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Abstract - The proliferation of high-throughput 

technologies has yielded an abundance of omics data, 

spanning diverse biological layers such as genomics, 

epigenomics, transcriptomics, proteomics, and 

metabolomics. Machine learning algorithms have 

harnessed this data deluge, yielding diagnostic and 

classification biomarkers. However, prevailing biomarkers 

predominantly rely on single omic measurements, 

overlooking the potential insights from multi-omics 

experiments that encapsulate the entirety of biological 

complexity. To fully exploit the wealth of information 

embedded in different omics layers, effective multi-omics 

data integration strategies become imperative. This 

minireview categorizes recent integration 

methods/frameworks into five strategies: early, mixed, 

intermediate, late, and hierarchical. Our focus is on 

delineating challenges and exploring existing multi-omics 

integration strategies, with a keen emphasis on their 

application in machine learning. 
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I. INTRODUCTION (SIZE 10 &BOLD) 

The emergence of cost-effective and potent screening 

technologies [1] has ushered in a new era of extensive 

biological data, paving the way for advancements in 

therapeutics and personalized medicine [2]. Variances in 

treatment effectiveness and adverse effects among 

individuals, attributable to factors like age, sex, genetics, and 

environmental influences (e.g., anthropometric and metabolic 

status, dietary habits, lifestyle [3,4]), underscore the 

importance of precision medicine. The objective is to tailor 

interventions based on individual biological information [5] 

 

Clinical and omics data can be sourced directly from databases 

or gathered through screening technologies for applications 

such as disease analysis [6], class prediction [7], biomarker 

discovery [8], disease subtyping, enhanced system biology 

understanding [9], and drug repurposing. Each omics data type 

represents a distinct "layer" of biological information, such as 

genomics, epigenomics, transcriptomics, proteomics, and 

metabolomics, offering complementary perspectives on 

biological systems or individuals. Historical single-omics 

studies aimed to uncover the causes of pathologies and guide 

appropriate treatments, but current understanding 

acknowledges the complexity of diseases involving intricate 

molecular pathways with interactions across different 

biological layers. 

 

To navigate existing approaches, a classification system is 

essential for selecting suitable methods and identifying best 

practices. Zitnik et al. (2019) [10] categorized integration into 

horizontal and vertical types. This mini-review focuses on 

vertical integration, where each omics dataset shares the same 

rows (samples) but different variables (omics features). We 

assume that the datasets are already processed, normalized, or 

scaled based on their omics type. Existing general reviews on 

vertical integration [11] often categorize methods by 

mathematical aspects, such as Bayesian, network-based, deep 

learning-based, kernel-based, or matrix factorization-based 

methods.  

 

II. Contributions 

 

Multiple goals, including sample classification, disease 

subtyping, and biomarker discovery, can be achieved with 

multiple omics datasets. However, integrating these datasets, 

each with the same rows (representing samples) and different 

columns (representing biological variables), poses challenges. 

Machine learning (ML) models are commonly employed, but 

integrating multiple noisy and high-dimensional datasets 

requires careful consideration. Various integration strategies 

have been developed, each with its pros and cons. Assuming 

proper pre-processing of each dataset, a simple approach 

involves assembling datasets through sample-wise 

concatenation, creating a matrix used as input for ML models 
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III. Related Work 

 

In multi-omics analysis, dimensionality reduction becomes 

crucial to decrease noise and simplify datasets. This optional 

step can be applied regardless of the chosen integration 

strategy, but some strategies (like early and intermediate 

integration) often benefit from prior dimensionality reduction 

Two approaches exist: feature selection, which removes noisy 

and redundant variables, and feature extraction, combining 

original variables into new and more meaningful ones [12]. In 

early integration, dimensionality reduction should consider 

the concatenated matrix to incorporate all omics. If performed 

separately on each dataset, there's a risk of information loss, 

placing it under another integration strategy. The following 

sections outline commonly used methods in both approaches, 

with specific reviews available for further details 

 

Most omics datasets have high dimensionality, especially 

challenging in multiomics studies due to the number of 

datasets[13]. Feature selection addresses this by identifying a 

smaller set of features that retains relevant information while 

reducing dimensionality. This not only enhances computing 

efficiency but also improves model performance, 

interpretability, and mitigates the risk of overfitting. Feature 

selection can also address the block scaling problem by 

balancing the number of features in each omics block when 

many variables are removed. 

 

Feature extraction (FE) methods strive to transform input 

features into a fresh set of variables, encompassing linear or 

non-linear combinations of the original features. The primary 

aim is to extract features in a way that preserves pertinent 

information while minimizing noise and redundancy [14]. 

While beneficial for exploratory data visualization and 

unveiling crucial features, FE methods introduce a trade-off 

by potentially compromising the interpretability of a model, 

given that the extracted features no longer directly represent 

biological measurements 

 

These FE methods can be independently applied to each omics 

dataset, facilitating integration and block scaling in a mixed 

integration approach, or they can be implemented on 

concatenated multi-omics datasets in the context of early 

integration [15]. The resultant extracted features can serve as 

inputs for machine learning (ML) models or clustering. 

However, these strategies may inadvertently lead to 

redundancy and suboptimal results. Intermediate methods aim 

to overcome these challenges by concurrently analyzing 

datasets, yielding FE methods capable of considering all 

variables simultaneously 

 

III. Methodology 

 

Early integration involves consolidating all datasets into a 

unified matrix, amplifying the number of variables while 

maintaining the same number of observations. Challenges 

arise due to the resulting intricate, noisy, and high-

dimensional matrix, making the learning process challenging. 

Imbalances in size between omics datasets may introduce 

learning biases, and early integration might overlook the 

distinctive data distribution of each omics layer, potentially 

guiding ML models toward irrelevant patterns. Despite these 

drawbacks, early integration remains popular due to its 

simplicity, ease of implementation, and the capacity to directly 

reveal interactions between different layers 

Hierarchical integration incorporates regulatory relationships 

among diverse omics layers, mirroring the modular 

organization at the molecular level. This strategic approach 

leverages prior knowledge from interaction databases and 

scientific literature to enhance integration. Challenges in 

multi-omics integration are systematically addressed for each 

dataset, leveraging the organized nature of omics to mitigate 

integration complexities 

 

Recent integration methodologies often involve modifying 

each dataset independently before integration. While 

informative, this approach may result in information loss and 

render models susceptible to noise. Early and intermediate 

integration strategies mitigate these concerns by 

simultaneously considering all datasets, yet challenges persist 

in effectively utilizing the resulting large matrix. Hierarchical 

integration, tailored to specific omics types, exhibits 

limitations in generalizability. As multi-omics research gains 

prominence, the identification of optimal practices and 

strategies becomes imperative. Benchmark studies, 

particularly those encompassing diverse ML models, are 

essential to steer future research and applications in multi-

omics integration 

 

In this mini-review, we presented the different strategies 

available to handle multi-omics datasets integration. Most 

integration approaches developed in recent years tend to first 

modify and transform each dataset using different machine 

learning models known as Mixed integration, in order to 

reduce their complexities and heterogeneities and facilitate 

their subsequent integration and analysis. While it can give 

informative results, each dataset is transformed 
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independently, potentially resulting in a loss of information 

and a final model that can still suffer from noise or redundant 

information. Ideally, at any point of the learning process, each 

omics dataset should be assessed while considering the other 

datasets, so that the complementary information could be best 

exploited. The early and intermediate integration strategies do 

solve this problem by integrating all datasets beforehand, but 

the large matrix resulting from an early integration is difficult 

to exploit by most ML models and intermediate integration 

often relies on unsupervised matrix factorization, which has 

difficulty incorporating the considerable amount of pre-

existing biological knowledge. Another methodology, 

hierarchical integration, is explicitly designed with the prior 

understanding of how the different omics layers interact with 

each other. However, only few such methods have been 

developed and are often tailored for specific omics types, 

which makes them less generalizable than other approaches. 

Additionally, they are dependent on prior data, which prevents 

them from exploring and discovering new biological 

mechanisms and pathways. 

 

With the ever-growing access to biological data, multi-omics 

research will be performed more and more often, and it is 

urgent that we identify the best practices, tools and strategies 

for their integration. In that aspect, benchmark studies are also 

particularly useful and should be done more frequently. With 

the notable exception of Herrmann et al. (2020) [168] which 

focused on survival prediction methods for multi-omics data, 

most benchmarks focus on clustering and dimensionality 

reduction methods [14]. Thorough comparisons of other ML 

models have not been made for multi-omics datasets, and we 

have yet to know if the deep learning prowess made in other 

fields of pattern recognition can be reproduced in 

bioinformatics. 

IV. CONCLUSIONS 

In conclusion, the field of mult i-omics integration is at the 

forefront of advancing our understanding of complex 

biological systems and holds immense potential for 

applications in therapeutics and personalized medicine. 

Feature extraction (FE) methods play a crucial role in 

transforming input features, enabling the creation of new 

variables that capture relevant information while mitigating 

noise and redundancy. However, it's important to recognize 

that the interpretability of models may be compromised as the 

extracted features no longer directly represent biological 

measurements. 

Various integration strategies, such as early and intermediate 

integration, address the challenges of combining diverse 

omics datasets. Early integration, despite its drawbacks of 

increased complexity and potential bias, remains widely 

utilized for its simplicity and ability to directly uncover 

interactions between different layers. Intermediate integration 

strategies, on the other hand, offer a more nuanced approach 

by jointly analyzing datasets, providing a means to consider 

all variables simultaneously 

The hierarchical integration strategy, incorporating regulatory 

relationships, reflects the modular organization at the 

molecular level. While this approach enhances integration by 

leveraging prior knowledge, it is currently limited in 

generalizability and application to specific omics types. 

As the volume of biological data continues to grow, the 

importance of identifying best practices, tools, and strategies 

for multi-omics integration becomes increasingly urgent. 

Benchmark studies, particularly those encompassing diverse 

machine learning models, are essential to guide future 

research in this evolving field. While advancements have been 

made, further exploration and validation of integration 

methods are required to ensure robust and reliable outcomes 

in multi-omics research. Overall, the ongoing progress in 

multi-omics integration holds promise for unraveling intricate 

biological mechanisms and paving the way for more 

personalized and effective medical interventions 
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