
Citation: Cebro-Márquez, M.;

Rodríguez-Mañero, M.;

Serrano-Cruz, V.; Vilar-Sánchez, M.E.;

González-Melchor, L.; García-Seara,

J.; Martínez-Sande, J.L.; Aragón-

Herrera, A.; Martínez-Monzonís,

M.A.; González-Juanatey, J.R.; et al.

Plasma miR-486-5p Expression Is

Upregulated in Atrial Fibrillation

Patients with Broader Low-Voltage

Areas. Int. J. Mol. Sci. 2023, 24, 15248.

https://doi.org/10.3390/

ijms242015248

Academic Editor: Claudia Kusmic

Received: 6 September 2023

Revised: 13 October 2023

Accepted: 15 October 2023

Published: 17 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Plasma miR-486-5p Expression Is Upregulated in Atrial
Fibrillation Patients with Broader Low-Voltage Areas
María Cebro-Márquez 1,2,3,†, Moisés Rodríguez-Mañero 2,3,†, Valentina Serrano-Cruz 1,2 ,
Marta E. Vilar-Sánchez 1,2, Laila González-Melchor 2 , Javier García-Seara 2,3, José Luis Martínez-Sande 2,3,
Alana Aragón-Herrera 2,3,4 , María Amparo Martínez-Monzonís 2,3, José Ramón González-Juanatey 2,3 ,
Ricardo Lage 1,2,3,5,* and Isabel Moscoso 1,2,3,*

1 Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS),
Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de
Compostela, 15782 Santiago de Compostela, Spain; maria.cebro.marquez@usc.es (M.C.-M.);
valentina.serrano@rai.usc.gal (V.S.-C.); marta.vilar.sanchez@rai.usc.es (M.E.V.-S.)

2 Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de
Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela,
15706 Santiago de Compostela, Spain; moises.rodriguez.manero@sergas.es (M.R.-M.);
laila.gonzalez.melchor@sergas.es (L.G.-M.); javier.garcia.seara@sergas.es (J.G.-S.);
jose.luis.martinez.sande@sergas.es (J.L.M.-S.); alana.aragon.herrera@sergas.es (A.A.-H.);
maria.amparo.martinez.monzonis@sergas.es (M.A.M.-M.); jose.ramon.gonzalez.juanatey@sergas.es (J.R.G.-J.)

3 Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV),
28029 Madrid, Spain

4 Cellular and Molecular Cardiology Research Unit, Instituto de Investigación Sanitaria de Santiago de
Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela,
15706 Santiago de Compostela, Spain

5 Department of Biochemistry and Molecular Biology, Faculty of Medicine, Instituto de Investigación Sanitaria
de Santiago de Compostela (IDIS), University of Santiago de Compostela,
15782 Santiago de Compostela, Spain

* Correspondence: ricardo.lage@usc.es (R.L.); isabel.moscoso@usc.es (I.M.); Tel.: +34-881-815-409 (R.L. & I.M.)
† These authors contributed equally to this work.

Abstract: Atrial fibrillation (AF) is the most common arrhythmia worldwide, affecting 1% of the
population over 60 years old. The incidence and prevalence of AF are increasing globally, representing
a relevant health problem, suggesting that more advanced strategies for predicting risk stage are
highly needed. miRNAs mediate several processes involved in AF. Our aim was to identify miRNAs
with a prognostic value as biomarkers in patients referred for AF ablation and its association with
LVA extent, based on low-voltage area (LVA) maps. In this study, we recruited 44 AF patients
referred for catheter ablation. We measured the expression of 84 miRNAs in plasma from peripheral
blood in 3 different groups based on LVA extent. Expression analysis showed that miR-486-5p was
significantly increased in patients with broader LVA (4-fold, p = 0.0002; 5-fold, p = 0.0001). Receiver
operating characteristic curve analysis showed that miR-486-5p expression could predict atrium LVA
(AUC, 0.8958; p = 0.0015). Also, miR-486-5p plasma levels were associated with AF-type (AUC, 0.7137;
p = 0.0453). In addition, miR-486-5p expression was positively correlated with LVA percentage, left
atrial (LA) area, and LA volume (r = 0.322, p = 0.037; r = 0.372, p = 0.015; r = 0.319, p = 0.045,
respectively). These findings suggest that miR-486-5p expression might have prognostic significance
in LVA extent in patients with AF.

Keywords: atrial fibrillation; microRNAs; low-voltage areas; biomarkers; miR-486-5p

1. Introduction

Atrial fibrillation (AF) is the most common heart rhythm disorder. It affects approxi-
mately 1% of the population over 60 years of age and can affect 10% of the population over
75 years of age; thus, AF incidence increases with age. The incidence and prevalence of AF
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are increasing globally, representing a relevant health problem since it highly increases the
risk of death in those who suffer AF; in addition, AF contributes to a significant increase
in health costs [1]. In recent years, it has been reported that ablation treatment success in
paroxysmal AF patients is about 80% after 5 years, decreasing to 60% after 10 years [2]. In
persistent AF, ablation success is about 25% after a single procedure and 68% after multiple
procedures, after approximately 7 years [2]. Atrial structural remodeling has been recog-
nized to contribute to the perpetuation of AF [3]. Atrial structural remodeling is related to
changes in cellular organelles, cells, and tissue. Characterized via atrial stretch and atrial
dilation, both processes increase arrhythmias by increasing cellular hypertrophy, fibroblast
proliferation, and tissue fibrosis [4,5]. Nevertheless, AF recurrence after ablation is highly
correlated with previous atrial remodeling [5]. Atrial fibrosis can possibly be estimated
via an electroanatomic mapping (EAM) system [6], combining electrophysiological data
with anatomical information for the construction of 3D endocardial maps [7,8], thereby
becoming an essential tool to assess the underlying substrate for the presence of low-voltage
areas (LVAs) at the time of the ablation [9]. LVAs have been described both in paroxysmal
and persistent AF, hypothesizing that LVAs are not necessarily related to AF duration [10].
Therefore, it is important to identify new indicators that allow the establishment of new
risk scores and AF management beyond the type of AF since underlying mechanisms
are not fully understood [11]. Recent research has suggested that microRNAs (miRNAs)
might play a role in the pathogenesis of AF [12]. Current data suggest that the increased
characterization and correlation of fibrosis degree, DNA, and circulating miRNA profiles
might serve to establish a predictive risk score [11,13]. The identification of non-invasive
biomarkers that allow for establishing the fibrosis degree in the atrium and that help to
determine ablation procedures and the treatment of patients would provide a great benefit
in clinical practice; moreover, they could potentially represent treatment targets [12,14–16].

In this study, we aimed to identify miRNAs with a prognostic value as biomarkers in
consecutive patients referred for AF ablation. Additionally, we evaluated if miRNA expres-
sion is also associated with LVA extent (used as a surrogate marker for atrial fibrosis), based
on LVA maps, and the possible mechanisms that can contribute to AF pathophysiology.

2. Results
2.1. Characteristics of AF Cohort

The demographic, clinical, and treatment characteristics of the participants are shown
in Table 1. A total of 44 AF patients were included in the study. There was no significant
difference between groups in age, gender, BMI, diabetes, hypertension, and smoking. The
AF groups were based on the extent of LVA (used as a surrogate marker for atrial fibrosis
from LVA maps), and 32% of patients did not present any LVA. Only a minority of patients
(<10%) underwent AF mapping since the cardioversion did not restore sinus rhythm. There
were statistical differences in angiotensin-receptor blocker and DHP Ca channel blocker
treatments, triglycerides levels, and echocardiographic parameters, such as LA volume, left
ventricular end-diastolic volume, left ventricular end-systolic volume, epicardial fat tissue
volume, and heart rate; no differences were found in antiarrhythmic drug therapy (Table 1).

2.2. Different Expression of microRNAs with LVA in AF Patients

Plasma expression profiles for a panel of 84 miRNAs showed that miRNAs levels
were differentially regulated according to LVA percentage groups in peripheral blood. The
expression levels of miRNAs—hsa-let-7b-5p, hsa-miR-320a, and hsa-miR-486-5p—were
increased in patients with higher LVA percentages (Figure 1a).

The area under curve data showed that only hsa-miR-486-5p may be a good predictor
of LVA percentage in patients in Stages 1 and 3 in plasma from peripheral blood (Figure 1b
and Supplementary Table S1).
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Table 1. Clinical parameters. Data are presented as mean + IQR or SD, % (n).

Parameter
Total All Patients

n = 44 Stage 1 (n = 18) Stage 2 (n = 18) Stage 3 (n = 8)

Age (years) 58.6 (62.5–54.8) 56.3 (60.4–52.1) 58.7 (62.9–54.5) 66.8 (73.6–59.9)

Male 31 (70.5%) 14 (73.7%) 13 (72.2%) 4 (50%)

BMI 29.2 (31.3–28.2) 29.6 (32.2–27.1) 29.8 (31.9–27.7) 30.0 (35.7–24.3)

Pre-existing Conditions

Hypertension 25 (56.8%) 8 (44.4%) 11 (61.1%) 6 (75%)

Diabetes 7 (15.9%) 1 (5.5%) 3 (16.6%) 3 (37.5%)

Smoking 14 (31.8%) 6 (33.3%) 6 (33.3%) 2 (33.3%)

LVA % 24.7 (32.9–16.5) 0.4 (0.9–0) 28.3 (32.4–24.2) *** 71.1 (85.6–56.7) ***,###

Statines 21 (47.7%) 8 (44.4%) 7 (38.8%) 6 (75%)

ACEi 11 (25%) 5 (27.7%) 6 (33.3%) 0 (0%)

ARB 12 (27.3%) 2 (11.1%) 4 (22.2%) 6 (75%) **,##

DHP Ca channel blockers 5 (11.4%) 1 (5.5%) 1 (5.5%) 3 (37.5%) *,#

Acenocoumarol 18 (40.9%) 6 (33.3%) 8 (44.4%) 4 (50%)

NOAG 26 (59.1%) 12 (66.6%) 10 (55.5%) 4 (50%)

Class I ADT 15 (34.1%) 9 (50%) 4 (22.2%) 2 (33.3%)

Class II ADT 34 (77.3%) 15 (83.3%) 12 (66.6%) 7 (87.5%)

Class III ADT 13 (29.6%) 3 (16.7%) 8 (44.4%) 2 (33.3%)

Class IV ADT 4 (9.1%) 1 (5.6%) 2 (11.1%) 1 (16.6%)

Cholesterol 187.1 ± 43.2 185.7 ± 33.4 189.4 ± 55.4 184.9 ± 34.1

LDLc 108.9 ± 32.5 113.5 ± 26.6 106.4 ± 43.7 103.9 ± 15.2

HDLc 53.4 (59.2–47.5) 51.5 (62.8–40.2) 52.1 (60.6–43.7) 59.9 (73.7–46.0)

TG 121.7 (137.8–105.5) 127.0 (147.0–107.0) 123.8 (157.5–90.0) 105.6 (137.7–73.6) **,#

FA type

Paroxysmal 13 (29.5%) 8 (44.4%) 4 (22.2%) 1 (16.6%)

Persistent 18 (40.9%) 7 (38.8%) 8 (44.4%) 3 (37.5%)

Long-standing persistent 13 (29.5%) 3 (16.6%) 6 (33.3%) 4 (50%)

Echocardiographic Parameters

LVEF (%) 59.8 (62.4–55.9) 59.8 (64.7–55.0) 58.3 (64.8–52.4) 59.8 (66.7–55.1)

LA Area (cm2) 18.7 (21.3–17.7) 18.2 (21.4–15.0) 19.7 (22.6–16.7) 22.0 (26.2–17.8)

LA Vol (mL) 86.5 (104.2–76.4) 83.7 (110.5–56.9) 89.3 (109.8–68.9) 108.7 (135.0–82.5) **,#

LVEDV (mL) 64.7 (74.4–52.7) 58.7 (72.9–44.5) 77.3 (99.1–55.4) ** 43.0 (55.4–30.6) ###

LVESV (mL) 25.3 (31.3–19.1) 22.4 (27.9–16.9) 32.1 (46.4–17.8) 15.8 (20.9–10.8) #

LVTDD (mm) 40.4 (43.3–37.6) 39.7 (43.2–36.2) 43.9 (49.3–38.5) 34.5 (42.5–26.5)

LVTSD (mm) 27.8 (30.2–25.9) 28.4 (31.9–25.0) 29.5 (33.3–25.7) 23.8 (27.3–20.4)

EAT Vol (mL) 81 (99.3–62.7) 65.2 (78.5–51.9) 101.4 (141.2–61.7) *** 78.9 (155.7–2.1) #

ECG Parameters

HR 74.3 (80–67.1) 78.7 (92.4–65.1) 66.8 (73.0–60.7) * 77.3 (93.2–61.3)

PR 159.1 ± 25.0 148.8 ± 26.6 164.0 ± 25.3 165.5 ± 7.8

QRS 94.7 (98.7–91.1) 92.6 (97.1–88.0) 96.3 (102.1–90.6) 96.8 (113.7–79.8)

BMI—body mass index; ACEi—angiotensin-converting enzyme inhibitor; ARB—angiotensin receptor blocker;
DHP Ca channel blockers—Dihydropyridine calcium channel blockers; NOAG—new oral anticoagulants;
ADT—antiarrhythmic drug therapy (Class I: flecainide, propafenone; Class II: beta-blockers; Class III: sotalol,
amiodarone, dronedarone; Class IV: calcium antagonist); LDL—low-density lipoprotein cholesterol; HDL—high-
density lipoprotein cholesterol, TG—triglyceride; LVEF (%)—left ventricular ejection fraction; LA Area—left
atrium area; LA Vol—left atrium volume; LVEDV—left ventricular end-diastolic volume; LVESV—left ventricular
end-systolic volume; LVTDD—left ventricle telediastolic diameter; LVTSD—left ventricle telesystolic diame-
ter; EAT Vol—epicardial fat tissue volume; HR—heart rate; PR—PR interval; QRS—QRS duration. * p < 0.05,
** p < 0.01, *** p < 0.001 vs. Stage 1; # p < 0.05, ## p < 0.01, ### p < 0.001 vs. Stage 2.
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Figure 1. (a) Differential expression levels of miRNAs in AF patients between groups in plasma
from peripheral blood. (b) Predictive capacity of LVA stage. Receiver operating characteristic curves
comparing sensitivity and specificity of plasma from peripheral blood differentially expressed miR-
486-5p in predicting LVA percentage. Data are presented as mean± S.E.M. *** p < 0.001 vs. Stage 1
and ### p < 0.01 vs. Stage 2.

2.3. Different Expression of microRNAs with AF Type

Regarding miRNA profile based on AF type, first, we found an association between
LVA percentage and AF type (Figure 2a,b), resulting in long-standing persistent (LS persis-
tent) patients with broader LVA.
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Figure 2. Association between LVA percentage and AF type. (a) LVA percentage in paroxysmal, per-
sistent, and LS persistent patients. (b) Receiver operating characteristic curve comparing sensitivity
and specificity of LVA in paroxysmal and LS persistent patients. Data are presented as mean± S.E.M.
* p< 0.05 vs. paroxysmal.

Our data also showed that hsa-let-7b-5p and hsa-miR-486-5p were differently ex-
pressed depending on AF type (Figure 3a). The area under curve data showed that hsa-
miR-486-5p may be a predictor of AF type for persistent vs. long-standing persistent
patients in plasma from peripheral blood (Figure 3b and Supplemental Table S2).
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Figure 3. (a) Differential expression of miRNAs in paroxysmal, persistent, and long-standing per-
sistent AF patients in plasma from peripheral blood. (b) Predictive capacity of AF type. Receiver
operating characteristic (ROC) curves comparing sensitivity and specificity of hsa-miR-486-5p dif-
ferentially expressed in persistent and long-standing persistent patients in plasma from peripheral
blood. Data are presented as mean± S.E.M. * p < 0.05, *** p < 0.001 vs. paroxysmal and, ### p < 0.001
vs. persistent.

2.4. MicroRNA Correlation with Clinical Data

Correlation analysis revealed that miR-486-5p expression was positively correlated
with LVA percentage (Figure 4a), LA area (Figure 4b), and LA volume (Figure 4c).
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Figure 4. Correlation of has-miR-486-5p expression with echocardiography data. (a) Correlation with
LVA percentage. (b) Correlation with LA area. (c) Correlation with LA volume.

2.5. KEGG Pathways and Prediction Targets

Regulated miR-486-5p was predicted to target multiple genes involved in several
pathways related to cardiovascular diseases. The KEGG analysis included pathways
that are related to the AGE-RAGE signaling pathway in diabetic complications; cellular
senescence; valine, leucine, and isoleucine degradation; propanoate metabolism; FoxO; p53;
TGF-beta; AMPK; Insulin; signaling pathways regulating the pluripotency of stem cells;
mTOR; and focal adhesion signaling pathways (Figure 5).
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3. Discussion

Atrial fibrosis is a common pathological feature of AF, characterized by the excessive
deposition of extracellular matrix proteins, such as collagen and fibronectin, within the
atrial tissue; this fibrosis can contribute to the initiation and maintenance of AF by promot-
ing conduction abnormalities, electrical remodeling, and structural changes in the atrial
tissue [4]. Our study tries to elucidate whether the expression profiles of miRNAs could
have prognostic significance in LVA extent in patients with AF. The DECAAF study inves-
tigated the use of delayed-enhancement cardiac magnetic resonance imaging (DE-CMR)
to predict the recurrence of AF after catheter ablation. The study found that patients with
high levels of fibrosis in the LA, as detected by DE-CMR, were more likely to experience
recurrent AF after catheter ablation compared to patients with low levels of fibrosis [17].
Based on the DECAAF study, we have established three groups of patients taking into
account the extent of LVA, as determined via EAM (Stages 1–3). After miRNA circulating
profile analysis, we found that miR-486-5p is overexpressed in patients with higher LVA
extent. Receiver operating characteristic curve data show that only hsa-miR-486-5p is a
good predictor of LVA extent and is a good biomarker for prognostic patient stratification.
Furthermore, LVA percentage, LA area, and LA volume are positively correlated with miR-
486-5p expression. Regarding AF type, miR-486-5p is also overexpressed in long-standing
persistent AF patients compared to paroxysmal or persistent AF patients; also, receiver
operating characteristic curve analysis demonstrates that miR-486-5p is a good predictor
of AF type. In this sense, another study found a significant correlation between miR-21
serum concentration and the extent of LVA detected in the LA, but only persistent AF
patients were included, and less extreme LVAs were selected to stratify the groups of AF
patients [13].

It has been previously reported that miR-486-5p also plays a role in regulating the
expression of genes that are involved in electrical conduction and structural heart remod-
eling [18]. Several studies have shown that miR-486-5p is upregulated in patients with
AF [19–21] and arrhythmias [22] and is also associated with a greater risk of developing
AF [23]. Besides its role in AF development, miR-486-5p has also been implicated in the
formation of scar tissue in the heart. Several studies have shown that miR-486-5p expres-
sion is upregulated in patients with cardiac fibrosis, and that higher levels of miR-486-5p
are associated with a greater degree of fibrosis [24,25]. This suggests that miR-486-5p may
be involved in the regulation of fibrotic processes in the heart. Mun et al. [21] found that
miR-486 is highly expressed in patients with persistent AF compared with supraventricu-
lar tachycardia patients. miR-486-5p association with arrhythmias was demonstrated by
Li et al. [22], who showed that it is overexpressed in patients who experienced arrhyth-
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mias, and it is related to sinoatrial node function depression. Other studies found that in
LA tissue, miR-486-5p is upregulated in AF patients compared to sinus rhythm controls,
and this is related to the fact that it induces the accumulation of superoxide anion, DNA
damage, and reduced cell proliferation, contributing to a senescent phenotype in human
fibroblasts [20]. Additionally, Wang et al. [19] found that miR-486-5p is elevated in the
LA in patients with non-valvular paroxysmal AF. Thus, it has been demonstrated that
persistent patients showed more fibrosis in the LA than paroxysmal patients, presenting
2- to 3-fold more fibrosis than non-AF patients, showing a significant correlation between
fibrosis and AF severity, in which long-standing persistent patients presented more fibrosis
than paroxysmal AF patients, which is also consistent with our results [26]. Furthermore,
in studies performed on explanted human atria, both MRI and histology studies showed
significant fibrosis in both atria in AF patients; these data suggest that fibrosis highly
correlates with AF and also plays a significant role in AF maintenance [27]. However, our
results showed that miR-486-5p expression correlates with LVA percentage, LA area, and
LA volume. Particularly, patients with persistent AF exhibit larger LA diameters than
supraventricular tachycardia patients, suggesting that miR-486 expression could present
LA enlargement [21].

Targeting analysis showed that dysregulated genes, targeted by miR-486-5p, could
be involved in AF maintenance and fibrosis, supporting our results (Figure 6). miR-
486 regulates Pim-1, a kinase protein that phosphorylates cTnI, with both colocalized in
cardiomyocytes. Pim-1 phosphorylates cTnI and, in myocyte contraction, when cTnI is
phosphorylated, misses its sensibility for calcium, producing muscle fiber relaxation [28].
Pim-1 may be downregulated in AF patients through miR-485-5p overexpression, leading
to the maintenance of the contraction when cTnI phosphorylation is reduced [29]. However,
according to the mechanisms of AF maintenance, miR-485-5p targets PCCA. In a PCCA
knockout murine model, cardiac dysfunction was associated with lower systolic Ca2+

release, impairment in the sarcoplasmic reticulum Ca2+ load, and decreased Ca2+ re-uptake
via SERCA2a. These abnormalities are common in atrial cardiomyocytes of AF patients.
In addition, it was reported that mutations in the PCCA gene were related to long QT
syndrome, which is often associated with FA [30]. The CADM1 target gene may also be
implicated in AF fibrosis via miR-486 overexpression. STAT3 is increased in activated
fibroblast and fibrosis tissue. CADM1 expression is decreased in cardiac fibrosis tissue and
fibroblast and may regulate STAT3 controlling cellular proliferation and, therefore, cardiac
fibrosis development [31].

In summary, miR-486-5p and its targeted genes have been implicated in the patho-
physiology of AF and the formation of scar tissue in the heart. Higher levels of miR-486-5p
are associated with a greater risk of developing AF and a greater degree of cardiac fibrosis,
which can contribute to impaired cardiac function.

Limitations

This study has some limitations that need to be taken into account at the time of
data interpretation. Firstly, and very importantly, this study was conducted with a small
sample size in a single center. Thus, the expression of miR-486-5p needs to be validated
in a larger sample size. One of the limitations of our study is that it is a non-randomized
retrospective study. In addition, 16% of our patients had already undergone pulmonary
vein ablation. Patients with radiofrequency lesions beyond the pulmonary veins were not
included in the analysis because they may interfere with the level of myopathy determined
via electroanatomic voltage mapping. Thus, the quantification of the LVA percentage
was performed outside the pulmonary veins, so this does not influence the conclusions
of this study. Spontaneous low-voltage regions are a surrogate marker for atrial fibrosis,
but histological validation is missing. The spatial distribution and extent of LVZ depend
largely on spontaneous rhythm and the site and frequency of atrial pacing, as well as the
mapping catheter and interelectrode distance. However, all our patients were mapped
in spontaneous rhythm without pacing, using catheters with the same electrode size,
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interelectrode distance, and automatic acquisition setting validated in our previous studies.
Multipolar catheters may be prone to suboptimal contact in several LA regions. The
definition of the total LA surface area may not be in line with previous studies since, for
the present analysis, it was defined as the LA body area without the PV antrum regions,
LA appendage orifice, and mitral valve. Although it is our belief that it should not alter
the conclusions of this study (regarding the amount of LVA), our conclusions should be
interpreted under this definition. To conclude, the temporal pattern and intermittent ECG
monitoring determined the AF burden, although this did not really correspond to long-term
ECG monitoring.
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4. Materials and Methods
4.1. Patients

We included consecutive AF patients referred for pulmonary vein ablation despite
having optimal pharmacological therapy at the University Clinical Hospital of Santiago
de Compostela. The exclusion criteria were age under 18 years, any latent infectious
condition, and pregnancy, and there was no history of malignant chronic kidney disease
or osteoarthritis present. Patients with radiofrequency lesions beyond the pulmonary
veins were not included in the analysis because they might interfere with the level of
myopathy determined via electroanatomic voltage mapping. Due to the fact that previous
radiofrequency ablation beyond the pulmonary veins generates areas of low voltage at the
time of the EAM, patients with previous AF ablation outside the pulmonary veins were
excluded from the analysis. Also, patients with paroxysmal, persistent, and long-standing
persistent were included. Antiarrhythmic drug therapy (ADT) was continued during the
blanking period (defined as 3 months after ablation), and after this period, only ADT was
restarted in case of recurrence. This study complies with the Declaration of Helsinki and
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was approved by the Clinical Research Ethics Committee of Galicia (MRM-miRAF-2017-01).
All of the patients signed informed consent.

4.2. AF Assessment

AF was classified, according to the American Heart Association and American College
of Cardiology, as paroxysmal (intermittent in nature, terminating spontaneously or within
7 days of treatment); persistent (failure to terminate in 7 days); long-standing persistent
(lasting for more than 12 months) [32].

In all patients, AF was recorded using a 12-lead electrocardiogram (ECG) within
the 6-month period before ablation. Computed tomography (CT) or magnetic resonance
imaging (MRI) was routinely performed and used to guide the manipulation of the catheter
at the time of the procedure.

4.3. Surgery Intervention and Sample Collection

As previously described by López-Canoa et al. [33], patients were submitted to a
night of fasting. Firstly, only before the ablation procedure, a peripheral blood sample was
obtained using an 18-G butterfly cannula with a two-syringe technique from an ante-cubital
vein; the first 5 mL was discarded, and the second 5 mL was collected. Blood samples
from peripheral blood were collected in EDTA tubes. After collection, blood samples were
placed on ice. Blood samples were centrifuged, and the plasma or whole blood was stored
at −80 ◦C until the subsequent test.

4.4. Ablation, Acquisition of Electroanatomical Voltage Maps, and Patient Follow-Up

All procedures were performed under general anesthesia or conscious sedation with
blood pressure monitoring. Trans-esophageal echocardiography or CT-angiography was
performed in all patients to rule out the presence of left atrial thrombus before ablation. If
already present, OACs were not interrupted before the procedure. Vitamin K antagonists
were continued with a target INR between 2 and 3. Direct oral anticoagulants (DOACs)
were discontinued on the day of the procedure and resumed the same day. After groin
puncture, intravenous heparin was administered to maintain an activated clotting time
between 300 and 350 s throughout the whole procedure. Concerning the ablation, irrigated
tip ablation catheter with contact force sensing technology was systematically employed. RF
lesions were placed in temperature-limited power control mode (30–40 watts at the posterior
and 35–45 watts at the anterior wall). The ablation was guided via automatic ablation
annotation and minimum force–time integral and, later, minimum ablation index values,
local electrogram attenuation, and impedance changes. Antral or wide-antral PVI was
performed at operator’s discretion, but ostial ablation was avoided. Entry and exit blocks
of the PVs were assessed with or without intravenous adenosine, and if needed, touch-up
applications were applied at the gap sites to achieve block. Point-by-point pulmonary vein
isolation was performed in all patients using contact force sensing technology (SmartTouch,
Biosense Inc., Diamond Bar, CA, USA) following high-density bipolar voltage mapping.
The LVA percentage was defined via the size of the LA fibrotic area, derived from a
bipolar voltage map created simultaneously with LA surface reconstruction, guided by
an EAM system (CARTO3, Biosense Webster, Diamond Bar, CA, USA) using a multipolar
mapping catheter (PentaRay, Biosense Webster, Diamond Bar, CA, USA). Patients in AF
rhythm at the start of the procedure systematically underwent electrical cardioversion
in the electrophysiology laboratory. For those patients who relapsed after at least two
cardioversions, EAM was performed in AF, adjusting the cut-off [8]. Adequate quality
of the acquired voltage points was established according to CONFIDENSE module after
respiratory compensation. This is a continuous mapping software with automated data
acquisition when set criteria are met, namely, (1) tissue proximity indication; (2) map
consistency (which means a reasonable time of activation as compared to contiguous
points; if it does not fulfill criteria, the point is reexamined); (3) position stability filter
(4 mm); (4) cycle length stability (keeps data collected within a range of predefined cycle
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lengths, within 10% of the average). Wavefront annotation was systematically activated. A
minimum number of points was requested (>1000), and the density fill threshold remained
constant at ≤5 mm. Contiguous areas of bipolar voltage <0.5 mV were considered LVA in
sinus rhythm [33,34]. Total LA surface area was defined as the LA body area without the PV
antrum regions, LA appendage orifice, and mitral valve. Medians of the total LA surface
area and area of each predefined region were measured offline on the three-dimensional
reconstructed LA model. Median values of LVA were set in relation to the surface area of
each region and the entire LA. Carto-3 built-in software was used to calculate the percentage
of LVAs from the LA surface. Maps were color-coded from grey (<0.5 mV, substantial LVAs)
to purple (>1.5 mV, normal voltage). Patients were assigned to 1 of 3 groups (Stages 1–3)
based on the volumetric percentage of LA wall enhancement [5,35] and more extreme LVAs:
Stage 1 (<10% of atrial wall); Stage 2 (≥10%–<50% of atrial wall); and Stage 3 (≥50% of
atrial wall).

4.5. RNA Extraction and miRNA Quantification

Sequences of 84 different predesigned mature miRNAs (listed in Supplementary Table
S3) were detected using a Human Cardiovascular Disease miScript miRNA PCR Array
(MIHS-113Z, Qiagen, Hilden, Germany), as previously described, containing a miRNA
sequence from C. elegans as an exogenous normalizer (spike-in cel-miR-39) [36]. All cDNA
steps and PCR setup were performed via a QuantStudio™ 5 Flex Real-Time PCR System
(Applied-Biosystems, Carlsbad, CA, USA). The PCR cycling was performed according
to the manufacturer’s protocol. Briefly, only miRNAs with Ct values < 30 in all samples
were considered. miRNA normalized expressions were represented by ∆Ct, calculated
by subtracting the global geometric mean signal from individual miRNA Ct values. The
2−∆∆Ct method was used to calculate miRNAs’ fold change.

4.6. Bioinformatics Analysis for miRNA Target Genes and Biological Pathways

miRNA-targeted genes were retrieved from the miRWalk 3.0 database (http://mirwalk.
umm.uni-heidelberg.de/ (accessed 20 February 2023)). EnrichR was used for GO terms
and KEGG pathway enrichment analyses (https://maayanlab.cloud/Enrichr/ (accessed
on 20 February 2023)). MiRNA–genes–pathways networks were visualized with Cytoscape
software 3.9.1 (http://cytoscape.org/ (accessed on 28 February 2023)). In silico analyses
were performed to fully understand the functional role of differentially regulated miRNAs.

4.7. Statistical Analysis

The Shapiro–Wilk test was performed to test the normality of distribution. The Mann–
Whitney test, Fisher’s test, and ANOVA, followed by Tukey’s post hoc test, Spearman’s
correlation, and the area under receiver operating characteristic curve (AUC) analysis,
were performed using GraphPad Prism 9 (GraphPad Software Inc., San Diego, CA, USA).
Numerical data were presented as mean and standard deviation (SD), interquartile range
(IQR), or standard error of the mean (SEM). In all analyses, a two-tailed p < 0.05 was
considered to be significant.

5. Conclusions

Thus, miR-486-5p may be involved in the pathogenesis of AF and LVA extent, and its
dysregulation could contribute to the development and progression of these conditions.
Further research is needed to fully elucidate the role of miR-486-5p in the pathogenesis
of AF and its potential as a biomarker or therapeutic target for the treatment of AF and
associated LVA extent.

http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
https://maayanlab.cloud/Enrichr/
http://cytoscape.org/
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