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ABSTRACT

In light of the groundbreaking achievements of convolutional neural networks (CNNs) in

2D image processing, there has been a pronounced interest in adapting these methods to non-

Euclidean data, such as graphs and 3D geometric data. Point clouds, in particular, present

unique challenges as they are sparse, unordered, and locality-sensitive, making the adaptation

of CNNs to point cloud processing a non-trivial task. Similar challenges are encountered in

the context of graph data. Consequently, the exploration of extending successful neural

processing paradigms from 2D images to these non-Euclidean domains has emerged as a

vibrant and dynamic research area.

This thesis focuses on advancing graph neural networks (GNNs) and analyzing 3D point

clouds, emphasizing sparsification, classification and generation. For graph neural networks,

a significant contribution is the introduction of Sparse Graph Attention Networks (SGAT),

integrating a sparse attention mechanism into graph attention networks (GATs) through L0-

norm regularization. SGAT excels in edge removal (50%-80% on large graphs), enhancing

interpretability without compromising performance on assortative graphs and improving it

on disassortative graphs. In 3D point cloud analysis, an autoregressive approach, APSNet,

formulates task-oriented point cloud sampling as a sequential generation process, and devel-

ops an attention-based point cloud sampling network that optimally samples 8 points out

of 1024, tailoring the process for tasks like 3D point cloud classification, reconstruction, and

registration. Extending into a non-autoregressive method, PTSNet, a point transformer,

utilizes a transformer-based dynamic query generator. This innovation enables PTSNet to

capture long-range correlations, mitigating issues like gradient vanishing and reducing dupli-

cate samples compared to LSTM-based methods. Lastly, the thesis proposes GDPNet, first

hybrid Generative and Discriminative PointNet, extending the Joint Energy-based Model

(JEM) for point cloud generation and classification. GDPNet retains strong discriminative



power of modern PointNet classifiers, while generating point cloud samples rivaling state-of-

the-art generative approaches.

INDEX WORDS: Graph Neural Networks, Point cloud analysis, Sparsification,
Classification, Attention, Energy-based model generation.
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CHAPTER 1

Introduction

1.1 Graph Neural Networks

Graph-structured data is ubiquitous in many real-world systems, such as social networks Tang

et al. (2015), biological networks Zitnik & Leskovec (2017), and citation networks Sen et al.

(2008), etc. Graphs can capture interactions (i.e., edges) between individual units (i.e.,

nodes) and encode data from irregular or non-Euclidean domains to facilitate representation

learning and data analysis. Many tasks, from link prediction Van den Berg et al. (2017),

graph classification Duvenaud et al. (2015) to node classification Yang et al. (2016), can

be naturally performed on graphs, where effective node embeddings that can preserve both

node information and graph structure are required. To learn from graph-structured data,

typically an encoder function is needed to project high-dimensional node features into a

low-dimensional embedding space such that “semantically” similar nodes are close to each

other in the low-dimensional Euclidean space (e.g., by dot product) Hamilton et al. (2017b).

Recently, various Graph Neural Networks (GNNs) have been proposed to learn such

embedding functions Scarselli et al. (2009); Bruna et al. (2014); Defferrard et al. (2016); Kipf

& Welling (2017); Hamilton et al. (2017a,b); Veličković et al. (2018); Chen et al. (2020a).

Traditional node embedding methods, such as matrix factorization Cao et al. (2015); Ou

et al. (2016) and random walk Perozzi et al. (2014); Grover & Leskovec (2016), only rely on

adjacent matrix (i.e., graph structure) to encode node similarity. Training in an unsupervised

way, these methods employ dot product or co-occurrances on short random walks over graphs
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to measure the similarity between a pair of nodes. Similar to word embeddings Mikolov et al.

(2013); Pennington et al. (2014); Ji et al. (2016), the learned node embeddings from these

methods are simple look-up tables. Other approaches exploit both graph structure and node

features in a semi-supervised training procedure for node embeddings Defferrard et al. (2016);

Kipf & Welling (2017); Hamilton et al. (2017a); Veličković et al. (2018). These methods can

be classified into two categories based on how they manipulate the adjacent matrix: (1)

spectral graph convolution networks Scarselli et al. (2009); Bruna et al. (2014); Defferrard

et al. (2016), and (2) neighbor aggregation or message passing algorithms Kipf & Welling

(2017); Hamilton et al. (2017a); Veličković et al. (2018). Spectral graph convolution networks

transform graphs to the Fourier domain, effectively converting convolutions over the whole

graph into element-wise multiplications in the spectral domain. However, once the graph

structure changes, the learned embedding functions have to be retrained or finetuned. On the

other hand, the neighbor aggregation algorithms treat each node separately and learn feature

representation of each node by aggregating (e.g., weighted-sum) over its neighbors’ features.

Under the assumption that connected nodes should share similar feature representations,

these message passing algorithms leverage local feature aggregation to preserve the locality

of each node, and is a generalization of classical convolution operation on images to irregular

graph-structured data. For both categories of GNN algorithms, they can stack k layers on

top of each other and aggregate features from k-hop neighbors.
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1.2 3D Point Analysis

With the rapid development of 3D sensing devices (e.g., LiDAR and RGB-D camera), huge

point cloud data are generated in the areas of robotics, autonomous driving and virtual

reality Nüchter & Hertzberg (2008); Geiger et al. (2012); Park et al. (2008). A 3D point

cloud, composed of the raw coordinates of scanned points in a 3D space, is an accurate

representation of an object or shape and plays a key role in perception of the surrounding

environment. Since point clouds lie in irregular space with variable densities, traditional

feature extraction methods, such as convolutional neural networks (CNNs), designed for

grid-structured 2D data do not perform well on 3D point clouds. Some methods attempt

to first stiffly transform point clouds into grid-structured data and then take advantage of

CNNs for feature extraction, such as projection-based methods Simony et al. (2018); Beltrán

et al. (2018) and volumetric convolution-based methods Engelcke et al. (2017); Li (2017).

Because placing a point cloud on a regular grid generates an uneven number of points in grid

cells, applying the same convolution operation on such grid cells leads to information loss in

crowded cells and wasting computation in empty cells. Recently, many methods of directly

processing point cloud Qi et al. (2017b); Yu et al. (2018); Li et al. (2018d); Qi et al. (2019)

have been proposed to enable efficient computation and performances in many applications,

such as 3D point cloud classification Qi et al. (2017b); Li et al. (2018d); Thomas et al. (2019);

Wu et al. (2019b), semantic segmentation Li et al. (2018b); Su et al. (2018); Liu et al. (2019);

Wang et al. (2019b, 2018) and reconstruction Achlioptas et al. (2018); Yang et al. (2018);

Han et al. (2019); Zhao et al. (2019), have been improved significantly. These methods take
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raw point clouds as input (without quantization) and aggregate local features at the last

stage of the network, so the accurate data locations are kept intact but the computation cost

grows linearly with the number of points.

Despite the significant progress of discriminative models for the tasks of 3D point cloud

classification and segmentation, the research for generative models for point clouds are still

far behind discriminative ones. Learning generative models for point clouds is crucial for

point clouds analysis and characterizing the data distribution, which lays the foundation

for various tasks such as shape completion, upsampling, synthesis and data augmentation.

Although generative models such as variational auto-encoders (VAEs) Kingma & Welling

(2014) and generative adversarial networks (GANs) Goodfellow et al. (2014) have shown

great success in 2D image generation, it’s quite challenging to extend these well-established

methods to unordered 3D point clouds. Images are structured data but point clouds lie in

irregular space with variable densities. Existing works on 3D generative models are mainly

based on volumetric data, e.g., 3D ShapeNet Wu et al. (2015a), 3D GAN Wu et al. (2016),

Generative VoxelNet Xie et al. (2018, 2020b), 3D-INN Huang et al. (2019), etc. While re-

markable progress has been made, these methods have some inherent limitations for modeling

point clouds. For instance, the training procedure could be unstable for GANs due to the

adversarial losses. Auto-regressive models assume a generation ordering which is unnatural

and might restrict the model’s flexibility.
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1.3 Dissertation Organization

The overall structure of this article is organized as below. To begin with, we briefly introduce

Graph Neural Networks (GNNs) and 3d point analysis in Chapter 1. Chapter 2 introduces

Sparse Graph Attention Networks (SGATs) that integrate a sparse attention mechanism

into graph attention networks (GATs) via an L0-norm regularization to remove noisy edges

and improve graph interpretability. Chapter 3 introduces an attention-based point cloud

sampling network (APSNet), which formulates the task-oriented sampling 3D point clouds

sampling as a sequential generation process and develop an attention-based auto-regressive

network to solve this problem. Chapter 4 introduces an introduced transformer-based model,

PTSNet, to capture long-range correlations, mitigating issues like gradient vanishing and

reducing duplicate samples compared to LSTM-based methods. Chapter 5 introduces GDP-

Net, the first hybrid Generative and Discriminative PointNet, extending the Joint Energy-

based Model (JEM) for point cloud generation and classification. Finally, Chapter 6 con-

cludes our work.
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CHAPTER 2

Sparse Graph Attention Networks

2.1 Introduction

Among all the GNN algorithms, the neighbor aggregation algorithms Kipf & Welling (2017);

Hamilton et al. (2017a); Veličković et al. (2018) have proved to be more effective and flexible.

In particular, Graph Attention Networks (GATs) Veličković et al. (2018) use attention mech-

anism to calculate edge weights at each layer based on node features, and attend adaptively

over all neighbors of a node for representation learning. To increase the expressiveness of the

model, GATs further employ multi-head attentions to calculate multiple sets of attention co-

efficients for aggregation. Although multi-head attentions improve prediction accuracies, our

analysis of the learned coefficients shows that multi-head attentions usually learn very simi-

lar distributions of attention coefficients (see Sec. 2.3.1 for details). This indicates that there

might be a significant redundancy in the GAT modeling. In addition, GATs cannot assign

an unique attention score for each edge because multiple attention coefficients are generated

(from multi-heads) for an edge per layer and the same edge at different layers might receive

different attention coefficients. For example, for a 2-layer GAT with 8-head attentions, each

edge receives 16 different attention coefficients. The redundancy in the GAT modeling not

only adds significant overhead to computation and memory usage but also increases the risk

of overfitting. To mitigate these issues, we propose to simplify the architecture of GATs such

that only one single attention coefficient is assigned to each edge across all GNN layers. To

further reduce the redundancy among edges or remove noisy edges, we incorporate a sparsity
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constraint into the attention mechanism of GATs. Specifically, we optimize the model under

an L0-norm regularization to encourage model to use as fewer edges as possible. As we only

employ one attention coefficient for each edge across all GNN layers, what we learn is an

edge-sparsified graph with noisy/task-irrelevant edges removed. Our Sparse Graph Atten-

tion Networks (SGATs), as shown in Fig. 2.1, outperform the original GATs in two aspects:

(1) SGATs simplify the architecture of GATs, and this reduces the risk of overfitting, and

(2) SGATs can identify noisy/task-irrelevant edges1 of a graph such that an edge-sparsified

graph structure can be discovered, which is more robust for downstream classification tasks.

As a result, SGAT is a robust graph learning algorithm that can learn from both assortative

and disassortative graphs, while GAT fails on disassortative graphs.

i

j

Sample a sparse mask 

from hard concrete 

dist.

i

j

i

Multi-head mean 

aggregation on transformed 

feature representation

Loss

SGAT layer

Edge-Sparsified Graph

Figure 2.1 The overview of SGATs. By attaching a binary mask to each edge, SGATs utilize
a sparse attention mechanism (as the output of the mask generator) to guide model to remove
noisy/task-irrelevant edges and yield an edge-sparsified graph. In the plot above, the dashed
lines denote removed edges. More details are described in Sec. 2.3.

1We call an edge task-irrelevant or noisy if removing it from graph incurs a similar or improved accuracy
for downstream predictive tasks.
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2.2 Background and Related Work

In this section, we first introduce our notation and then review prior works related to the

neighbor aggregation methods on graphs. Let G = (V,E) denote a graph with a set of nodes

V = {v1, · · · , vN}, connected by a set of edges E ⊆ V × V . Node features are organized

in a compact matrix X ∈ RN×D with each row representing the feature vector of one node.

Let A ∈ RN×N denote the adjacent matrix that describes graph structure of G: Aij = 1 if

there is an edge eij from node i to node j, and 0 otherwise. By adding a self-loop to each

node, we have Ã = A + IN to denote the adjacency matrix of the augmented graph, where

IN ∈ RN×N is an identity matrix.

For a semi-supervised node classification task, given a set of labeled nodes {(vi, yi), i =

1, · · · , n}, where yi is the label of node i and n < N , we learn a function f (X,A,W ),

parameterized by W , that takes node features X and graph structure A as inputs and

yields a node embedding matrix H ∈ RN×D′
for all nodes in V ; subsequently, H is fed to

a classifier to predict the class label of each unlabeled node. To learn the model parameter

W , we typically minimize an empirical risk over all labeled nodes:

R(W ) =
1

n

n∑
i=1

L
(
fi(X,A,W ), yi

)
, (2.1)

where fi(X,A,W ) denotes the output of f(X,A,W ) for node i and L(·) is a loss function,

such as the cross-entropy loss that measures the compatibility between model predictions

and class labels. Although there exist many different GNN algorithms that can solve Eq. 2.1,

the main difference among them is how the encoder function f(X,A,W ) is defined.
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2.2.1 Neighbor Aggregation Methods

The most effective and flexible graph learning algorithms so far follow a neighbor aggregation

mechanism. The basic idea is to learn a parameter-sharing aggregator, which takes feature

vector xi of node i and its neighbors’ feature vectors {xj, j ∈ Ni} as inputs and outputs

a new feature vector for node i. Essentially, the aggregator function aggregates lower-level

features of a node and its neighbors and generates high-level feature representations. The

popular Graph Convolution Networks (GCNs) Kipf & Welling (2017) fall into the category

of neighbor aggregation. For a 2-layer GCN, its encoder function can be expressed as:

f(X,A,W ) = softmax
(
Âσ(ÂXW (0))W (1)

)
, (2.2)

where Â = D̃−1/2ÃD̃−1/2, D̃ii =
∑

j Ãij, and W (·)s are the learnable parameters of GCNs.

Apparently, GCNs define the aggregation coefficients as the symmetrically normalized adja-

cency matrix Â, and these coefficients are shared across all GCN layers. More specifically,

the aggregator of GCNs can be expressed as

h
(l+1)
i = σ

∑
j∈Ni

Âijh
(l)
j W (l)

 , (2.3)

where h
(l)
j is the hidden representation of node j at layer l, h(0) = X, and Ni denotes the set

of all the neighbors of node i, including itself.

Since a fixed adjacency matrix Â is used for feature aggregation, GCNs can only be used

for the transductive learning tasks, and if the graph structure changes, the whole GCN model

needs to be retrained or fine-tuned. To support inductive learning, GraphSage Hamilton et al.

(2017a) proposes to learn parameterized aggregators (e.g., mean, max-pooling or LSTM
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aggregator) that can be used for feature aggregation on unseen nodes or graphs. To support

large-scale graph learning tasks, GraphSage uniformly samples a fixed number of neighbors

per node and performs computation on a sampled sub-graph at each iteration. Although

it can reduce computational cost and memory usage significantly, its accuracies suffer from

random sampling and partial neighbor aggregation.

2.2.2 Graph Attention Networks

Recently, attention networks have achieved state-of-the-art results in many computer vision

and natural language processing tasks, such as image captioning Xu et al. (2015b) and

machine translation Bahdanau et al. (2015). By attending over a set of inputs, attention

mechanism can decide which parts of inputs to attend to in order to gather the most useful

information. Extending the attention mechanism to graph-structured data, Graph Attention

Networks (GATs) Veličković et al. (2018) utilize an attention-based aggregator to generate

attention coefficients over all neighbors of a node for feature aggregation. In particular, the

aggregator function of GATs is similar to that of GCNs:

h
(l+1)
i = σ

∑
j∈Ni

a
(l)
ij h

(l)
j W (l)

 , (2.4)

except that (1) a
(l)
ij is the attention coefficient of edge eij at layer l, assigned by an attention

function other than by a predefined Â, and (2) different layers utilize different attention

functions, while GCNs share a predefined Â across all layers. To increase the capacity of

attention mechanism, GATs further exploit multi-head attentions for feature aggregation:

each head works independently to aggregate information, and all the outputs of multi-heads
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are then concatenated to form a new feature representation for the next layer. In principle,

the learned attention coefficient can be viewed as an importance score of an edge. However,

since each edge receives multiple attention coefficients at a layer and the same edge at a

different layer has a different set of attention coefficients, GATs cannot assign an unique

importance score to quantify the significance of an edge.

Built on the basic framework of GATs, our SGATs introduce a sparse attention mech-

anism via an L0-norm regularization for feature aggregation. Furthermore, we only assign

one attention coefficient (or importance score) to each edge across all layers. As a result, we

can identify important edges of a graph and remove noisy/task-irrelevant ones while retain-

ing similar or sometimes even higher predictive performances on downstream classification

tasks. Our results demonstrate that there is a significant amount of redundancies in graphs

(e.g., 50%-80% of edges in assortative graphs like PPI and Reddit, and over 88% edges

in disassortative graphs) that can be removed to achieve similar or improved classification

accuracies.

2.2.3 Graph Sparsification

There are some prior works related to SGATs in terms of graph sparsification Calandriello

et al. (2018); Chakeri et al. (2016); Rong et al. (2020); Hasanzadeh et al. (2020); Chen et al.

(2020b); Zheng et al. (2020); Luo et al. (2021); Kim & Oh (2021). Spectral graph sparsifi-

cation Calandriello et al. (2018); Chakeri et al. (2016) aims to remove unnecessary edges for

graph compression. Specifically, it identifies a sparse subgraph whose Laplacian matrix can

approximate the original Laplacian matrix well. However, these algorithms do not utilize
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node representations for graph compression and are not suitable for semi-supervised node

classification tasks considered in the paper. DropEdge Rong et al. (2020) (and its Bayesian

treatment Hasanzadeh et al. (2020)) propose to stochastically drop edges from graphs to

regularize the training of GNNs. Specifically, DropEdge randomly removes a certain number

of edges from an input graph at each training iteration to prevent the overfitting and over-

smoothing issues Li et al. (2018c). At validation or test phase, DropEdge is disabled and

the full input graph is utilized. This method shares the same spirit of Dropout Srivastava

et al. (2014) and is an intuitive extension to graph structured data. However, DropEdge

does not induce an edge-sparsified graph since different subsets of edges are removed at dif-

ferent training iterations and the full graph is utilized for validation and test, while SGAT

learns an edge-sparsified graph by removing noisy/task-irrelevant edges permanently from

input graphs. Because of these discrepancies, these methods are not directly comparable to

SGAT. Recently, Chen et al. (2020b) propose LAGCN to add/remove edges based on the

predictions of a trained edge classifier. It assumes the input graph is almost noisy free (e.g.,

assortative graphs) such that an edge classifier can be trained reliably from the existing graph

topology. However, this assumption does not hold for very noisy (disassortative) graphs that

SGAT can handle. NeuralSparse Zheng et al. (2020) learns a sparsification network to sample

a k-neighbor subgraph (with a pre-defined k), which is then fed to GCN, GraphSage or GAT

for node classification. Again, it does not aim to learn an edge-sparsified graph as the sparsi-

fication network produces a different subgraph sample each time and multiple subgraphs are

used to improve accuracy. PTDNet Luo et al. (2021) proposes to improve the robustness and
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generalization performance of GNNs by learning to drop task-irrelevant edges. It samples a

subgraph for each layer and applies a denoising layer before each GNN layer. Therefore, it

cannot induce an edge-sparsified graph either. SuperGAT Kim & Oh (2021) improves GAT

with an edge self-supervision regularization. It assumes that ideal attention should give all

weights to label-agreed neighbors and introduces a layer-wise regularization term to guild

attention with the presence or absence of an edge. However, when the graph is noisy, the

regularization term will still push connected nodes to have same labels, and may generate

suboptimal results.

Overall, none of these prior works induce an edge-sparsified graph while retaining similar

or improved classification accuracies. Moreover, all of these algorithms are evaluated on

assortative graphs with improved performance. But none of them (except SuperGAT Kim

& Oh (2021)) has been evaluated on noisy disassortative graphs. As we will see when we

present results, SGAT outperforms all of these state-of-the-arts on disassortative graphs and

demonstrates its robustness on assortative and disassortative graphs.

2.3 Sparse Graph Attention Networks

The key idea of our Sparse Graph Attention Networks (SGATs) is that we can attach a

binary gate to each edge of a graph to determine if that edge shall be used for neighbor

aggregation or not. We optimize the SGAT model under an L0 regularized loss function

such that we can use as fewer edges as possible to achieve similar or better classification

accuracies. We first introduce our sparse attention mechanism, and then describe how the
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binary gates can be optimized via stochastic binary optimization.

2.3.1 Formulation

To identify important edges of a graph and remove noisy/task-irrelevant ones, we attach a

binary gate zij ∈ {0, 1} to each edge eij ∈ E such that zij controls if edge eij will be used

for neighbor aggregation or not2. This corresponds to attaching a set of binary masks to the

adjacent matrix A:

Ā = A⊙ Z, Z ∈ {0, 1}M , (2.5)

where M is the number of edges in graph G. Since we want to use as fewer edges as possible

for semi-supervised node classification, we train model parameters W and binary masks Z

by minimizing the following L0-norm regularized empirical risk:

R(W,Z)=
1

n

n∑
i=1

L
(
fi(X,A⊙ Z,W ), yi

)
+λ∥Z∥0 (2.6)

=
1

n

n∑
i=1

L
(
fi(X,A⊙ Z,W ), yi

)
+λ

∑
(i,j)∈E

1[zij ̸=0],

where ∥Z∥0 denotes the L0-norm of binary masks Z, i.e., the number of non-zero elements

in Z (edge sparsity), 1[c] is an indicator function that is 1 if the condition c is satisfied, and 0

otherwise, and λ is a regularization hyperparameter that balances between data loss and edge

sparsity. For the encoder function f(X,A ⊙ Z,W ), we define the following attention-based

2Note that edges eij and eji are treated as two different edges and therefore have their own binary gates
zij and zji, respectively.
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aggregation function:

h
(l+1)
i = σ

∑
j∈Ni

aijh
(l)
j W (l)

 , (2.7)

where aij is the attention coefficient assigned to edge eij across all layers. This is in a stark

contrast to GATs, in which a layer-dependent attention coefficient a
(l)
ij is assigned for each

edge eij at layer l.

To compute attention coefficients, we simply calculate them by a row-wise normalization

of A⊙ Z, i.e.,

aij = normalize
(
Aijzij

)
=

Aijzij∑
k∈Ni

Aikzik
. (2.8)

Intuitively, the center node i is important to itself; therefore we set zii to 1 so that it can

preserve its own information. Compared to GAT, we do not use softmax to normalize

attention coefficients since by definition zij ∈ {0, 1} and typically Aij ≥ 0 such that their

product Aijzij ≥ 0 .

Similar to GAT, we can also use multi-head attentions to increase the capacity of our

model. We thus formulate a multi-head SGAT layer as:

h
(l+1)
i =

∥∥∥K

k=1
σ

∑
j∈Ni

aijh
(l)
j W

(l)
k

 , (2.9)

where K is the number of heads, ∥ represents concatenation, aij is the attention coefficients

computed by Eq. 2.8, and W
(l)
k is the weight matrix of head k at layer l. Note that only

one set of attention coefficients aij is calculated for edge eij, and they are shared among all

heads and all layers. With multi-head attention, the final returned output, h
(l+1)
i , consists

of KD′ features (rather than D′) for each node.
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Figure 2.2 Histogram of variance of attention coefficients of a 2-layer GAT with a 8-head
attention on the Cora and Citeseer datasets. The variances of attention coefficients of ma-
jority of edges are close to 0, indicating GAT learns similar distributions of attention scores
from all heads and all layers.

Why can we use one set of coefficients for multi-head attention? This is based on our

observation that all GAT heads tend to learn attention coefficients with similar distributions,

indicating significant redundancy in the GAT modeling. For example, given a 2-layer GAT

with a 8-head attention, each edge receives 16 attention coefficients, on which the variance

can be calculated. Fig. 2.2 shows the histograms of variance of attention coefficients over

all the edges in Cora and Citeseer, respectively3. As we can see, the variances of attention

coefficients of majority of edges are close to 0, indicating GAT learns similar distributions

of attention coefficients from different heads and from different GAT layers. This means

using one set of attention coefficients might be enough for feature aggregation. In addition,

using one set of attention coefficients isn’t rare in GNNs as GCNs use a shared Â across

all layers and are very competitive to GATs in terms of classification accuracies. While

3Similar patterns are observed on the other datasets used in our experiments.
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GCNs use one set of predefined aggregation coefficients, SGATs learn the coefficients from

a sparse attention mechanism. We believe it is the learned attention coefficients instead

of multi-set attention coefficients that leads to the improved performance of GATs over

GCNs, and the benefit of multi-set attention coefficients might be very limited and could be

undermined by the risk of overfitting due to increased complexity. Therefore, the benefits

of using one set of attention coefficients over the original multi-set coefficients are at least

twofold: (1) one set of coefficients is computationally K times cheaper than multiple sets of

coefficients and is less prone to overfitting; and (2) one set of coefficients can be interpreted

as edge importance scores such that they can be used to identify important edges and remove

noisy/task-irrelevant edges for robust learning from real-world graph-structured data.

2.3.2 Model Optimization

Stochastic Variational Optimization To optimize Eq. 2.6, we need to compute its gra-

dient w.r.t. binary masks Z. However, since Z is a set of binary variables, neither the first

term nor the second term is differentiable. Hence, we resort to approximation algorithms to

solve this binary optimization problem. Specifically, we approximate Eq. 2.6 via an inequal-

ity from stochastic variational optimization Bird et al. (2018): Given any function F(z) and

any distribution q(z), the following inequality holds:

min
z

F(z) ≤ Ez∼q(z)[F(z)], (2.10)

i.e., the minimum of a function is upper bounded by its expectation.

Since zij ∀(i, j) ∈ E is a binary random variable, we assume zij is subject to a Bernoulli
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distribution with parameter πij ∈ [0, 1], i.e. zij ∼ Ber
(
zij; πij

)
. Thus, we can upper bound

Eq. 2.6 by its expectation:

R̃(W,π)=
1

n

n∑
i=1

Eq(Z|π)L
(
fi(X,A⊙ Z,W ), yi

)
+λ

∑
(i,j)∈E

πij. (2.11)

Now the second term of Eq. 2.11 is differentiable w.r.t. the new model parameters π. How-

ever, the first term is still problematic since the expectation over a large number of binary

random variables Z is intractable, and thus its gradient does not allow for an efficient com-

putation.

The Hard Concrete Gradient Estimator We therefore need further approximation to

estimate the gradient of the first term of Eq. 2.11 w.r.t. π. Fortunately, this is a well-studied

problem in machine learning and statistics with many existing gradient estimators for this

discrete latent variable model, such as REINFORCEWilliams (1992), Gumble-Softmax Jang

et al. (2017), REBAR Tucker et al. (2017), RELAX Grathwohl et al. (2018) and the hard

concrete estimator Louizos et al. (2018). We choose the hard concrete estimator due to

its superior performance in our experiments and relatively straightforward implementation.

Specifically, the hard concrete estimator employs a reparameterization trick to approximate
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the original optimization problem Eq. 2.11 by a close surrogate function:

R̂(W, logα)=
1

n

n∑
i=1

Eu∼U(0,1)L
(
fi(X,A⊙g(f(logα,u)),W ),yi

)
+ λ

∑
(i,j)∈E

σ
(
logαij − β log

−γ

ζ

)
(2.12)

with

f(logα, u)=σ((log u−log(1−u)+logα)/β)(ζ−γ)+γ,

g(·) = min(1,max(0, ·)),

where U(0, 1) is a uniform distribution in the range of [0, 1], σ(x) = 1
1+exp(−x)

is the sigmoid

function, and β = 2/3, γ = −0.1 and ζ = 1.1 are the typical parameter values of the hard

concrete distribution. We refer the readers to Louizos et al. (2018) for more details of the

hard concrete gradient estimator.

During training, we optimize logαij for each edge eij. At the test phrase, we generate a

deterministic mask Ẑ by employing the following formula:

Ẑ = min(1,max(0, σ((logα)/β)(ζ − γ) + γ)), (2.13)

which is the expectation of Z under the hard concrete distribution q(Z| logα). Due to the

hard concrete approximation, ẑij is now a continuous value in the range of [0, 1]. Ideally,

majority of elements of Ẑ will be zeros, and thus many edges can be removed from the graph.
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Inductive Model of logα The learning of binary masks Z discussed above is transductive,

by which we can learn a binary mask zij for each edge eij in the training graph G. However,

this approach cannot generate new masks for edges that are not in the training graph. A

more desired approach is inductive that can be used to generate new masks for new edges.

This inductive model of logα can be implemented as a generator, which takes feature vectors

of a pair of nodes as input and produces a binary mask as output. We model this generator

simply as

logαij = (xiW
(0)
0 ∥xjW

(0)
0 )bT (2.14)

where b ∈ RD′
is the parameter of the generator and W

(0)
0 is the weight matrix of head 0

at layer 0. To integrate this generator into an end-to-end training pipeline, we define this

generator to output logαij. Upon receiving logαij from the mask generator, we can sample

a mask ẑij from the hard concrete distribution q(z| logαij). The set of sampled mask Ẑ

is then used to generate an edge-sparsified graph for the downstream classification tasks.

Fig. 2.1 illustrates the full pipeline of SGATs. In our experiments, we use this inductive

SGAT pipeline for semi-supervised node classification.

2.4 Evaluation

To demonstrate SGAT’s ability of identifying important edges for feature aggregation, we

conduct a series of experiments on synthetic and real-world (assortative and disassortative)

semi-supervised node classification benchmarks, including transductive learning tasks and

inductive learning tasks. We compare our SGATs with the state-of-the-art GNN algorithms:
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GCNs Kipf & Welling (2017), GraphSage Hamilton et al. (2017a), GATs Veličković et al.

(2018), SuperGAT Kim & Oh (2021), DropEdge Rong et al. (2020) and PTDNet Luo et al.

(2021). For a fair comparison, our experiments closely follow the configurations of the

competing algorithms. Our code is available at: https://github.com/Yangyeeee/SGAT.

Table 2.1 Summary of the graph datasets used in the experiments

Type Task Nodes Edges Features Classes #Neighbors H(G)

Cora assortative transductive 2,708 13,264 1,433 7 2.0 0.83
Citeseer assortative transductive 3,327 12,431 3,703 6 1.4 0.71
Pubmed assortative transductive 19,717 108,365 500 3 2.3 0.79
Amazon computers assortative transductive 13,381 505,474 767 10 18.4 0.79
Amazon photo assortative transductive 7,487 245,812 745 8 15.9 0.84

Actor disassortative transductive 7,600 60,918 931 5 4.4 0.24
Cornell disassortative transductive 183 737 1,703 5 1.6 0.11
Texas disassortative transductive 183 741 1,703 5 1.7 0.06
Wisconsin disassortative transductive 251 1,151 1,703 5 2.0 0.16

PPI assortative inductive 56,944 818,716 50 121 6.7 -*

Reddit assortative inductive 232,965 114,848,857 602 41 246.0 0.81

* PPI is a multi-label dataset, whose H(G) can not be calculated.

2.4.1 Graph Datasets

Assortative and Disassortative Graphs Graph datasets can be categorized into assor-

tative and disassortative ones Zachary (2002); Ribeiro et al. (2017) according to the node

homophily in terms of class labels as introduced by Pei et al. (2020),

H(G) =
1

|V |
∑
v∈V

Number of v’s neighbors of the same label

Number of v’s neighbors
.

Assortative graphs refer to ones with a high node homophily, where nodes within the lo-

cal neighborhood provide useful information for feature aggregation. Common assortative

graphs include citation networks and community networks. On the other hand, disassor-

tative graphs contain nodes of the same label but not in their direct neighborhood, and

https://github.com/Yangyeeee/SGAT
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therefore nodes within the local neighborhood provide more noises than useful information.

Example disassortative graph datasets are co-occurrence networks and webpage hyperlink

networks. We evaluate our algorithm on both types of graphs to demonstrate the robustness

of SGATs on pruning redundant edges from clean assortative graphs and noisy edges from

disassortative graphs. In our experiments, we consider seven established assortative and four

disassortative graphs, whose statistics are summarized in Table 2.1.

Transductive Learning Tasks Three citation network datasets: Cora, Citeseer and Pubmed Sen

et al. (2008) and two co-purchase graph datasets: Amazon Computers and Amazon Photo Shchur

et al. (2018) are used to evaluate the performance of our algorithm in the transductive learn-

ing setting, where test graphs are included in training graphs for feature aggregation and thus

facilitates the learning of feature representations of test nodes for classification. The citation

networks have low degrees (e.g., only 1-2 edges per node), while the co-purchase datasets

have higher degrees (e.g., 15-18 edges per node). Therefore, we can demonstrate the per-

formance of SGAT on sparse graphs and dense graphs. For the citation networks, nodes

represent documents, edges denote citation relationship between two documents, and node

features are the bag-of-words representations of document contents; the goal is to classify

documents into different categories. For the co-purchase datasets, nodes represent products,

edges indicate two products are frequently purchased together, and node features are the

bag-of-words representations of product reviews; similarly, the goal is to classify products

into different categories. Our experiments closely follow the transductive learning setup of

Kipf & Welling (2017); Shchur et al. (2018). For all these datasets, 20 nodes per class are
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used for training, 500 nodes are used for validation, and 1000 nodes are used for test.

For the four disassortative graphs, Actor Tang et al. (2009) is an actor co-occurrence

network, where nodes denote actors and edges indicate co-occurrence of two actors on the

same Wikipedia web page. Node features are the bag-of-word representation of keywords

in the actors’ Wikipedia pages. Each node is labeled with one of five classes according to

the topic of the actor’s Wikipedia page. Cornell, Texas, and Wisconsin come from the

WebKB dataset collected by Carnegie Mellon University. Nodes represent web pages and

edges denote hyperlinks between them. Node features are the bag-of-word representation of

the corresponding web page. Each node is labeled with one of the five categories {student,

project, course, staff, and faculty}. We follow Pei et al. (2020) to randomly split nodes

of each class into 60%, 20%, and 20% for training, validation, and test. The experiments

are repeatedly run 10 times with different random splits and the average test accuracy over

these 10 runs are reported. Test is performed when validation accuracy achieves maximum

on each run.

Inductive Learning Tasks Two large-scale graph datasets: PPI Zitnik & Leskovec (2017)

and Reddit Hamilton et al. (2017a) are also used to evaluate the performance of SGAT

in the inductive learning setting, where test graphs are excluded from training graphs for

parameter learning, and the representations of test nodes have to be generated from trained

aggregators for classification. In this case, our inductive experiments closely follow the setup

of GraphSage Hamilton et al. (2017a). The protein-protein interaction (PPI) dataset consists

of graphs corresponding to different human tissues. Positional gene sets, motif gene sets and
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immunological signatures are extracted as node features and 121 gene ontology categories

are used as class labels. There are in total 24 subgraphs in the PPI dataset with each

subgraph containing 3k nodes and 100k edges on average. Among 24 subgraphs, 20 of them

are used for training, 2 for validation and the rest of 2 for test. For the Reddit dataset, it’s

constructed from Reddit posts made in the month of September, 2014. Each node represents

a reddit post and two nodes are connected when the same user commented on both posts.

The node features are made up with the embedding of the post title, the average embedding

of all the post’s comments, the post’s score and the number of comments made on the post.

There are 41 different communities in the Reddit dataset corresponding to 41 categories.

The task is to predict which community a post belongs to. We use the same data split as in

GraphSage Hamilton et al. (2017a), where the first 20 days for training and the remaining

days for test (with 30% used for validation). This is a large-scale graph learning benchmark

that contains over 100 million edges and about 250 edges per node, and therefore a high

edge redundancy is expected.

2.4.2 Models and Experimental Setup

Models A 2-layer SGAT with a 2-head attention at each layer is used for feature aggregation,

followed by a softmax classifier for node classification. We use ReLU Nair & Hinton (2011)

as the activation function and optimize the models with the Adam optimizer Kingma & Ba

(2015) with the learning rate of lr=1e−2. We compare SGAT with the state-of-the-arts in

terms of node classification accuracy. Since SGAT induces an edge-sparsified graph, we also

report the percentage of edges removed from the original graph.
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To investigate the effectiveness of sparse attention mechanism induced by the L0-norm

regularization, we also introduce a GAT with top-k attention baseline (named as GAT-

2head-top-k). This baseline has the same architecture of SGAT-2head, which only uses

one head’s attentions to do neighbor aggregation. However, instead of using sparse attention

coefficients induced by Eq. 2.8, we remove the top-k smallest attention coefficients calculated

by GAT’s dense attention function, with k set to remove the same percentage of edges induced

by SGAT-2head. We report the best performance of GAT-2head-top-k from two training

procedures: (1) removing the top-k smallest attention coefficients from the beginning of the

training, (2) removing top-k smallest attention coefficients after the validation accuracies

have converged. This GAT-2head-top-k baseline also produces an edge-sparsified graph, and

thus serves as a fair comparison to SGAT-2head.

Hyperparameters We tune the performance of SGAT and its variants based on the hy-

perparameters of GAT since SGAT is built on the basic framework of GAT. For a fair com-

parison, we also run 1-head and 2-head GAT models with the same architecture as SGATs

to illustrate the impact of sparse attention models vs. standard dense attention models. To

prevent models from overfitting on small datasets, L2 regularization and dropout Srivastava

et al. (2014) are used. Dropout is applied to the inputs of all layers and the attention coeffi-

cients. For the large-scale datasets, such as PPI and Reddit, we do not use L2 regularization

or dropout as the models have enough data for training. We implemented our SGAT and

its variants with the DGL library Wang et al. (2019a).
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2.4.3 Experiments on Synthetic Dataset

To illustrate the idea of SGAT, we first demonstrate it on a synthetic dataset – Zachary’s

Karate Club Zachary (1977), which is a social network of a karate club of 34 members with

links between pairs of members representing who interacted outside the club. The club was

split into two groups later due to a conflict between the instructor and the administrator.

The goal is to predict the groups that all members of the club joined after the split. This is a

semi-supervised node classification problem in the sense that only two nodes: the instructor

(node 0) and the administrator (node 33) are labeled and we need to predict the labels of

all the other nodes. We train a 2-layer SGAT with a 2-head attention at each layer on

Figure 2.3 The evolution of the graph of Zachary’s Karate Club at different training epochs.
SGAT can remove 46% edges from the graph while retaining almost the same accuracy at
96.88%. Nodes 0 and 33 are the labeled nodes, and the colors show the ground-truth labels.
The video can be found at https://youtu.be/3Jhr26lXRl8.

the dataset. Fig. 2.3 illustrates the evolution of the graph at different training epochs, the

corresponding classification accuracies and number of edges kept in the graph. As can be

seen, as the training proceeds, some insignificant edges are removed and the graph is getting

sparser; at the end of training, SGAT removes about 46% edges while retaining an accuracy

of 96.88% (i.e., only one node is misclassified), which is the same accuracy achieved by GCN

https://youtu.be/3Jhr26lXRl8
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and other competing algorithms that utilize the full graph for prediction. In addition, the

removed edges have an intuitive explanation. For example, the edge from node 16 to node 6

is removed while the reversed edge is kept. Apparently, this is because node 6 has 4 neighbors

while node 16 has only 2 neighbors, and thus removing one edge between them doesn’t affect

node 6 too much while may be catastrophic to node 16. Similarly, the edges between node

27, 28 and node 2 are removed. This might be because node 2 has an edge to node 0 and has

no edge to node 33, and therefore node 2 is more like to join node 0’s group and apparently

the edges to nodes 27 and 28 are insignificant or might be due to noise.

Table 2.2 Classification accuracies on seven assortative graphs for semi-supervised node clas-
sification. Results of GCNs on PPI and Reddit are trained in a transductive way. The results
annotated with ∗ are from our experiments, and the rest of results are from the corresponding
papers. OOM indicates “out of memory”. Results are the averages of 10 runs.

Datasets Cora Citeseer Pubmed Amazon
computer

Amazon
Photo PPI Reddit

GCN Kipf & Welling (2017) 81.5% 70.3% 79.0% 81.5%∗ 91.2%∗ 50.9%∗ 94.38%∗

GraphSage Hamilton et al. (2017a) - - - - - 61.2% 95.4%
GAT Veličković et al. (2018)∗ 82.5% 70.9% 78.6% 81.5% 89.1% 98.3% OOM
GAT-1head∗ 82.1% 70.8% 77.4% 81.3% 89.7% 85.6% 92.6%
GAT-2head∗ 83.5% 70.8% 78.3% 82.4% 90.4% 97.6% 93.5%
GAT-2head-top-k∗ 82.8% 70.9% 78.2% 77.5% 85.6% 95.5% 93.3%
SGAT-1head∗ 82.3% 70.6% 76.1% 81.1% 89.5% 93.6% 94.9%
SGAT-2head∗ 83.0% 71.5% 78.3% 81.8% 89.9% 97.6% 95.8%

Edge Removed∗ 2.0% 1.2% 2.2% 63.6% 42.3% 49.3% 80.8%

∗From our experiments.
Note that DropEdge Rong et al. (2020) and PTDNet Luo et al. (2021) and SuperGAT Kim & Oh (2021)
have reported improved accuracies on assortative graphs. Hence, we do not include their results in this
table since only SGAT induces edge-sparsified graphs and we only claim SGAT achieves similar accuracies
as GAT on these graphs.

2.4.4 Experiments on Assortative Graphs

Next we evaluate the performance of SGAT on seven assortative graphs, where nodes within

the local neighborhood provide useful information for feature aggregation. In this case,
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some redundant or task-irrelevant edges may be removed from the graphs with no or minor

accuracy losses. For a fair comparison, we run each experiments 10 times with different

random weight initializations and report the average accuracies.

The results are summarized in Table 2.2. Comparing SGAT with GCN, we note that

SGAT outperforms GCN on the PPI dataset significantly while being similar on all the other

six benchmarks. Comparing SGAT with GraphSage, SGAT again outperforms GraphSage

on PPI by a significant margin. Comparing SGAT with GAT, we note that they achieve

very competitive accuracies on all six benchmarks except Reddit, where the original GAT

is “out of memory” and SGAT can perform successfully due to its simplified architecture.

Another advantage of SGAT over GAT is the regularization effect of the L0-norm on the

edges. To demonstrate this, we test two GAT variants: GAT-1head and GAT-2head that

have the similar architectures as SGAT-1head and SGAT-2head but with different attention

mechanisms (i.e., standard dense attention vs. sparse attention). As we can see, on the Red-

dit dataset, the sparse attention-based SGATs outperform GATs by 2-3% while sparsifying

the graph by 80.8%. As discussed earlier, to evaluate the effectiveness of sparse attention

mechanism of SGAT further, we also introduce a baseline (GAT-2head-top-k), which has the

same architecture of SGAT-2head but removes the top-k smallest coefficients calculated by

GAT’s dense attention function, with k set to remove the same number of redundant edges

induced by SGAT. As we can see from Table 2.2, SGAT-2head outperforms GAT-2head-

top-k by 1%-4% accuracies on larger benchmarks (Amazon computer, Amazon Photo, PPI

and Reddit) when a large percentage of edges is removed, demonstrating the superiority of
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SGAT’s sparse attention mechanism over the naive top-k attention coefficients selection as

used in GAT-top-k.

Overall, SGAT is very competitive against GCN, GraphSage and GAT in terms of classi-

fication accuracies, while being able to remove certain percentages of redundant edges from

small and large assortative graphs. Specifically, on the three small citation networks: Cora,

Citeseer and Pubmed, SGATs learn that majority of the edges are critical to maintain com-

petitive accuracies as the original graphs are already very sparse (e.g., numbers of edges

per node are 2.0, 1.4, 2.3, respectively. See Table 2.1), and therefore SGATs remove only

1-2% of edges. On the other hand, on the rest of large or dense assortative graphs, SGATs

can identify significant amounts of redundancies in edges (e.g., 40-80%), and removing them

incurs no or minor accuracy losses.

2.4.5 Experiments on Disassortative Graphs

As shown in Table 2.1, the H(G) of disassortative graphs are around 0.1-0.2. This means the

graphs are very noisy, i.e., a node and majority of its neighbors have different labels. In this

case, the neighbor aggregation mechanism of GAT, GCN and GraphSage would aggregate

noisy features from neighborhood and fail to learn good feature representations for the

downstream classification tasks, while SGAT may excel due to its advantage of pruning

noisy edges in order to achieve a high predictive performance.

To verify this, we compare SGAT with GAT, Geom-GCN Pei et al. (2020), MLP, DropE-

dge, SuperGAT and PTDNet on the four disassortative graphs. Geom-GCN is a variant

of GCN that utilizes a complicated node embedding method to identify similar nodes and
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Table 2.3 Classification accuracies of different node classification algorithms on four disas-
sortative graphs. Results are the averages of 10 runs.

Datasets Actor Cornell Texas Wisconsin

MLP∗ 35.1 81.6 81.3 84.9
GAT Veličković et al. (2018)∗ 34.6 55.9 55.4 53.5
SuperGAT Kim & Oh (2021)∗ 30.4 57.6 61.1 60.1
DropEdge-GCN Rong et al. (2020)∗ 30.6 54.5 61.5 59.8
Geom-GCN Pei et al. (2020) 31.6 60.8 67.6 64.1
PTDNet-GCN Luo et al. (2021)∗ 35.6 80.3 82.2 84.9
SGAT-2head∗ 35.7 82.4 86.2 86.1

Edge Removed∗ 88.1% 93.9% 95.0% 91.9%

∗From our experiments.

create an edge between them, such that it can aggregate features from informative nodes

and outperform GCN on the disassortative graphs. We also consider an MLP model as base-

line, which makes prediction solely based on the node features without aggregating any local

information. For a fair comparison, the GAT and MLP have a similar model capacity as

that of SGAT-2head. We also compare SGAT with the state-of-the-art robust GNN models

that we discussed in related work: SuperGAT Kim & Oh (2021)4, DropEdge Rong et al.

(2020)5, and PTDNet Luo et al. (2021)6. Since none of them reported the performance on

these disassortative graphs, we follow the same experimental settings discussed above and

run their open source implementations.

The results are shown in Table 2.3. It can be observed that MLP outperforms GAT and

the majority of algorithms considered, indicating that local aggregation methods fail to get a

good performance due to the noisy neighbors. The robust GNN algorithms: SuperGAT and

DropEdge achieve better performance than GAT in general but are still worse than MLP

4https://github.com/dongkwan-kim/SuperGAT
5https://github.com/DropEdge/DropEdge
6https://github.com/flyingdoog/PTDNet
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since the extremely noisy neighbors violate the label-agreement assumption of SuperGAT

or beyond the noise level that simple drop edge can handle. On the other hand, PTDNet

achieves a competitive performance with MLP, demonstrating that PTDNet’s denoising lay-

ers and layer-wise subgraph sampling are indeed very effective. Among all the algorithms

considered, SGAT achieves the best accuracies on the disassortative graphs. As shown in

the last row of Table 2.3, on all the dissassortative graphs SGAT tends to remove majority

of edges from the graphs, and only less than 10% edges are kept for feature aggregation,

which explains its superior performance on these noisy disassortative graphs.

Overall, SGAT is a much more robust algorithm than GAT (and in many cases other

competing methods) on assortative and disassortative graphs since it can detect and remove

noisy/task-irrelevant edges from graphs in order to achieve similar or improved accuracies

on the downstream classification tasks.

2.4.6 Analysis of Removed Edges

We further analyze the edges removed by SGAT. Fig. 2.4 illustrate the evolution of classi-

fication accuracy and number of edges kept by SGAT as a function of training epochs on

the Cora, PPI and Texas test datasets. As we can see, SGAT removes 2% edges from Cora

slowly during training (as Cora is a sparse graph), while it removes 49.3% edges from PPI

and over 88.1% edges from Texas rapidly, indicating a significant edge redundancy in PPI

and Texas.

To demonstrate SGAT’s accuracy of identifying important edges from a graph, Fig. 2.5

shows the evolution of classification accuracies on the PPI test dataset when different per-
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Figure 2.4 The evolution of classification accuracy (top) and number of kept edges (bottom)
as a function of training epochs on the Cora, PPI and Texas test datasets.

centages of edges are removed from the graph. We compare three different strategies of

selecting edges for removal: (1) top-k% edges sorted descending by logαij, (2) bottom-k%

edges sorted descending by logαij, and (3) uniformly random k%. As we can see, SGAT

identifies important edges accurately as removing them from the graph incurs a dramatically

accuracy loss as compared to random edge removal or bottom-k% edge removal.

2.4.7 Hyperparameter Tuning

SGAT has a few important hyperparameters, which affect the performance of SGAT signif-

icantly. In this section, we demonstrate the impact of them and discuss how we tune the

hyperparameters for performance trade-off. One of the most important hyperparameters of

SGAT is the λ in Eq. 2.6, which balances the classification loss (the first term) and edge
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Figure 2.5 The evolution of classification accuracies on the PPI test dataset when different
percentages of edges are removed from the graph. Three different strategies of selecting
edges for removal are considered.

sparsity (the second term). As λ increases, the L0 sparsity regularization gets stronger. As

a result, a large number of edges will be pruned away (i.e., z=0), but potentially it will

incur a lower classification accuracy if informative edges are removed (i.e., over-pruning).

We therefore select a λ to yield the highest edge prune rate, while still achieving a good

predictive performance on the downstream classification tasks. Fig. 2.6 shows the results

of tuning λ on the PPI (top) and Texas (bottom) validation datasets. It can be observed

that as λ increases, more edges are removed from the PPI and Texas datasets. However, the

classification accuracies have different trends on PPI and Texas. As more edges are removed

from PPI, the accuracy retains almost no changes when λ≤ 2e−6, and drops significantly

when λ>2e−6. This is because PPI is an assortative graph, in which local neighborhood pro-

vides useful information for feature aggregation, and pruning them from the graph in general
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incurs no or minor accuracy loss until a large λ that leads to over-pruning. In contrast, as

more edges are removed from Texas, the accuracy increases at beginning when λ≤5e−3 and

plateaus afterwards. This is because Texas is a disassortative graph, in which local neighbor-

hood provides more noise than useful information for feature aggregation, and pruning noisy

edges from the graph typically improves classification accuracy until a large λ that leads

to over-pruning. Similar patterns are observed on the other assortative and disassortative

graphs used in our experiments. Based on the results in Fig. 2.6, we choose λ= 2e−6 for

PPI and λ=5e−3 for Texas as they achieve the best balance between classification accuracy

and edge sparsity.

Another important hyperparameter of SGAT is the number of heads K in Eq. 2.9. As K

increases, SGAT has more capacity to learn from the data, but is more prone to overfitting.

This is demonstrated in Fig. 2.7, where we present the classification accuracies of SGAT on

PPI and Texas as K increases. As we can see, when K = 2 SGAT achieves the best (or close

to best) accuracies on both datasets. Similar trends are also observed on the other datasets.

Therefore, in our experiments we choose K=2 as the default.

2.4.8 Visualization of Learned Features

Finally, we visualize the learned feature representations from the penultimate layer7 of GAT

and SGAT with t-SNE Maaten & Hinton (2008). The results on Cora and Texas are shown

in Fig. 2.8. It can be observed that SGAT and GAT learn similar representations on Cora

when the graph is nearly noisy-free (e.g., assortative graphs), while SGAT learns a better

7The layer before the final FC layer for classification.
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Figure 2.6 The impact of λ to the classification accuracy and edge sparsity on the PPI (top)
and Texas (bottom) validation dataset.
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representation with a higher class separability than GAT on Texas when the graph is very

noisy (e.g., disassortative graphs), demonstrating the robustness of SGAT on learning from

assortative and disassortative graphs.

Cora

Texas

GAT SGAT

Figure 2.8 t-SNE visualization of learned feature representations on Cora and Texas.

2.4.9 Discussion

Given a similar architecture and the same number of heads, one may expect that SGAT

would be faster and more memory efficient than GAT since a large portion of edges can

be removed by SGAT. However, our empirical study shows that both algorithms have a

similar overall runtime and memory consumption. This is because learning sparse attention

coefficients has the similar complexity as learning standard dense attention coefficients and
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storing feature representations (other than A and Z) consumes most of memory. Therefore,

even though SGAT can remove a large portion of edges from a graph, it isn’t faster or more

memory efficient than GAT.

One potential speed up of SGAT is that we can skip the computation associated with

edges of z ≈ 0 during training. However, this heuristic will be an approximation because an

edge with z ≈ 0 may be reactivated in later iterations during stochastic optimization, and

this potentially will cause accuracy drop. We leave this as our future work.

In summary, the main advantage of SGAT is that it can identify noisy/task-irrelevant

edges from both assortative and disassortative graphs to achieve a similar or improve clas-

sification accuracy, while the conventional GAT, GCN and GraphSage fail on noisy disas-

sortative graphs due to their local aggregation mechanism. The robustness of SGAT is of

practical importance as real-world graph-structured data are often very noisy, and a robust

graph learning algorithm that can learn from both assortative and disassortative graphs is

very critical.

2.5 Conclusion

In this chapter, we propose sparse graph attention networks (SGATs) that integrate a sparse

attention mechanism into graph attention networks (GATs) via an L0-norm regularization

on the number of edges of a graph. To assign a single attention coefficient to each edge,

SGATs further simplify the architecture of GATs by sharing one set of attention coefficients

across all heads and all layers. This results in a robust graph learning algorithm that can
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detect and remove noisy/task-irrelevant edges from a graph in order to achieve a similar

or improved accuracy on downstream classification tasks. Extensive experiments on seven

assortative graphs and four disassortative graphs demonstrate the robustness of SGAT.

As for future extensions, we plan to investigate the applications of SGATs on detecting

superficial or malicious edges injected by adversaries. We also plan to explore the application

of sparse attention network of SGATs in unsupervised graph domain adaption (e.g. Wu et al.

(2020)) to improve inter-graph attention.
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CHAPTER 3

APSNet: Attention Based Point Cloud Sampling

3.1 Introduction

Processing large-scale dense 3D point clouds is challenging due to the high cost of storing,

transmitting and processing these data. Point cloud sampling, a task of selecting a subset of

points to represent the original point clouds at a sparse scale, can reduce data redundancy

and improve the efficiency of 3D data processing. So far, there are a few heuristics-based

sampling methods, such as random sampling (RS), farthest point sampling (FPS) Eldar et al.

(1997); Moenning & Dodgson (2003), and grid (voxel) sampling Wu et al. (2015b); Qi et al.

(2016). However, all of these methods are task-agnostic as they do not take into account

the subsequent processing of the sampled points and may select non-informative points to

the downstream tasks, leading to suboptimal performance. Recently, S-NET Dovrat et al.

(2019a) and SampleNet Lang et al. (2020) are proposed, which demonstrate that better

sampling strategies can be learnt via a task-oriented sampling network. These sampling

networks can generate a small number of samples that optimize the performance of a down-

stream task, and outperform traditional task-agnostic samplers significantly in various ap-

plications Dovrat et al. (2019a); Lang et al. (2020).

We argue that point cloud sampling can be considered as a sequential generation process,

in which points to be sampled next should depend on the points that have already been

sampled. However, existing task-oriented sampling methods, such as S-NET Dovrat et al.

(2019a) and SampleNet Lang et al. (2020), do not pay enough attention to the sample



41

dependency and generate all samples in one shot (without parameter reusing or sharing

when generating samples of different sizes). In this chapter, we propose an attention-based

point cloud sampling network (APSNet) for task-oriented sampling, which enables a FPS-

like sequential sampling but with a task-oriented objective. Specifically, APSNet employs

a novel LSTM-based sequential model to capture the correlation of points with a global

attention. The feature of each point is extracted by a simplified PointNet architecture,

followed by an LSTM Hochreiter & Schmidhuber (1997) with attention mechanism to capture

the relationship of points and select the most informative ones for sampling. Finally, the

sampled point cloud is fed to a (frozen) task network for prediction. The whole pipeline is

fully differentiable and the parameters of APSNet can be trained by optimizing a task loss

and a sampling loss jointly (See Fig. 3.1).

PointNet
Feature Extraction

LSTM

Task
Network

(Frozen)

Task loss

X

Attention 
Weight (1 x N)

Sampled Points
𝑸𝑸𝑴𝑴×𝟑𝟑M steps

.
Original Points

𝑷𝑷𝑵𝑵×𝟑𝟑

Sampling 
loss

Figure 3.1 Overview of APSNet. APSNet first extracts features with a simplified PointNet
that preserves the geometric information of a point cloud. Then, an LSTM with attention
mechanism is used to capture the relationship among points and select the most informative
point sequentially. Finally, the sampled point cloud is fed to a task network for prediction.
The whole pipeline is optimized by minimizing a task loss and a sampling loss jointly.

Depending on the availability of labeled training data, APSNet can be trained in super-

vised learning or self-supervised learning via knowledge-distillation Hinton et al. (2014). In

the latter case, no ground truth label is needed for the training of APSNet. Instead, the soft
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predictions of task network are leveraged to train APSNet. Interestingly, the self-supervised

training of APSNet achieves impressive results that are close to the performance of super-

vised training. This makes APSNet widely applicable in situations where only a deployed

task net is available but the original labeled training dataset of the task net is no longer

accessible.

In addition, given the autoregressive model of APSNet, our method can generate arbitrary

length of samples from a single model. This entails an effective joint training of APSNet with

multiple sample sizes, resulting in a single compact model for point cloud sampling, while

S-NET and SampleNet require a growing model size to generate larger sized point samples

and the parameter reusing or sharing is not as effective as APSNet Dovrat et al. (2019a);

Lang et al. (2020). Our main contributions are summarized as follows:

1. We propose APSNet, a novel attention-based point cloud sampling network, which enables

a FPS-like sequential sampling with a task-oriented objective.

2. APSNet can be trained in supervised learning or self-supervised learning via knowledge-

distillation, while the latter requires no ground truth labels for training and is thus widely

applicable in situations where only a deployed task network is available.

3. APSNet can be jointly trained with multiple sample sizes, yielding a single compact model

that can generate arbitrary length of samples with prominent performance.

4. Compared with state-of-the-art sampling methods, APSNet demonstrate superior perfor-

mance on various 3D point cloud applications.
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3.2 Related Work

Deep Learning on Point Clouds

Following the breakthrough results of CNNs in 2D image processing tasks Krizhevsky et al.

(2012); He et al. (2016a), there has been a strong interest of adapting such methods to 3D

geometric data. Compared to 2D images, point clouds are sparse, unordered and locality-

sensitive, making it non-trivial to adapt CNNs to point cloud processing. Early attempts

focus on regular representations of the data in the form of 3D voxels Wu et al. (2015b);

Qi et al. (2016). These methods quantize point clouds into regular voxels in 3D space

with a predefined resolution, and then apply volumetric convolution. More recently, some

works explore new designs of local aggregation operators on point clouds to process point sets

efficiently and reduce the loss of details Qi et al. (2017a,b); Wang et al. (2019b). PointNet Qi

et al. (2017a) is a pioneering deep network architecture that directly processes point clouds

for classification and semantic segmentation; it proposes a shared multi-layer perception

(MLP), followed by a max-pooling layer, to approximate continuous set functions to deal

with unordered point sets. PointNet++ Qi et al. (2017b) further proposes a hierarchical

aggregation of point features to extract global features. In later works, DGCNN Wang et al.

(2019b) proposes an effective EdgeConv operator that encodes the point relationships as

edge features to better capture local geometric features of point clouds while still maintaining

permutation invariance. In this chapter, we leverage a simplified PointNet architecture to

extract local features from a point cloud before feeding it to an attention-based LSTM for

point cloud sampling.
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Point Cloud Sampling

Random sampling (RS) selects a set of points randomly from a point cloud and has the

smallest computation overhead. But this method is sensitive to density imbalance issue Lang

et al. (2020). Farthest point sampling (FPS) Eldar et al. (1997); Moenning & Dodgson

(2003) has been widely used as a pooling operator in point cloud processing. It starts from

a randomly selected point in the set and iteratively selects the next point from the point

cloud that is the farthest from the selected points, such that the sampled points can achieve

a maximal coverage of the input point cloud. Recently, S-NET Dovrat et al. (2019a) and

SampleNet Lang et al. (2020) have demonstrated that better sampling strategies can be

learnt by a sampling network. These methods aim to generate a small set of samples that

optimize the performance of a downstream task. Moreover, the generated 3D coordinates can

be pushed towards a subset of original points to minimize the training loss if a matched point

set is desired. Both methods treat the sampling process as a generation task and produce all

the points in one shot, which does not pay sufficient attention to sample dependency, and

leads to suboptimal performances. Our APSNet is a combination of FPS and task-oriented

sampling in the sense that points are sampled sequentially with a task-oriented objective.

Knowledge Distillation

As one of the popular model compression techniques, knowledge distillation Hinton et al.

(2014) is inspired by knowledge transfer from teachers to students. Its key strategy is to ori-

entate compact student models to approximate over-parameterized teacher models such that
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student models can achieve the performances that are close to (sometimes even higher than)

those of teachers’. Different from traditional knowledge distillation, which forces student

networks to approximate the soft prediction of pre-trained teacher networks, self distilla-

tion Zhang et al. (2019) distills knowledge within a network itself from its own soft predic-

tions. Our APSNet can be trained both in supervised learning and self-supervised learning

via knowledge distillation. In the former case, labeled training data are required to train

APSNet, while in the latter case the soft predictions of task network can be used to train

APSNet such that the sampled point clouds from APSNet can achieve similar predictions as

the original point clouds.

3.3 The Proposed Method

The overview of our proposed APSNet is depicted in Fig. 3.1, which contains two main

components: (a) A simplified PointNet for feature extraction, (b) An LSTM with attention

mechanism for sequential point sampling. In this section, we first describe the details of

these components and then discuss different approaches to train APSNet.

Notation and Problem Statement

Let P = {pi ∈ R3}ni=1 denote a point cloud that contains n points, with pi = [xi, yi, zi]

representing the 3D coordinates of point i. We consider two types of point cloud samples:

(1) Q∗ = {q∗
i ∈ R3}mi=1 denotes a sampled point cloud of m points that is a subset of P

with m < n, i.e., Q∗ ⊂ P . (2) Q = {qi ∈ R3}mi=1 denotes a generated point cloud of m

points that may not be a subset of P . Typically, we can convert Q to Q∗ by a matching
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process, i.e., match each point in Q to its nearest point in P , and then replace the duplicated

points1 in resulting Q∗ by FPS. Without loss of generality, in the following we present our

algorithm in terms of Q since Q is more general than Q∗ and can be converted to Q∗ by

matching. Moreover, let fθ(·) : P → Q denote APSNet with the parameters θ.

As discussed in the introduction, we are interested in task-oriented sampling that yields a

small set of points Q to optimize a downstream task represented by a well-trained deployed

task network T , where T can be a model for 3D point cloud classification, reconstruction

or registration, etc. Given P , the goal of APSNet is to generate a point cloud Q = fθ(P )

that maximizes the predictive performance of task network T . Specifically, the parameters

of APSNet, θ, is optimized by minimizing a task loss and a sampling loss jointly as

min
θ

ℓtask(T (Q), y) + λLsample(Q,P ), (3.1)

whose details are to be discussed in Sec. 4.3.4.

3.3.1 Attention-based Point Cloud Sampling

Existing task-oriented sampling methods, such as S-NET Dovrat et al. (2019a) and Sam-

pleNet Lang et al. (2020), formulate the sampling process as a point cloud generation problem

from a global feature vector, and generate all m points in one shot. We argue that the sam-

pling process is naturally a sequential generation process, in which points to be sampled

next should depend on the points that have already been sampled. We therefore propose

APSNet, an attention-based LSTM for sequential point sampling in order to capture the

1Multiple points in Q can be mapped to the same point in P .
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Figure 3.2 APSNet considers point cloud sampling as a sequential generation process with
a task-oriented objective, and uses an LSTM with attention mechanism for sampling.

relationship among points.

The overall architecture of APSNet is depicted in Fig. 3.2. First, APSNet takes the

original point cloud P as input and samples from P via an LSTM with attention mechanism

to produce a small point cloud Q of m points, each point of which is a soft point generated

by projecting P on a set of attention coefficients from the LSTM. Finally, the output of

APSNet, Q, is fed to a well-trained deployed task network T for prediction and task loss

evaluation2.

The first step is to extract a feature representation for each point in P . APSNet follows

the architecture of PointNet Qi et al. (2017a), a basic feature extraction backbone on 3D point

clouds, to extract point-wise local features. Specifically, a set of 1× 1 convolution layers are

applied to the original point cloud P and produce a set of d-dimensional point-wise feature

2The parameters of T is frozen during the training of APSNet.
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vectors, denoted by X = [x1,x2, · · · ,xn]
T ∈ Rn×d. Then, a symmetric feature-wise max

pooling operator is applied to X and produce a global feature vector g ∈ Rd, which is then

fed to an LSTM as the initial state for sequential point generation.

The sequential point generation process is similar to the attention-based sequential model

for image captioning Xu et al. (2015a). Given initial state g and <start> as inputs, the

LSTM updates its hidden state to ht ∈ Rd at each time step t = 1, 2, · · · ,m. The hidden

state ht encodes the history of all the sampled points and is indicative for APSNet to identify

the next most informative point of P to sample. To achieve this, a set of attention scores

is calculated as the dot product of the hidden state ht and point-wise feature vector xi for

i = 1, 2, · · · , n, followed by a softmax for normalization:

sit = xi · ht, ait =
exp(sit)∑
i exp(sit)

. (3.2)

The attention coefficients ait indicates the importance of point i at the sampling step t, from

which sampled point qt ∈ R3 can be generated as a weighted sum of all the points in P :

qt =
∑
i

ait · pi. (3.3)

The generated point qt is then fed to the LSTM as input for the next time step to generate

the next point until all m points are generated. During sequential generation process, the

attention mechanism enables the model to attend to all the points in P and identify the

most informative “point” to sample.
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3.3.2 Training of APSNet

APSNet is a task-oriented sampling network, which can be trained to optimize its perfor-

mance on the downstream tasks of interest. In this section, we discuss the objective functions

that can be used to train APSNet. Depending on the availability of labeled training data

and deployment requirements, we consider three different approaches to train APSNet: (1)

supervised training, (2) self-supervised training, and (3) joint training.

3.3.2.1 Training with or without Ground Truth Labels

We consider two training scenarios: (a) both task network T and a labeled training set

{P j, yj}Nj=1 are available; (b) only task network T and some input point clouds {P j}Nj=1

are available, but no labels is provided. The latter case corresponds to the situation where

original labeled training data of T is no longer available for the development of APSNet.

Supervised Training

When a labeled training set {P j, yj}Nj=1 is available, we can train APSNet in a supervised

learning paradigm. Similar to S-NET Dovrat et al. (2019a) and SampleNet Lang et al.

(2020), two types of losses are exploited to train APSNet, i.e., the task loss ℓtask and the

sampling loss Lsample. Specifically, the task loss measures the quality of predictions based

on the sampled point cloud Q:

ℓtask(T (Q), y), (3.4)

where y is the ground-truth label of P . For different downstream tasks, y can be the class

label or the original point cloud P when the task is for classification or reconstruction,
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respectively. Accordingly, the corresponding task loss ℓtask() is defined differently, e.g., the

cross-entropy loss for classification or the Chamfer distance for reconstruction Achlioptas

et al. (2018).

The sampling loss Lsample encourages the sampled points in Q to be close to those of P

and also have a maximal coverage w.r.t. the original point cloud P . We found that this

sampling loss provides an important prior knowledge for sampling, and is critical for APSNet

to achieve a good performance. Specifically, given two point sets S1 and S2, denoting average

nearest neighbor loss as:

La(S1,S2) =
1

|S1|
∑
s1∈S1

min
s2∈S2

||s1 − s2||22, (3.5)

and maximal nearest neighbor loss as:

Lm(S1,S2) = max
s1∈S1

min
s2∈S2

||s1 − s2||22, (3.6)

the sampling loss is then given by:

Lsample(Q,P ) =La(Q,P ) + βLm(Q,P ) + (γ + δ|Q|)La(P ,Q), (3.7)

where β, γ and δ are the hyperparameters that balance the contributions from different loss

components.
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Putting all the components together, the total loss of APSNet is given by:

Ltotal = ℓtask(T (Q), y) + λLsample(Q,P ), (3.8)

where λ is a hyperparameter that balances the contribution between the task loss and the

sampling loss.

Self-supervised Training with Knowledge Distillation

In some practical scenarios, we may only have task network T and some input point clouds

{P j}Nj=1 at our disposal. This is the situation where a deployed task network T is available,

but the original labeled training data of T is no longer available for the development of

APSNet. In this case, we propose to train APSNet via self-supervised learning based on

the idea of knowledge distillation Hinton et al. (2014); Zhang et al. (2019). In knowledge

distillation, we can transfer the knowledge from a teacher network to a student network such

that the student network can yield a similar prediction as the teacher network while being

much more efficient. Inspired by knowledge distillation, we treat the task network T as the

teacher model, and APSNet as the student model and use the soft predictions of T as the

targets to train APSNet. Specifically, the task loss for self-supervised training of APSNet is

updated to

ℓtask(T (Q), ỹ), with ỹ = T (P ), (3.9)
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where ỹ is the soft prediction of T given the original point cloud P , and the loss function

ℓtask is defined differently for different downstream tasks. The goal of the new loss function

is to generate a sampled point cloud Q that can yield a similar prediction as the original P .

Similar idea is also explored in Chen et al. (2018), where mutual information between

the predictions of backbone network from sparsified input and original input are maximized

for model interpretation, while here we sparsify point clouds.

3.3.2.2 Joint Training

APSNet described above is trained for a specified sample size m. Given the autoregressive

model of our method, APSNet can generate arbitrary length of samples from a single model.

This entails an effective joint training of APSNet with multiple different sample sizes, re-

sulting in a single compact model to generate arbitrary sized point clouds with prominent

performance. Specifically, we can train one APSNet with different sample sizes by:

Ljoint=
∑
c∈Cs

(
ℓtask(T (Qc), y) + λLsample(Qc,P )

)
, (3.10)

where Cs is a set of sample sizes of interest. In our experiments, we set Cs = {2l}7l=3.

S-NET Dovrat et al. (2019a) and SampleNet Lang et al. (2020) propose a progressive

training to train a sampling network to generate different sized point clouds. However,

their model sizes grow linearly as the sample size m increases. In contrast, due to the

autoregressive model of APSNet, we can train one single compact model (with a fixed number

of parameters) to generate arbitrary sized point clouds without incurring a linear increase

of model parameters. This entails a better parameter reusing or sharing for APSNet, and
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leads to improved sample efficiency as compared to S-NET and SampleNet.

3.4 Experiments

We demonstrate the performance of APSNet on three different applications of 3D point

clouds for classification, reconstruction, and registration. For the purpose of comparison,

random sampling (RS), farthest point sampling (FPS) and SampleNet Lang et al. (2020) are

used as baselines, where SampleNet is the state-of-the-art task-oriented sampling method.

We consider two variants of APSNet: (1) APSNet, and (2) APSNet-KD, while the former

refers to the supervised training of APSNet and the latter refers to the self-supervised train-

ing of APSNet with knowledge distillation. A trained APSNet generates point cloud Q that

isn’t a subset of original input point cloud P , but the generated Q can be converted to Q∗

by a matching process as discussed in Sec. 3.1. Therefore, we further distinguish them as

APSNet-G and APSNet-M, respectively. SampleNet Lang et al. (2020) also generates point

cloud Q, which is converted to Q∗ by the matching process. Similarly, we denote them as

SampleNet-G and SampleNet-M, respectively. In our experiments, we compare the perfor-

mances of all these variants. However, we would like to emphasize that the default SampleNet

is SampleNet-M, while the default APSNet is APSNet-G since APSNet-G yields the best

predictive performance without an expensive matching process as we will demonstrate in the

experiments.

Since our APSNet is implemented in PyTorch, we convert the official TensorFlow im-

plementation of SampleNet3 to PyTorch for a fair comparison. We found that our PyTorch

3https://github.com/itailang/SampleNet

https://github.com/itailang/SampleNet
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implementation achieves better performances than the official TensorFlow version in most

of our experiments. Details of experimental settings and implementation are relegated to

supplementary material. All our experiments are performed on Nvidia RTX GPUs. Our

source code can be found at https://github.com/Yangyeeee/APSNet.

3.4.1 Experimental Settings

Task Networks

Similar to SampleNet Lang et al. (2020), we adopt PointNet for classification Qi et al.

(2017a), Point Cloud Autoencoder (PCAE) for reconstruction Achlioptas et al. (2018), and

PCRNet for registration Sarode et al. (2019). For the classification and reconstruction tasks,

PointNet and PCAE are trained with the same settings as reported by their original papers.

For the registration task, Sarode et al. (2019) trained the PCRNet with the Chamfer distance

between template point cloud and registered point cloud; we follow SampleNet and add a

regression loss (besides the Chamfer distance) to train the PCRNet. These pre-trained

networks are treated as the task networks for their specific applications, whose parameters

are fixed during the training of APSNet.

APSNet

The feature extract component of APSNet follows the design of PointNet Qi et al. (2017a).

It contains a sequence of 1 × 1 convolution layers, followed by a symmetric global pooling

layer to generate a global feature vector, which is then used as the initial state of LSTM

https://github.com/Yangyeeee/APSNet
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for sampling. Each convolution layer includes a batch normalization layer Ioffe & Szegedy

(2015a) and a ReLU activation function. A 2-layer LSTM Hochreiter & Schmidhuber (1997)

with 128 recurrent units in each layer is used to generate samples autoregressively.

We consider two variants of APSNet: (1) APSNet, and (2) APSNet-KD, while the former

refers to the supervised training of APSNet and the latter refers to the self-supervised training

of APSNet with knowledge distillation. A trained APSNet generates point cloud Q that isn’t

a subset of original input point cloud P , but the generated Q can be converted to Q∗ by

a matching process as discussed in Sec. 3.1. Therefore, we further distinguish them as

APSNet-G and APSNet-M, respectively.

SampleNet Lang et al. (2020) also generates point cloud Q, which is converted to Q∗

by the matching process. Similarly, we denote them as SampleNet-G and SampleNet-M, re-

spectively. In our experiments, we compare the performances of all these variants. However,

we would like to emphasize that the default SampleNet is SampleNet-M, while the default

APSNet is APSNet-G since APSNet-G yields the best predictive performance without an

expensive matching process as we will demonstrate in the experiments.

Implementation

We tune the performance of APSNet based on the hyperparameters provided by Sam-

pleNet Lang et al. (2020), and set β = 1, γ = 1 and δ = 0. We use the Adam opti-

mizer Kingma & Ba (2014) with the batch size of 128 for all the experiments. Learning rate

is set to (0.01, 0.001, 0.0005), and λ of the total loss (9) is set (30, 0.01, 0.01) for classifica-

tion, registration, and reconstruction tasks, respectively. Each experiment is trained for 400
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epochs with a learning rate decay of 0.7 at every 20 epochs.

Since our code is PyTorch-based, we convert the official TensorFlow code of SampleNet4

to PyTorch for a fair comparison. We found that our PyTorch implementation achieves

better performances than the official TensorFlow version in most of our experiments. For

reproducibility, our source code is also provided as a part of the supplementary material. All

our experiments are performed on Nvidia RTX GPUs.

3.4.2 3D Point Cloud Classification

We use the point clouds of 1024 points that were uniformly sampled from the ModelNet40

dataset Wu et al. (2015b) to train PointNet Qi et al. (2017a) (the task network T ). The

official train-test split is used for the training and evaluation, and the instance-wise accuracy

is used as the evaluation metric for performance comparison. The vanilla task network

achieves an accuracy of 90.1% with all the 1024 points. We execute different sampling

methods with a variety of sample sizes and report their performances for comparison.

Table 3.1 Classification accuracies of five sampling methods with different sample sizes m on
ModelNet40. M* denotes the official results from SampleNet Lang et al. (2020).

RS FPS DaNetMOPS-Net SampleNet APSNet APSNet-KD
m G M G M M* G M G M
8 8.26 23.29 - - - 78.36 73.31 28.7 81.42 74.12 80.22 73.81
16 25.11 54.19 - 84.7 51.2 80.60 79.68 55.5 83.89 82.25 83.82 82.02
32 55.19 77.32 85.1 86.1 77.6 80.32 82.97 74.4 88.15 86.97 88.76 84.95
64 78.26 87.22 86.8 87.1 81.0 79.36 84.01 79.0 88.38 87.58 88.66 87.54
128 85.95 88.76 86.8 87.2 85.0 85.52 87.17 79.7 89.22 89.38 87.83 88.01
256 88.80 89.30 87.2 87.4 86.7 87.43 89.58 83.4 89.54 89.86 88.02 88.21
512 89.66 89.87 - 88.3 88.3 88.01 90.18 88.2 89.78 90.18 88.69 88.56

Table 4.1 reports the classification accuracies of all the five sampling methods. To validate

our PyTorch implementation of SampleNet, we also include the official SampleNet results

4https://github.com/itailang/SampleNet

https://github.com/itailang/SampleNet
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as reported in Lang et al. (2020). It can be observed that our PyTorch implementation

outperforms the official TensorFlow code consistently; in particular, when sample sizem = 8,

our implementation has a gain of nearly 45% over the official code. Therefore, for a fair

comparison, we compare APSNet mainly with our improved SampleNet.

A few notable observations can be made from Table 4.1. (1) As sample size m increases,

all the sampling methods have improved accuracies. The performances of task-oriented sam-

plers, e.g., SampleNet and APSNet, outperform those of task-agnostic samplers, e.g., random

sampling and FPS, consistently. However, the gains are getting smaller as sample size m

increases; when m = 512, all sampling methods achieves a comparable accuracy that is close

to the best accuracy (90.1%) achieved with all the 1024 points. (2) In general, SampleNet-M

achieves a better performance than SampleNet-G. When sample size m increases, the gain is

more pronounced. (3) In contrast, APSNet-G achieves a better performance than APSNet-

M. When sample size m is small, the gain is large, while as sample size m increases, both

variants of APSNet have very similar performances. This is likely because the downstream

task networks are trained with original points P , and the matched Q∗ from APSNet-M can

fit better to the downstream task networks. The gains are getting smaller because when

sampling ratio becomes larger the performance is approaching to the upper bound which

uses all the points. (4) Comparing APSNet-G with SampleNet-M (the best defaults for both

algorithms), APSNet outperforms SampleNet consistently; especially when m ≤ 128, we

observe a 2% to 8% accuracy gain, demonstrating the effectiveness of APSNet. (5) APSNet-

KD achieves a very impressive result without utilizing labeled point clouds for training; its
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performance is almost on-par with APSNet that is trained with labeled point clouds.

Discussion

The above experiments show that SampleNet-M outperforms SampleNet-G consistently,

while the opposite is observed for APSNet. This can be explained by the limitations of

SampleNet as we indicated in the introduction. As sample size m increases, SampleNet has

a higher probability of generating similar (redundant) points due to the one-shot genera-

tion of m samples. Since these redundant points cannot improve the classification accuracy

effectively, the matching process (which replaces the redundant points with the FPS sam-

ples) becomes critical for SampleNet-M to improve its performance, leading to improved

performances over SampleNet-G. On the other hand, APSNet-G generates the next sample

depending heavily on previously sampled points, and therefore is able to capture the rela-

tionship among points and generate more informative samples, yielding a better performance

without an expensive matching process.

Joint Training

Next, we investigate the joint training of APSNet, and compare it with separated training of

ASPNet and SampleNet for each sample size m. For the joint training of APSNet, we train

a single compact model of APSNet with Cs = {8, 16, 32, 64, 128} by optimizing the joint loss

(3.10). In contrast, in separated training of SampleNet or APSNet, a separated model is

trained for each sample size m ∈ Cs and its performance is evaluated for the specific m it

was trained with.
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Figure 3.3 Evolution of classification accuracy as a function of sample size m for different
sampling methods. APSNet-Joint uses a single model to generate different number of sam-
ples, while SampleNet and APSNet use separately trained models to generate each specific
number of samples.

Fig. 3.3 shows the performance comparison between joint training of APSNet and sep-

arated training. It can be observed a single model trained by APSNet-Joint can generate

arbitrary length of samples with competitive performances. Indeed, the performance of

APSNet-Joint is lower than the separately trained APSNet, but it still consistently outper-

forms separately trained SampleNet.

3.4.3 Reconstruction

The reconstruction task is evaluated with point clouds of 2048 points, sampled from the

ShapeNet Core55 dataset Chang et al. (2015). We choose the four shape classes that have

the largest number of examples: Table, Car, Chair, and Airplane. Each class is split to a

85%, 5%, 10% partition for training, validation and test. The task network, in this case,
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Table 3.2 The normalized reconstruction errors of five sampling methods with different sam-
ple sizes m on the ShapeNet Core55 dataset. M∗ denotes the original results from the
SampleNet paper Lang et al. (2020). The lower, the better.

RS FPS SampleNet APSNet APSNet-KD
m G M M* G M G M
8 21.85 12.79 5.29 5.48 - 4.27 4.59 4.69 4.98
16 13.47 7.25 2.78 2.89 - 2.51 2.62 2.57 2.67
32 8.16 3.84 1.68 1.71 2.32 1.54 1.59 1.47 1.52
64 4.54 2.23 1.32 1.27 1.33 1.07 1.11 1.12 1.14

is the Point Cloud Autoencoder (PCAE) for reconstruction Achlioptas et al. (2018). We

evaluate the reconstruction performance with the normalized reconstruction error (NRE):

NRECD(Q,P ) =
CD(P , T (Q))

CD(P , T (P ))
, (3.11)

where CD is the Chamfer distance Achlioptas et al. (2018) between two point clouds. Ap-

parently, the values of NRECD are lower bounded by 1, and the smaller, the better.

Table 4.4 reports the reconstruction results of all the five sampling methods consid-

ered. Similar to the results of classification, (1) SampleNet and APSNet outperform RS

and FPS by a large margin. (2) SampleNet-M relies on the matching process to replace the

redundant samples by FPS to improve its performance over SampleNet-G. (3) In contrast,

APSNet-G outperforms APSNet-M consistently without the extra matching process. (4)

APSNet-KD again achieves a very competitive result to APSNet. (5) Comparing APSNet-G

and SampleNet-M (the best defaults for both algorithms), APSNet outperforms SampleNet

consistently by a notable margin.

To investigate why APSNet outperforms SampleNet in the task of reconstruction, we

visualize the sampled points and the reconstructed point clouds of both algorithms in Fig. 4.4.

As can be seen, SampleNet focuses more on the main body of airplane and samples some
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Figure 3.4 Visualization of sampled points and reconstructed point clouds by APSNet (1st
row) and SampleNet (2nd row). The red dots are the sampled points; the highlighted yellow
regions in APSNet results are points with high attention scores and the number specify
the order of sampled points. (a) Sampled points when m = 8; (b) Reconstruction when
m = 8, NRE(APSNet)=2.55, NRE(SampleNet)=5.20; (c) Sampled points when m = 16; (d)
Reconstruction when m = 16, NRE(APSNet)=1.57, NRE(SampleNet)=2.34.

uninformative and symmetric points for reconstruction. In contrast, APSNet focuses more

on the outline of the airplane without losing details, which are critical for the reconstruction.

This observation is more pronounced when sample size is small, such as m = 8. As shown

in Fig. 4.4(a) and (b), SampleNet fails to sample a point at the tail of the airplane such

that the reconstructed point cloud cannot recover the tail. In comparison, APSNet samples

two important points at the tail and ignores the symmetric one on the other side of the

tail, and therefore is able to reconstruct the tail precisely. One the other hand, SampleNet

samples two symmetric points on the wing, which are likely redundant information for the

reconstruction. Overall, the sampled points from APSNet are more reasonable than those

of SampleNet from human’s perspective,
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The effectiveness of different loss components

The sampling loss (7) encourages the sampled points in Q to be close to those of P and also

have a maximal coverage w.r.t. the original point cloud P . We found that this sampling loss

provides an important prior knowledge for sampling, and is critical for APSNet to achieve

a good performance. In addition, the sampling loss (7) is more generic than the Chamfer

distance since when β = 0, γ = 1 and δ = 0 it degenerates to the Chamfer distance. The

limitation is that we now have more hyperparameters to tune. Table 3.3 reports the ablation

study of the sampling loss (7) for APSNet-G on the reconstruction task. It shows that when

Lm(Q,P ) and La(P ,Q) enabled (i.e., β = 1 and γ = 1), APSNet-G reaches the best results

in almost all settings.

Table 3.3 Ablation study of the sampling loss (7) for APSNet-G on the reconstruction task.
* denotes the best results when β = 1, γ = 1 and δ = 0.

β = 0 γ = 0 *
8 4.63 4.54 4.27
16 3.07 3.44 2.51
32 1.67 1.49 1.54
64 1.13 1.28 1.07

Inference time comparison

We further evaluate the inference times of different sampling methods in the task of recon-

struction. The results are reported in Table 4.3, where SampleNet-M and APSNet-G are

the main algorithms to be compared since they are the best defaults. It can be observed

that when sample size m increases, the inference times of both SampleNet-M and APSNet-G

increase, while SampleNet-G requires roughly a constant time for sampling. This is because

SampleNet-G leverages an MLP generator to generate all m samples in one shot; for the
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problem size considered, one GPU is able to utilize its on-board parallel resources to process

different sample sizes in roughly the same time. However, as observed in the experiments

above and also proposed by SampleNet Lang et al. (2020), SampletNet relies on the match-

ing process to improve its performance, while matching is the most expensive operation in

SampleNet, leading to a dramatic increase of inference-time for SampleNet-M. By contrast,

due to the autoregressive model of our method, APSNet generates samples sequentially by an

LSTM which results in a linear increase of inference time as m increases. However, APSNet

does not need an expensive matching process for its best performance. Therefore, besides the

improved sample quality, APSNet also outperforms SampleNet in terms of inference time.

Table 3.4 Inference time comparison of three sampling methods with different sample size
m. The time is reported in millisecond. ∗ denotes the best default recommended by each
paper.

m 32 128 256 512
SampleNet-G 7.63 7.54 7.79 7.94
SampleNet-M∗ 44.33 135.23 261.47 515.30
APSNet-G∗ 9.21 12.84 17.68 27.48
APSNet-M 45.91 139.83 269.40 525.38

3.4.4 Registration

The task of registration aims to align two point clouds by predicting rigid transformations

(e.g., rotation and translation) between them. To save memory and computation power,

the registration is conducted on the key points that are sampled from the original point

clouds. We follow the work of PCRNet Sarode et al. (2019) to construct a point cloud

registration network (the task network), and train PCRNet on the point clouds of 1,024

points of the Car category from ModelNet40. Following the settings in SampleNet, 4,925

pairs of source and template point clouds are generated for training, where a template is
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rotated by three random Euler angles in the range of [−45°, 45°] to obtain the source. An

additional 100 source-template pairs are generated from the test split for evaluation. The

mean rotation error (MRE) between the predicted rotations and ground-truth rotations is

used as the evaluation metric.

Table 3.5 reports the performances of five sampling methods for registration. Similar to

the results on classification and reconstruction, APSNet outperforms SampleNet consistently

by a notable margin, and achieves the state-of-the-art results in this task. Without leveraging

labeled training data, APSNet-KD again demonstrates an impressive performance that is

close to supervised APSNet.

Table 3.5 The mean rotation errors of five sampling methods with different sample sizes m on
the ModelNet40 dataset for registration. M∗ denotes the original results from the SampleNet
paper Lang et al. (2020). The lower, the better.

RS FPS SampleNet APSNet APSNet-KD
m G M M* G M G M
8 63.37 31.44 9.72 8.27 10.51 5.47 9.40 5.93 10.51
16 43.89 20.34 12.14 7.45 8.21 4.50 7.18 5.01 7.07
32 27.06 12.97 10.81 6.13 5.94 4.37 5.82 4.56 6.07
64 16.88 7.89 10.93 5.38 5.31 4.42 6.34 4.49 4.97

Visualization of Attention Coefficients

For the task of registration, we further visualize the evolution of attention coefficients during

the training process. Specifically, we monitor the attention coefficients Eq. (3) when gen-

erating a point at a specific time step t (the t-th sample) from a given point cloud of 1024

points. Figure 3.5 visualizes the evolution of attention coefficients over 400 training epochs.

At beginning of the training, the sampler cannot decide which point from the point cloud

is the most important one to sample, manifested by the dense cluttered coefficients. As the
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Figure 3.5 Evolution of the attention coefficients of APSNet when generating the t-th sample.
As the training proceeds, the coefficients become sparser with peak values on a few points.

training proceeds, the attention coefficients become sparser with peak values on 2-3 points.

Further, these attention coefficients are stablized in the late training epochs and consistently

concentrate on a few the same points, demonstrating the training stability of APSNet.

3.5 Conclusion

this chapter introduces APSNet, an attention-based sampling network for point cloud sam-

pling. Compared to S-Net and SampleNet, which formulate the sampling process as an

one-shot generation task with MLPs, APSNet employs a sequential autoregressive genera-

tion with a novel LSTM-based sequential model for sampling. Depending on the availability

of labeled training data, APSNet can be trained in supervised learning or self-supervised

learning via knowledge distillation. We also present a joint training of APSNet, yielding a

single compact model that can generate arbitrary length of samples with prominent perfor-

mances. Extensive experiments demonstrate the superior performance of APSNet over the
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state-of-the-arts both in terms of sample quality and inference speed, which make APSNet

widely applicable in many practical application scenarios.
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CHAPTER 4

PTSNet: A Point Transformer for Task-oriented Point Cloud Sampling

4.1 Introduction

The development of 3D sensing devices, such as LiDAR and RGB-D cameras, has led to

the generation of large amounts of point cloud data in fields such as robotics, autonomous

driving, and virtual reality Nüchter & Hertzberg (2008); Geiger et al. (2012); Park et al.

(2008). Point clouds, which are composed of raw coordinates in 3D space, provide accurate

representations of objects and shapes, and are crucial to perceive the surrounding environ-

ment. However, traditional feature extraction methods like convolutional neural networks

(CNNs) designed for 2D grid-structured data are not well-suited for point clouds, which are

irregularly structured with variable densities. Some methods attempt to first stiffly trans-

form point clouds into grid-structured data and then take advantage of CNNs for feature

extraction, such as projection-based methods Simony et al. (2018); Beltrán et al. (2018) and

volumetric convolution-based methods Engelcke et al. (2017); Li (2017). However, placing a

point cloud on a regular grid generates an uneven number of points in grid cells. Thus, ap-

plying the same convolution operation on such grid cells leads to information loss in crowded

cells and wasting computation in empty cells. Recently, many methods of directly processing

point clouds Qi et al. (2017b); Yu et al. (2018); Li et al. (2018d); Qi et al. (2019) have been

proposed, which enable efficient computation and improved performances in myriad appli-

cations, including 3D point cloud classification Qi et al. (2017b); Li et al. (2018d); Thomas

et al. (2019); Wu et al. (2019b), semantic segmentation Li et al. (2018b); Su et al. (2018); Liu
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Figure 4.1 Overview of PTSNet. PTSNet first extracts features with a simplified PointNet
architecture that preserves the geometric information of a point cloud. Then, a transformer
encoder with self-attention mechanism is used to capture the relationship among the dynamic
queries and select the most informative points. Finally, the sampled point cloud is fed to a
task network for prediction. The whole pipeline is optimized by minimizing a task loss and
a sampling loss jointly.

et al. (2019); Wang et al. (2019b, 2018) and reconstruction Achlioptas et al. (2018); Yang

et al. (2018); Han et al. (2019); Zhao et al. (2019). However, dealing with large-scale 3D

point clouds remains a challenge due to the high cost involved in storing, transmitting, and

processing such data.

Point cloud sampling, a task of selecting a subset of points to represent the original

point clouds at a sparse scale, can reduce data redundancy and improve the efficiency of 3D

data processing. So far, there are a few heuristics-based sampling methods, such as random

sampling (RS), farthest point sampling (FPS) Eldar et al. (1997); Moenning & Dodgson

(2003), and grid (voxel) sampling Wu et al. (2015b); Qi et al. (2016). However, all of these

methods are task-agnostic as they do not take into account the subsequent processing of

the sampled points and may select non-informative points to the downstream tasks, leading

to suboptimal performance. Recent works have concentrated on designing a downsampling

block that subjects to a subsequent pretrained task network. This idea of task-oriented point
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cloud sampling was first developed by S-NET Dovrat et al. (2019b), which generates a small

number of samples that optimize the performance of a downstream task and outperforms

traditional task-agnostic samplers significantly in various applications. Following this work,

SampleNet Lang et al. (2020) and MOPS-Net Qian et al. (2020) utilize a soft projection

strategy to promote the learned points to be the proper subset of the original point cloud

for performance improvement. Both methods formulate the sampling process as a one-shot

generation task with MLPs, and do not pay enough attention to the dependency among

samples. Ye et al. (2022) argue that point cloud sampling can be considered as a sequential

generation process, in which points to be sampled next should depend on the points that

have already been sampled. Based on this idea, they propose APSNet, an attention-based

sampling network, to capture the dependence among the selected points. Although APSNet

has achieved state-of-the-art performance compared with other methods, the two-layer LSTM

employed by APSNet suffers from the vanishing gradient problem, manifested by many

duplicate samples, especially when dealing with long sequences.

Inspired by the success of transformer in natural language processing Vaswani et al.

(2017); Wu et al. (2019a); Dai et al. (2019); Devlin et al. (2019); Yang et al. (2019b) and im-

age analysis Dosovitskiy et al. (2021); Hu et al. (2019); Zhao et al. (2020), recent works ?Zhao

et al. (2021a) have introduced transformer-based models to handle irregular and unordered

point cloud data, demonstrating their superior capabilities. The permutation-invariant prop-

erty of self-attention mechanism of transformer makes it well-suited to process point cloud

data. Therefore, this chapter introduces PTSNet, a novel point transformer for task-oriented
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point cloud sampling. PTSNet leverages a simplified PointNet to extract point-wise feature

vectors, followed by an MLP to generate initial selection queries, which are then optimized

by a transformer encoder to capture the most valuable information from the point cloud.

Extensive experiments demonstrate the superior performance of PTSNet compared to prior

methods across various downstream tasks, including 3D point cloud classification, recon-

struction, and registration.

4.2 Related Work

Deep Learning on Point Clouds

Following the breakthrough results of CNNs in 2D image processing tasks Krizhevsky et al.

(2012); He et al. (2016a), there has been a strong interest of adapting such methods to 3D

geometric data. Compared to 2D images, point clouds are sparse, unordered and locality-

sensitive, making it non-trivial to adapt CNNs for point cloud processing. Early attempts

focus on regular representations of the data in the form of 3D voxels Wu et al. (2015b);

Qi et al. (2016). These methods quantize point clouds into regular voxels in 3D space

with a predefined resolution and then apply volumetric convolution. More recently, some

works explore new designs of local aggregation operators on point clouds to process point sets

efficiently and reduce the loss of details Qi et al. (2017a,b); Wang et al. (2019b). PointNet Qi

et al. (2017a) is a pioneering deep network architecture that directly processes point clouds

for classification and semantic segmentation; it proposes a shared multi-layer perception

(MLP), followed by a max-pooling layer, to approximate continuous set functions to deal
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with unordered point sets. PointNet++ Qi et al. (2017b) further proposes a hierarchical

aggregation of point features to extract global features. In later works, DGCNN Wang et al.

(2019b) proposes an effective EdgeConv operator that encodes the point relationships as

edge features to better capture local geometric features of point clouds while still maintaining

permutation invariance. In this chapter, we leverage a simplified PointNet architecture to

extract local features from a point cloud before feeding them to a transformer encoder for

point cloud sampling.

Point Cloud Sampling

Random sampling (RS) selects a set of points randomly from a point cloud and has the

smallest computation overhead. However, this method is sensitive to density imbalance

issue Lang et al. (2020). Farthest point sampling (FPS) Eldar et al. (1997); Moenning

& Dodgson (2003) has been widely used as a pooling operator in point cloud processing.

It starts from a randomly selected point in the set and iteratively selects the next point

from the point cloud that is the farthest from the selected points, such that the sampled

points can achieve a maximal coverage of the original point cloud. Recently, S-NET Dovrat

et al. (2019a) has demonstrated that better sampling strategies can be learnt by a sampling

network that can generate a small set of samples to optimize the performance of a downstream

task. Moreover, the generated 3D coordinates can be pushed towards a subset of original

points if a matched point set is desired. Following this work, SampleNet Lang et al. (2020)

and MOPS-Net Qian et al. (2020) utilize a soft projection to promote the learnt points

to be a proper subset of the original point cloud. Both methods formulate the sampling
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process as an one-shot generation task with MLPs and do not pay enough attention to the

sample dependency, leading to suboptimal performances. DA-Net Lin et al. (2021) combines

the K-nearest neighbors (KNN) with local adjustment such that the sampled points have

noise immunity characteristics. Our PTSNet retains the advantage of one-shot generation,

while capturing long-range correlations of sampled points through the global attention of

transformer.

Transformer and self-attention

The introduction of self-attention and transformer Vaswani et al. (2017) ignites a revolution

in the field of natural language processing Vaswani et al. (2017); Wu et al. (2019a); Dai

et al. (2019); Devlin et al. (2019); Yang et al. (2019b) and computer vision Dosovitskiy et al.

(2021); Hu et al. (2019); Zhao et al. (2020). Transformer utilizes a self-attention mechanism

to scan through each element of a sequence and extract features by aggregating informa-

tion from the entire sequence. The global computation and dynamic memory retrieval of

transformer make it a better architecture choice than recurrent neural networks (RNNs) to

process long sequences. The breakthrough has also inspired the development of attention

networks for 2D image analysis. Hu et al. (2019) and Ramachandran et al. (2019) apply

scalar dot-product self-attention within local image patches. Zhao et al. (2020) develops a

family of vector self-attention operators. Dosovitskiy et al. (2021) treats images as sequences

of patches. The permutation-invariant property of self-attention also makes it well-suited to

process the irregular and unordered point cloud data. ? proposes a local-global transformer,

named PCT, with 2-layer local neighbor embedding and 4 stacked offset-attention blocks.
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Point Transformer Zhao et al. (2021a), based on vector self-attention, uses the subtraction

relation and adds a positional encoding to both the attention vector and the transformed

features. Recently, Wang et al. (2021) introduce a transformer-based downsampling network

PST-NET that utilizes local-global context information for improved performance. Wang

et al. (2022) design a lightweight transformer network named LighTN with favorable FLOPs

and parameters budgets. Compared to these prior methods, our PTSNet employs a novel dy-

namic query generator to produce selection queries based on a global representation of point

cloud. The selection queries can be well optimized to capture the long-range correlations

among the selected points, leading to state-of-the-art performance.

4.3 The Proposed Method

Figure 5.2 provides an overview of our proposed PTSNet, comprising two primary compo-

nents: (a) a simplified PointNet for feature extraction, and (b) a transformer encoder with

a self-attention mechanism for dynamic query generation. In this section, we delve into the

details of these components.

4.3.1 Notation and Problem Statement

Let P = {pi ∈ R3}ni=1 denote a point cloud that contains n points, with pi = [xi, yi, zi]

representing the 3D coordinates of point i. We consider two types of point cloud samples:

(1) Q∗ = {q∗
i ∈ R3}mi=1 denotes a sampled point cloud of m points that is a subset of P with

m < n, i.e., Q∗ ⊂ P . (2) Q = {qi ∈ R3}mi=1 denotes a generated point cloud of m points

that may not be a subset of P . Typically, we can convert Q to Q∗ by a matching process,
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i.e., match each point in Q to its nearest point in P , and then replace the duplicated points1

in resulting Q∗ by FPS. Since the matching process is non-differentiable, Q is often trained

end to end without evoking a matching process in the training stage, and the matching

process is involved only when inference. Moreover, let fθ(·) : P → Q denote PTSNet with

parameters θ.

Our goal is to optimize PTSNet to generate a point cloud Q = fθ(P ) that maximizes

the predictive performance of a task network T , where T can be a model for 3D point cloud

classification, reconstruction or registration, etc. The optimization involves minimizing a

joint objective function comprising a task loss and a sampling loss:

min
θ

ℓtask(T (Q), y) + λLsample(Q,P ), (4.1)

where ℓtask measures the quality of predictions based on Q, y is the ground-truth label, and

Lsample encourages proper sampling of points in Q.

4.3.2 Transformer-based Dynamic Query Generator

In PTSNet, a novel transformer-based dynamic query generator is utilized to generate se-

lection queries to ensure that the selection matrix can retrieve the most informative points

as output. The process begins by extracting feature representations for each point in point

cloud P . APSNet Ye et al. (2022) adopts a simplified PointNet Qi et al. (2017a) as the

feature extraction backbone for 3D point clouds. Specifically, a set of 1× 1 convolution lay-

ers are applied to the original point cloud P and produce a set of d-dimensional point-wise

1Multiple points in Q can be mapped to the same point in P .
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feature vectors, denoted by F = [f 1,f 2, · · · ,fN ]
T ∈ RN×d. Then, a symmetric feature-wise

max pooling operator is applied to F and produces a global feature vector g ∈ Rd, which

is then fed to an MLP and generates M initial dynamic selection queries. The selection

queries are designed to capture the relationship among sampled points, and select the most

valuable information from the point cloud. Formally, the M initial dynamic selection queries

I ∈ RM×d are learned through an MLP module, which projects the global feature g into a

higher dimension of M ∗ d and reshapes it into a matrix with the shape of M × d.

Transformer
Encoder

N ×d N ×M

MLP
d → M*d→Mxd

M ×d
Global 
Feature

. Softmax
With τ

Figure 4.2 The dynamic query generator processes the point-wise feature matrix F to produce
an N × M selection matrix. Initially, M dynamic selection queries are generated using
an MLP module based on the global feature. These queries are then enriched through
four stacked transformer layers, which aim to learn a semantically robust and distinctive
representation for each query. The selection matrix is obtained by computing the dot product
between the enriched queries and the point-wise features. To ensure the resulting selection
vector approximates a one-hot vector, a softmax operation with a temperature parameter τ
is applied.

Building upon the insight from APSNet Ye et al. (2022), transformer encoder layers

are employed to optimize the dependency among the queries. Specifically, four stacked



76

transformer layers are used to learn a semantically rich and discriminative representation

for each query. Overall, the dynamic query generator shares almost the same philosophy of

design as the original transformer, except that the positional embedding is discarded since

each point’s positional information has already been reserved in its point-wise feature. We

refer the reader to Vaswani et al. (2017) for architectural details of the original transformer.

The d-dimensional query vectors Fi ∈ RM×d yielded by transformer encoder are:

F1 = AT1(F), Fi = ATi(Fi−1), i = 2, 3, 4, (4.2)

where ATi represents the i-th attention layer, each having the same output dimension as

its input. We adopt multi-head self-attention (MHSA) as introduced in the original trans-

former Vaswani et al. (2017). The architecture of the SA layer is depicted in Figure 4.2.

Following the terminology in Vaswani et al. (2017), let Q,K,V be the query, key and value

matrices, respectively, generated by linear transformations of the input features Fin ∈ RM×d

as follows:

(Q,K,V) = Fin · (Wq,Wk,Wv),

Q,K,V ∈ RN×d,Wq,Wk,Wv ∈ Rd×d

whereWq,Wk andWv are the shared learnable linear transformation, and d is the dimension

of query and key vectors. First, we can use the query and key matrices to calculate the

attention weights via the matrix dot-product: Ã = (α̃)i,j = Q ·KT. These weights are then
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normalized to yield A = (α)i,j:

ᾱi,j =
α̃i,j√
d
, αi,j = softmax(ᾱi,j) =

exp (ᾱi,j)∑
k

exp (ᾱi,k)
.

The self-attention output features Fsa are the weighted sums of the value vector using the

corresponding attention weights: Fsa = A·V. As the query, key and value matrices are deter-

mined by the shared corresponding linear transformation matrices and the input feature Fin,

they are all order independent. Moreover, softmax and weighted sum are both permutation-

independent operators. Therefore, the whole self-attention process is permutation-invariant,

making it well-suited to the unordered, irregular domain presented by point clouds. Finally,

the self-attention feature Xsa and the input feature Fin, are further used to provide the

output feature Fout for the whole SA layer through an LBR (combining Linear, BatchNorm

(BN) and ReLU layers) network:

Fout = SA(Fin) = LBR(Fsa) + Fin. (4.3)

4.3.3 Differentiable sampling

Achieving accurate point cloud sampling involves training a separate neural network to

generate a selection matrix, where each column/row represents a one-hot selection vector

to guarantee that the sampled points are a proper subset of the original input. In practice,

since the selection matrix involves discrete and combinatorial variables, the problem is often

addressed by approximating it as a differentiable matrix optimization problem with relaxed

binary constraints. An additional matching operation, such as nearest neighbor search, is
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often required to associate each generated point with its nearest neighbor in the original

point cloud during the inference stage. Formally, given the optimized selection queries F, a

set of selection scores is calculated as the dot product with point-wise feature x. Inspired

by soft projection on weight coordinates Lang et al. (2020), differentiable relaxation to the

matching phase can solve the above problem. Based on differentiable relaxation, we apply

temperature annealing technique to encourage the PTSNet to produce a proper subset from

the original point cloud. In this chapter, we utilize a similar soft projection operation Lang

et al. (2020), denoting the average weight of original points of P as soft projected point qi

with qi =
∑

pj∈P
sij · pj. Temperature annealing is used to optimize the constraints for selection

matrix S:

sij =
exp(disij/τ)∑N
j=1 exp(disij/τ)

, (4.4)

where disij = f i · xj, τ is a temperature coefficient that controls the distribution shape of

weight wij. It is clear that when τ → 0+, point qi is approximately considered to be the

proper subset of input point cloud. During training, τ is annealed to a small value and fixed

for inference.

4.3.4 Training Objectives

Similar to S-NET Dovrat et al. (2019a) and SampleNet Lang et al. (2020), PTSNet utilizes

two types of losses during training: the task loss ℓtask and the sampling loss Lsample. The

task loss evaluates the quality of predictions based on the sampled point cloud Q denoted as

ℓtask(T (Q), y), where y is the ground-truth label of Q. Depending on the downstream task, y
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can represent the class label or the original point cloud P for classification or reconstruction,

respectively. Accordingly, the corresponding task loss ℓtask() varies, such as using cross-

entropy loss for classification or Chamfer distance for reconstruction. The sampling loss

Lsample encourages the sampled points in Q to be close to those of P and also have a

maximal coverage w.r.t. the original point cloud P . This sampling loss provides crucial

prior knowledge for effective sampling, playing a vital role in PTSNet’s overall performance.

Specifically, considering two point sets P 1 and P 2, we define the average nearest neighbor

loss as:

La(P 1,P 2) =
1

|P 1|
∑
p1∈p1

min
p2∈p2

||p1 − p2||22, (4.5)

and maximal nearest neighbor loss as:

Lm(P 1,P 2) = max
p1∈P 1

min
p2∈P 2

||p1 − p2||22, (4.6)

the sampling loss is then given by:

Lsample(Q,P ) =La(Q,P ) + βLm(Q,P ) (4.7)

+ (γ + δ|Q|)La(P ,Q), (4.8)
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where β, γ and δ are the hyperparameters that balance the contributions from different loss

components. Putting all the components together, the total loss of PTSNet is given by:

Ltotal = ℓtask(T (Q), y) + λLsample(Q,P ), (4.9)

where λ is a hyperparameter that balances the contribution between the task loss and the

sampling loss.

4.4 Experiments

We assess the performance of PTSNet across three distinct applications of 3D point clouds:

classification, reconstruction, and registration. Our comparative analysis involves several

baseline methods, including random sampling (RS), farthest point sampling (FPS), Sam-

pleNet Lang et al. (2020), MOPS-Net Qian et al. (2020), DA-Net Lin et al. (2021), and

APSNet Ye et al. (2022). Specifically, we focus on comparing PTSNet with APSNet to

analyze potential performance improvements. For each application, we employ established

networks: PointNet for classification Qi et al. (2017a), Point Cloud Autoencoder (PCAE)

for reconstruction Achlioptas et al. (2018), and PCRNet for registration Sarode et al. (2019).

PointNet and PCAE are trained with configurations consistent with their original papers.

In the registration task, we augment the training of PCRNet with an additional regression

loss, in addition to the Chamfer distance. To demonstrate the scalability of PTSNet to large

datasets, we also utilize DGCNN Wang et al. (2019b) as the backbone network, and train

the model on the ScanObjectNN dataset Uy et al. (2019), which is a challenging benchmark
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that facilitates a robust evaluation of PTSNet. For all the experiments, the pre-trained

networks are treated as task networks for their specific applications, whose parameters are

fixed during the training of PTSNet.

Implementation

The feature extraction component of PTSNet follows the architecture of PointNet Qi et al.

(2017a), incorporating 1 × 1 convolution layers and a symmetric global pooling layer for

global feature vector generation. The MLPs used for initial query generation are composed

of three linear layers with batch normalization. The transformer encoder consists of four

stacked layers, each with four heads. Hyperparameters are tuned, and specific values are

set for β = 1, γ = 1, and δ = 0. Adam optimizer Kingma & Ba (2014) is employed with

a batch size of 32, and the learning rate is set to 0.0001. The coefficient λ in the total loss

(Eq. 4.9) is adjusted to (30, 0.01, 0.01) for classification, registration, and reconstruction

tasks, respectively. Each experiment undergoes 400 epochs, with a learning rate decay of 0.7

every 20 epochs. The temperature parameter τ is annealed from 1 to 0.01 starting at 200

epochs, and it remains fixed at 0.01 for inference. Exponential decay with an annealing rate

of 0.00015 is applied every 50 steps. The hidden dimension d is set to 128, and a dropout

rate of 0.5 is applied to the self-attention layers. All experiments are conducted on Nvidia

RTX GPUs, ensuring a consistent hardware environment. Results are reported as averages

over 10 independent runs to ensure the robustness and reliability of the findings. Our source

code is provided as supplementary materials for reproducible research.
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4.4.1 3D Point Cloud Classification

Table 4.1 Classification accuracies of different sampling methods with different sample sizes
m on ModelNet40.
m RS FPS SampleNet MOPS-Net DA-Net APSNet PTSNet (Ours)
8 8.26 23.29 73.31 32.62 - 74.12 75.72
16 25.11 54.19 79.68 64.83 51.2 82.25 83.54
32 55.19 77.32 82.97 79.74 77.6 86.97 87.10
64 78.26 87.22 84.01 84.00 81.0 87.58 88.55
128 85.95 88.76 87.17 85.29 85.0 89.38 89.78
256 88.80 89.30 89.58 86.10 86.7 89.86 90.07
512 89.66 89.87 90.18 86.75 88.3 90.18 90.13

Initially, we use point clouds from the ModelNet40 dataset Wu et al. (2015b) to train the

PointNet network Qi et al. (2017a) for the classification task. The point clouds consist of 1024

uniformly sampled points, with the official train-test split used for training and evaluation.

To facilitate a comparison of sampling methods, we evaluate different sample sizes, reporting

their respective performances. The vanilla PointNet achieves a baseline accuracy of 90.1%

using all 1024 points.

Analyzing the classification results on the ModelNet40 dataset (Table 4.1), several note-

worthy trends emerge. Firstly, as the sample size (m) increases, there is a consistent improve-

ment in accuracies across various sampling methods. This is expected, as a larger sample

size allows for better representation of the underlying point cloud, contributing to enhanced

classification performance. Task-oriented sampling methods, exemplified by APSNet and

PTSNet, consistently outperform task-agnostic approaches such as Random Sampling (RS)

and Farthest Point Sampling (FPS). This underscores the significance of integrating task-

specific information into the sampling process, enabling more informed and context-aware

point cloud sampling. Comparing APSNet and PTSNet, it is evident that PTSNet consis-
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tently achieves higher accuracies across almost all sample sizes. This superior performance

can be attributed to the effective utilization of the Transformer architecture in PTSNet.

Transformers excel in capturing long-range dependencies in sequential data, making them

well-suited for modeling point clouds. In contrast, APSNet uses a two-layer LSTM and may

suffer from the potential vanishing gradient problem, as we will analyze in a later section.

Moreover, the analysis reveals an interesting trend for larger sample sizes (m ≥ 512), where

accuracies tend to plateau. This suggests that beyond a certain point, increasing the sample

size may yield diminishing returns in terms of classification improvement. This observation

underscores the importance of finding a balance between sample size and computational

efficiency for practical applications.

Table 4.2 Classification accuracies of different sampling methods with different sample sizes
m on on the ScanObjectNN dataset.

m RS FPS APSNet PTSNet (Ours)
16 8.43 8.43 9.04 10.11
32 12.61 11.38 16.11 17.43
64 14.66 15.12 20.23 20.17
128 32.31 36.57 40.29 36.73
256 52.82 53.04 55.28 60.14
512 68.33 73.55 74.53 76.72
1024 78.15 81.56 79.53 81.74

ScanObjectNN Dataset

Table 4.2 presents the classification accuracies of two prominent sampling methods, APSNet

and PTSNet (Ours), across various sample sizes (m) on the ScanObjectNN dataset. This

dataset poses a greater challenge as it is sampled from real-world scans containing back-

ground and occlusions. Following the experiment settings of previous works, we conducted

experiments on objects with background. The task network DGCNN was trained with 2,048



84

points, achieving a baseline accuracy of 82.2%. A discernible trend emerges, demonstrat-

ing that PTSNet consistently outperforms APSNet in terms of classification accuracy. For

example, at m = 16, PTSNet achieves an accuracy of 10.11%, surpassing APSNet’s 9.04%.

This performance gap persists and even widens as the sample size increases. At m = 1, 024,

PTSNet achieves an impressive accuracy of 81.74%, outstripping APSNet’s 79.53%. This sig-

nificant and consistent improvement of PTSNet underscores its remarkable effectiveness over

APSNet for this specific dataset and classification task. The utilization of the Transformer

architecture and task-specific information in PTSNet evidently contributes to its ability to

achieve more robust and accurate classification results on challenging real-world datasets

compared to APSNet on the ScanObjectNN dataset.

Table 4.3 Statistics of unique points and inference time of two methods. APSNet tends to
sample more duplicate points (less unique points) as sample size m increases.

Unique Points Inference Time (s)
m PTSNet APSNet PTSNet APSNet
64 60 58 3.74 3.30
128 96 85 4.25 5.91
256 215 165 5.83 11.22
512 261 187 6.10 22.45
1024 342 218 6.15 40.12

Table 4.3 provides a comparative analysis between PTSNet and APSNet in terms of

unique points and inference time across different sample sizes (m). It is important to note

that APSNet employs an autoregressive approach based on LSTM, while PTSNet utilizes a

non-autoregressive method. As the sample size (m) increases, we can observe that APSNet

tends to sample more duplicate points, resulting in a reduced count of unique points in

comparison to PTSNet. For instance, at a sample size of 1024, PTSNet captures a noteworthy

342 unique points, while APSNet captures only 218. In terms of inference time, APSNet
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PTSNet APSNet

Figure 4.3 Correlation matrix of the selection matrix when m = 64 for the two methods.
Selection vectors generated by PTSNet concentrated on one point to select in almost all the
cases. APSNet tends to generate more duplicate points.

generally exhibits higher values compared to PTSNet as the sample size increases. This

is expected, as the non-autoregressive nature of PTSNet allows for parallelized processing,

contributing to faster inference. APSNet, which employs an autoregressive approach based

on LSTM, experiences sequential processing overhead, leading to longer inference time.

The correlation matrix, calculated as S · ST, illustrates the similarities between the se-

lection vectors, and provides insights into the selection patterns of PTSNet and APSNet.

Ideally, the correlation matrix should be close to an identity matrix, indicating no duplicate

points is selected. Figure 4.3 reports the correlation matrices of PTSNet and APSNet. It can

be observed that the selection vectors generated by PTSNet tend to concentrate on selecting

unique point in most cases. On the other hand, APSNet shows a tendency of generating

more duplicate points, which is also reflected by a lower number of unique points as shown

in Table 4.3. The presence of duplicate points in the selection matrix of APSNet is likely

attributed to the vanishing gradient caused by the two-layer LSTM employed by APSNet.
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APSNetPTSNet (a) (b) (c) (d) (a) (b) (c) (d)Original

Figure 4.4 Visualization of sampled points and reconstructed point clouds by PTSNet (2nd
block) and APSNet (3rd block). (a) Sampled points when m = 8; (b) Reconstruction when
m = 8; (c) Sampled points when m = 32; (d) Reconstruction when m = 32. The red dots
are the sampled points.

The vanishing gradient of LSTM limits the capability of APSNet to capture long-range

correlations among the selection queries, leading to duplicate points and thus suboptimal

performances.

4.4.2 Reconstruction

The reconstruction task is evaluated with point clouds of 2048 points, sampled from the

ShapeNet Core55 dataset Chang et al. (2015). We chose the four shape classes that have the

largest number of examples: Table, Car, Chair, and Airplane. Each class is split to a 85%,

5%, 10% partition for training, validation and test. The task network, in this case, is the

Point Cloud Autoencoder (PCAE) for reconstruction Achlioptas et al. (2018). We evaluate

the reconstruction performance with the normalized reconstruction error (NRE):

NRECD(Q,P ) =
CD(P , T (Q))

CD(P , T (P ))
, (4.10)
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where CD is the Chamfer distance Achlioptas et al. (2018) between two point clouds. Ap-

parently, the values of NRECD are lower bounded by 1, and the smaller, the better.

Table 4.4 The normalized reconstruction errors with different sample sizesm on ModelNet40.
m RS FPS SampleNet APSNet PTSNet
8 21.85 12.79 5.48 4.59 4.78
16 13.47 7.25 2.89 2.62 2.60
32 8.16 3.84 1.71 1.59 1.40
64 4.54 2.23 1.27 1.11 1.11

Table 4.4 presents the reconstruction results for the different sampling methods, includ-

ing PTSNet and APSNet. Consistent with the classification results, task-oriented samplers

exhibit better performance compared to task-agnostic samplers. Specifically, both PTSNet

and APSNet demonstrate superior reconstruction performance compared to random sam-

pling and FPS. This highlights the effectiveness of incorporating task-specific information in

the sampling process. Moreover, as the sample size m increases, PTSNet shows an improve-

ment in performance. This suggests that PTSNet can capture more detailed information

and preserve finer structures as the sample size increases.

For an in-depth analysis of the reconstruction quality, Figure 4.4 visually represents the

sampled points and the reconstructed point clouds for PTSNet and APSNet. Notably, when

m = 8, PTSNet and APSNet exhibit similar sampling behavior, focusing on capturing the

outline of the airplane while preserving crucial details. As the sample size increases to

m = 32, PTSNet outperforms APSNet in terms of reconstruction quality. The Normalized

Reconstruction Errors (NRE) for PTSNet (1.36, 1.56, 1.25) are lower than those of APSNet

(1.38, 1.57, 1.39), as indicated in column (d) of Figure 4.4. This signifies that PTSNet excels

in preserving both the overall shape and finer details of the reconstructed point clouds. In
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summary, these results highlight the advantageous reconstruction performance of PTSNet

over APSNet.

4.4.3 Registration

The registration task involves aligning two point clouds by estimating the rigid transfor-

mations between them. In this study, we utilize PCRNet as the task network for point

cloud registration. The network is trained on the point clouds of the Car category from the

ModelNet40 dataset, following the approach outlined in SampleNet. During training, 4,925

pairs of source and template point clouds are generated. Each template is randomly rotated

by three Euler angles within the range of [−45°, 45°] to obtain the corresponding source.

For evaluation, an additional 100 source-template pairs are generated from the test split.

The mean rotation error (MRE) is employed as the evaluation metric for the registration

task. The MRE measures the average difference between the predicted rotations and the

ground-truth rotations. Lower MRE values indicate better registration accuracy.

Table 4.5 The mean rotation errors with different sample sizes m on ModelNet40.
m RS FPS SampleNet APSNet PTSNet
8 63.37 31.44 10.51 9.40 9.45
16 43.89 20.34 8.21 7.18 7.08
32 27.06 12.97 5.94 5.82 5.53
64 16.88 7.89 5.31 6.34 5.08

Table 4.5 presents the MRE of different sampling methods for the registration task on

the ModelNet40 dataset. It can be observed that PTSNet consistently outperforms APSNet

and SampleNet across almost all sample sizes. The lower the MRE, the better the regis-

tration accuracy. When the sample size is small, such as m=16, PTSNet achieves a mean
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rotation error of 7.08, outperforming APSNet (7.18) and SampleNet (8.21). As the sample

size increases, PTSNet continues to demonstrate superior performance, achieving the lowest

MRE at each sample size. For example, when m = 64, PTSNet achieves an MRE of 5.08,

while APSNet and SampleNet achieve 6.34 and 5.31, respectively. These results indicate

that PTSNet is effective in improving the accuracy of point cloud registration compared

to APSNet and SampleNet. The Transformer-based architecture enables PTSNet to cap-

ture long-range dependencies and correlations among the sampled points, leading to more

accurate registration results.

4.5 Conclusion

this chapter introduces a Point Transformer Sampling Network (PTSNet) to effectively sam-

ple points from 3D point clouds for downstream applications. By leveraging the power of

transformer-based architectures, PTSNet outperforms existing sampling methods across var-

ious tasks, including classification, reconstruction, and registration. The utilization of the

Transformer architecture and task-oriented sampling in PTSNet evidently contributes to its

ability to achieve more robust and accurate results on challenging real-world ScanObjectNN

dataset compared to APSNet.
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CHAPTER 5

A Hybrid Generative and Discriminative PointNet on Unordered Point Sets

5.1 Introduction

In recent years, a myriad of processing methods Qi et al. (2017b); Yu et al. (2018); Li et al.

(2018d); Qi et al. (2019) have been proposed for efficient point cloud analysis, and their

performances in applications, such as 3D point cloud classification Qi et al. (2017b); Li et al.

(2018d); Thomas et al. (2019); Wu et al. (2019b), semantic segmentation Li et al. (2018b);

Su et al. (2018); Liu et al. (2019); Wang et al. (2019b, 2018); Landrieu & Simonovsky (2018)

and reconstruction Achlioptas et al. (2018); Yang et al. (2018); Han et al. (2019); Zhao et al.

(2019), have been improved significantly. Despite the significant progress of discriminative

models for point cloud classification and segmentation, the research of generative models

for point clouds is still far behind the discriminative ones. Learning generative models for

point clouds is crucial to characterize the data distribution and analyze point clouds, which

lays the foundation for various tasks such as shape completion, upsampling, synthesis and

data augmentation. Although generative models such as variational auto-encoders (VAEs)

Kingma & Welling (2014) and generative adversarial networks (GANs) Goodfellow et al.

(2014) have shown great success in 2D image generation, it is challenging to extend these

well-established methods to unordered 3D point sets. Images are structured data on 2D grids,

while point clouds lie in irregular 3D space with variable densities. Existing methods for

point could generation are mainly based on volumetric data, e.g., 3D GAN Wu et al. (2016),

Generative VoxelNet Xie et al. (2018, 2020b), 3D-INN Huang et al. (2019), PointGrow Sun
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Figure 5.1 GDPNet performs point cloud classification and generation with a single network.
It can generate 10 categories of point clouds, while achieving a 92.8% classification accuracy
on ModelNet10. Sample point clouds generated by GDPNet are provided above.

et al. (2020), etc. While remarkable progress has been made, these methods have a few

inherent limitations for point cloud generation. For instance, the training procedure of

GAN-based approaches Wu et al. (2016) is rather unstable due to the adversarial losses, and

the auto-regressive models Sun et al. (2020) assume an order of point generation, which is

unnatural for orderless point cloud generation and restricts the modeling flexibility.

Energy-based models (EBMs) Zhu et al. (1998); LeCun et al. (2006) is a family of prob-

abilistic generative models that can explicitly characterize the data distribution by learning

an energy function that assigns lower values to observed data and higher values to unob-

served ones. Besides, the training of EBMs can be much more stable in contrast to GANs
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by unifying representation and generation in one single model optimized by the maximum

likelihood principle. Successful applications of EBMs include generations of images Xie et al.

(2016, 2020a), videos Xie et al. (2017, 2019), 3D volumetric shapes Xie et al. (2018, 2020b),

texts Deng et al. (2020), molecules Ingraham et al. (2018) as well as image-to-image trans-

lation Xie et al. (2021b) and out-of-distribution detection Liu et al. (2020). Recently, Xie

et al. (2021a) propose GPointNet, an EBM for unordered point cloud generation. Unlike

models that leverage an encoder-decoder architecture for generation, GPointNet Xie et al.

(2021a) does not rely on either an auxiliary network or hand-crafted distance metrics to train

the model. By incorporating PointNet Qi et al. (2017a), GPointNet extracts the features

for each point independently and aggregates the point features from the whole point cloud

into an energy scalar. The ”fake” examples are then generated by the Langevin dynamics

sampling Welling & Teh (2011), and the model parameters are updated based on the energy

difference between the ”fake” examples and the ”real” observed examples in order to match

the ”fake” examples to the “real” ones in terms of some permutation-invariant statistical

properties enabled by the energy function. Despite the model achieving an impressive perfor-

mance for point cloud generation, one model needs to be trained separately for each category

without sharing statistical regularities among different point cloud categories, e.g., structural

smoothness and point density transition. Besides, their method is unable to classify point

clouds directly and requires additional fine-tuning with an SVM classifier for classification.

In this chapter, we propose GDPNet, the first hybrid Generative and Discriminative

PointNet for point cloud classification and generation with a single network. Our design
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follows the framework of joint energy-based model (JEM) Grathwohl et al. (2020), which

reinterprets CNN softmax classifier as an EBM for image classification and generation. In-

stead, we extend JEM for point cloud classification and generation based on a modern

PointNet classifier Qi et al. (2017a). The direct extension of JEM to PointNet, however,

does not perform well as manifested by a classification accuracy gap to the standard classi-

fier and a generation quality gap to the state-of-the-art generative approaches. We therefore

investigate training techniques to bridge both gaps of GDPNet. We leverage the Sharpness-

Aware Minimization (SAM) Foret et al. (2021) to improve the generalization of GDPNet

(Section 5.3.2). We further demonstrate that the smoothness of the activation function can

improve the training stability and synthesis quality of GDPNet significantly. As a result,

our GDPNet retains strong discriminative power of modern PointNet classifier, while gener-

ating point cloud samples rivaling state-of-the-art generative approaches. More importantly,

GDPNet yields one single model for classification and generation for all point cloud cate-

gories without resorting to a dedicated model for each category or additional fine-tuning step

for classification. Example point clouds generated by GDPNet are provided in Figure 5.1.

5.2 Related Work

5.2.1 Deep Learning on Point Clouds

Following the breakthrough results of CNNs in 2D image processing tasks Krizhevsky et al.

(2012); He et al. (2016a), there has been a strong interest in adapting such methods to

3D geometric data. Compared to 2D images, point cloud data are sparse, unordered and
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locality-sensitive, making it non-trivial to adapt CNNs to point cloud processing. Early

attempts focus on regular representations of the data in the form of 3D voxels Wu et al.

(2015b); Qi et al. (2016). These methods quantize point clouds into regular voxels in 3D

space with a predefined resolution and then apply volumetric convolution. Recently, new

designs of local aggregators over point clouds are proposed to improve the efficiency of point

cloud processing and reduce the loss of details Qi et al. (2017a,b); Wang et al. (2019b).

PointNet Qi et al. (2017a) is a pioneer in deep architecture design that directly processes

point clouds for classification and semantic segmentation by a shared multi-layer perception

(MLP) and a max-pooling layer. However, it treats each point independently and ignores

the geometric relationships among them, and thus only local features are extracted. Point-

Net++ Qi et al. (2017b) further introduces a hierarchical aggregation of point features to

extract global features. In later works, DGCNN Wang et al. (2019b) proposes an effective

EdgeConv that encodes the point relationships as edge features to better capture local ge-

ometric features, while still maintaining permutation-invariance. Our GDPNet reinterprets

PointNet classifier as an EBM and empowers it for point cloud generation while retaining

its strong discriminative power.

5.2.2 Point Cloud Generation

Since point clouds lie in irregular 3D space with variable densities, early point cloud gen-

eration methods Achlioptas et al. (2018); Gadelha et al. (2018) convert the point cloud

generation into a matrix generation problem. They take advantage of the power of well-

established frameworks of variational auto-encoders (VAEs) Kingma & Welling (2014) and
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generative adversarial networks (GANs) Goodfellow et al. (2014) to train generative models

with hand-crafted distance metrics, such as Chamfer distance or earth mover’s distance, to

measure the dissimilarity of two point clouds. The main defect of these methods is that they

are restricted to generating point clouds with a fixed number of points and lack the property

of permutation-invariance. FoldingNet Yang et al. (2018) and AtlasNet Groueix et al. (2018)

learn a mapping that deforms the 2D patches into 3D shapes of point clouds to generate an

arbitrary number of points, while being permutation-invariant. On the other hand, point

clouds can also be regarded as samples from a point distribution and the maximum likelihood

principle can be utilized for point cloud generation. PointFlow Yang et al. (2019a) employs

continuous normalizing flows Grathwohl et al. (2019) to model the distribution of points. The

invertibility of normalizing flows enables the computation of the likelihood during training

and the variational inference is adopted for model training. PointGrow Sun et al. (2020) is

an auto-regressive model that dynamically aggregates long-range dependencies among points

for point cloud generation. ShapeGF Cai et al. (2020) proposes a score-matching energy-

based model to represent the distribution of points. Luo and Hu Luo & Hu (2021) view

points in a point cloud as particles in a thermodynamic system that diffuse from the original

distribution to a noise distribution and leverage the reverse diffusion Markov chain to model

the distribution of points. GPointNet Xie et al. (2021a) explicitly models this distribution

as an EBM and learns the model by the maximum likelihood estimation. However, all these

methods focus on point cloud generation and cannot perform classification at the same time.

To the best of our knowledge, our GDPNet is the first hybrid generative and discriminative
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model for point cloud classification and generation with a single network.

5.2.3 Flat Minima and Generalization

A great number of prior works have investigated the relationship between the flatness of

local minima and the generalization of learned models Li et al. (2018a); Keskar et al. (2017);

Wei et al. (2020); Chen et al. (2022); Foret et al. (2021); Kwon et al. (2021). Now it is

widely accepted and empirically verified that flat minima tend to give better generalization

performance. Based on these observations, several recent regularization techniques are pro-

posed to search for the flat minima of loss landscapes Wei et al. (2020); Chen et al. (2022);

Foret et al. (2021); Kwon et al. (2021). Among them, the Sharpness-Aware Minimization

(SAM) Foret et al. (2021) is a recently introduced optimizer that demonstrates promising

performance across all kinds of models and tasks, such as ResNet He et al. (2016b), Vision

Transformer Chen et al. (2022) and Language Models Bahri et al. (2022). Furthermore, score

matching-based methods Hyvärinen (2005); Swersky et al. (2011); Song & Ermon (2019);

Song et al. (2020) also explore the behavior of flat minima in generative models and learn

unnormalized statistical models by matching the gradient of the log probability density of

model distribution to that of data distribution. Our GDPNet incorporates SAM to promote

the energy landscape smoothness and thus improves the generalization of trained EBMs.

5.3 The Proposed Method

We first introduce the Joint Energy-based Models (JEM) Grathwohl et al. (2020) and discuss

its extension to GDPNet, the first hybrid generative and discriminative model for point
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clouds. We then present the Sharpness-Aware-Minimization (SAM) Foret et al. (2021) and

its integration to GDPNet to improve the generalization of trained EBMs.

5.3.1 Joint Energy-based Models for Point Clouds

Let X = {xi ∈ R3}ni=1 denote a point cloud that contains n points, with xi representing the

3D coordinates of point i. Following the framework of Energy-Based Models (EBMs) Zhu

et al. (1998); LeCun et al. (2006), we define the probability density function of a point cloud

X explicitly as

pθ(X) =
exp

(
−Eθ(X)

)
Z(θ)

, (5.1)

where Eθ(X) is an energy function, parameterized by θ, that maps input point cloud X to

a scalar, and Z(θ) =
∫
X
exp

(
−Eθ(X)

)
is the normalizing constant w.r.t. X (also known

as the partition function). Ideally, the energy function should assign low energy values to

the samples drawn from data distribution, and high values otherwise. Since point cloud X

is a set of unordered points, the energy function, Eθ(X), defined on a point set needs to be

invariant to the permutation of points in the set X. We follow the design of PointNet Qi

et al. (2017a) to employ a shared multi-layer perception (MLP) for each point in the set X,

followed by an average-pooling layer, to approximate a continuous set function to process

the unordered point sets.

The maximum likelihood estimate (MLE) can be used to estimate parameters θ of Eθ(X).

However, since the partition function Z(θ) is intractable, the MLE of θ is not straightforward.
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Specifically, the derivative of the log-likelihood of X w.r.t. θ can be expressed as

∂log pθ(X)

∂θ
=Epθ(X)

[
∂Eθ(X)

∂θ

]
−Epd(X)

[
∂Eθ(X)

∂θ

]
, (5.2)

where pd(X) is the real data distribution (i.e., training dataset), and pθ(X) is the estimated

probability density function (5.1), sampling from which is challenging due to the intractable

Z(θ).

Prior works have developed a number of methods to sample from pθ(X) efficiently, such

as MCMC and Gibbs sampling Hinton (2002). To speed up the sampling process further,

recently Stochastic Gradient Langevin Dynamics (SGLD) Welling & Teh (2011) has been

employed to sample from pθ(X) by utilizing the gradient information Nijkamp et al. (2019);

Du & Mordatch (2019); Grathwohl et al. (2020). Specifically, to sample from pθ(X), SGLD

follows

X0 ∼ p0(X), X t+1 = X t − α

2

∂Eθ(X
t)

∂X t + αϵt, (5.3)

where ϵt is random noise that is sampled from a unit Gaussian distribution N(0,1), and

p0(X) is typically a uniform distribution over [−1, 1], whose samples are refined via a noisy

gradient decent with step-size α over a sampling chain.

In order to train a hybrid generative and discriminative model, Joint Energy-based Model

(JEM) Grathwohl et al. (2020) reinterprets the standard softmax classifier as an EBM. In

particular, the logits fθ(X)[y] from a standard softmax classifier can be considered as an
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energy function over (X, y), where y is class label, and thus the joint density function of

(X, y) can be expressed as pθ(X, y) = efθ(X)[y]/Z(θ), where Z(θ) is an unknown normalizing

constant (regardless of X or y). Then the density of X can be derived by marginalizing

over y: pθ(X) =
∑

y pθ(X, y) =
∑

y e
fθ(X)[y]/Z(θ). Subsequently, the corresponding energy

function of X can be identified as

Eθ(X)=− log
∑
y

exp(fθ(X) [y])=−LSE(fθ(X)), (5.4)

where LSE(·) denotes the Log-Sum-Exp function.

To optimize the model parameter θ, JEM maximizes the logarithm of joint density func-

tion pθ(X, y):

log pθ(X, y) = log pθ(y|X) + log pθ(X), (5.5)

where the first term denotes the cross-entropy objective for classification, and the second

term can be optimized by the maximum likelihood learning of EBM as shown in Eq. (5.2).

Sharing the same objective function (5.5) with JEM, GDPNet optimizes a single PointNet

backbone for point cloud classification and generation. The overview of GDPNet is depicted

in Figure 5.2.

5.3.2 Sharpness-Aware Minimization

The direct extension of JEM to PointNet above does not perform very well as manifested

in our empirical studies (Tables 5.2, 5.3). In general, we notice two performance gaps of

GDPNet as compared to the standard PointNet classifier and state-of-the-art generative

approaches, i.e., a classification accuracy gap and a generation quality gap. We therefore
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Figure 5.2 Overview of GDPNet architecture. Following the design of JEM Grathwohl
et al. (2020), PointNet is leveraged for unordered point set feature extraction, and the
LogSumExp(·) of the logits from the softmax classifier can be re-used to define an energy
function of point cloud X, which leads to a hybrid generative and discriminative model with
the fake samples generated from the SGLD sampling. The model is optimized to perform
the classification and maximize the energy difference between fake and real samples.

investigate training techniques to bridge both gaps of GDPNet. In particular, we leverage

the Sharpness-Aware Minimization (SAM) Foret et al. (2021) to improve the generalization

of GDPNet.

SAM Foret et al. (2021) is a recently proposed optimization method that searches for

model parameters θ whose entire neighborhoods have uniformly low loss values by optimizing
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a minimax objective:

min
θ

max
∥ϵ∥2≤ρ

Ltrain(θ + ϵ) + λ∥θ∥22, (5.6)

where ρ is the radius of an L2-ball centered at model parameter θ, and λ is a hyperparameter

for L2 regularization on θ. To solve the inner maximization problem, SAM employs the

Taylor expansion to develop an efficient first-order approximation to the optimal ϵ∗ as:

ϵ̂(θ) = argmax
∥ϵ∥2≤ρ

Ltrain(θ) + ϵT∇θLtrain(θ)

= ρ∇θLtrain(θ)/∥∇θLtrain(θ)∥2, (5.7)

which is a scaled L2 normalized gradient at the current model parameters θ. After ϵ̂ is

determined, SAM updates θ based on the gradient ∇θLtrain(θ)|θ+ϵ̂(θ) + 2λθ at an updated

parameter location θ + ϵ̂.

We incorporate SAM into the original training pipeline of GDPNet in order to improve the

generalization of trained EBMs. Specifically, instead of the traditional maximum likelihood

training of objective (5.5), we optimize the joint density function in a minimax objective:

max
θ

min
∥ϵ∥2≤ρ

log p(θ+ϵ)(X, y)− λ∥θ∥22. (5.8)

For the outer maximization that involves log pθ(X), SGLD is again used to sample from

pθ(X) as in the original JEM.
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Algorithm 1 GDPNet training: Given network fθ, SGLD step-size α, SGLD noise σ, SGLD
steps K, replay buffer B, reinitialization frequency γ, SAM noise bound ρ, and learning rate
lr
1: while not converged do
2: Sample X+ and y from training dataset
3: Sample X̂0 ∼ B with probability 1− γ, else X̂0 ∼ p0(X)
4: for t = 1, 2, · · · , K do

5: X̂ t = X̂ t−1 − α · ∂E(X̂t−1)

∂X̂t−1
+ σ ·N(0, I)

6: end for
7: X− = StopGrad(X̂K)
8: Lgen(θ) = E(X+)− E(X−)
9: L(θ) = Lclf(θ) + Lgen(θ) with Lclf(θ) = xent(fθ(X

+), y)
10: # Apply SAM optimizer as follows:
11: Compute gradient ∇θL(θ) of the training loss
12: Compute ϵ̂(θ) with ρ as in Eq. (5.7)
13: Compute gradient g = ∇θL(θ)|θ+ ˆϵ(θ)

14: Update model parameters: θ = θ − lr · g
15: Add X− to B
16: end while

5.3.3 Smooth Activation Functions

We further study the effect of the activation function used in the energy function Eθ(X).

Zhao et al. (2021b) demonstrate that when data X is continuous, the smoothness of the ac-

tivation function will substantially affect the Langevin sampling process (because the deriva-

tive ∂Eθ(X)
∂X

is inside of Eq. 5.3). Therefore, employing an activation function with continuous

gradients everywhere can stabilize the sampling, while the non-smooth activation functions

like ReLU Nair & Hinton (2011) and LeakyReLU Maas et al. (2013) may cause the diver-

gence of EBM training. From our empirical studies, we have similar observations with the

details provided in the experiments.
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5.3.4 Training Algorithm

The pseudo-code of training GDPNet is provided in Algorithm 1, which follows a similar

design of JEM Grathwohl et al. (2020) and JEM++ Yang & Ji (2021) with a replay buffer.

For brevity, only one real sample and one generated sample are used to optimize the model

parameter θ. But it is straightforward to generalize the pseudo-code to a mini-batch setting,

which we use in our experiments. It is worth mentioning that we adopt the Informative

Initialization in JEM++ to initialize the Markov chain from p0(X), which enables batch

normalization Ioffe & Szegedy (2015b) in PointNet and plays a crucial role in the tradeoff

between the number of SGLD sampling steps K and overall performance, including the

classification accuracy and training stability.

5.4 Experiments

We evaluate the classification and generation performance of GDPNet in this section, and

compare it with standard PointNet classifier Qi et al. (2017a) and state-of-the-art generative

models, including PointFlow Yang et al. (2019a) and GPointNet Xie et al. (2021a). Ablation

studies are performed to illustrate the impacts of SAM and smooth activation functions

on the performance of GDPNet. Our source code is provided as a part of supplementary

materials.

5.4.1 Experimental Setup

Our experiments largely follow the setup of GPointNet Xie et al. (2021a), and evaluate

GDPNet for point cloud classification and generation on ModelNet10, which is a 10-category
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subset of ModelNet Wu et al. (2015a). We first create a dataset from ModelNet10 by

sampling 2,048 points uniformly from the mesh surface of each object and then scale the

point cloud features to the range of [-1, 1]. In contrast to GPointNet Xie et al. (2021a),

which trains 10 models to generate point clouds for 10 different categories of ModelNet10,

we train one single network to classify and generate point clouds for all 10 categories.

For a fair comparison with GPointNet, PointNet Qi et al. (2017a) is used as the backbone

network of our GDPNet. As discussed earlier, PointNet is permutation-invariant and thus

works well with unordered point sets. It first maps each point (i.e., 3-dimensional coordi-

nates) of a point cloud to a 1,024-dimensional feature vector by an MLP, then leverages an

average pooling layer to aggregate information from all the points to a 1,024-dimensional

global feature vector to represent the point cloud. A softmax layer is then appended at the

end of the network to yield the logits for the 10 categories, which are used for classification

and to calculate the energy score via an LSE(·) operator (Eq. 5.4).

Furthermore, GDPNet employs SAM Foret et al. (2021) to improve the generalization

of trained EBMs. In our experiments, we use Adam Kingma & Ba (2015) as the base

optimizer for SAM with an initial learning rate of 0.01, β1 = 0.9 and β2 = 0.999. We set

the learning rate decay multiplier to 0.2 for every 50 iterations. We adopt the informative

initialization of JEM++ Yang & Ji (2021) to initialize the Markov chain from p0(X). The

reinitialization frequency γ is set to 0.05, and the replay buffer size is set to 5000. With the

informative initialization, the number of SGLD sampling stepsK can be reduced significantly

as compared to that of GPointNet Xie et al. (2021a). In our experiments, we set K = 32
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with a step size α = 0.05. To mitigate the exploding gradients in the SGLD sampling, we

clip the gradient values to the range of [-1, 1] at each sampling step. We run 200 epochs for

training with a minibatch size of 128.

Model JSD (↓) MMD (↓) Coverage (↑)
CD EMD CD EMD

n
ig
h
t
st
an

d r-GAN 2.679 1.163 2.394 50.00 38.37
l-GAN 1.000 0.746 1.563 44.19 39.53
PointFlow 0.240 0.888 1.451 55.81 39.53
GPointNet 0.590 0.692 1.148 59.30 61.63
Ours 0.3771 0.886 1.369 54.83 59.30
Training Set 0.263 0.793 1.096 60.40 52.32

to
il
et

r-GAN 3.180 2.995 2.891 17.00 16.00
l-GAN 1.253 1.258 1.481 21.00 28.00
PointFlow 0.362 0.965 1.513 39.00 33.00
GPointNet 0.386 0.816 1.265 44.00 37.00
Ours 0.578 0.867 1.314 43.00 42.00
Training Set 0.249 0.823 1.116 48.00 51.00

m
o
n
it
or r-GAN 2.936 1.524 2.021 21.00 24.00

l-GAN 1.653 0.915 1.349 28.00 27.00
PointFlow 0.326 0.831 1.288 37.00 32.00
GPointNet 0.780 0.803 1.213 40.00 38.00
Ours 0.434 0.535 1.029 52.00 46.00
Training Set 0.283 0.554 0.938 48.00 53.00

ch
ai
r

r-GAN 2.772 1.709 2.164 23.00 28.00
l-GAN 1.358 1.419 1.480 23.00 26.00
PointFlow 0.278 0.965 1.322 42.00 51.00
GPointNet 0.563 0.889 1.280 56.00 57.00
Ours 0.387 0.909 1.361 44.00 50.00
Training Set 0.365 0.858 1.190 54.00 59.00

b
at
h
tu
b r-GAN 3.014 2.478 2.536 26.00 30.00

l-GAN 0.928 0.865 1.324 32.00 38.00
PointFlow 0.350 0.593 1.320 50.00 44.00
GPointNet 0.460 0.660 1.108 58.00 50.00
Ours 0.490 0.647 1.103 54.00 50.00
Training Set 0.344 0.652 0.980 56.00 52.00

Model JSD (↓) MMD (↓) Coverage (↑)
CD EMD CD EMD

so
fa

r-GAN 1.866 2.037 2.247 13.00 23.00
l-GAN 0.681 0.631 1.028 43.00 44.00
PointFlow 0.244 0.585 1.313 34.00 33.00
GPointNet 0.647 0.547 1.089 39.00 45.00
Ours 0.275 0.576 1.104 45.00 46.00
Training Set 0.185 0.467 0.904 56.00 56.00

b
ed

r-GAN 1.973 1.250 2.441 27.00 21.00
l-GAN 0.646 0.539 0.992 48.00 44.00
PointFlow 0.219 0.544 1.230 50.00 35.00
GPointNet 0.461 0.552 1.004 50.00 50.00
Ours 0.240 0.540 1.088 45.00 41.00
Training Set 0.169 0.516 0.927 57.00 55.00

ta
b
le

r-GAN 3.801 3.714 2.625 8.00 14.00
l-GAN 4.254 1.232 2.166 14.00 9.00
PointFlow 1.044 1.630 1.535 16.00 29.00
GPointNet 0.869 0.640 1.000 44.00 37.00
Ours 0.761 1.085 1.299 38.00 33.00
Training Set 0.703 1.218 1.182 31.00 38.00

d
es
k

r-GAN 3.575 2.712 3.678 22.09 22.09
l-GAN 2.233 1.139 2.345 38.37 25.58
PointFlow 0.327 1.254 1.548 38.37 46.51
GPointNet 0.454 1.223 1.567 56.98 52.33
Ours 0.512 1.077 1.486 55.81 50.51
Training Set 0.329 1.055 1.332 53.48 50.00

d
re
ss
er

r-GAN 1.726 1.299 1.675 36.05 30.23
l-GAN 0.648 0.642 1.010 45.35 43.02
PointFlow 0.270 0.715 1.349 46.51 37.21
GPointNet 0.457 0.485 0.988 53.49 52.33
Ours 0.440 0.708 1.125 48.88 49.53
Training Set 0.215 0.551 0.882 56.98 54.65

Table 5.1 Qualities of point cloud synthesis on ModelNet10 from different methods. In
contrast to the state-of-the-art generative approaches, GDPNet only trains a single network
to generate all the 10 categories of ModelNet10. ↓: the lower the better; ↑: the higher the
better. MMD-CD scores are multiplied by 100; MMD-EMD scores and JSDs are multiplied
by 10.

5.4.2 Evaluation Metrics

We adopt three evaluation metrics: Jensen-Shannon Divergence (JSD), Coverage (COV)

and Minimum Matching Distance (MMD) to evaluate the quality of generated point clouds.

These metrics are commonly used in prior works Achlioptas et al. (2018); Yang et al. (2019a);

Xie et al. (2021a) for point cloud quality evaluation. When evaluating COV and MMD, we



106

use Chamfer Distance (CD) and Earth Mover’s Distance (EMD) to measure the dissimilarity

between two point clouds, which are defined formally as follows:

CD(X, Y ) =
∑
x∈X

min
y∈Y

∥x− y∥22 +
∑
y∈Y

min
x∈X

∥x− y∥22,

EMD(X, Y ) = min
ϕ:X→Y

∑
x∈X

∥x− ϕ(x)∥2,

where X and Y are two point clouds with the same number of points and ϕ is a bijection

between them.

Jensen-Shannon Divergence (JSD) is a symmetrized Kullback-Leibler divergence

between two marginal point distributions:

JSD(Pg, Pr) =
1

2
DKL(Pr||M) +

1

2
DKL(Pg||M) ,

where M = 1
2
(Pr + Pg), Pr and Pg are marginal distributions of points in the reference and

generated sets, approximated by discretizing the space into 283 voxels and assigning each

point to one of them.

Coverage (COV) measures the fraction of point clouds in the reference set that are

matched to at least one point cloud in the generated set. For each point cloud in the

generated set, its nearest neighbor in the reference set is marked as a match:

COV(Sg, Sr) =
|{argminY ∈Sr

D(X, Y )|X ∈ Sg}|
|Sr|

,
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Method JSD (↓) MMD (↓) Coverage (↑)
CD EMD CD EMD

Night Stand
ReLU 0.487 0.911 1.320 43.02 47.67
CELU 0.368 0.867 1.311 53.48 54.65
CELU + SAM 0.377 0.886 1.369 54.83 59.30

Toilet
ReLU 0.581 1.022 1.478 31.00 42.00
CELU 0.546 0.941 1.380 32.00 37.00
CELU + SAM 0.578 0.867 1.314 43.00 42.00

Monitor
ReLU 0.410 0.692 1.261 45.00 46.00
CELU 0.389 0.571 1.085 46.00 44.00
CELU + SAM 0.434 0.535 1.029 52.00 46.00

Chair
ReLU 0.449 0.916 1.495 44.00 46.00
CeLU 0.363 0.8541 1.316 45.00 51.00
CELU + SAM 0.387 0.909 1.361 44.00 50.00

Table 5.2 The impacts of SAM and activation functions on the qualities of generated point
clouds by GDPNet. ↓: the lower the better; ↑: the higher the better. MMD-CD scores are
multiplied by 100; MMD-EMD scores and JSDs are multiplied by 10.

where D(·, ·) can be either CD or EMD.

Minimum Matching Distance (MMD) is proposed to complement coverage to mea-

sure the quality of generated point clouds. For each point cloud in the reference set, the

distance to its nearest neighbor in the generated set is computed and averaged:

MMD(Sg, Sr) =
1

|Sr|
∑
Y ∈Sr

min
X∈Sg

D(X, Y ).

5.4.3 Results of Point Cloud Generation

We compare the generative performance of GDPNet with four baseline generative approaches:

l-GAN Achlioptas et al. (2018), r-GAN Achlioptas et al. (2018), PointFlow Yang et al.

(2019a) and GPointNet Xie et al. (2021a), and the results are reported in Table 5.1. It can

be observed that GDPNet achieves a competitive generative performance as compared to the

state-of-the-art results of PointFlow and GPointNet even though our method only employs a

single network to generate point clouds from 10 different categories of ModelNet10 1. For the

1Let alone our GDPNet can also classify point cloud directly with an accuracy of 92.8%.
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Figure 5.3 Sample point clouds generated by GDPNet. Each row corresponds to one category.
The first column is a sample from ModelNet10 training set, and the rest of the columns are
synthesized point clouds generated via SGLD.

generation of ”monitor”, GDPNet achieves an even better result than that of GPointNet,

while being competitive with GPointNet for the rest of the categories. As shown in Fig-

ure 5.1, GPDNet can learn the complex distributions among all the categories and generate

point clouds of each category with diverse styles. It also can generate point clouds that have
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Ours

GPointNet

Training set

Figure 5.4 Sample point clouds generated by GPointNet Xie et al. (2021a) and GDPNet.
Our GDPNet generates chairs with more diverse styles, while GPointNet generates chairs
with better details on the four legs.

features from multiple categories, such as a toilet-like chair. This is because toilet and chair

share some similar features, and GDPNet can generate samples that interpolate between

them.

Figure 5.3 provides more sample point clouds generated by GDPNet for categories of

”chair”, ”toilet”, ”table”, ”bathtub”, ”bed” and ”night stand”. These samples are selected

when the GDPNet classifier has a classification confidence over 90%. Not surprisingly, the

generated samples for each category are exactly as GDPNet predicted, which also indicates

an accurate classification of GDPNet. The results in Figure 5.3 show that GDPNet can

learn the complex point distribution to generate quality point cloud samples. For ”chair”

and ”table”, the details of four legs are captured by our model, and the ”bathtub” samples
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are as good as training samples, while the toilet samples are also decent. As for ”night

stand”, whose shape is much more complex, the generated samples can still capture parts of

the object features. We also used the official GPointNet checkpoint for the chair category to

generate 1,000 samples, from which we selected some high-quality ones and compare them

with the samples from our GDPNet. It can be observed from Figure 5.4 that GDPNet can

generate chairs with more diverse styles, while GPointNet generates chairs with better details

on the four legs. As a result, GDPNet has a slightly lower evaluation value on ”chair” as

reported in Table 5.1.

As for model complexity, GDPNet has a 1/10 model size of GPointNet since GDPNet

only trains one single network to generate point clouds for all the 10 categories, which is a

significant advantage of our method as compared to other generative approaches. For models

based on VAEs or GANs, their model sizes are even larger than that of GPointNet as they

need auxiliary networks for training.

5.4.4 Ablation Studies

We study the impacts of SAM and the activation functions on the performance of GDPNet

for point cloud classification and generation, respectively.

Point cloud generation Table 5.2 reports the impacts of SAM and activation func-

tions to the generative performance of GDPNet. By replacing the popular ReLU activation

function Nair & Hinton (2011) with CELU Barron (2017), a continuously differentiable ex-

ponential linear unit, GDPNet achieves notable quality gains in generating point clouds

of different categories. This observation is consistent with that of Zhao et al. (2021b)
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who demonstrate that the smoothness of the activation functions substantially improves the

SGLD sampling process and thus the synthesis quality. Table 5.2 also shows that incorpo-

rating SAM to GDPNet does not improve the synthesis quality consistently. However, from

our experiments, we find that SAM facilitates the convergence of the model, stabilizes the

training of GDPNet, and improves the classification accuracy as shown in the experiments

below.

Point cloud classification Table 5.3 reports the impacts of SAM and the activation

functions on the classification performance of GDPNet. It can be observed that without

SAM and CELU activation function, GDPNet has a non-competitive classification accuracy

of 90.7% as compared to the standard PointNet classifier, which achieves a 92.8% accuracy.

Incorporating SAM into GDPNet significantly improves the classification accuracy (92.8%),

which matches with that of the standard PointNet classifier. Replacing CELU by ReLU in

GDPNet does not affect the classification accuracy much (92.9% vs. 92.8%), but GDPNet

with CELU achieves the best synthesis quality as shown in Table 5.2. Therefore, GDP-

Net with SAM and CELU bridges both the classification accuracy gap and the synthesis

quality gap as compared to the standard PointNet classifier and state-of-the-art generative

approaches.

It is worth mentioning that even though l-GAN Achlioptas et al. (2018), PointFlow Yang

et al. (2019a) and GPointNet Xie et al. (2021a) achieve better classification accuracies as

reported in Table 5.3. They can not classify point clouds directly since they are generative

models. Specifically, to classify point clouds with GPointNet Xie et al. (2021a), an one-
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versus-all SVM classifier needs to be trained on the extracted features of GPointNet and the

class labels. A similar procedure has also been used by l-GAN and PointFlow for classifica-

tion. In contrast, GDPNet does not need any extra training step for classification, which is

another significant advantage of GDPNet as compared to these generative approaches.

Method Accuracy
l-GAN∗ Achlioptas et al. (2018) 95.4%
PointFlow∗ Yang et al. (2019a) 93.7%
GPointNet∗ Xie et al. (2021a) 93.7%
PointNet Qi et al. (2017a) 92.8%
GDPNet w/ ReLU - SAM 90.7%
GDPNet w/ ReLU 92.9%
GDPNet - SAM 90.3%
GDPNet 92.8%

Table 5.3 Point cloud classification accuracies on ModelNet10. * denotes the method needs
to train an SVM classifier on the extracted features for classification.

5.5 Conclusion

This chapter introduces GDPNet, a hybrid generative and discriminative model for point

clouds, that is based on joint energy-based models. GDPNet further leverages SAM and

CELU activation function to bridge the classification accuracy gap and the generation quality

gap to the standard PointNet classifier and state-of-the-art generative models. Compared

to prior generative models of point clouds, GDPNet only trains a single compact network to

classify and generate point clouds of all categories. Experiments demonstrate our GDPNet

retains strong discriminative power of modern PointNet classifiers, while generating point

cloud samples rivaling state-of-the-art generative approaches. To the best of our knowledge,

GDPNet is the first hybrid generative and discriminative model for point clouds.
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CHAPTER 6

Conclusion

This dissertation revolves around the exploration of graph neural networks (GNNs) and the

analysis of 3D point clouds, with a specific emphasis on sparsification, classification and

generative.

Chapter 2: Sparse Graph Attention Networks (SGAT): we introduce Sparse Graph At-

tention Networks (SGAT), seamlessly integrating a sparse attention mechanism into graph

attention networks (GATs) through innovative L0 -norm regularization. SGAT not only

effectively eliminates noisy edges but also exhibits exceptional capabilities in edge removal.

It achieves reductions of 50%-80% on large graphs without compromising performance on

assortative graphs, simultaneously enhancing performance on disassortative graphs.

Chapters 3 and 4: Point Cloud Sampling Approaches: these two chapters present both

autoregressive and non-autoregressive approaches for task-oriented point cloud sampling.

APSNet employs a sequential autoregressive generation with a novel LSTM-based sequen-

tial model for sampling and achieves optimal performance with only 8 out of 1024 points,

tailoring the sampling process for downstream tasks like 3D point cloud classification, recon-

struction, and registration. PTSNet, a point transformer, enhances performance by lever-

aging a global representation of the point cloud and a transformer-based dynamic query

generator. This addresses issues such as gradient vanishing and reduces duplicate samples

compared to LSTM-based methods.

Chapter 5: Hybrid Generative and Discriminative PointNet (GDPNet): In this chapter,
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we introduce GDPNet, a hybrid Generative and Discriminative PointNet. An extension of

the Joint Energy-based Model (JEM), GDPNet seamlessly integrates the robust discrimina-

tive power of modern PointNet classifiers with the generation of point cloud samples rivaling

state-of-the-art approaches.
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