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abstract

The problem of chaos control in the nonlinear Bloch equations is considered based
on a modified active control technique. In the proposed control scheme a recursive ap-
proach and active control mechanism are combined to design control functions that drive
the nonliner Bloch equations to a steady state as well as track a desired trajectory in
a systematic way. The effeciency of the proposed Recursive Active Control (RAC) is
demonstrated with numerical simulations.
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I. INTRODUCTION

Many physical systems can exhibit chaotic dynamics under certain conditions. Chaotic behaviours
could be beneficial feature in some cases, but can be undesirable in some engineering and other physical
applications; and therefore it is often desired that chaos should be controlled, so as to improve the system
performance. Thus, it is of considerable interest and potential utility, to devise control techniques capable
of forcing a system to maintain a desired dynamical behaviour even when intrisically chaotic. The control
of chaos and bifurcation is concerned with using some designed control input(s) to modify the charac-
teristics of a parameterized nonlinear system. The control can be static or dynamic feedback control, or
open-loop control. In most cases, the goal could be the stabilization and reduction of the amplitude of
bifurcation orbital solutions, optimization of a performance index near bifurcation, reshapening of the
bifurcation diagram or a combination of these1–3.

For almost two decades, there has been intense research activities devoted to the design of effective
chaos control techniques. A large number of the proposed methods are based on the Ott, Grebogi and
Yorke (OGY) closed-loop feedback method4 and the Pyragas time-delayed auto-synchronization (TDAS)
method5. In the recent times, numerous linear and nonlinear control methods have emerged. In particular,
recursive backstepping nonlinear control scheme has been employed recently for controlling, tracking and
synchronizing chaotic systems6–12. Recursive backstepping which is a systematic design approach that
consists of a recursive procedure that skillfully interlaces the choice of a Lyapunov function with the
control; was proposed by Harb and Harb6 for the third-order phase-locked-loops.
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In another development, Bai and Lonngren proposed an active control method for chaos
synchronization13. The active control scheme has in the last one decade received considerable atten-
tion due to its simplicity and has been widely accepted as an effecient technique for synchronization of
identical and non-identical chaotic systems (See for example Refs.14–23 and refs. therein). Very recently,
we reported the control of directed transports arising from co-existing attractors in ratchet motion using
the active control mechanism23. Zhang et al10 introduced an active-backstepping mechanism of control-
ling and tracking chaotic hyperchaotic systems by combining the active control and backstepping control
methods.

It is known that chaos synchronization is closely related to observer problem in control theory24.
Previous applications of the active control techniques tackles the observer problem from synchronization
point of view; where a drive-response system configuration is employed10–23. Here, we tackle the problem
based on suppression and tracking approach that does not require a response system as employed in10.
To achieve this, a recursive active control (RAC) for controlling chaos is proposed for the nonlinear Bloch
equations (NBE). The method combines recursive approach with active control technique to design control
functions that can suppress chaos as well track any desired trajectory in the NBE.

II. THE NONLINEAR BLOCH EQUATIONS

In view of the need to interpret various anomalies that had been observed in nuclear magnetic resonance
(NMR) experiments, in terms of chaos theory, Abergel25, recently examined the linear set of equations
originally proposed by Bloch to describe the dynamics of an ensemble of spins with minimal coupling.
The model incorporates certain nonlinear effects arising from radiation damping based on feedback and
consists of the three nonlinear modified Bloch equations (NBE) given in dimensionless units as

ẋ = δy + λz(x sin ψ − y cos ψ)− x

τ2
,

ẏ = −δx− z + λz(x cosψ + y sin ψ)− y

τ2
, (2.1)

ż = y − λ sin ψ(x2 + y2)− z − 1
τ1

,

where the dots denotes time derivatives, δ, λ, and ψ are the system parameters; and τ1 and τ2 are
longitudinal time and transverse relaxation time respectively. The dynamics of system (2.1) has been
extensively studied in Ref.17,25 for a fixed subset of the system parameters (δ, λ, τ1, τ2) and for a space
area range of the radiation damping feedback ψ. The regions of ψ that would admit chaotic solutions
were obtained. For example, the NBE exhibits chaotic behaviour for δ = −0.4π, λ = 30, ψ = 0.173, τ1 = 5
and τ2 = 2.5 as shown in Fig. 1 and Fig. 2.
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FIG. 1. Chaotic dynamics of the uncontrolled NBE. Parameters are: δ = −0.4π, λ = 30, ψ = 0.173, τ1 = 5 and
τ2 = 2.5
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FIG. 2. Time history of the NBE system for the same parameter set as in Fig. 1

In recent study, Moukam Kakmeni, Nguenang and Kofane27, examined the dynamics of a variant NBE,
extended to account for both the bi-axial property of the magnets to which the set of spins belongs and
the presence of a back action from the probe. In17,26,27, the synchronization behaviours of the NBE were
also reported. For instance, Ucar et al.17 studied the synchronization of drive-reponse system of the NBE
with non-identical parameters using active control while in Ref.26, Park studied the synchronization of
the NBE with uncertain parameters. Moukam Kakmeni et. al.27, considered the synchronization problem
based on adaptive approach, using both linear and nonlinear feedback couplings. In all these reports, the
control of the NBE chaotic behaviour to regular dynamics has not been addressed. In this paper, we set
up a modified active control for the NBE chaotic system.

III. RAC FOR THE NONLINEAR BLOCH EQUATION

To control the NBE chaotic attractor, we introduce the control functions ui(i = 1, 2, 3) as follows

ẋ = δy + λz(x sinψ − y cos ψ)− x

τ2
+ u1,

ẏ = −δx− z + λz(x cosψ + y sin ψ)− y

τ2
+ u2, (3.1)

ż = y − λ sinψ(x2 + y2)− z − 1
τ1

+ u3,

and define the error dynamics as

ex = x− x1d,

ey = y − x2d, (3.2)
ez = z − x3d.

For simplicity let

x1d = 0,

x2d = c1ex, (3.3)
x3d = c2ex + c3ey,
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where the c′is(i = 1, 2, 3) are arbitrary control gains; x1d is the reference output; x2d, x3d are recursively
introduced control inputs. Now, differentiating eq. (3.2) and (3.3); and substituting eqs. (3.1) into the
resulting equations, we obtain the following error dynamics system:

ėx = δey + λez(ex sinψ − ey cosψ)− ex

τ2
+ u1,

ėy = −δex − ez + λez(ex cosψ + ey sin ψ)− ey

τ2
+ u2, (3.4)

ėz = ey − λ sin ψ(e2
x + e2

y)− ez − 1
τ1

+ u3.

In (3.4), the c′is(i = 1, 2, 3) have be chosen so that the ėj(j = x, y, z) terms on the RHS varnishes.
Since the c′is(i = 1, 2, 3) are arbitrary control gains, it is convenient, without loss of generality, to set
c1 = c2 = c3 = 0. In the absence of the control ui(i = 1, 2, 3), eq. (3.4) would have an equilibrium at
(0, 0, 0). If a ui(i = 1, 2, 3) is chosen such that the equilibrium remains unchanged, then the problem can
be transformed to that of realizing asymptotic stabilization of system (3.4). Thus, the goal is to find the
controls such that the system (3.4) is stabilized at the origin. Following the original method of active
control, we re-define the control functions as follows

u1 = V1 − λez(ex sin ψ − ey cos ψ),
u2 = V2 − λez(ex cos ψ + ey sin ψ), (3.5)

u3 = V3 + λ sin ψ(e2
x + e2

y)− 1
τ1

.

With (3.5), the error dynamics (3.4) becomes:

ėx = δey − ex

τ2
+ V1,

ėy = −δex − ez − ey

τ2
+ V2, (3.6)

ėz = ey − ez

τ1
+ V3.

We choose a feedback matrix A which will control the error dynamics (3.6) such that



V1(t)
V2(t)
V3(t)


 = A




ex

ey

ez


 (3.7)

With

A =




k1 + 1
τ2

−δ 0
δ k2 + 1

τ2
1

0 −1 k3 + 1
τ1


 (3.8)

With matrix A as above, we obtain the following control functions:

u1 = (k1 +
1
τ2

)ex − δey − λez(ex sin ψ − ey cos ψ)

u2 = δex + (k2 +
1
τ2

)ey + ez − λez(ex cos ψ + ey sin ψ)

u3 = −ey + (k3 +
1
τ1

)ez + λ sinψ(e2
x + e2

y)− 1
τ1

(3.9)

The three eigenvalues k1, k2 and k3 in eq. (3.8) and (3.9) play significant role in ensuring stable
controlled state. If k1, k2 and k3 are negative definite, a global stability of the controlled state is
achieved. In fig. 3, we present the numerical simulation when when k1 = k2 = k3 = −1. Here, the
controls are simultneously switched on at t ≥ 100s. It is clear from the numerical simulation shown in
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Fig. 3 that the chaotic behaviour has been controlled as soon as the control is activated. We found also
that when one of the ki(i = 1, 2, 3) is set at zero while the others are made negative definite, control is
also achieved. However, the dynamics of the state variable associated with the zero eigenvalue in this
case is not confined to the zero oscillation; anf if ki are all zero, no control is achieved.
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FIG. 3. Time history of the NBE system when control has been activated at t = 100 for the same parameter
set as in Fig. 1

IV. DESIGN OF RAC FOR TRACKING TRAJECTORIES

Suppose a trajectory, A sin ωt is desired, then we can employ the above technique to track the time
evolution of its orbit. To show this, we define the error between the state variables and the desired
trajectory as follows:

ex = x− x1t,

ey = y − x2t, (4.1)
ez = z − x3t.

where

x1t = A sin ωt,

x2t = c1ex, (4.2)
x3t = c2ex + c3ey.

Proceeding as before, we obtain the following error dynamics
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ėx = δey + λez[(ex + A sin ωt) sin ψ − ey cosψ]

−ex

τ2
− A sin ωt

τ2
+ ux

ėy = −δex + λez[(ex + A sin ωt) cos ψ + ey sin ψ]

−δA sin ωt− ez − ey

τ2
+ uy

ėz = ey − λ sin ψ[(ex + A sin ωt)2 + e2
y]

−ez − 1
τ1

+ uz (4.3)

where ui(i = x, y, z) are the tracking control functions to be determined. Re-defining the control functions
as follows:

ux = vx − λez[(ex + A sin ωt) sin ψ − ey cosψ]

−A sinωt

τ2
−Aω sin ωt,

uy = vy − λez[(ex + A sin ωt) cos ψ + ey sin ψ], (4.4)

uz = vz + λ sin ψ[(ex + A sin ωt)2 + e2
y]− 1

τ1
,

we obtain the following error dynamics system:

ėx = δey − ex

τ2
+ vx,

ėy = −δex − ez − ey

τ2
+ vy, (4.5)

ėz = ey − ez

τ1
+ vz.

From eq. (3.7) and (3.8), we propose the following control functions

ux = (k1 +
1
τ2

)ex − δey

−λez[(ex + A sin ωt) sin ψ − ey cos ψ]

uy = δex + (k2 +
1
τ2

)ey + ez

−λez[(ex + A sin ωt) cos ψ + ey sin ψ] (4.6)

uz = −ey + (k3 +
1
τ1

)ez

+λ sin ψ[(ex + A sin ωt)2 + e2
y]− 1

τ1

We perform numerical simulations of the NBE with the controllers (4.6) activated at t ≥ 100s for
A = 0.2 and ω = 0.67; all other parameters are fixed as before. The results are displayed in Fig. 4. The
vibration of the z variable appears to exhibit zero oscillation in the presence of the controllers. However,
a zoom of the control region dipicts an oscillation with amplitude of 0.2. Thus, comfirming that global
tracking of the orbit is achieved.
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FIG. 4. Time history of the NBE system when tracking trajectory x1,t = 0.2 sin 0.67t at t ≥ 100 for the same
parameter set as in Fig. 1

V. CONCLUSION

In this paper, a recursive approach combined with the active control technique has been used to
formulate a technique for suppressing the chaotic behaviour in nonlinear Bloch equations. The proposed
Recursive Active Control (RAC) has also been found effective for tracking a desired trajectory. The
proposed method guarantee global stability, excellent transience performance and is simple to implement.
Numerical simulations have been employed to confirm our results.
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