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Abstract: In 2019–2020, dengue virus (DENV) type 4 emerged to cause the largest DENV outbreak
in Paraguay’s history. This study sought to characterize dengue relative to other acute illness cases
and use phylogenetic analysis to understand the outbreak’s origin. Individuals with an acute illness
(≤7 days) were enrolled and tested for DENV nonstructural protein 1 (NS1) and viral RNA by real-
time RT-PCR. Near-complete genome sequences were obtained from 62 DENV-4 positive samples.
From January 2019 to March 2020, 799 participants were enrolled: 253 dengue (14 severe dengue, 5.5%)
and 546 other acute illness cases. DENV-4 was detected in 238 dengue cases (94.1%). NS1 detection
by rapid test was 52.5% sensitive (53/101) and 96.5% specific (387/401) for dengue compared to
rRT-PCR. DENV-4 sequences were grouped into two clades within genotype II. No clustering was
observed based on dengue severity, location, or date. Sequences obtained here were most closely
related to 2018 DENV-4 sequences from Paraguay, followed by a 2013 sequence from southern Brazil.
DENV-4 can result in large outbreaks, including severe cases, and is poorly detected with available
rapid diagnostics. Outbreak strains seem to have been circulating in Paraguay and Brazil prior to
2018, highlighting the importance of sustained DENV genomic surveillance.

Keywords: dengue; Paraguay; NS1; rRT-PCR; phylogenetic analysis

1. Introduction

Dengue virus (DENV) is the most common arbovirus worldwide, with 50–100 million
symptomatic infections resulting annually from four related viruses, designated DENV
types 1–4 [1]. The reported epidemiology and relative severity of DENV-4 have differed
between regions and patient populations, with predominantly secondary cases and less
severe disease reported in Southeast Asia compared to a mixture of primary and secondary
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cases with a spectrum of disease severity in the Americas [2–15]. Five distinct genotypes of
DENV-4 have been identified, and genetic differences between genotypes impact both viral
biology and neutralization by pre-existing antibodies [16,17]. Genotype II was introduced
into the Caribbean in the early 1980s, with multiple subsequent introductions into Brazil
from Colombia or Venezuela in the early 2000s and spread to neighboring countries in
the Southern Cone [6,18–21]. While DENV-4 epidemics have been described in the region,
with strains emerging/re-emerging from pre-existing lineages [5–7,14,22–25], detection
and characterization of dengue cases caused by DENV-4 have been hampered by the poor
performance of available rapid diagnostics for this virus type [26–28]. The “gold standard”
for dengue diagnosis has long been considered the detection of seroconversion between
acute and convalescent samples [29,30], however, paired samples are frequently unavailable
in clinical practice, further limiting detection by this method.

Paraguay is hyperendemic for DENV, with sustained viral circulation since 1999 and
large disease outbreaks occurring every 2–5 years [31]. Dengue occurs throughout the
country, but most cases are detected in metropolitan Asunción, which is the most populated
area in the country and includes the capital and surrounding Central Department. Typically,
a single DENV type predominates during the high transmission season from November
through April. However, other types are also detected at lower rates [19,31–33] or with
regional transmission [34]. DENV-4 was first identified in Paraguay in 2012 and circulated
at low levels from 2012 to 2018. From 2015 to 2018, DENV-1 was predominant [31,33],
but in 2019–2020, DENV-4 emerged to cause the largest DENV outbreak in the country’s
history [31,35].

A previous study of temporal distribution of DENV in Paraguay revealed epidemic
waves yearly recurrently during the late summer months. Moreover, the mosquito-viral suit-
ability index accurately corresponded to the seasonal timing of reported dengue cases [36].
From February 2019 to March 2020, a bimodal incidence of suspected dengue cases was
observed in Paraguay. The first wave extended from March to June 2019, with a peak in
April when 2164 suspected cases were reported [37], and the larger second wave began
in October 2019, when an epidemiologic alert for dengue was issued and a sustained
increase in suspected cases was reported, with a peak in February 2020 with more than
33,200 suspected cases registered [38].

Published genomic data indicate that 2018 DENV-4 strains were most closely related to
strains circulating in southern Brazil, circa 2013 [19,31]. Furthermore, a recent study showed
that DENV-4 strains that circulated in Paraguay in 2020 were also related to viruses circu-
lating in midwestern and southwestern Brazil [36]. Despite the recent advances/studies in
DENV phylogenetics, more genomic information is required to understand the epidemio-
logic pattern and virus population dynamics in Paraguay and the neighboring countries.
Therefore, the objectives of this study were to (1) describe diagnostic test performance
for and clinical manifestations of dengue cases detected in 2019–2020 in Paraguay and
(2) perform phylogenetic analyses of identified DENV-4 strains.

2. Materials and Methods
2.1. Study Participants

Participants of both genders and all ages were enrolled into an ongoing study of
suspected arboviral infections between January 2019 and March 2020 from the Hospital
Central of the Instituto de Previsión Social or as outpatients at IICS-UNA. Hospital Central,
located in Asunción, is a tertiary care hospital that provides medical attention to patients
from Asunción, the surrounding metropolitan area, and transfers from throughout the
country. IICS-UNA is a research institute in San Lorenzo, which is in metropolitan Asunción,
Central Department. Inclusion criteria were an acute illness including two or more of the
following symptoms: fever (measured or subjective), red eyes, rash, joint pain involving
more than one joint, and/or diffuse muscle pain. Patients with fever and no other localizing
signs or symptoms were also included. Day 1 was defined as the day on which symptoms
began, and individuals were included in the current study up to 7 days post-symptom
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onset. Cases were classified according to the 2009 WHO criteria as dengue without warning
signs (DWS-), dengue with warning signs (DWS+), and severe dengue (SD) [30].

2.2. Clinical Samples and DENV Testing

Serum was obtained at the enrollment visit, aliquoted, and stored at −80 ◦C. Partici-
pants were screened for DENV by testing for the non-structural protein 1 (NS1) antigen
and/or DENV RNA in a multiplex rRT-PCR for Zika, chikungunya, and dengue (the ZCD
assay) [33,39,40]. NS1 testing was performed at IICS-UNA using the Standard Q Dengue
Duo rapid immunochromatographic test (SD Biosensor, Suwon, South Korea) according
to manufacturer recommendations. Screening test results, both positive and negative,
were confirmed in a DENV type-specific, quantitative rRT-PCR (the DENV multiplex test,
DMPT) [41]. The Standard Q Dengue Duo rapid immunochromatographic test also detects
anti-DENV IgM and IgG. Results of antibody detection were recorded but not incorporated
into the diagnostic algorithm of acute dengue cases.

The ZCD assay and DMPT were performed at both IICS-UNA and Emory University,
following shipment of sample aliquots on dry ice. At IICS-UNA, RNA was extracted from
140 µL of serum using the Viral RNA Mini Kit (Qiagen, Germantown, MD, USA) and eluted
into 60 µL of buffer, according to manufacturer recommendations. At Emory, total nucleic
acid extraction was performed using either (1) an EMAG instrument (bioMérieux, Durham,
NC, USA) or (2) the MagMaxViral RNA Isolation Kit in a KingFisher Apex system (both
from ThermoFisher Scientific, Waltham, MA, USA). For automated extractions, nucleic
acids were extracted from 200 µL of serum and eluted in 60 µL of buffer. A total of 5 µL
of eluate was then used in ZCD and DMPT reactions, and both assays were performed
and interpreted as previously described [39–41]. Serum viral load was quantified from
4-point standard curves prepared with synthesized DENV target sequences and included
on dedicated DMPT runs.

2.3. Case Definitions

Dengue case confirmation required a positive result in the DMPT. Cases that (1) tested
negative for DENV in the ZCD assay or (2) had a positive screening test (NS1 or ZCD) that
could not be confirmed in the DMPT were considered other acute illness (OAI). This case
definition was employed to ensure rigorous confirmation of dengue cases with at least two
different tests.

2.4. DENV Sequencing

Sixty-two 2019–2020 samples were selected for sequencing from individuals with
confirmed DENV-4 infections and DMPT Ct values < 35. Samples were further selected to
represent the distribution of all cases based on month of collection, city of residence, and
severity of clinical illness. All samples from SD cases that met the Ct criterion were selected.
A single DENV-4 case collected in 2018 as part of this ongoing study was also sequenced
and included in phylogenetic analyses [33].

Extracted total nucleic acid underwent heat-labile dsDNase treatment (ArcticZymes,
Tromso, Norway). cDNA was synthesized using random hexamer primers and SuperScript
III RT (both from ThermoFisher Scientific) for first strand synthesis and New England
Biolabs (New England Biolabs, Inc., Ipswich, MA, USA) reagents for second strand synthe-
sis, without amplification. Sequencing libraries were fragmented and indexed using the
Nextera XT DNA Library Prep kit (Illumina, San Diego, CA, USA) with dual indexes and
16 cycles of PCR. Libraries were quantified using the KAPA universal complete kit (Roche,
Basel, Switzerland), pooled to equimolar concentration, and sequenced on a MiSeq with
paired-end 150-bp reads (Illumina, San Diego, CA, USA). As a negative control, water was
included with each batch of samples starting from DNase. As a positive control, in vitro
transcribed ERCC spike-ins (NIST) were added to each sample prior to cDNA synthesis.
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Sequencing reads underwent reference-based assembly using viral-ngs version 2.0.21.3-rc20
(github.com/broadinstitute/viral-pipelines; date accessed, 01 February 2022) and reference
sequence KP188564.1. Consensus sequences from each sample were aligned and visually
inspected using Geneious R8 (Biomatters, San Francisco, CA, USA). Genotyping was per-
formed using the online Genome Detective Virus Tool (https://www.genomedetective.com;
date accessed, 1 February 2022) [42]. Complete DENV-4 genomes were downloaded from
the Bacterial and Viral Bioinformatics Resource Center (BV-BRC, https://www.bv-brc.org/;
date accessed, 1 February 2022) as reference sequences for phylogenetic analysis. These
were MAFFT aligned with our Paraguay DENV-4 sequences using Geneious Prime (Biomat-
ters, Inc., San Diego, CA, USA), and untranslated regions in the 5′ and 3′ ends were trimmed.

Maximum-likelihood (ML) phylogenies were estimated with IQ-TREE (version 1.6.12)
with ultrafast bootstrap approximation to evaluate clade probabilities. ModelFinder was
used to select the GTR+F+gamma4 nucleotide substitution model [43]. Temporal signal
was assessed using TempEst v1.5.1 [44], and 12 reference sequences with >0.01 distance
from the best-fitting linear regression were excluded as outliers for possible low sequencing
quality or misclassified dates. Downsampling was performed from this alignment to
yield a set of unique sequences with high genome coverage of predominantly the same
genotype identified in this study (genotype II; see Supplemental Material for complete
details). Our final dataset included 61 DENV-4 sequences generated by our group from
2019 to 2020, 1 DENV-4 sequence generated by our group from 2018, 9 reference sequences
from Paraguay in 2018, and 129 globally representative DENV-4 genotype II reference
sequences. The final ML phylogenetic tree was rooted on the oldest DENV-4 sequence.

Time-scaled phylogenetic trees were constructed in BEAST v1.10.4 using a GTR+gamma4
substitution model with 3 codon positions, a relaxed molecular clock, and 200,000,000
Markov chain Monte Carlo steps [45]. TreeAnnotator v1.10.4 was used to summarize the
maximum clade credibility (MCC) tree after 10% burn-in [45]. ML and time-scaled trees
were visualized through the interactive Tree of Life v6 (iTOL, https://itol.embl.de; date
accessed, 10 February 2022) and FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree;
date accessed, 10 February 2022).

2.5. Statistical Analysis

Basic statistical analyses were performed using Excel software version 2312 (Microsoft,
Redmond, WA, USA). Comparisons between group means and medians were made by
ANOVA, Welch’s test, both pooled and non-pooled two-sample t-tests, and Kruskal–Wallis
tests. Comparisons of proportions were made using chi-squared tests or Fisher exact
tests. Graphs were prepared with GraphPad Prism version 9 (GraphPad, San Diego, CA,
USA). Crude associations and statistical analysis were performed using SAS version 9.4.
Significance was set at two-sided p-values ≤ 0.05 for all analyses.

3. Results
3.1. Geographical Distribution of Studied Cases

Participants included in the current study were enrolled between February 2019
and March 2020, and the distribution approximately mirrored country-wide numbers of
suspected dengue cases, both confirmed and unconfirmed, reported to the Ministerio de
Salud Pública y Bienestar Social, Paraguay (Figure 1). Patients from 14 of 17 departments
and the capital district of Paraguay were included (Figure 2A). Most dengue (229/253,
90.5%) and OAI cases (501/546, 91.8%) came from the Central Department or capital district
(Table S1). Dengue cases were confirmed among individuals who resided in 9 departments
and the capital district (Figure 2).

github.com/broadinstitute/viral-pipelines
https://www.genomedetective.com
https://www.bv-brc.org/
https://itol.embl.de
http://tree.bio.ed.ac.uk/software/figtree
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This included 253 (31.7%) confirmed dengue and 546 (68.3%) OAI cases (Table 1). Dengue 
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(dark orange) or other acute illness cases were enrolled but dengue was not identified (light orange).
Three departments from which no cases were enrolled are shown in grey (from west to east: Ñeem-
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23 August 2022).

3.2. Study Population

Seven hundred ninety-nine participants were enrolled and met inclusion criteria. This
included 253 (31.7%) confirmed dengue and 546 (68.3%) OAI cases (Table 1). Dengue cases
were older (mean 36.1 years, standard deviation (SD) 20.1) than OAIs (27.9, SD 19.3; p < 0.001)
but were similar in gender makeup, comorbid illnesses, and days of symptoms at presenta-
tion (Table 1). DENV-4 was identified in 238 cases (94.1%), followed by DENV-2 (14, 5.5%)
and DENV-1 (1, 0.4%). No mixed infections were detected, and no Zika or chikungunya
cases were detected. DENV-4 serum viral load was quantifiable for 237/238 cases (99.6%,
mean 6.67 log10 copies/mL, SD 1.50; Figure 3A), and viral load declined overall with days
of symptoms (Figure 3B).

www.mapchart.net
www.google.com/maps
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Table 1. Demographic and clinical data for dengue cases versus other acute illness cases (N = 799).

Characteristic Dengue a

n = 253
Other Acute Illness a

n = 546 p-Value

Age, years, mean (SD) 36.1 (20.1) 27.9 (19.3) <0.001

Gender, female 158 (62.5) 348 (63.7) 0.75

Comorbidity, ≥1 73 (28.9) 141 (25.8) 0.39

Day of symptoms, mean (SD) 3.39 (1.6) 3.38 (1.6) 0.92

DENV type
DENV-1 1 (0.4%) – –
DENV-2 14 (5.5%) – –
DENV-4 238 (94.1%) – –

Abbreviation: SD, standard deviation. a Data presented as n/N (%).
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Figure 3. Quantifiable DENV-4 serum viral load (A) distribution for dengue cases in the study
population and (B) by day of symptoms at presentation.

DENV NS1 detection by rapid test demonstrated 52.5% sensitivity (53/101) and
96.5% specificity (387/401) compared to rRT-PCR (Table 2A). DENV viral load was not
significantly different among samples with detectable versus undetectable NS1 or anti-
DENV IgM (Figure S1). Sensitivity of NS1 detection was lowest on days 1 and 2 of
symptoms (20–37%), with improved but variable detection from days 3 to 7 (44–76%;
Figure S2). Anti-DENV IgM was detected in 25/96 dengue cases (26.0%) and 47/387 OAI
cases (12.1%; Table 2B). Anti-DENV IgM detection did not demonstrate a consistent trend
across days of symptoms (Figure S2). Of all samples analyzed for antibody detection,
anti-DENV IgG was detected in 242/483 samples (50.1%) and 54/96 dengue cases (56.3%;
Table 2C).

Table 2. Comparison of (A) NS1, (B) IgM, and (C) IgG detection in acute dengue cases confirmed by
rRT-PCR.

A DENV rRT-PCR
Positive Negative Total

N
S1

Positive 53 14 67

Negative 48 387 435

Total 101 401 502
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Table 2. Cont.

B DENV rRT-PCR
Positive Negative Total

A
nt

i-
D

EN
V

Ig
M

Positive 25 47 72

Negative 71 340 411

Total 96 387 483

C DENV rRT-PCR
Positive Negative Total

A
nt

i-
D

EN
V

Ig
G

Positive 54 188 242

Negative 42 199 241

Total 96 387 483

3.3. Clinical Manifestations and Severity

Symptoms reported among dengue and OAI cases are shown in Table 3. After correc-
tion for multiple comparisons, arthralgias, myalgias, and nausea remained significantly
more common among dengue cases, whereas cough and sore throat were less common.
Most participants reported having fever in the preceding 7 days (235/252 dengue (93.3%)
and 480/531 OAI (90.4%) cases), and measured temperature did not differ between the
groups (dengue, mean 38.7 ◦C (SD 0.7) and OAI 38.7 ◦C (0.8)). Of dengue cases, 136 (53.8%)
were categorized as DWS-, 103 (40.7%) DWS+, and 14 (5.5%) SD.

Table 3. Symptoms reported in the preceding 7 days among dengue and other acute illness cases.

Characteristic Dengue a Other Acute Illness a p-Value b

Fever 235/252 (93.3%) 480/531 (90.4%) 0.22
Conjunctivitis 88/246 (35.8%) 147/526 (27.9%) 0.029

Rash 72/247 (29.1%) 105/526 (20.0%) 0.006
Arthralgia 199/243 (81.9%) 325/510 (63.7%) <0.001
Myalgia 209/243 (86.0%) 372/511 (72.8%) <0.001

Headache 205/247 (83.0%) 406/522 (77.8%) 0.10
Lethargy 137/247 (55.5%) 261/522 (50.0%) 0.16

Retro-ocular pain 123/247 (49.8%) 203/522 (38.9%) 0.005
Cough 27/247 (10.9%) 157/522 (30.1%) <0.001

Difficulty breathing 52/247 (21.0%) 101/522 (19.3%) 0.63
Back pain 103/247 (41.7%) 171/522 (32.8%) 0.019

Sore throat 30/247 (12.1%) 134/522 (25.7%) <0.001
Abdominal pain 87/247 (35.2%) 142/522 (27.2%) 0.028

Nausea 116/247 (47.0%) 184/522 (35.2%) 0.002
Vomiting 56/247 (22.7%) 168/522 (32.2%) 0.007
Diarrhea 42/247 (17.0%) 84/522 (16.1%) 0.76
Edema 10/247 (4.0%) 26/522 (5.0%) 0.72

Bleeding 20/247 (8.1%) 35/523 (6.7%) 0.55
Itching 27/247 (10.9%) 43/522 (8.2%) 0.23

a Results presented as n/N (%): the number of participants who reported a symptom (n) over the total number
with recorded data for that symptom field (N) and percent. b Bold indicates a significant difference in the
proportion of dengue and other acute illness cases reporting a symptom using a Bonferroni-corrected p-value for
significance of ≤0.0026.

The study population included 106 pregnant women: 22 dengue and 84 OAI cases.
Two pregnant women (9.1%) had DWS+ (no SD cases). However, 19/22 (86.4%) were
hospitalized, which was significantly higher than the proportion of hospitalized pregnant
women with OAI cases (18/43 with disposition data (41.9%), p < 0.001).

3.4. Phylogenetic Analysis

DENV sequences in the final alignment included 138 reference and 62 newly generated
sequences from Paraguay: 61 from 2019 to 2020 (Tables S2 and S3, Figure S3) and a single
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sequence from 2018 (NCBI-GenBank accession numbers: OP811915–OP811976). All newly
generated DENV-4 sequences belonged to genotype II. Reference sequences represented
samples collected from 1956 to 2018, including sequences from Asia and the Americas
(Table S4).

In the ML phylogenetic analysis, all Paraguay sequences clustered together (Figure 4A,
demarcated with a dashed line box), and outbreak sequences were most closely related to
2018 sequences from Paraguay, which clustered just basal to the sequences from this study
(Figure S4). All ten Paraguay sequences from 2018 differed from the outbreak sequences by
only two synonymous mutations, one in the NS3 gene and the other in NS5. The closest
reference sequence from outside Paraguay came from a sample collected in São José do Rio
Preto, Brazil in 2013 (KP188564.1). Outbreak strains comprised two clades, designated clade
A (n = 24) and clade B (n = 37) (Figure 4B, tree branches shown in different shades of blue).
Clades A and B differed by three synonymous single nucleotide polymorphisms, one each
in the envelope, NS3, and NS5 genes. In ML analysis, Clade A appeared to be more closely
related to the 2018 DENV-4 sequence generated for the current study, but in Bayesian
analysis, that sequence was confirmed as ancestral to both. There was no phylogenetic
clustering of cases by severity (Figure 4B), geographic location, or epidemic wave.

In time-scaled phylogenetic analysis, outbreak sequences again clustered together
with high support and shared a most recent common ancestor in August 2017 (95% highest
posterior density (HPD) February 2017–February 2018; Figure 4). Our inferred mean clock
rate of 8.79 × 10−4 (95% HPD 7.85–9.80 × 10−4) is slightly higher than the median reported
rate in prior studies on DENV-4, 7.91 × 10−4, but well within the range of reported rates,
6.89 × 10−4 to 20 × 10−4 [46]. All Paraguay sequences shared a common ancestor in
January 2017 (95% HPD February 2016–September 2017) and diverged from their most
recent ancestor, KP188564_Brazil_2013, in May 2011 (95% HPD June 2010–June 2012).
These results suggest that there was unappreciated circulation of the outbreak lineage
between 2011 and 2017. To assess whether the lineage was captured in prior studies of
partial genome sequencing, we analyzed 743 DENV-4 reference sequences from the BV-BRC
database collected between 2012 and 2018 with at least full envelope sequences (1485 bp),
and we found no additional closely related reference sequences.
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4. Discussion

From the end of 2019 to early 2020, DENV-4 caused the largest DENV outbreak in
Paraguay’s history [31,35]. In our study population, dengue cases were poorly detected
with available rapid diagnostics, associated with certain clinical manifestations, and some
progressed to SD. The relative clinical severity of DENV-4 has varied in prior studies,
which may reflect differences in virus strains and/or patient populations. In studies from
Southeast Asia with documented transmission of all four DENV types, DENV-4 is often
the least common, predominantly detected among secondary cases and associated with
lower severity than other types [9,10,12]. SD risk with DENV-4 may also be lower in the
Americas, particularly compared to DENV-2 [3,4,13–15]. However, consistent with our
findings, DENV-4 still causes SD, with an overall risk similar to DENV-1 [11,13,15] and
increased risk among older patients and those with secondary infections [4–9,11,13,47].

Phylogenetic analysis indicated that the DENV-4 lineage responsible for the 2019–2020
outbreak was nearly identical to viruses detected in Paraguay in 2018, consistent with a
recent phylogenetic study of DENV in the country [36]. All Paraguay DENV-4 sequences
shared a most recent common ancestor in 2017, and this aligns with a molecular clock
analysis on 2018 DENV-4 sequences that estimated viral introduction into Paraguay in
September 2017 [19]. Thus, this large outbreak was not due to introduction of a new lineage
into the country in 2019 but instead resulted from local DENV-4 evolution and emergence in
a susceptible population [22,23,25]. While we did not observe fixation of nonsynonymous
mutations among DENV-4 sequences from Paraguay, these sequences all differed from
their closest ancestor (KP188564_Brazil_2013) by seven amino acids, and the evolutionary
history of this lineage over the decade preceding the outbreak is unclear due to limited
DENV-4 sequences from the country and region.

DENV-4 has undergone multiple introductions into South America over the past 40 years,
and genotype II, as identified in our study, has been predominant [5–7,16,18,20,21,24,25,47].
After being absent for three decades, DENV-4 was detected in Brazil in 2010 and resulted
in explosive epidemics in the following years, probably because of the population’s sus-
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ceptibility [5,48]. Similar to findings in Puerto Rico, previous research hypothesized that
DENV-4 re-emergence or re-introduction in the state of Roraima in 2010 was preceded by
cryptic or imperceptible circulation of the virus [20,49]. Several studies have demonstrated
that densely populated states like Sao Paulo and Rio de Janeiro play a key role in the
spread of DENV-4 to other Brazilian locations [48,50], and notably, the MRCA for DENV-4
strains in Paraguay was detected in Sao Paulo state. Autochthonous DENV-4 evolution that
precedes viral re-emergence and the ongoing risk for introduction of new strains, such as
genotype I introduction into Brazil from Asia [20], highlights the importance of sustained
genomic monitoring to trace the origin of new outbreaks.

It is notable that DENV-4 emerged in Paraguay in a population where DENV-1 had
been predominant for the previous four years [33], as both the change in the predominant
DENV type and waning cross-protective immunity could have contributed to the high
numbers of symptomatic infections seen in 2019–2020 [51,52]. The DENV-1/DENV-4 order
of infections has been observed among SD cases [53], and prior DENV-1 infection has
disproportionately contributed to SD elsewhere [54]. The wave dynamics observed in
2019–2020 fit with the arrival of DENV-4 outbreak strains in a susceptible population
relatively late in the DENV transmission season that ended in early 2019 in Paraguay [55],
and consistent with this, genetic differences were not observed between the two waves. All
sequenced SD cases were detected in the second wave. However, these did not cluster in
phylogenetic analyses, and this finding may be attributed to higher case numbers in the
second wave increasing observed SD by chance.

Rapid NS1 testing demonstrated poor sensitivity (52.5%) for dengue cases caused
by DENV-4. This was lower than the sensitivity of the same assay observed during the
2018 DENV-1 outbreak in Asunción (71.4%), though specificity was high (>96%) in both
studies [33]. These data are similar to findings from Brazil, where rapid immunochro-
matographic tests for NS1 resulted in under-detection of DENV-4 [26–28,56]. Poor NS1
performance may result from lower levels of NS1 in DENV-4 cases, though data to this
effect are sparse [57], or high seroprevalence of anti-DENV IgG. Sensitivity of NS1 detec-
tion may improve with heat dissociation of IgG-NS1 complexes [5,56], but this requires
instrumentation and detracts from the benefits of point-of-care testing. Due to NS1 test per-
formance, this was implemented only as a screening test to determine further work-up by
rRT-PCR. NS1 rapid tests continue to be a widely used tool in clinical practice, particularly
in sites with limited resources due to simplicity and relatively low cost [58,59]. However, it
is important to consider the potential clinical and epidemiologic impact of their reduced
sensitivity in comparison to DENV RNA detection shown in this work, particularly for
DENV-4. This emphasizes the necessity of developing point-of-care diagnostic tests with
improved performance features [60,61].

The clinical presentation of dengue cases differed from that of OAIs in this population,
with arthralgia, myalgia, and nausea reported significantly more often among cases and
cough and sore throat reported less often. DENV-4 has previously been associated with
cutaneous manifestations when compared to other DENV types [34]. Although rash was
also more common among dengue cases in our population, this did not remain significant
after adjustment for multiple comparisons. Sore throat was also less common among
DENV-1 cases from Asunción in 2018, when dengue cases more commonly experienced
headache and conjunctivitis [33]. Although these remain relatively general complaints,
identification of such symptom constellations will aid clinicians in the judicious use and
interpretation of available diagnostics.

5. Limitations

This study focused on acute symptomatic dengue cases. Therefore, results may
not be generalizable to mild or subclinical DENV-4 infections, and primary/secondary
infection status could not be fully characterized. Second, although participants resided in
14/17 departments in Paraguay, over 90% of individuals lived in Asunción or the Central
Department, which impacts the power of phylogenetic studies to detect regional differences
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in DENV-4 sequences. Third, the genomic record for DENV-4 in Paraguay dates back only
to 2018 and is limited in South America as a whole. This complicated analyses of DENV-4
introduction into Paraguay and the emergence of the two clades identified in the current
outbreak. Nevertheless, this study provides important information on a large dengue
epidemic that occurred in an endemic country like Paraguay and could serve to improve
our understanding of dengue epidemiology in the region.

6. Conclusions

Findings from the 2019–2020 DENV outbreak in Paraguay highlight the capacity of
DENV-4 to cause explosive outbreaks and the need for sustained genomic monitoring of
circulating DENV strains in a population. DENV-4 is poorly detected with available rapid
diagnostics and, without high rates of symptomatic disease and widespread molecular
testing, may remain under-reported and insufficiently characterized.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/v16020181/s1, Supplemental methods. Downsampling of
DENV-4 sequences. Figure S1. DENV viral load vs. (A) NS1 antigen or (B) anti-DENV IgM. Figure S2.
NS1 and anti-DENV IgM rapid diagnostic test performance by day post-symptom onset. Figure S3.
Epidemiologic week of symptom onset for 61 sequenced DENV-4 samples. Figure S4. ML trees of
DENV-4 genotype II. Table S1. Department or district of residence of dengue and other acute illness
cases. Table S2. Data for DENV-4 samples sequenced in this study. Table S3. Demographic data
for participants from whom DENV-4 whole genome sequences were obtained. Table S4. Sequences
retrieved from NCBI GenBank included for the phylogenetic analysis.
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