lin,

X. Liu, et al., 2019). Despite the absence of visible actors in the egocentric videos, AOE-Net

demonstrates commendable TAPG performance, exhibiting a significant improvement over BMN.

This underscores the effectiveness of the objects’ perspective in our approach.

Network efficiency

The efficiency comparison between AOE-Net and the previous state-of-the-art (SOTA) models,

along with the number of parameters (in millions, M), computational cost (GFLOPs), and inference
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#Params FLOPs Inference time (s)
(M) (G) GPU CPU

BMN (T. Lin, X. Liu, et al., 2019) 4.9 71.22 0.128 4.15
DBG (C. Lin, J. Li, et al., 2020) 2.9 47.52 0.03 -
GTAD (Xu, C. Zhao, et al., 2020) 5.6 150.28 0.14 -
ABN (Vo, Yamazaki, et al., 2021) 6.9 87.88 0.07 0.21
AEI (Vo, Joo, et al., 2021) 6.9 90.62 0.08 0.21
AOE-Net 8.8 94.02 0.12 0.27

Table 2.10: The network efficiencies of AOE-Net and various prior studies are compared in this
analysis.

time on a 3-minute video, is presented in Table 2.10. The evaluation was conducted on both an

Intel Core i9-9920X CPU and a single NVIDIA RTX 2080 Ti.

Qualitative Analysis of AAM

Qualitative Results of AAM with Actors Beholder:

In Fig. 2.7, we present a visual representation showcasing the qualitative performance of our

proposed Actor Attention Module (AAM) in the context of identifying main actors within a set of

detected individuals. The video samples used for this evaluation are sourced from ActivityNet-1.3

(Fabian Caba Heilbron and Niebles, 2015).

When faced with scenarios involving the detection of multiple actors, as depicted in Fig. 2.7(a)

and Fig. 2.7(c), our AAM effectively excels in the task of discerning and selecting the primary

actors while filtering out insignificant individuals. This functionality aims to eliminate redundant

information, ensuring that only the most pertinent actors are considered for input into the subsequent

boundary-matching module.

Fig. 2.7(b) illustrates a situation where the environmental context may be mundane and contribute

minimally to action perception. Nevertheless, the local information within the bounding box

surrounding the main actor proves valuable in emphasizing the action. In this case, AAM once again

demonstrates its effectiveness in selecting the main actor engaged in the action, thus highlighting

its capability to discern and prioritize relevant information.

Performance of AAM affected by human detector:
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a)

b)

c)

Figure 2.7: The depiction illustrates the main actors selected through the application of AAM on
ActivityNet-1.3 (Fabian Caba Heilbron and Niebles, 2015). Three distinct videos, denoted as (a),
(b), and (c), are showcased. The backdrop is rendered in black, with the bounding boxes of primary
actors demarcated by a green line, while the bounding boxes of less significant actors are delineated
by a grey line.

The Faster-RCNN (Ren et al., 2015) model, trained on the COCO dataset (T.-Y. Lin et al., 2014),

serves as the human detector in our study. However, its performance is not flawless in video

scenarios, often affected by issues such as motion blurs or low resolutions. Consequently, the

quality of the detected human bounding boxes directly impacts the performance of the Action

Attention Module (AAM).

In Fig. 2.8, we present frames from four videos where the human detector exhibits suboptimal

performance in producing accurate human bounding boxes. In Fig. 2.8(a), the green bounding box

encompasses two athletes in a pool, each enclosed in a separate bounding box. Despite the incorrect

nature of the green bounding box, containing multiple humans (even three, if considering the one
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behind), it intuitively captures richer scene information than the individual boxes for each athlete.

This illustrates the AAM’s effectiveness in learning to select the most informative bounding boxes,

irrespective of their quality in terms of human detection.

Fig. 2.8(b), (c), and (d) showcase instances where the human detector poorly localizes bounding

boxes, capturing only body parts instead of the entire human. Remarkably, the AAM demonstrates

its ability to learn and filter out these inaccuracies, selecting only the correctly localized bounding

boxes.

From these observations, it becomes evident that the AAM can learn to avoid selecting poorly

localized bounding boxes that do not fully encompass the humans. Interestingly, it also learns to

select some inaccurately detected bounding boxes, which nonetheless contain more meaningful

information than the correctly localized ones.

In conclusion, our study reveals that relying solely on the human detector to provide locations

for attention hinders the AAM from reaching its maximum potential. Thus, we advocate for the

development of a more sophisticated module in future research, one that can effectively localize

interesting spatial locations in video frames, surpassing the limitations of the human detector.

Qualitative Analysis of Objects Beholder

Figure 2.9 illustrates the utilization of Objects Beholder by AOE-Net. The figure presents two

videos representing two distinct categories: (A) visible actors and (B) non-visible actors. In (A),

the actors are visible and engaged in the action of tightrope walking. Consequently, AOE-Net can

leverage all the beholders available. On the other hand, in (B), the actors are not visible in the

video frame but are involved in the action of cooking. In this scenario, AOE-Net can only depend

on Objects Beholder.

In the depiction of both (A) and (B), we observe scenarios where the action is absent (A.i and B.i)

and instances when the action is occurring (A.ii and B.ii).

In Fig. 2.9.(A), a noticeable distinction is evident between the objects identified in non-action
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a) b)

d)c)

Figure 2.8: Illustration of AAM applied to ActivityNet-1.3 (Fabian Caba Heilbron and Niebles,
2015), focusing on instances where the human detector inadequately produces human bounding
boxes. The backdrop is darkened, with the primary actors’ bounding boxes delineated by a green
line, while the bounding boxes of less significant actors are demarcated by a grey line.

and action scenarios. In particular, as depicted in Fig. 2.9(A.i), the non-action scenario features

objects such as "City," "Building," and "Tower." Conversely, in Fig. 2.9(A.ii), the action scenario

encompasses objects like "Rooftop," "Tightrope," "Roof," and "Hanging."

Similarly, as depicted in Fig. 2.9.(B), there is a notable distinction in the detected objects between

non-action and action scenarios. In Fig. 2.9(B.i), the identified objects include "Kitchen," "Cooker,"

"Oven," and "Stove," among others. Conversely, in Fig. 2.9(B.ii), the objects in the action scene

encompass "Passata," "Chorizo," "Pan," and "Salsa," among others.

Qualitative Analysis of AOE-Net

Figure 2.10 presents the qualitative outcomes of our AOE-Net in TAPG of ActivityNet-1.3 (Fabian

Caba Heilbron and Niebles, 2015), juxtaposed with the performance of prior state-of-the-art ap-

proaches T. Lin, X. Liu, et al., 2019; C. Lin, J. Li, et al., 2020; Vo, Yamazaki, et al., 2021. The

illustration includes two instances of medium difficulty, a challenging case, and a scenario involving

egocentric video. For each video, we have chosen to showcase proposals from all methods that
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Figure 2.9: Demonstrating the efficacy of Objects Beholder with AAM is achieved through qual-
itative results in (A) videos featuring visible actors and (B) videos with non-visible actors. For
both scenarios, we present two instances—one with action and one without action. The left side
displays the input frames, the middle exhibits the objects detected by CLIP, and the right showcases
the most pertinent objects selected by AAM.

possess scores exceeding 0.4 in the qualitative examples.

In the examination of uncomplicated scenarios through video analysis, as depicted in Fig. 2.10-A,

it is readily discernible from the entire frame which actors are undergoing piercing (or trimming

in video (b)). However, pinpointing the precise moment of the piercing action poses a challenge
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due to the involvement of the doctor’s hand (or the tailor in video (b)), positioned beyond the

video frame. Consequently, existing models such as BMN (T. Lin, X. Liu, et al., 2019) and DBG

(C. Lin, J. Li, et al., 2020) falter in accurately proposing action intervals. Similarly, ABN (Vo,

Yamazaki, et al., 2021) is misled by the video content, suggesting an interval from the initiation

of the first groundtruth action of piercing until the credit cut. In contrast, our proposed AOE-

Net adeptly identifies intervals aligned with the actual groundtruth actions. This underscores the

significance of both the actors beholder and objects beholder, which contribute more informative

features compared to previous methodologies, thereby yielding superior results.

In the video depicting a challenging scenario (Fig. 2.10-A), the protagonists are hockey players, their

scale minimized within the video frames. Consequently, discerning the initial "hockey playing"

activity, juxtaposed with the subsequent "celebrating" activity, proves to be a formidable task due

to the players’ diminutive appearance. The intricacy arises from the necessity to meticulously

scrutinize the movements of the hockey players to distinguish between these activities. Both BMN

and DBG, consequently, falter in recognizing the actual action interval as per the ground truth. In

contrast, ABN can propose an interval encompassing the field scene but not necessarily aligning

with the authentic action timeline. Conversely, our proposed AOE-Net adeptly suggests an interval

closely mirroring the ground truth action, underscoring the significant contributions of our actor

and object observation enhancements.

In the scenario involving non-human elements (Fig. 2.10-C), the actor engages in cooking activities,

showcasing their hands manipulating a pan within the time range of [13.9-99.17]. Concurrently,

the periods of [0.0-13.9] and [99.17-116.64] are designated for displaying advertisements. Due

to the exclusive presentation of hands during the action in the video frames, the Actors Beholder

fails to detect the actor. Nevertheless, our Objects Beholder effectively discerns the advertisement

intervals at the video’s outset and conclusion, thereby accurately identifying the genuine action

interval nestled in between. In contrast, the prior state-of-the-art (SOTA) model, BMN [3],

erroneously interprets the advertisement breaks as authentic actions, either categorizing them as

distinct action intervals or erroneously amalgamating them with the genuine action interval situated
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between them.
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Figure 2.10: Results of a qualitative nature in the TAPG framework on the ActivityNet-1.3 dataset
(Fabian Caba Heilbron and Niebles, 2015).



48

Chapter 3

CONCLUSION & FUTURE WORK

In this thesis, our objective is to simulate human perceiving abilities, and we introduce a novel AOE-

Net designed to locate actions in untrimmed videos. The AOE-Net consists of two modules: PMR

and BMM. PMR extracts visual-linguistic representations of each snippet with four beholders.

The environment beholder and actors beholder capture global and local visual features of the

environment and main actors, respectively. The objects beholder extracts linguistic features from

relevant objects, while the last beholder models the relations between main actors, relevant objects,

and the environment. To focus on an arbitrary number of main actor(s) or relevant objects, we

introduce AAM. Qualitative and quantitative results on ActivityNet-1.3 and THUMOS-14 datasets

for both TAPG and TAD tasks suggest that our proposed AOE-Net outperforms state-of-the-art

methods. To demonstrate the effectiveness of AOE-Net, we provide ablation studies showcasing the

contribution of each beholder, the effectiveness of the proposed AAM, network efficiency, and the

robustness of AOE-Net when applied to egocentric videos from the EPIC-KITCHENS 100 dataset.

We further investigate the performance of AOE-Net with various backbone network configurations,

emphasizing that replicating human perceiving ability in video understanding holds promise for

future exploration.

Several potential directions for future research stem from this work. Firstly, while main actors and

relevant objects significantly impact both TAPG and TAD tasks, exploring the influence of human

body parts (e.g., hands, legs) and their interactions with objects in localizing human activities in

untrimmed videos would be of great interest. Finally, integrating our method with human tracking,

specifically main actors tracking, may yield even better performance.
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